RADIOLARIA FROM THE UPPER CENOMANIAN-LOWER TURONIAN DEPOSITS OF THE SILESIAN UNIT (POLISH FLYSCH CARPATHIANS)

MARTA BĄK

Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland; bak@ing.uj.edu.pl

Abstract: Upper Cenomanian to lower Turonian deposits of the Silesian Unit of the Polish Flysch Carpathians comprise a characteristic interval of green and black shales with manganese concrections, tuff and bentonites. These strata are not only distinctive lithologically, but also contain a rich radiolarian fauna. Thirty-five species of Radiolaria have been identified. Spherical cryptothoracic and cryptocephalic Nassellaria dominate in the assemblage, especially species such as *Holocryptocanium barbui*, *H. tuberculatum*, *Hemicryptocapsa prepolyhedra* and *H. polyhedra*. The systematic description of fifteen species belonging to order Spumellaria and twenty species of Nassellaria is presented herein.

Key words: Cretaceous, Flysch Carpathians, Silesian Unit, Radiolaria.

Introduction

"Green Shales with Radiolarians" represent the most distinctive horizon of the mid-Cretaceous of the Flysch Carpathians (Sujkowski & Różycki 1930; Sujkowski 1932; Burtanówna et al. 1933; Książkiewicz 1951; Koszarski 1956; Koszarski et al. 1959; Liszkowa 1962; Liszkowa & Nowak 1962; Bieda et al. 1963; Geroch et al. 1967, 1985; Kotlarczyk 1978, 1988; Gzik 1990).

In the Polish Flysch Carpathians "Green Shales" are present in the Silesian, Sub-Silesian and Skole units (*op. cit.*). The thickness of these deposits changes from dozens of centimetres to several meters. They mainly consist of green shales with intercalations of black, grey and olive, silty or calcareous shales, and sometimes they are intercalated with red shales, green and red cherts and radiolarites. Clastic intercalations are also present in the form of thin layers of fineand very fine-grained sandstone, sometimes with glauconite. The lower part of this succession includes characteristic layers of ferromanganese concretions and black shales with manganese incrustations, and a few layers of bentonite and tuff which are usually situated just below the layer with ferromanganese concretions. This tuff has been dated as 91.4 \pm 4.7 Ma (Van Couvering et al. 1981).

These deposits are the most completely developed within the Silesian Unit of the Polish Flysch Carpathians (Fig. 1). They have been named here "jaspary cherts" following Książkiewicz (1951). Stratigraphically they are situated between the Lgota Beds (thin bedded flysch, the upper part of which can be developed as the Mikuszowice Spongiolites) and the Godula Beds (red shales or sandstone) (Fig. 2).

"Green Shales with Radiolarians" have been a subject of lithological and biostratigraphical studies since the early 1930's. Previous authors dealing with micropaleontological investigations focused their interests on foraminifers as the most useful tool for biostratigraphical purposes (i.e. Lisz-

Fig. 1. Location of the sections studied (black triangles) in the geological map of the Outer Western Carpathians (after Żytko et al. (1988) — simplified): 1 — Magura Unit, 2 — Dukla Unit, 3 — Silesian Unit, 4 — Sub-Silesian Unit, 5 — Skole Unit, 6 — post-orogenic Neogene cover. Abbreviations of section names: Lc — Lanckorona, Jas — Barnasiówka-Jasienica, Trz — Trzemeśnia, CP — Czarny Potok.

Fig. 2. Lithostratigraphy of the Cenomanian through Turonian deposits in the Silesian Unit (after Ślączka et al. 1993).

kowa 1956, 1962; Liszkowa & Nowak 1962; Bieda et al. 1963; Geroch et al. 1967, 1985), although radiolarians are the most abundant microfauna in these deposits. Górka (1996) has presented the only systematic description of a radiolarian assemblage from the Skole Unit (Polish part of the Flysch Carpathians). A few investigations focus on the radiolarian fauna from comparable deposits in the Ukrainian and the Romanian Carpathians (Sujkowski 1932; Lozyniak 1969, 1975; Dumitrică 1970, 1975). Despite this, the radiolarian fauna has neither been described in detail nor applied in the Polish Flysch Carpathians.

The first systematic investigations of the radiolarian fauna from the "Green Shales" in the Polish part of the Silesian Unit were initiated by the author in the early 1990's (Bąk 1994).

The present paper summarizes the current state of research, with the aim of documenting the radiolarian assemblages from the "Green Shales with Radiolarians".

Geological setting

The Silesian Nappe is one of the Tertiary thrust-sheets of the Outer Western Carpathians (Fig. 1). The exposed part of the Silesian sequence is represented by the Upper Jurassic to Miocene deposits.

During the formation of the Outer Carpathian geosyncline, the Silesian Basin was one of the sedimentary basins, which were created (Książkiewicz 1962). The basin was relatively deep as indicated by the absence of shallow-water sedimentary structures and shallow-water fauna in the autochthonous sediments. During the Cenomanian the basin reached its maximum depth and "Green Shales with Radiolarians" and radiolarites were deposited (Koszarski & Żytko 1965).

Four sections were selected for a detailed study of radiolarian assemblages (Figs. 1, 3).

1. Lanckorona (Lc). This is the type section of radiolarian cherts in the Polish Flysch Carpathians (Książkiewicz 1951; Bieda et al. 1963). It is located between the Lanckorona and Brody settlements, on the northern slope of the Zamkowa Hill along the stream, which is a right tributary of the Cedron creek.

Stratigraphically, the radiolarian-bearing deposits are situated between the Mikuszowice Spongiolites which represent the uppermost part of the Lgota Beds (Albian-Lower Cenomanian) and the Godula Beds (lower Turonian-Senonian) (Książkiewicz 1951). They are represented here by red shales (Figs. 2, 3). The sediments are strongly tectonized due to folding, hence the entire lithological section of the radiolarian-bearing deposits has been reconstructed based on several outcrops along the stream (Gzik 1990). The deposits are about 40 m thick here (Książkiewicz 1951). The oldest sediments of the section are represented by black manganese shale intercalated with thin olive-green silty shale. Manganese shale is up to the 50 cm thick. This interval is followed by tan-coloured siliceous shale, with olive-green, black and rust-coloured shale intercalated.

Olive-green and grey-green shale dominate the younger sediments of the section. Thin black calcareous or siliceous shale and rare thin glauconitic sandstone sporadically intercalate them. There follow laminated cherts (up to 63 %), siliceous marls and non-structural marls. The uppermost part of the deposits investigated is characterized by thin intercalations of cherry-red shales of Godula type.

2. Barnasiówka-Jasienica (Jas). The section is located in the north-eastern part of the quarry situated on the Barnasiówka Range at Jasienica. The lower part of the Radiolaria-bearing deposits is presented here. Green, grey and black shales with frequent thin mudstone and sandstone intercalations are exposed. The shales are spotty in some places. The complex is underlain by the Lgota Beds made of thin-bedded fine-grained grey and dark sandstone with black, shale intercalations.

3. Trzemeśnia (Trz). This section is situated in the village Trzemeśnia, about 10 km east from Myślenice town. The Mikuszowice Spongiolites represents the stratigraphically lower part of this section, which is the uppermost part of the Lgota Beds. There is a sedimentary contact between the Mikuszowice Spongiolites and the overlying radiolarian beds, which consists mainly of green shales, silty or partly siliceous, with thin-bedded very fine-grained sandstone and mudstone intercalations. In this section, "Green Shales" include the bed with ferromanganese concretions as well as a bentonite layer.

4. Czarny Potok (CP). This section is located 13 km north of Krosno town near the Węglówka settlement. It is exposed in the Czarny Potok stream. The upper part of the radiolarian beds and the Lgota red shales are exposed here. The radiolarian beds consist mainly of green and black shales, silty and calcareous with some intercalations of olive shales and very thin beds of fine-grained sandstone and mudstone.

Fig. 3. Lithological columns showing the lithological units and position of radiolarian samples.

Material and methods

The material prepared and studied includes 90 samples of different lithologies, from four sections of the Polish part of the Silesian Unit.

The samples were collected in the sections every 10 to 80 cm (depending on changes in lithology and the quality of exposure). Green, black and olive shales, silty and siliceous are the dominant lithotypes. A few samples were taken from mudstones and marly shales.

Samples of about 1 kg were taken for preparation. Each sample was broken into pieces of 1–2 cm and dried at a temperature of 105 °C. The preparation procedures depended on the lithology of the sample. Mudstones and silty shales were soaked in hot solution of glauberic salt and boiled usually for several days. Than the residue was washed through a 63 μ m sieve. Next, the remaining cemented parts of the samples were treated with hydrogen peroxide with addition of chalk (to avoid oxidation of pyrite) for several minutes to one hour, and finally washed again.

In the case of marly shales, radiolarian skeletons were freed by dissolving the rock matrix in hot acetic acid. Then the residue was washed through a $63 \mu m$ sieve.

For further cleaning the skeletons were soaked in hydrogen peroxide or boiled in Calgon solution.

The radiolarians were first examined under a binocular microscope. They were picked out manually from the residue (maximum 300 specimens per sample). The best preserved specimens were mounted on Scanning Electron Microscope (SEM) stubs for photography. More than 1000 SEM pictures were taken during the study.

The sample material is deposited in the Institute of Geological Sciences, Jagiellonian University.

Radiolarian assemblage

Thirty five species of Radiolaria have been identified from the samples studied (Figs. 4, 5). Twenty of them belong to the order Nassellaria and fifteen belong to the Spumellaria.

Samples with abundant radiolarians are from black, green and olive shales of "Green Shales with Radiolarians". The fauna is moderately to well-preserved. The poor state of preservation of some radiolarian specimens observed in black shales is due to pyritization processes. Pyrite coatings occur on the spherical radiolarian skeletons. Radiolaria are rare in the remaining deposits (Lgota Beds and Godula Beds).

The assemblage analysed is dominated by spherical cryptothoracic and cryptocephalic Nassellaria, belonging especially to the species *Holocryptocanium barbui* Dumitrică, *Holocryptocanium tuberculatum* Dumitrică, *Hemicryptocapsa prepolyhedra* Dumitrică and *H. polyhedra* Dumitrică. These forms form about 60 to 99 per cent of the specimens. Spumellarians are less common. They consist of 30 to 40 per cent of the radiolarian fauna, and are represented mainly by the genera such as *Pseudoaulophacus*, *Patellula*, *Alievium*, *Crucella* and *Praeconocaryomma*.

Systematic description

The taxonomy used in this paper is that proposed by O'Dogherty (1994). It is supplemented with data given by Dumitrică (1970), Pessagno (1976, 1977), Hollis (1997) and Ožvoldová (1997). All taxa are listed in alphabetical order of the genera. Their distribution in samples is shown in Figs. 4–5.

Order NASSELLARIA Ehrenberg 1875

Genus Amphipyndax Foreman 1966 Type species: Lithostrobus pseudoconulus Pessagno 1963

Fig. 4. Frequency of the radiolarian specimens in the Lanckorona (Lc) section. R — species redeposited.

Fig. 5. Frequency of the radiolarian specimens in the Barnasiówka-Jasienica (Jas), Trzemeśnia (Trz) and Czarny Potok (CP) sections.

314

Amphipyndax stocki (Campbell & Clark) Plate I: Fig. 14, Plate II: Fig. 3

- 1944 Stichocapsa megalocephalia Campbell & Clark: Campbell & Clark; p. 44, pl. 8, figs. 26, 34.
- 1944 Stichocapsa (?) stocki Campbell & Clark: Campbell & Clark; p. 44, pl. 8, figs. 31-33.
- 1968 Amphipyndax stocki (Campbell & Clark): Foreman; p. 78, pl. 8, figs. 12a-c.
- 1994 Stichomitra stocki (Campbell & Clark): O'Dogherty; p. 147, pl. 18, figs. 9-15.
- 1997 Amphipyndax stocki (Campbell & Clark) group: Hollis; p. 66, pl. 15, figs. 5-11.

Material: Two poorly preserved specimens have been found in the material investigated.

Genus Cryptamphorella Dumitrică 1970 Type species: Hemicryptocapsa conara Foreman 1968 Cryptamphorella conara (Foreman) Plate II: Figs. 7, 8

- 1968 Hemicryptocapsa conara Foreman: Foreman; p. 35, pl. 4, figs. 11a,b.
- 1970 Cryptamphorella conara (Foreman): Dumitrică; p. 80, pl. 11, figs. 66a-c.

Material: 45 moderately preserved specimens have been found in the material investigated.

Genus *Diacanthocapsa* Squinabol 1903 Type species: *Diacanthocapsa euganea* Squinabol 1903 *Diacanthocapsa* sp. Plate II: Fig. 9

Description: Test tricyrtid, spindle shaped. Cephalis small, poreless, partly encased into the thorax, lacking apical horn. Thorax companulate, porous. Abdomen oval, twice larger than thorax. Test lacking a sutural pore.

Material: Two poorly preserved specimens have been found in the material investigated.

Genus Dictyomitra Zittel 1876 Type species: Dictyomitra multicostata Zittel 1876 Dictyomitra gracilis (Squinabol) Plate I: Figs. 1, 2

1903 Sethoconus gracilis Squinabol: Squinabol; p. 131, pl. 10, fig. 13.
1982 Mita gracilis (Squinabol): Taketani; p. 60, pl. 5, figs. 2a-b, pl. 12, fig. 3.

1994 Dictyomitra gracilis (Squinabol): O'Dogherty; p. 73, pl. 1, figs. 12-25.

Diagnosis: Test conical, spindle shaped to globose distally. Cephalis sharply pointed distally. Test consists of eight to ten segments. Constrictions between segments weakly marked.

Material: Three well-preserved specimens.

Dictyomitra montisserei (Squinabol) Plate I: Figs. 3, 4

- 1903 Stichophormis Montis Serei Squinabol: Squinabol; p. 137, pl. 8, fig. 38.
- 1903 Stichophormis costata Squinabol: Squinabol; p.136, pl. 8, fig. 41.
- 1977 Archaeodictyomitra sliteri Pessagno: Pessagno; p. 43, pl. 6, figs. 3, 4, 22, 23, 27.
- 1994 Dictyomitra montisserei (Squinabol): O'Dogherty; p. 77, pl. 3, figs. 1-29.

Diagnosis: Test multi-segmented, slender, and conical to cylindrical toward distal part. Constrictions on segmental divisions weak to well-developed. Test with ten to twelve costae in lateral view.

Material: 30 well-preserved specimens.

Dictyomitra napaensis Pessagno Plate I: Figs. 6-9

1976 Dictyomitra napaensis Pessagno: Pessagno; p. 53, pl. 4, fig. 16, pl. 5, figs. 1, 9.

Diagnosis: Test multi-segmented, conical, with characteristic stiplike outline. Cephalis small, sharply pointed apically. Nine to thirteen costae in lateral view. Costae converging apically. **Material:** Twelve well to moderately preserved specimens.

> Dictyomitra pseudoscalaris (Tan) Plate I: Fig. 5

1927 Stichomitra pseudoscalaris Tan: Tan; p. 56, pl. 11, fig. 84.

Diagnosis: Test multi-segmented, consists of nine to eleven segments, slender, conical. Cephalis small, sharply pointed. Constrictions on segmental divisions very weak developed, with a single row of pores. Twelve to fourteen costae are present on the visible side of the test.

Material: Only one specimen has been found in the material investigated.

Genus *Distylocapsa* O'Dogherty 1994 Type species: *Distylocapsa nova* Squinabol 1904 *Distylocapsa* cf. *squama* O'Dogherty Plate II: Fig. 4

1994 Distylocapsa cf. squama O'Dogherty: O'Dogherty; p. 189, pl. 28, figs. 16-21.

Diagnosis: Test spindle-shaped, with four to five chambers. Weak constrictions developed between post-cephalic segments. Cephalis small, hemispherical with apical horn. Test thick-walled consisting of two lattice layers of pore frames regularly disposed on post-cephalic chambers. Test with a slender terminal spine.

Material: Only one moderately preserved specimen has been found in the material investigated.

Genus Gongylothorax Foreman 1968 Type species: Gongylothorax verbeeki (Tan) 1927 Gongylothorax siphonofer Dumitrică Plate II: Fig. 6

1970 Gongylothorax siphonofer Dumitrică: Dumitrică; p. 57, pl. I, figs. 3a-b, 4a-c, 5a-b.

Diagnosis: Test dicyrtid. Cephalis spherical, poreless, partly depressed into the thoracic cavity. Thorax spherical, inflated, with numerous conical nodes, which might be only weakly, marked on its surface. Pores are situated on the top of nodes. Aperture narrow. Sutural pore indistinct.

Material: 74 moderately preserved specimens have been found in the material investigated.

Genus *Hemicryptocapsa* Tan 1927 Type species: *Hemicryptocapsa capita* Tan 1927 *Hemicryptocapsa polyhedra* Dumitrică Plate III: Fig. 5

1970 Hemicryptocapsa polyhedra Dumitrică: Dumitrică; p. 71, pl. 14, figs. 85a-c.

Plate I: Radiolarian microfauna in the Cenomanian/Turonian deposits from the Silesian Unit. Figs. 1, 2. Dictyomitra gracilis (Squinabol), 1 — Lc-11031; 2 — Lc-11037. Figs. 3, 4. Dictyomitra montisserei (Squinabol), 3 — Lcm-7037; 4 — Lcm-26030. Fig. 5. Dictyomitra pseudoscalaris (Tan), Lcm-26025. Figs. 6–9. Dictyomitra napaensis Pessagno, 6 — Lcm-26015; 7 — Lcm-26002; 8 — Lcm-7015; 9 — Lcm-7003. Fig. 10. Pseudodictyomitra pseudomacrocephala (Squinabol), Lcm-26033. Figs. 11–13. Pseudodictyomitra tiara (Holmes), 11 — Lcm-26035; 12 — Tr15A542; 13 — Lc-11025. Fig. 14. Amphipyndax stocki (Campbell & Clark), CP-803314.

Material: 35 well to moderately preserved specimens have been found in the material investigated.

Hemicryptocapsa prepolyhedra Dumitrică Plate III: Figs. 6, 7

1970 Hemicryptocapsa prepolyhedra Dumitrică: Dumitrică; p. 71, pl. 13, figs. 80-84, pl. 20, fig. 131.

Material: 60 well to moderately preserved specimens have been found in the material investigated.

Hemicryptocapsa tuberosa Dumitrică Plate II: Figs. 11, 12

1970 *Hemicryptocapsa tuberosa* Dumitrică: Dumitrică; p. 71, pl. 12, fig. 78a, pl. 13, figs. 78b, c, 79a, pl. 21, fig. 135.

Material: 46 well to moderately preserved specimens have been found in the material investigated.

Genus Holocryptocanium Dumitrică 1970 Type species: Holocryptocanium tuberculatum Dumitrică 1970 Holocryptocanium barbui Dumitrică Plate II: Figs. 13-15

1970 Holocryptocanium barbui Dumitrică: Dumitrică; p. 76, pl. 17, figs. 105-108a,b, pl. 21, fig. 136.

Material: 1750 excellent to poorly preserved specimens have been found in the material investigated.

Holocryptocanium geysersensis Pessagno Plate III: Fig. 1

1977 Holocryptocanium geysersensis Pessagno: Pessagno; p. 41, pl. 6, figs. 19, 25, 26.

Diagnosis: Test three-segmented. Abdomen subspherical, large, thick-walled with small closely spaced, inperforate nodes. Each node surrounded by 5 pores. Abdominal aperture circular, constricted, surrounded by a rise, flattened rim.

Material: 40 moderately to poorly preserved specimens have been found in the material investigated.

Holocryptocanium tuberculatum Dumitrică Plate III: Figs. 2-4

1970 Holocryptocanium tuberculatum Dumitrică: Dumitrică; p. 75, pl. 16, figs. 103a-c, pl. 21, figs. 138a, b.

Material: 1030 excellent to poorly preserved specimens have been found in the material investigated.

Genus *Pseudodictyomitra* Pessagno 1977 Type species: *Pseudodictyomitra pentacolaensis* Pessagno 1977 *Pseudodictyomitra pseudomacrocephala* (Squinabol) Plate I: Fig. 10

- 1903 Dictyomitra pseudomacrocephala Squinabol: Squinabol; p. 139, pl. 10, fig. 2.
- 1977 Pseudodictyomitra pseudomacrocephala (Squinabol): Pessagno; p. 51, pl. 8, figs. 10, 11.

Material: Three well preserved specimens have been found in the material investigated.

Pseudodictyomitra tiara (Holmes) Plate I: Figs. 11-13

1900 Dictyomitra tiara Holmes: Holmes; p. 701, pl. 38, fig. 4. 1975 Dictyomitra tiara Holmes: Dumitrică; text-fig. 2.9.

Material: Three specimens have been found in the material investigated.

Genus Squinabollum Dumitrică 1970 Type species: Clistophaena fossilis Squinabol 1903 Squinabollum fossile (Squinabol) Plate II: Fig. 10

1903 Clostiphaena fossilis Squinabol: Squinabol; p. 130, pl. 10, fig. 11.
1970 Squinabollum fossilis (Squinabol): Dumitrică; p. 83, pl. 19, figs. 118a-122.

Material: 15 moderately to poorly preserved specimens have been found in the material investigated.

Genus Stichomitra Cayeux 1897 Type species: Stichomitra bertrandi Cayeux 1897 Stichomitra communis Squinabol Plate II: Figs. 1, 2

1903 Stichomitra communis Squinabol: Squinabol; p. 230, pl. 9, fig. 11.
1994 Stichomitra communis Squinabol: O'Dogherty; p. 144, pl. 17, figs. 6–16.

Material: Three specimens.

Genus Xitus Pessagno 1977 Type species: Xitus plenus Pessagno 1977 Xitus spicularius (Aliev) Plate II: Fig. 5

1965 Dictyomitra spicularia Aliev: Aliev; p. 39, pl. 6, fig. 9, pl. 14, fig. 4. 1977 Xitus spicularius (Aliev): Pessagno; p. 56, pl. 9, fig. 7, pl. 10, fig. 5.

Material: Two poorly preserved specimens have been found in the material investigated.

Order SPUMELLARIA Ehrenberg 1875

Genus Acaeniotyle Foreman 1973 Type species: Xiphosphaera umbilicata Rüst 1898 Acaeniotyle cf. vitalis O'Dogherty Plate IV: Figs. 13, 14

1994 Acaeniotyle vitalis O'Dogherty: O'Dogherty; p. 287, pl. 51, figs. 1-4.

Remarks: Forms with almost completely broken primary spines protruding out from the cortical shell.

Material: Five moderately to poorly preserved specimens have been found in the material investigated.

Genus Alievium Pessagno 1972 Type species: Theodiscus superbus Squinabol 1914 Alievium superbum (Squinabol) Plate IV: Figs. 9-12

?1900 Trigonocyclia sp. B: Holmes; p. 698, pl. 27, fig. 24.
1914 Theodiscus superbus Squinabol: Squinabol; p. 271, pl. 20, fig. 4.
1975 Alievium superbum (Squinabol): Dumitrică; text-fig. 2.

504m

- 50 H m

4

50×m

Plate II: Radiolarian microfauna in the Cenomanian/Turonian deposits from the Silesian Unit. Figs. 1, 2. *Stichomitra communis* Squinabol, 1 — Tr15B0518; 2 — Lcm-26005. Fig. 3. *Amphipyndax stocki* (Campbell & Clark), Lcm-7016. Fig. 4. *Distylocapsa* cf. *squama* O'Dogherty, Lcm-26027. Fig. 5. *Xitus spicularius* (Aliev), Lcm-7014. Fig. 6. *Gongylothorax siphonofer* Dumitrică, Jas-28001. Figs. 7, 8. *Cryptamphorella conara* (Foreman), 7 — Lcm-26019; 8 — Lcm-7019. Fig. 9. Diacanthocapsa sp., Lcm-26031. Fig. 10. *Squinabollum fossile* (Squinabol), Lcm-7011. Figs. 11, 12. *Hemicryptocapsa tuberosa* Dumitrică, 11 — Lc-0028; 12 — Lc-001. Figs. 13–15. *Holocryptocani*

.

504

um barbui Dumitrică, 13 – Lc-11038; 14 – Tr-15A01; 15 – Tr-15A0543.

RADIOLARIA FROM CENOMANIAN-TURONIAN DEPOSITS OF THE SILESIAN UNIT

50 H M

50×n

Diagnosis: Test triangular in outline, convex. Meshwork of cortical shell composed mostly of triangular pore frames, bearing small raised, spinose nodes. Test has three massive primary spines.

Material: Seven moderately preserved specimens have been found in the material investigated.

Genus Crucella Pessagno 1971 Type species: Crucella messinae Pessagno 1971 Crucella cachensis Pessagno Plate III: Fig. 10

1971 Crucella cachensis Pessagno: Pessagno; p. 53, pl. 9, figs. 1-3.

Diagnosis: Hagiastrid with test four-rayed. Central area cylindrical with well-developed lacuna. The diameter of the central area is about equal to the length of the rays. Rays slender and cylindrical, terminate in moderately long, massive central spines.

Material: Three moderately preserved specimens have been found in the material investigated.

Crucella messinae Pessagno Plate III: Fig. 9

1971 Crucella messinae Pessagno: Pessagno; p. 56, pl. 6, figs. 1-3.

Diagnosis: Test large, four-rayed without bracchiopyle. Rays approximately equal in length, rectangular to ellipsoidal in crosssection sharply pointed distally. Central area moderately to strongly inflated.

Material: Four moderately to well-preserved specimens have been found in the material investigated.

Genus Dactyliodiscus Squinabol 1903 Type species: Dactyliodiscus cayeuxi Squinabol 1903 Dactyliodiscus lenticulatus (Jud) Plate IV: Fig. 8

1994 Godia lenticulata Jud: Jud; p. 78, pl. 10, figs. 10-11.
1994 Dactyliodiscus lenticulatus (Jud): O'Dogherty; p. 331, pl. 61, figs. 12-15.

Diagnosis: Test large, disc-shaped, circular in outline, flat. Periphery of the test rounded with more than 20 moderately massive spines. Meshwork of the test spongy with numerous small tubercles on its upper and lower part.

Material: Only one well-preserved specimen has been found in the material investigated.

Dactyliodiscus sp. Plate V: Figs. 6, 7, 11

Description: Test large, disc-shaped, circular in outline, flat. Periphery of the test rounded with variable number of massive spines. Meshwork of the test spongy, consists of hexagonal to irregular pore frames. Meshwork forms on its lower and upper surfaces wide tubercles.

Material: Three moderately preserved specimens have been found in the material investigated.

Genus Dactyliosphaera Squinabol 1904 Type species: Dactyliosphaera silviae Squinabol 1904 Dactyliosphaera maxima (Pessagno) Plate IV: Figs. 5-7

1976 Orbiculiforma maxima Pessagno: Pessagno; p. 34, pl. 1, figs. 14, 16.
1994 Dactyliosphaera maxima (Pessagno): O'Dogherty; p. 338, pl. 63, figs. 5–8.

Diagnosis: Test large, circular in outline, with deep central cavity. Central part of the cavity raised. Meshwork composed of circular to hexagonal pore frames. Periphery of the test is angular with indeterminate number of short spines.

Material: 82 moderately preserved specimens have been found in the material investigated.

Genus Patellula Kozlova in Petrushevskaya & Kozlova 1972 Type species: Stylospongia planoconvexa Pessagno 1963 Patellula andrusovi Ožvoldová Plate V: Figs. 1-5

1997 Patellula andrusovi Ožvoldová: Sýkora, Ožvoldová & Boorová; p. 260, pl. IV, figs. 1-7, 9, 11.

Material: 64 moderately to well-preserved specimens have been found in the material investigated.

Patellula helios (Squinabol) Plate IV: Fig. 15

1903 Stylotrochus helios Squinabol: Squinabol; p. 124, pl. 10, figs. 23, 23a.

1994 Patellula helios (Squinabol): O'Dogherty; p. 327, pl. 60, figs. 19-24.

Remarks: Specimens investigated usually have their spines broken.

Material: 15 moderately preserved specimens have been found in the material investigated.

Patellula ecliptica O'Dogherty Plate V: Figs. 8-10

1994 Patellula ecliptica O'Dogherty: O'Dogherty; p. 329, pl. 61, figs. 1-5.

Remarks: Described specimens usually with broken spines. **Material:** 60 moderately to well-preserved specimens have been found in the material investigated.

Genus Praeconocaryomma Pessagno 1976 Type species: Praeconocaryomma universa Pessagno 1976 **Praeconocaryomma lipmanae** Pessagno Plate III: Figs. 11-14

1976 Praeconocaryomma lipmanae Pessagno: Pessagno; p. 41, pl. 4, figs. 12, 13.

1994 Praeconocaryomma sp.: Bąk; p. 150, pl. 1, fig. b.

1996 Praeconocaryomma lipmanae Pessagno: Górka; p. 556, pl. 1, fig. 1.

Remarks: Identified forms have tests spherical with conical, porous mammae. Spines protruding from each mammae, present on holotype illustrated by Pessagno (1976) are not visible in the material investigated, probably because of poor state of specimens preservation.

Material: 100 well to moderately preserved specimens have been found in the material investigated.

Praeconocaryomma universa Pessagno Plate IV: Figs. 1-4

1976 Praeconocaryomma universa Pessagno: Pessagno; p. 42, pl. 6, figs. 14-16.

Diagnosis: Test consists of concentric spheres. Cortical shell of the test with latticed nodes. It comprises circular to elliptical pore

Plate III: Radiolarian microfauna in the Cenomanian/Turonian deposits from the Silesian Unit. Fig. 1. Holocryptocanium geysersensis Pessagno, Lcm-7021. Figs. 2-4. Holocryptocanium tuberculatum Dumitrică, 2 — Lcm-7017; 3 — Tr-15A0523; 4 — Jas-1502919. Fig. 5. Hemicryptocapsa polyhedra Dumitrică, Jas-1502815. Figs. 6, 7. Hemicryptocapsa prepolyhedra Dumitrică, 6 — CP-1403101; 7 — Jas-1502815. Fig. 8. Quinquecapsularia ombonii (Squinabol), Jas-2802. Fig. 9. Crucella messinae Pessagno, Lc-22017. Fig. 10. Crucella cachensis Pessagno, Lcm-26023. Figs. 11-14. Praeconocaryomma lipmanae Pessagno, 11 — Jas-1401; 12 — Jas-1402; 13 — Lc-11040; 14 — Jas-14015.

Plate IV: Radiolarian microfauna in the Cenomanian/Turonian deposits from the Silesian Unit. Figs. 1-4. *Praeconocaryomma universa* Pessagno, 1 — Lcm-26013; 2 — Lc-0002; 3 — Lcm-26001; 4 — Lcm-26004. Figs. 5-7. *Dactyliosphaera maxima* (Pessagno), 5 — Tr-15C08; 6 — Lcm-26012; 7 — Jas-1502. Fig. 8. *Dactyliodiscus lenticulatus* (Jud), Lc-22018. Figs. 9–12. *Alievium superbum* (Squinabol), 9 — Lcm-26032; 10 — Lcm-26016; 11 — Lcm-26026; 12 — Lcm-7001. Figs. 13, 14. *Acaeniotyle* cf. *vitalis* O'Dogherty, 13 — Lcm-7007; 14 — Lcm-7022. Fig. 15. *Patellula helios* (Squinabol), Lc-11006.

Plate V: Radiolarian microfauna in the Cenomanian/Turonian deposits from the Silesian Unit. Figs. 1-5. Patellula andrusovi Ožvoldová, 1 - Tr-15A0526; 2 - Tr-15A0538; 3 - Tr-15A0524; 4 - Tr-15A004; 5 - Tr-15A0540. Figs. 6, 7, 11. Dactyliodiscus sp., 6 - Lcm-7006; 7 - Lcm-26028; 11 - Lcm-26029. Figs. 8-10. Patellula ecliptica O'Dogherty, 8 - Lc-20012; 9 - Lcm-26010; 10 - Tr-15A009. Fig. 12. Pseudoaulophacus sp., Lc-22019. Figs. 13-14. Pseudoaulophacus putahensis Pessagno, 13 - Lcm-7021; 14 - Lcm-7020.

frames of variable size with usually six pores on each node. Triradiate, massive spines, which connect cortical and medullar shells protruding out from the centre of each node.

Remarks: Only poorly preserved forms, with broken spines, have been found in the material investigated.

Material: 37 moderately preserved specimens have been found in the material investigated.

Genus *Pseudoaulophacus* Pessagno 1963 Type species: *Pseudoaulophacus floresensis* Pessagno 1963 *Pseudoaulophacus putahensis* Pessagno Plate V: Figs. 13-14

?1900 Trigonocyclia sp. A: Holmes; p. 698, pl. 27, fig. 20.

1972 Pseudoaulophacus putahensis Pessagno: Pessagno; p. 310, pl. 27, fig. 1.

Remarks: Forms present within deposits investigated posses their tests more subtriangular.

Material: 25 moderately to well-preserved specimens have been found in the material investigated.

Pseudoaulophacus sp. Plate V: Fig. 12

Remarks: Forms differ from *Pseudoaulophacus putahensis* Pessagno by having only circular outer shape.

Material: Five moderately to well-preserved specimens have been found in the material investigated.

Genius Quinquecapsularia Pessagno 1971 Type species: Quinquecapsularia spinosa Pessagno 1971 Quinquecapsularia ombonii (Squinabol) Plate III: Fig. 8

1903 Hexastylus Ombonii Squinabol: Squinabol; p. 113, pl. 8, fig. 10.
1904 Acrosphaera mirabilis Squinabol: Squinabol; p. 187, pl. 2, fig. 5.
1994 Quinquecapsularia ombonii (Squinabol): O'Dogherty; p. 268, pl. 47, figs. 21-24.

Diagnosis: Test spherical with initial skeleton formed by a system of bars forming a pentagonal prism. Cortical shell of the test with broad, irregular to hexagonal pore frames, usually with small, sharp nodes at the pore frame junctions. Several (eight to ten) small, primary spines can be visible around the test.

Material: Five moderately preserved specimens have been found in the material investigated.

Radiolarian correlation

The radiolarian assemblage investigated, including all radiolarians recovered in the mid-Cretaceous deposits of the Silesian Unit has been used for comparison with radiolarian zonal schemes from different regions of the Carpathians and Mediterranean.

The only zonal scheme for the Radiolaria-bearing deposits of the same interval but recognized in the Romanian Carpathians has been proposed by Dumitrică (1975). This author recognized two assemblages: *Holocryptocanium barbui-Holocryptocanium tuberculatum* and *Holocryptocanium nanum -Excentropyloma cenomana* for the Late Cenomanian-earliest Turonian interval. The radiolarian assemblages investigated show great similarities with the associations presented by Dumitrică based on the high frequency of cryptocephalic and cryptothoracic Nassellaria such as *H. barbui*, *H. tuberculatum*, *Hemicryptocapsa tuberosa*, *Cryptamphorella conara* and *Gongylothorax siphonofer*. Moreover, some multi-segmented Nassellaria from genera such as *Dictyomitra*, *Pseudomacrocephala*, *Stichomitra*, *Amphipyndax* and *Xitus* are also present in the radiolarian associations from the Silesian Unit. The upper assemblage of Dumitrică can also be distinguished in the presented material on the basis of the presence of *Alievium superbum* the first occurrence of which delineates the base of the *H. nanum-E. cenomana* assemblage.

The radiolarian assemblage investigated differs from that of Dumitrică (1975) by including a smaller percentage of Nassellaria (only 60-70 %), and more Spumellaria (up to the 30-40 %).

The first radiolarian local zonation for the Cenomanian through Turonian deposits in the Polish part of the Pieniny Klippen Belt was proposed by the author in 1999 (Bak 1999). Two radiolarian zones (Hemicryptocapsa prepolyhedra and Hemicryptocapsa polyhedra) have been established for the interval investigated. The radiolarian association from the Silesian Unit shows similarities with coeval association in the Pieniny Klippen Belt based on the presence of both index specimens as well as a high percentage of cryptothoracic and cryptocephalic Nassellaria such as H. barbui, H. tuberculatum, H. tuberosa, C. conara, and multi-segmented Nassellaria as: Dictyomitra montisserei, Dictyomitra napaensis, Pseudodictyomitra tiara, Pseudodictyomitra pseudomacrocephala, Stichomitra communis, Amphipyndax stocki and Xitus spicularius. Spumellarian specimens are less frequent in the Pieniny Klippen Belt deposits, but some of the species (i.e. Dactyliosphaera maxima, Patellula andrusovi) are the same in both these areas.

The radiolarian assemblage from the Silesian Unit shows great similarities with the earliest Turonian radiolarian fauna presented by Sýkora et al. (1997) from the Czorsztyn Succession of the Pieniny Klippen Belt in the Slovak territory. Many species, especially belonging to Spumellaria are present in both these areas. These are: *Alievium superbum*, *Patellula ecliptica, Patellula andrusovi, Pseudoaulophacus putahensis, Crucella cachensis*, as well as the nassellarians such as *Dictyomitra napaensis, Dictyomitra montisserei*, *Pseudodictyomitra pseudomacrocephala, Holocryptocanium barbui* and *Cryptamphorella conara*.

The assemblage investigated can also be correlated with the first radiolarian biozonation of mid-Cretaceous deposits for the Mediterranean region proposed by O'Dogherty (1994). This author recognized two radiolarian zones and two subzones for the Late Cenomanian-early Turonian interval. The studied radiolarian assemblage is similar to this zonation for latest Cenomanian (subzone of Silviae Zone), on the basis of co-occurrence of some Nassellaria and Spumellaria species. The Superbum Zone can also be distinguished in the assemblage investigated on the basis of the presence of the index taxon.

Conclusions

The results presented here are based on micropaleontological analysis of 90 samples from four profiles of mid-Cretaceous deposits of the Silesian Unit, in its Polish part. The deposits investigated are very rich in radiolarian fauna. Lithologically, they consist mainly of green shales with black shale intercalations, including a manganese concretions level, bentonites and tuff layer dated as 91.4 \pm 4.7 Ma (Van Couvering et al. 1981). These deposits represent characteristic correlating horizon, presents in the whole Carpathian arc.

A systematic search of all different radiolarian morphotypes in the samples investigated proved the diversity of radiolarian fauna. Twelve genera and twenty species from the order Nassellaria, and nine genera and fifteen species from the order Spumellaria have been recognized. The radiolarian assemblage is dominated by spherical cryptothoracic and cryptocephalic Nassellaria, belonging especially to the species *Holocryptocanium barbui* Dumitrică, *H. tuberculatum* Dumitrică, *Hemicryptocapsa tuberosa* Dumitrică, *H. prepolyhedra* Dumitrică and *H. polyhedra* Dumitrică. These forms make up about 60-99 % of radiolarian specimens. The spumellarians are less common. They consist of 30-40 % of the radiolarian association, and are represented mainly by genera such as *Pseudoaulophacus*, *Patellula*, *Alievium*, *Crucella* and *Praeconocaryomma*.

All the radiolarian taxa recorded in the deposits investigated have been used for comparison with the radiolarian zonal schemes used by the previous authors in different areas of Carpathians as well as Mediterranean. The age of the deposits investigated, based on the radiolarian fauna ranges from the Late Cenomanian to early Turonian.

References

- Aliev K.S. 1965: Radiolarians of the Lower Cretaceous deposits of north-eastern Azerbaidzhan and their stratigraphic significance. *Izdatel'stvo Akademii Nauk Azerbaidzhanskoi SSR*, *Baku*, 1–124 (in Russian).
- Bąk M. 1994: Radiolaria from Cenomanian deposits of the Silesian Nappe near Sanok, Polish Carpathians. Bull. Acad. Pol. Sci., Earth Sci. 42, 145–153.
- Bąk M. 1999: Cretaceous radiolarian zonation in the Polish part of the Pieniny Klippen Belt (Western Carpathians). *Geol. Carpathica* 50, 21–31.
- Bieda F., Geroch S., Koszarski L., Książkiewicz M. & Żytko K. 1963: Stratigraphie des Karpates externes polonaises. *Biul. Inst. Geol.* 181, 5–174.
- Burtanówna J., Książkiewicz M. & Sokołowski S. 1933: Über das Auftreten der Radiolarit-schifer in der mittleren Kreide der West-Beskiden. *Rocz. Pol. Tow. Geol.* 9, 96–99 (in Polish).
- Campbell A.S. & Clark B.L. 1944: Radiolaria from Upper Cretaceous of Middle California. *Geol. Soc. Amer.*, Spec. Pap. 57, 1– 61.
- Dumitrică P. 1970: Cryptocephalic and Cryptothoracic Nassellaria in some Mesozoic deposits of Romania. *Rev. Roum. Géol. Géophys. Géogr., Sér. Geol.* 14, 1–124. Bucharest.
- Dumitrică P. 1975: Cenomanian Radiolaria at Podul Dimbovitei. Micropaleontological Guide to the Romanian Carpathians. In:

14th Europ. Micropal. Colloqu., Romania. Institute of Geol. & Geophys., Bucharest, 87–89.

- Foreman H.P. 1968: Upper Maestrichtian Radiolaria of California. Palaeontologia, Spec. Publ. 3, 1–82.
- Geroch S., Gucwa I. & Wieser T. 1985: Manganese nodules and other indications of regime and ecological environment in lower part of the Upper Cretaceous—exemplified by Lanckorona profile. In: Wieser T. (Ed.): Fundamental Researches in the Western Part of the Polish Carpathians, Guide to Excursion I. *Carpatho-Balkan Geol. Assoc., XIII Congress, Geol. Inst.*, Cracow, 88–100.
- Geroch S., Jednorowska A., Książkiewicz M. & Liszkowa J. 1967: Stratigraphy based upon microfauna in the Western Polish Carpathians. *Biul. Inst. Geol.* 211, 185–282.
- Górka H. 1996: Cenomanian Radiolaria from Spława, Polish Carpathians. Geol. Quart. 40, 555–574.
- Gzik M. 1990: Micropaleontological characteristics of radiolarites of Lanckorona area. *MSc Thesis, Instytut Nauk Geologicznych*, Uniwersytet Jagielloński, 1–99 (in Polish).
- Hollis C.J. 1997: Cretaceous–Paleocene Radiolaria from eastern Marlborough, New Zealand. *Institute of Geological & Nuclear Sciences monograph* 17, 1–152.
- Holmes W.M. 1900: On Radiolaria from the Upper Chalk at Coulsdon (Surrey). Quart. J. Geol. Soc. London 56, 694-704.
- Jud J. 1994: Biochronology and systematics of Early Cretaceous Radiolaria of the Western Tethys. Mém. Géol. (Lausanne), 19, 1–147.
- Koszarski L. 1956: Stratigraphy of Silesian and Subsilesian units north of Sanok. *Przegl. Geol.*, 4, 461–463 (in Polish).
- Koszarski L. & Żytko K. 1965: Depth of Flysch Carpathian Geosyncline. Kwart. Geol. 9, 943-944 (in Polish).
- Koszarski L., Nowak W. & Żytko K. 1959: Notes on the age of the Godula beds. *Kwart. Geol.* 3, 127–151.
- Kotlarczyk J. 1978: Stratigraphy of Ropianka Formation Inoceramide Beds in Skole Unit of Flysch Carpathians. *Prace Geolog. PAN*, 108, 1–81(in Polish).
- Kotlarczyk J. 1988: Karpaty Przemyskie. Przewodnik 59 Zjazdu PTG, 127–151.
- Książkiewicz M. 1951. Objaśnienia arkusza Wadowice. Państw. Inst. Geol., 1–283.
- Książkiewicz M. 1962: Geological Atlas of Poland. Stratigraphicalfacial problems. Cretaceous and older Palaeogene in Polish Outer Carpathians. *Instytut Ceologiczny*, Warszawa (in Polish).
- Liszkowa J. 1956: Microfauna of the Subsilesian Unit. Przegl. Geol. 4, 463-468 (in Polish).
- Liszkowa J. 1962: Classification du Cretace de la serie subsilesienne des Carpates Polonaises, basee sur la presense microfaune. Ann. Inst. Geol. Publ. Hung. 69, 889–902.
- Liszkowa J. & Nowak W. 1962: Older Cretaceous members of the Frydek Subsilesian series. *Kwart. Geol.*, 6, 235–255.
- Lozyniak P.Y. 1969: The radiolarians of the Lower Cretaceous deposits of the Ukrainian Carpathians. In: Vialov O.S. (Ed.): Fossil and Recent Radiolarians. *Materials of the Second All Union Seminar on Radiolaria*, 29–41 (in Russian).
- Lozyniak P.Y. 1975: Some radiolarians of the Cretaceous deposits of the Skiba zone of the Ukrainian Carpathians. *Paleont. Sb.* 12, 48–53.
- O'Dogherty L. 1994: Biochronology and Paleontology of Mid-Cretaceous Radiolarians from Northern Apennines (Italy) and Betic Cordillera (Spain). *Mém. Géol. (Lausanne)* 21, 1–415.
- Pessagno E.A. 1963: Upper Cretaceous Radiolaria from Puerto Rico. *Micropaleontology* 9, 197–214.
- Pessagno E.A. 1971: A new radiolarian from the Upper Cretaceous of the California Coast Ranges. *Micropaleontology* 17, 361–364.

- Pessagno E.A. 1972: Cretaceous Radiolaria. Part I: The Phaseliformidae, new family, and other Spongodiscacea from the Upper Cretaceous portion of the Great Valley Sequence. Part II: Pseudoaulophacidae Riedel from the Cretaceous of California and Blake-Bahama basin (JOIDES Leg 1). *Bull. Amer. Paleont.* 61, 269–328.
- Pessagno E.A. 1976: Radiolarian zonation and stratigraphy of the Upper Cretaceous portion of the Great Valley Sequence, California Coast Ranges. *Micropaleontology, Spec. Publ.* 2, 1–95.
- Pessagno E.A. 1977: Lower Cretaceous radiolarian biostratigraphy of the Great Valley Sequence and and Franciscan Complex, California Coast Ranges. Cont. Cushman Found. Foram. Res., Spec. Publ. 15, 1–87.
- Squinabol S. 1903: Le Radiolarie dei noduli selciosi nella Scaglia degli Euganei. Contribuzione I. Riv. Ital. Paleont. Stratigr. 9, 105–151.
- Squinabol S. 1904: Radiolarie cretacee degli Euganei. Atti e Memorie dell' Accademia di Scienze, Lettere ed Arti, Padova, New Ser., 20, 171–244.
- Squinabol S. 1914. Contributo alla conoscenza dei Radiolarii fossili del Veneto, Appendice — Di un genere di Radiolari caratteristico del Secondario. *Memorie dell'Instituto Geologico della R.* Universitá di Padova 2, 249-306.
- Sujkowski Z. 1932: Radiolarites des Karpates Polonaises Orientales et leur comparaison avec les radiolarites de la Tatra. *Spraw. Pol. Inst. Geol.* 7, 79–168.

- Sujkowski Z. & Różycki S. 1930: Findings of radiolarites in Eastern Carpathians. *Posiedz. Nauk. Panstw. Inst. Geol.* 25 (in Polish).
- Sýkora M., Ožvoldová L. & Boorová D. 1997: Turonian silicified sediments in the Czorsztyn Succession of the Pieniny Klippen Belt (Western Carpathians, Slovakia). *Geol. Carpathica*, 48, 243–261.
- Ślączka A., Geroch S. & Koszarski L. 1993: Excursion guidebook, Polish Flysch Carpathians, IV International Workshop on Agglutinated Foraminifera. *Grzybowski Foundation Spec. Publ.* 2, 1–54.
- Taketani Y. 1982: Cretaceous radiolarian biostratigraphy of the Urakawa and Obira areas, Hokkaido. Science Reports of the Tohoku University. Series 2, Geology 52, 1–75.
- Tan S.H. 1927: Over de samenstelling en het onstaan van krijten mergel-gesteenten van de Molukken. Jaarboek van het Mijnwezen in Nederlandsch Oost- Indië, Jaargang 1926, 55, 5–165.
- Van Couvering J.A., Aubry M.P., Berggren W.A., Bujak J.P., Naeser P. & Wieser T. 1981: The terminal Eocene and the Polish connection. *Palaeogeogr. Palaeoclim. Palaeoecol.* 36, 321–362.
- Żytko K., Zając R., Gucik S., Ryłko W., Oszczypko N., Garlicka I., Nemčok J., Eliáš M., Menčik E. & Stránik Z. 1998: Map of the tectonic elements of the Western Outer Carpathians and their Foreland. In: Poprawa D. & Nemčok J. (Eds): Geological Atlas of the Western Outer Carpathians and their Foreland. *Państwowy Instytut Geologiczny*, Warszawa.