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Abstract. We give the parameter version of a localization theorem for
the Bergman metric near the boundary points of strictly pseudoconvex
domains. The approximation theorem for square integrable holomorphic
functions on such domains in the spirit of Graham-Kerzman is proved in
the hereby paper, as well.
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1. Introduction. Let G ⊂ C
n be a bounded domain. Let L2

h(G) denote the
Hilbert space of all square integrable holomorphic functions on G equipped
with the norm ‖ · ‖L2(G) arising from the standard scalar product (f, g) :=∫

G
fḡdL2n. It is well known that the Bergman kernel of G restricted to the

diagonal may be represented as

KG(z) = sup{|f(z)|2 : f ∈ L2
h(G) : ‖f‖L2(G) ≤ 1}.

The Levi form of the smooth strictly plurisubharmonic function logKG,
denoted by LKG

, may be used to define the Bergman metric of G

βG(z;X) :=
√

LKG
(z;X), z ∈ G,X ∈ C

n.

This latter function allows the following description

βG(z;X) =
sup{|f ′

X(z)| : f ∈ L2
h(G) : ‖f‖L2(G) ≤ 1, f(z) = 0}
√

KG(z)
=:

MG(z;X)
√

KG(z)

for z ∈ G,X = (X1, . . . , Xn) ∈ C
n, where f ′

X(z) :=
∑n

j=1
∂f
∂zj

(z)Xj .

The following localization result for the Bergman metric has been an-
nounced in [6, Theorem 19.3.6]:
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Theorem 1.1. Let G be a strictly pseudoconvex domain with C2 boundary, and
let R > 0 be such that for any ζ0 ∈ ∂G the set G∩B(ζ0, R) is connected. Then,
for every ε > 0 there exists a δ ∈ (0, R) such that

(1’) MG(z;X) ≤ MG∩B(ζ0,R)(z;X) ≤ (1 + ε)MG(z;X)
(2’) KG(z) ≤ KG∩B(ζ0,R)(z) ≤ (1 + ε)KG(z)
(3’) (1 + ε)−1βG∩B(ζ0,R)(z;X) ≤ βG(z;X) ≤ √

1 + εβG∩B(ζ0,R)(z;X)
for all z ∈ G ∩ B(ζ0, δ),X ∈ C

n. Additionally, R can be chosen so that δ does
not depend on the boundary point ζ0.

See also [1, Theorem 1] for another result of this type. We would like to give
a parameter version of this theorem, with uniform size of respective neighbor-
hoods of boundary points. In the beginning, let us settle the following:

Situation 1.2. Let (Gt)t∈T be a family of bounded strictly pseudoconvex do-
mains with C2-smooth boundaries, where T is a compact metric space with
associated metric d. Suppose we have a domain U ⊂⊂ C

n such that

(i)
⋃

t∈T

∂Gt ⊂⊂ U,

(ii) for each t ∈ T there exists a defining function rt ∈ C2(U) for Gt such
that its Levi form Lrt

is positive on U × (Cn \ {0}),
(iii) for any ε > 0 there exists a δ > 0 such that for any s, t ∈ T with d(s, t) ≤ δ

there is ‖rt − rs‖C2(U) < ε.

We will prove the following

Theorem 1.3. Let (Gt)t∈T be a family of strictly pseudoconvex domains as in
Situation 1.2. Then there exists an R > 0 such that for any t ∈ T and ζt ∈ ∂Gt

the set Gt ∩ B(ζt, R) is connected, and for any such R, and any ε > 0 there
exists a θ ∈ (0, R) such that for any t ∈ T and ζt ∈ ∂Gt we have

(1) MGt
(z;X) ≤ MGt∩B(ζt,R)(z;X) ≤ (1 + ε)MGt

(z;X)
(2) KGt

(z) ≤ KGt∩B(ζt,R)(z) ≤ (1 + ε)KGt
(z)

(3) (1 + ε)−1βGt∩B(ζt,R)(z;X) ≤ βGt
(z;X) ≤ √

1 + εβGt∩B(ζt,R)(z;X)
for all z ∈ Gt ∩ B(ζt, θ),X ∈ C

n.

Remark 1. As we have indicated before, all the above estimates are known for
single C2-smooth strictly pseudoconvex domains G. The novelty of our result
is the fact that for the family of strictly pseudoconvex domains as in Situation
1.2, the respective neighbourhoods of boundary points may be chosen to be of
uniform size, independently of t ∈ T and ζt ∈ ∂Gt.

The main ingredient in the proof of Theorem 1.3 will be the following

Theorem 1.4. Let (Gt)t∈T be a family of strictly pseudoconvex domains as in
Situation 1.2. Then there exists an R > 0 such that the set Gt ∩ B(ζt, R) is
connected for any t ∈ T, ζt ∈ ∂Gt, and for every such R there exists a ρ < R
with the property that for any ε > 0 there exists an L = L(ε,R) > 0 such that
for any t ∈ T, ζt ∈ ∂Gt, ft ∈ L2

h(Gt ∩B(ζt, R)), and any point w ∈ Gt ∩B(ζt, ρ)
there exists an f̂t ∈ L2

h(Gt) such that
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(A) Dαf̂t(w) = Dαft(w) for |α| ≤ 1,
(B) ‖f̂t‖L2(Gt) ≤ L‖ft‖L2(Gt∩B(ζt,R)),
(C) ‖f̂t − ft‖L2(Gt∩B(ζt,ρ)) < ε‖f‖L2(Gt∩B(ζt,R)).

Remark 2. For a fixed domain G = Gt0 , Theorem 1.4 may be viewed as a
variant of Theorem 1 from [1]. In that result, one starts with a square integrable
holomorphic function defined on some small open set touching a fixed boundary
point that sticks out of G, and gets the approximation on some smaller subset
of G by functions from L2

h(G). Here, we start with L2
h functions on a small

subset of G touching ∂G, and get the same type of approximation. Note that
our proof of Theorem 1.4 is essentially different than the proof of the mentioned
result (see Section 3 for the details).

Remark 3. In [10] we proved an analogous result for bounded holomorphic
functions, instead of square integrable holomorphic ones (see also [4]). The
proof of the said assertion is based on stating and solving a certain family of
subtle ∂̄ problems on some deformations of the domains Gt, with estimates that
do not depend on t ∈ T and ζt ∈ ∂Gt. The idea of the proof of Theorem 1.4
is similar, although here some estimations must be carried out more carefully.
The details are given in Section 3. The issue of the domain dependence for the
∂̄ equation has been recently investigated in [3].

We think that our results might be useful in treating the issue of the sta-
bility of the boundary behaviour of derivatives of the Bergman kernel under
deformations of strictly pseudoconvex domains (in virtue of the papers [1] and
[2]).

In Section 2 we collect some preliminary facts about strictly pseudoconvex
domains. The proofs of Theorems 1.3 and 1.4 are given in Section 3.

2. Strictly pseudoconvex domains. A bounded domain G ⊂ C
n is called strictly

pseudoconvex if there exist a neighborhood U of ∂G and a defining function
r ∈ C2(U,R) such that
(I) G ∩ U = {z ∈ U : r(z) < 0},

(II) (Cn \ G) ∩ U = {z ∈ U : r(z) > 0},

(III) ∇r(z) 	= 0 for z ∈ ∂G, where ∇r(z) :=
(

∂r
∂z1

(z), · · · , ∂r
∂zn

(z)
)
,

and with the property that

Lr(z;X) > 0 for z ∈ ∂G and nonzero X ∈ TC

z (∂G),

where Lr denotes the Levi form of r and TC

z (∂G) is the complex tangent space
to ∂G at z.

It is known that U and r can be chosen to satisfy (I)–(III) and, additionally:
(IV) Lr(z;X) > 0 for z ∈ U and all nonzero X ∈ C

n,

cf. [8]. It is well known that every boundary point of such G is a peak point with
respect to O(G)—the family of all functions holomorphic in a neighbourhood
of the closure of G, i.e., for any ζ ∈ ∂G there exists a function f ∈ O(G) such
that f(ζ) = 1 and |f(z)| < 1 for z ∈ G \ {ζ}. Actually, much more is known:
for example, in [9] we have proved the following
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Theorem 2.1. Let (Gt)t∈T be a family of strictly pseudoconvex domains as in
Situation 1.2. Then there exists an ε > 0 such that for any η1 < ε there exist
an η2 > 0 and positive constants d1, d2 such that for any t ∈ T there exist a
domain Ĝt, containing Gt, and functions ht(·; ζ) ∈ O(Ĝt), ζ ∈ ∂Gt fulfilling
the following conditions:
(a) ht(ζ; ζ) = 1, |ht(·; ζ)| < 1 on Gt \ {ζ} (in particular, ht(·; ζ) is a peak

function for Gt at ζ),
(b) |1 − ht(z; ζ)| ≤ d1‖z − ζ‖, z ∈ Ĝt ∩ B(ζ, η2),
(c) |ht(z; ζ)| ≤ d2 < 1, z ∈ Gt, ‖z − ζ‖ ≥ η1.

Remark 4. We would like to draw the reader’s attention to the fact that all
the constants ε, η2, d1, d2 in Theorem 2.1 may be chosen independently of t,
which is of great importance in the proofs of Theorems 1.3 and 1.4.

3. The proofs. We begin with the proof of Theorem 1.4 on approximation of
L2

h functions.

Proof of Theorem 1.4. The proof of Theorem 1.4 is similar to the proof of
Theorem 1.5 from [10]. Therefore, we here focus mainly on the part of it that
is new.
Set η2 < η1, d1, d2 < 1, Ĝt, and ht(·; ζ) for t ∈ T, ζ ∈ ∂Gt according to Theorem
2.1, where η1 is small enough to assure that the set Gt ∩ B(ζ,R) is connected
for every t ∈ T and ζ ∈ ∂Gt, where R := 2η1. Replacing ht with ht+3

4 we may
assume that |ht(z; ζ)| ≥ 1

2 , z ∈ Gt, ζ ∈ ∂Gt.
Let d3 ∈ (d2, 1) and choose 0 < η ≤ η2

2 such that for any t ∈ T we have
B(ζ; 2η) ⊂ Ĝt for all ζ ∈ ∂Gt as well as |ht(z; ζ)| ≥ d3 whenever ζ ∈ ∂Gt and
‖z − ζ‖ ≤ η (this is possible because of the uniform choice of d1 in Theorem
2.1). Define ρ := min{η

2 , η1
5 }.

As in [10], we show that for any s ∈ T we may choose points ζs
1 , . . . , ζ

s
Ns

∈
∂Gs such that ∂Gs ⊂

⋃Ns

j=1
B(ζs

j , ρ), and with the property that for any j ∈
{1, . . . , Ns} we can find strictly pseudoconvex C2 deformation Gs

j of Gs near
ζs
j such that

Gs ⊂ Gs
j ⊂ Ĝs ∩ G(η)

s (G(η)
s standing for the η-hull of Gs), (3.1)

Gs ∩ B(ζs
j , 2ρ) ⊂⊂ Gs

j and dist(Gs ∩ B(ζs
j , 2ρ), ∂Gs

j) ≥ β > 0, (3.2)

and
Gs \ B(ζs

j , 4ρ) = Gs
j \ B(ζs

j , 4ρ), (3.3)

where the constant β does not depend on s. Moreover, by Hörmander’s ∂̄ the-
ory, things may be settled so that there is a positive constant C with the
property that for any s ∈ T and any j ∈ {1, . . . , Ns} the following estimate
holds: for any ∂̄-closed (0, 1)-form α ∈ L2

(0,1)(G
s
j) ∩ C∞(Gs

j) there exists a
function
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v ∈ L2(Gs
j) ∩ C∞(Gs

j) with ∂̄v = α and such that ‖v‖L2(Gs
j)

≤ C‖α‖L2
(0,1)(G

s
j)

,

cf. [5].1

Fix now t = t0 ∈ T and ζ0 ∈ ∂Gt. Let f ∈ L2
h(Gt ∩ B(ζ0, R)) and take a

point w ∈ Gt ∩ B(ζ0, ρ).
There exists a j0 ∈ {1, . . . Nt} such that ζ0 ∈ B(ζt

j0
, ρ). To simplify the

notation, let us assume without loss of generality that j0 = 1.
Choose a χ ∈ C∞(Cn, [0, 1]) such that χ ≡ 1 on B(ζ0, 6η1

5 ) and χ ≡ 0 outside
B(ζ0, 9η1

5 ) and define αt := (∂̄χ)f on Gt ∩ B(ζ0, R) = Gt ∩ B(ζ0, 2η1) and
αt := 0 on Gt \ B(ζ0, 2η1). Note that in view of the fact that αt ≡ 0 on
(Gt ∩ B(ζ0, 6η1

5 )) ∪ (Gt \ B(ζ0, 9η1
5 )), after trivial extension by zero, it can be

treated as a ∂̄-closed (0, 1)-form of class C∞∩L2 on Gt
1. Similarly, for k ∈ N the

form α̃t = α̃t,k := ht(·; ζ0)kαt is of class C∞ ∩ L2 on Gt
1. Let us now consider

the equation

∂̄vt
k = α̃t. (3.4)

There exists a solution vt
k ∈ C∞(Gt

1) ∩ L2(Gt
1) of the problem (3.4) such

that

‖vt
k‖L2(Gt

1)
≤ C‖α̃t‖L2

(0,1)G
t
1
,

with, as mentioned above, C independent of t ∈ T and of the choice of ζ0.
Further, we have

‖vt
k‖L2(Gt

1)
≤ C‖α̃t‖L2

(0,1)(G
t
1)

= C

√
√
√
√
√

∫

Gt∩(B(ζ0,
9η1
5 )\B(ζ0,

6η1
5 ))

|ht(z; ζ0)|2k|f |2
n∑

j=1

∣
∣ ∂χ

∂zj
(z)

∣
∣2dL2n(z)

≤ C̃dk
2‖f‖L2(Gt∩B(ζ0,R)),

where the constant C̃ depends only on η1 (in particular, it does not depend
on t).

Define the function fk := χf − ht(·; ζ0)−kvt
k and observe it is holomorphic

on Gt. Consequently, the function ht(·; ζ0)−kvt
k is holomorphic on Gt

1∩B(ζ0, η).
Furthermore

‖ht(·; ζ0)−kvt
k‖L2(Gt

1∩B(ζ0,η)) ≤ C̃

(
d2
d3

)k

‖f‖L2(Gt∩B(ζ0,R)).

As in [10], observe that Gt ∩ B(ζ0, ρ) ⊂⊂ Gt
1 ∩ B(ζ0, η) and, by (3.2), the

distance of the former set to the boundary of the latter one is bounded from
below by some positive constant, independent of t and of the choice of ζ0.

1Note that if in Situation 1.2 we assumed all the domains are of class C4 and vary in C4-
topology on domains, the existence of such C would follow also from [7, Theorem 1.2.1] and
remarks following it, together with the compactness of T . Eventually, if things were of class
C3, one could use [11, Theorem VII. 5.6 and Corollary VII.5.9].
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We therefore have

‖fk − f‖L2(Gt∩B(ζ0,η)) ≤ ‖ht(·; ζ0)−kvt
k‖L2(Gt

1∩B(ζ0,η))

≤ C̃

(
d2
d3

)k

‖f‖L2(Gt∩B(ζ0,R)).

Also,

‖fk − f‖Gt∩B(ζ0,ρ) ≤ Ĉ‖ht(·; ζ0)−kvt
k‖L2(Gt

1∩B(ζ0,η))

≤ ĈC̃

(
d2
d3

)k

‖f‖L2(Gt∩B(ζ0,R)),

where the positive constant Ĉ does not depend on t and ζ0, in virtue of the
Bergman inequality and the choice of β.
Similarly, if we take κ > 0 so small that (Gt ∩ B(ζ0, ρ))(κ)—the κ-hull of Gt ∩
B(ζ0, ρ)—stays compactly in Gt

1 ∩ B(ζ0, η) with the distance to the boundary
independent of t and ζ0, using the Cauchy inequality, we get the estimate

∥
∥
∥
∥

∂fk

∂zj
− ∂f

∂zj

∥
∥
∥
∥

Gt∩B(ζ0,ρ)

=
∥
∥
∥
∥

∂

∂zj
(ht(·; ζ0)−kvt

k)
∥
∥
∥
∥

Gt∩B(ζ0,ρ)

≤ C ′‖ht(·; ζ0)−kvt
k‖(Gt∩B(ζ0,ρ))(κ) ≤ C ′′‖ht(·; ζ0)−kvt

k‖L2(Gt
1∩B(ζ0,η))

≤ C ′′C̃
(

d2
d3

)k

‖f‖L2(Gt∩B(ζ0,R)),

where the positive constants C ′, C ′′ may be chosen independently of t and ζ0.
Fix ε > 0. Define f̂k ∈ O(Gt) by f̂k(z) := fk(z) + p(z), where

p(z) := f(w) − fk(w) +
n∑

j=1

(
∂f

∂zj
(w) − ∂fk

∂zj
(w)

)

(zj − wj).

It can be easily checked that f̂k(w) = f(w), as well as ∂f̂k

∂zj
(w) = ∂f

∂zj
(w).

Furthermore,

‖f̂k − f‖L2(Gt∩B(ζ0,ρ)) ≤ ‖fk − f‖L2(Gt∩B(ζ0,ρ)) +
√

L2n(U)|f(w) − fk(w)|

+
√

L2n(U)diamU
n∑

j=1

∣
∣
∣
∣
∂f

∂zj
(w) − ∂fk

∂zj
(w)

∣
∣
∣
∣

≤ C̃(1 +
√

L2n(U)(Ĉ + diamUC ′′))
(

d2
d3

)k

‖f‖L2(Gt∩B(ζ0,R))

≤ ε‖f‖L2(Gt∩B(ζ0,R)),
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provided that k = k0 is large enough (observe it depends only on ε and η1).
Define f̂ := f̂k0 . We estimate:

‖f̂‖L2(Gt) ≤ ‖fk0‖L2(Gt) +
√

L2n(U)|f(w) − fk0(w)|

+
√

L2n(U)diamU

n∑

j=1

∣
∣
∣
∣
∂f

∂zj
(w) − ∂fk0

∂zj
(w)

∣
∣
∣
∣

≤ ‖f‖L2(Gt∩B(ζ0,R)) + ‖ht(·; ζ0)−k0vt
k0

‖L2(Gt) +
√

L2n(U)|f(w) − fk0(w)|

+
√

L2n(U)diamU
n∑

j=1

∣
∣
∣
∣
∂f

∂zj
(w) − ∂fk0

∂zj
(w)

∣
∣
∣
∣

≤ (1 + C̃(2d2)k0 + ε)‖f‖L2(Gt∩B(ζ0,R)) =: L‖f‖L2(Gt∩B(ζ0,R)),

which concludes the proof of Theorem 1.4. �

Let us pass to the proof of the localization result for the Bergman metric.
It is based on a similar idea as the proof of Satz 11 from [1]. We are able to get,
however, more information about the respective neighbourhoods of boundary
points for the localization, and the independence of their size of the parameter
t.

Proof of Theorem 1.3. Let R as in Theorem 1.4. Observe that the first in-
equalities in (1) and (2) are obvious. Also, (3) is an easy consequence of (1)
and (2). We shall first prove the second inequality in (2). Set ε > 0 and ε′ > 0
such that (1 + 2ε′)2 < 1 + ε

2 . Fix t and ζ0 ∈ ∂Gt. Let f ∈ L2
h(Gt ∩ B(ζ0, R))

be such that ‖f‖L2(Gt∩B(ζ0,R)) ≤ 1 and let z ∈ Gt ∩ B(ζ0, ρ). From Theorem
1.4 it follows that there exists an f̂ ∈ L2

h(Gt) such that f̂(z) = f(z) as well
as ‖f̂‖L2(Gt) ≤ L and ‖f̂ − f‖L2(Gt∩B(ζ0,ρ)) < ε′, and the constant L depends
only on ε′ and R.

Fix a θ′ < ρ and let ht(·; ζ0) be a function given by Theorem 2.1 with
η1 = θ′ and unrestricted other parameters. Take 1 > γ > 0 such that γL < ε′

and small enough to ensure the inequality 1+ ε
2

1+ε ≤ (1−γ)2. Also, because of the
choice of θ′ and in virtue of Theorem 2.1, there exists a k ∈ N, independent of
t, ζ0, and ht(·; ζ0), such that |ht(·; ζ0)k| ≤ γ on Gt \B(ζ0, θ′). Finally, by (b) in
Theorem 2.1, we may choose a θ < θ′, independent of t, ζ0, and ht(·; ζ0), such
that |ht(·; ζ0)k| > 1 − γ on Gt ∩ B(ζ0, θ).
Consider the function f̃ := ht(·; ζ0)kf̂ . We have

‖f̃‖L2(Gt) = ‖ht(·; ζ0)kf̂‖L2(Gt) ≤ ‖ht(·; ζ0)kf̂‖L2(Gt\B(ζ0,θ′))

+‖ht(·; ζ0)kf̂‖L2(Gt∩B(ζ0,θ′))

≤ γL + ‖f̂‖L2(Gt∩B(ζ0,θ′)) ≤ γL + ε′ + 1 ≤ 1 + 2ε′.

Furthermore, if from the beginning we have had z ∈ Gt ∩ B(ζ0, θ), then

|f̃(z)| = |ht(z; ζ0)k||f̂(z)| = |ht(z; ζ0)k||f(z)| ≥ (1 − γ)|f(z)|.
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This implies that for z ∈ Gt ∩ B(ζ0, θ) the following estimates hold

KGt
(z) ≥ |f̃(z)|2

(1 + 2ε′)2
≥ (1 − γ)2|f(z)|2

(1 + 2ε′)2
,

and consequently, because of the arbitrariness of f ,

(1 + ε)KGt
(z) ≥ (1 + 2ε′)2

(1 − γ)2
KGt

(z) ≥ KGt∩B(ζ0,R)(z).

This establishes (2). For the proof of (1) we only need to notice that if
f in the proof of (2) were chosen so that f(z) = 0, then f̃(z) = 0, for z ∈
Gt ∩ B(ζ0, θ). Then for such z and any X ∈ C

n, we have

MGt
(z;X) ≥ |f̃ ′

X(z)|
1 + 2ε′ =

|(ht(·; ζ0)kf̂)′
X(z)|

1 + 2ε′ =
|(ht(·; ζ0)kf)′

X(z)|
1 + 2ε′

≥ (1 − γ)|f ′
X(z)|

1 + 2ε′ ,

which yields

(1 + ε)MGt
(z;X) ≥ 1 + 2ε′

1 − γ
MGt

(z;X) ≥ MGt∩B(ζ0,R)(z;X),

and this concludes the proof of Theorem 1.3. �

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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