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Abstract Let f (n) be the largest integer such that every poset on n elements has a 2-
dimensional subposet on f (n) elements. What is the asymptotics of f (n)? It is easy to see
that f (n) >= n1/2. We improve the best known upper bound and show f (n) = O(n2/3).

For higher dimensions, we show fd(n) = O
(
n

d
d+1

)
, where fd(n) is the largest integer such

that every poset on n elements has a d-dimensional subposet on fd(n) elements.

Keywords Partially ordered sets · Poset dimension · Extremal combinatorics ·
Permutation matrices

1 Introduction

Every partially ordered set on n elements has a chain or an antichain of size at least n1/2,
this is an immediate consequence of Dilworth’s Theorem or its easier dual counterpart.
Chains and antichains are very special instances of 2-dimensional posets. Surprisingly, the
following simple problem is open:
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Let f (n) be the largest integer such that every poset on n elements has a 2-dimensional
subposet on f (n) elements. What is the asymptotics of f (n)?

Although this sounds like a natural extremal-type question for posets, it was posed only
in 2010, by François Dorais [1]. Clearly, n1/2 � f (n) � n. Reiniger and Yeager [5] proved
a sublinear upper bound, that is f (n) = O(n0.8295). Their construction is a lexicographic
power of standard examples.

The main idea behind our contribution was a belief that a (k × k)-grid is asymptotically
the largest 2-dimensional subposet of the (k × k × k)-cube. This led us to the following
theorem:

Theorem 1

f (n) � 4n2/3 + o
(
n2/3

)
.

Recall that the dimension dim(P ) of a poset P is the least integer d such that elements
of P can be embedded into R

d in such a way that x < y in P if and only if the point of x

is below the point of y with respect to the product order on Rd . Equivalently, the dimension
of P is the least d such that there are d linear extensions of P whose intersection is P . By
convention, whenever we say a poset is d-dimensional, we mean its dimension is at most d .

Reiniger and Yeager [5] also studied the guaranteed size of the largest d-dimensional
subposet of poset on n elements. Let fd(n) be the largest integer such that every poset on n

elements has a d-dimensional subposet on fd(n) elements. They proved, in particular, that
fd(n) = O(ng), where g = log2d+2(2d + 1).

Let [n] denote {0, 1, . . . , n − 1}. By the nd-grid we mean the poset on the ground set
[n]d with the natural product order, i.e. (x1, x2, . . . , xd) � (y1, y2, . . . , yd) if xi � yi for all
i. Note that the nd-grid is a d-dimensional poset. Moreover, it is easy to see that the nd+1-
grid contains as a subposet the nd-grid – simply fix one coordinate to an arbitrary value.
We prove that this is asymptotically the largest d-dimensional subposet of the nd+1-grid.
For d � 7, this observation improves on the best known upper bound for the asymptotics of
fd(n).

Theorem 2

fd(n) = O
(
n

d
d+1

)
.

In order to show this we apply a multidimensional version of the theorem by Marcus and
Tardos [3] saying that the number of 1-entries in an n × n (0, 1)-matrix that avoids a fixed
permutation matrix P is O(n). The multidimensional version was proved by Klazar and
Marcus [2], and then independently byMethuku and Pálvölgyi [4], who applied it to another
extremal problem related to subposets, i.e. they proved that for every poset P the size of any

family of subsets of [n] that does not contain P as a subposet is at mostO
((

n
�n/2�

))
.

2 Dimension Two

If we ignore a multiplicative constant, Theorem 1 becomes a special case of Theorem 2.
Still, we provide a short and simple proof of Theorem 1, as we believe it might provide a
better insight to the core of the problem.
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Fig. 1 A subposet of C3 composed of all elements with z-coordinate equal to i (on the left) and the poset
C3 itself (on the right)

Proof of Theorem 1 First we argue for values of n such that n = r3 for some r ∈ N. Then
at the end of the proof we address the general case.

Let Cr be the poset with the ground set [r]3, where (x1, y1, z1) �Cr (x2, y2, z2) if

(z1 � z2) and (y1 < y2 or (y1 = y2 and x1 = x2)),

see Fig. 1.
Consider any subposet S of Cr such that |S| � 4r2. We will prove that dim(S) > 2 by

showing that S contains as a subposet the poset1 of dimension 3 presented in Fig. 2.
Let S1 be the poset obtained from S by removing every element (x, y, z) such that S

contains no element (x, y, z′) with z′ < z. Note that |S1| � 3r2, as for every pair (x, y) ∈
[r]2 at most one element is removed. Now by the pigeonhole principle, we get that S1

contains a subposet S2 on at least 3r elements such that all elements of S2 have the same
z-coordinate.

Let A be any point in S2 with the minimal y-coordinate and let S3 be the subposet
of S2 obtained by removing all points with the same y-coordinate as A. As there can be
at most r points with the same y-coordinate, |S3| � 2r . By the pigeonhole principle for
r − 1 containers, S3 contains three points with the same y-coordinate, say B1 = (x1, y, z),
B2 = (x2, y, z), B3 = (x3, y, z). Thanks to the removal rule that led to the creation of S1,
the poset S contains points C1 = (x1, y, z1), C2 = (x2, y, z2), C3 = (x3, y, z3) for some
z1, z2, z3 < z.

One can easily verify that the subposet {A,B1, B2, B3, C1, C2, C3} of S is the poset in
Fig. 2. Since it has dimension 3, we have dim(S) > 2, which concludes the proof for n

being a perfect cube.

1This is one of the 3-irreducible posets, which are listed in [6].
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Fig. 2 A poset of dimension 3
found in any subposet of Cr of
size at least 4r2

Now, fix any n ∈ N, and let r = ⌈
3
√

n
⌉
. Note that f is non-decreasing, thus

f (n) � f (r3) � 4r2 � 4( 3
√

n + 1)2 = 4n2/3 + o
(
n2/3

)
.

With a more tedious analysis, which involves one more forbidden subposet and removal
of both lowest and highest z-coordinate points in each (x, y)-column, we can prove a
slightly stronger upper bound, i.e. f (n) � 3n2/3 + o

(
n2/3

)
. However, we do not know how

to improve on the asymptotics of f .

3 Higher Dimensions

In this section we prove Theorem 2. In order to do this we apply a multidimensional version
of the theorem by Marcus and Tardos [3], proved by Klazar and Marcus [2]. First, we recall
their result. The original terminology can be simplified because our argument does not
use arbitrary sized matrices and we can focus only on multidimensional analogs of square
matrices.

We call a subset of [n]d a d-dimensional (0, 1)-matrix.
For two d-dimensional (0, 1)-matrices A ⊆ [n]d and B ⊆ [k]d , we say that A contains

B if there exist d increasing injections hi : [k] → [n], i ∈ {1, 2, . . . , d}, such that
if (x1, x2, . . . , xd) ∈ B, then (h1(x1), h2(x2), . . . , hd(xd)) ∈ A,

for all (x1, x2, . . . , xd) ∈ [k]d . Otherwise, we say that A avoids B.
We say that A ⊆ [n]d is a d-dimensional permutation of [n]

|A| = n and ∀x,y∈A
x 
=y

∀i∈{1,2,...,d} xi 
= yi .

In other words, the size of the projection of A onto the i-th dimension equals n for each
i ∈ {1, 2, . . . , d}.

Theorem 3 (Klazar–Marcus [2]) For every fixed d-dimensional permutation P the max-
imum number of elements of a d-dimensional matrix A ⊆ [n]d that avoids P is
O(nd−1).

Now we are ready to prove the following statement, which clearly implies Theorem 2.

Theorem 4 The largest d-dimensional subposet of the nd+1-grid hasO(nd) elements.

Proof We fix any poset of dimension d+1, e.g. the standard example Sd+1, i.e. the inclusion
order of singletons and d-element subsets of [d + 1]. Now, we fix a realizer of Sd+1 of size
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d + 1, i.e. a set of d + 1 linear orders {L1, L2, . . . , Ld+1} such that L1 ∩L2 ∩ · · · ∩Ld+1 =
Sd+1. Finally, we construct a (d +1)-dimensional permutation P ⊆ [2(d +1)]d+1 such that
(x1, x2, . . . , xd+1) ∈ P if and only if there exists x ∈ Sd+1 such that x is the xi-th element
of Li for each i ∈ {1, 2, . . . , d + 1}. Note that the natural product order of elements of P is
isomorphic to Sd+1.

Now, take any d-dimensional subposet of the nd+1-grid and denote by A the set of its
elements. In particular, the subposet does not contain Sd+1 as a subposet. Note that it implies
that A avoids P , thus by Theorem 3 the size of the subposet is O(nd).

Note that the proof above does not exploit any specific properties of the standard exam-
ple, apart from its dimension. In particular, it implies that every (d + 1)-dimensional poset
P can be found in every subposet of the nd+1-grid of size �(nd), with the constant hidden
in the asymptotic notation depending on the choice of P .
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