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To m y dearest wife Marta





How could we express our ideas without numbers? 
-  C.P.E. Bach, Versuch über die wahre Art das Clavier zu spielen, part II,

chapter 1 , pt. 41

1 Translation mine. Yes, he w as talking about figured bass; see the introduction to 
this volume.
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Introduction: formal 
philosophy as figured bass

In this volum e I attempt to contribute to a few philosophical discus
sions. I try to clarify a few details relating to so-called "Dutch Book 
argum ents"; I present fully written out proofs of a few seemingly ne
glected theorems of that kind and argue that the most popular arguments 
based on them do not hold water. M y take on the "undermining" prob
lem that supposedly plagues Humean theories of chance and what the 
"Best System " can be expected to offer a Hum ean is presented next. 
I then discuss some issues regarding higher-order probabilities, for 
example adding propositions specifying the probability of some events 
to a probability space containing those events, and I present a related 
construction and prove that it works.

In the second part of the book I discuss some w ays of measuring 
the value of one's credal state and assessing the relationship between 
two credal states which could give rise to epistemic norms like Con- 
ditionalization and its variants. A s for the second issue, I w ill argue 
that Inverse Relative Entropy (IRE) is the w ay to go for a variety of 
reasons. I prove a few theorems concerning the behavior of IRE and a 
few competing methods across different belief update problems. Then I 
discuss the so-called "elimination counterexamples" which form the ba
sis of arguments against using the Brier Score as a measure of epistemic 
inaccuracy of an agent's credal state, arguing, by w ay of examples 
and theorems, that we need not be worried by them too much. I also 
strengthen some arguments for using the Brier Score found in the 
literature, as well as present some related open problems.
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The general topic to which the book tries to contribute is that of 
epistemic norms for degrees of belief and how to argue for them. One 
of the foremost norms of such a kind, Probabilism, and probably the 
best-known argument for it, the Dutch Book Argument, are discussed 
in Chapter 2, which is completely self-contained. Another famous 
norm, the Principal Principle, is the topic of Chapter 3. Chapters 1 
and 4 concern the w ays in which arguments are conducted in formal 
epistemology. Chapters 5 and 6 aim to present two faces of a position 
I would like to propose, that of formal justificational pluralism: it is 
possible that methods which may be used when arguing for synchronic 
norms are different from those which m ay be used when arguing for 
diachronic norms.

*

But, apart from a genuine drive to offer a positive contribution to the 
philosophical community, this book partially arises out of frustration.

Back in 2008 I was writing m y PhD thesis on new (then) and— I 
thought— exciting developments around some form al renderings of 
Reichenbach's Common Cause Principle. A s you can expect from the 
connection to Reichenbach, the topic sometimes touches the realm of 
(philosophy of) physics, and so papers in that field usually contain at 
least one theorem, the custom being that the proof is relegated to some 
appendix. So, I started reading papers published in Philosophy of Physics, 
Philosophy of Science, The British Journal for the Philosophy of Science and 
so on, meticulously going through all the proofs. I am unable to read 
papers in form al philosophy differently—if I skip a proof, I feel that 
I have not understood the theorem. This of course makes for slow 
reading, but I am all for some additional time investment if it brings 
more clarity.

At a certain point I started to have some trouble with a proof from 
one of the papers published in a respectable journal whose main topic 
w as philosophy of science. There was a proof by cases and it seemed 
to me that one case w as missing. I set out on the task of filling in the 
blanks; to m y surprise I discovered a counterexample to the theorem, 
the proof of which I was trying to complete. That is, the theorem— one 
of the main points, if not the main point made in the paper—turned
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out to be false. M y first thought was, of course, "the world needs to 
hear about this!". (I got a paper out of the whole thing.) However, I 
then asked myself: has no one but me read that proof? We all make 
mathematical mistakes, of course, but catching them is a job for the 
reviewers. Moreover, the paper had been in circulation for a few years, 
and not a single author had commented on the incorrect argument. 
I asked around a summer school I was attending at that time and 
made some inquiries during a conference or two among fellow PhD 
students: does anyone read proofs? My interlocutors almost invariably 
responded: "It's  just you, Leszek. Who has time for that?". Well, I 
already then feared I could not shake that habit. After defending the 
PhD and publishing a few papers and a book to the calm indifference 
of the public I decided that I should change fields: my future research 
w ould belong to the w ild ly  flourishing field of form al epistemology. 
The fact that the circle of researchers involved w ould be much w ider 
surely meant better peer control, and theorems a reader could trust to 
be true!

Boy, was I wrong. At the moment of writing these words it is clear 
to me that respectable journals like Novs or Philosophical Studies have 
published papers whose formal parts had not been seriously read by 
anyone. I do not wish to criticize the authors—it is evident that each pa
per involved contains an interesting idea (in some cases I will elaborate 
on this in subsequent chapters). However, frequently the "theorem s", 
when seriously considered, do not make sense at all, or, if supposed 
to be true, have absurd or outlandish consequences. What is more, 
it seems that formal philosophy is plagued with incorrect citations: 
sometimes authors quote other authors incorrectly, and then base their 
arguments at least partially on those quotes. (I am not accusing anyone 
of ill will; these are surely all honest mistakes.) This happens, as I w ill 
substantiate later on, not just to low ly Eastern European authors like 
m yself who are usually not cited at all, but to true stars like David 
Lewis and well-known living philosophers. I try to keep up with the 
literature on a few strands of philosophy and musicology; in m y expe
rience the situation with citations and, more important, incorrect usage 
of formal methods is nowhere as bad as in formal epistemology.
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I propose we do our best to change this situation.

If formal epistemology, and formal philosophy in general, is to be taken 
seriously, that is, if we who dabble in it want to take ourselves seriously, 
if we want to be able to honestly think we are doing a good job, we 
need to get our affairs in order. Most importantly, let us not pretend we 
are proving stuff w hen in fact we are not. Let us not call a "theorem " 
something which, if we look into our hearts, is really a poetic sketch of 
a somewhat vague, philosophically interesting idea. If the idea is good, 
"form alizing" it w ill not improve the situation: in fact, it m ay hamper 
understanding. If the idea is not good, instead of hiding it behind 
layers of fake formalism, we should not write about it. Pretending to 
be formal about stuff which is best talked about in an informal w ay is 
tantamount to Sci-O, that is, a combination of philosophy, science, and 
fiction—philosophy pretending to be science. I propose, then, that we 
adhere to the following:

The Prime Directive: Do not overformalize. But if you formalize, 
do it properly.

If the Prime Directive seems to be a pale variant of the Aristotelian 
thesis that "Our discussion will be adequate if it has as much clearness 
as the subject-matter admits of, for precision is not to be sought for 
alike in all discussions",2 then so be it. A  greater part of the book can 
be seen to be an elaboration of this thesis. I believe in philosophy there 
are less fruitful endeavors. The current one offers the reader a good 
deal of pain and exhaustion, with a vague promise of leaving the field 
a somewhat hardened mathematical philosophy combatant.

*

It is not a coincidence that the motto of this book comes from a famous 
volum e on the art of playing keyboard instruments, and in particular 
on the writing and performance of figured bass.

2 Nicomachean Ethics, Book I, translated by W.D. Ross.
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In m y opinion, in form al philosophy— that is, philosophy which 
does not shun mathematics, logic and the sciences, and which attempts 
to use formal methods itself—the formal aspects should play the same 
role figured bass plays in XVIIIth-century music. Figured bass is a 
bass melody with a sequence of (tuples of) natural numbers and other 
symbols above it, like this3:

The numbers code the harmony which is to be heard at a given moment; 
various optimizational conventions were adopted around Europe so 
that the lack of certain numbers at certain places is also meaningful. 
Figured bass conveys information to players of instruments like the 
lute, harpsichord, or the organ—ones that are able to emit the sound of 
many notes at the same time. The coded information is that of harmony, 
but a skilled player w ill typically realize it so that a m elody becomes 
audible which bears a resemblance to w hat's going on elsewhere in 
the music. (The information m ay also be invaluable to a musicologist 
trying to reconstruct a partially destroyed work.) There are many ways 
a figured bass may be realized, but two points are essential: that there 
is a clear concept of a "m istake", and that the figured bass itself does 
not make or break the work. For example, a piece with a lousy figured 
bass can be saved by virtuoso writing for solo violin.4

Consider two of the infinitely m any w ays of realizing the figured 
bass presented above:

3 Here and elsewhere, m usic is engraved using L ilypond 2.19.48, 
w w w .lilypond.org.

4 See, e.g., the violin sonatas by Schreyvogel from the DUX0968 recording "M usic 
in Dresden in the times of A ugustus II The Strong".

http://www.lilypond.org
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This is a mundane, chordal realization of a figured bass. It fills in the 
whole harmony as required and w ill not divert the listener's attention 
away from other elements of the music. However, on its own it is rather 
dull.

This "melodic" approach does not offer the whole harmony but presents 
a musical idea which might fit with other motives in the work, adding 
to the listener's sense of cohesion.

What the two examples have in common is that they indeed adhere 
to the figured bass: on each beat there is no sound which does not 
follow from the "code". Both of them are "correct". It is m y opinion 
that just like how a figured bass does not dictate a unique w ay of 
playing a given piece, the entirety of a paper in form al philosophy 
should not be governed by the formal results therein. However, just as 
any "correct" realization of a figured bass is careful not to break any 
of the rules, we should make sure that the more philosophical parts of 
our work really fit with the formal ones. Fundamentally, just as anyone 
preparing a figured bass line (not the perform er realizing it, but the 
composer writing, i.e., coding, it) needs to adhere to a set of rules (see 
C.P.E. Bach's Versuch for an extended discussion), we who attempt to 
use form al methods in philosophy should make sure we are actually 
using them; a composer writing random numbers around his bass lines
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would be ridiculed (or at least misunderstood) by performers, and we 
should be humble enough to expect nothing else if we, say, do not 
define our structures properly (see Chapter 1  below for examples of 
this and other related phenomena).

(Of course, in music one needn't use figured bass at all, just as in 
philosophy one can do much without any formalism. But this is not a 
book for people who are interested only in that sort of philosophy.)

*

Acknowledgm ents

I would like to thank Michał Tomasz Godziszewski, Richard Pettigrew, 
Tomasz Placek and AndrzejW ronski for commenting on chapters of 
this book.

I developed much of the material as a member of the Budapest
Kraków Research Group on Probability, Causality and Determinism. 
I thank all the members of the group and speakers as w ell as guests 
of the group's workshops for interesting discussions. I have benefit
ted greatly from co-authoring papers with Balázs Gyenis and Michał 
Tomasz Godziszewski.

I would like to thank the following people for various bits of help 
they have graciously given me when I was writing the book, in alphabet
ical order: Gergei Bana, Branden Fitelson, Michał Tomasz Godziszewski, 
Balázs Gyenis, Zalán Gyenis, Remco Heesen, Ronnie Hermens, Richard 
Pettigrew, Tomasz Placek, Jan-Willem Romeijn, Jan Szwagierczak, Rafał 
Urbaniak, Jan Wolenski.

*

Funding

The research was partially financed by m y Narodowe Centrum Nauki 
SO N ATA grant "Epistem ic inaccuracy and degrees of belief" 
("Nietrafnosc epistemiczna a stopnie przekonali", U M O -20 15/17/  
D /H S1/0 19 12).

*



20 Introduction

Relation to other publications

Sections 5 .1-5 .4  are based on a paper I published in Ergo in 2016 to 
which I— due to the beautiful nature of the Author Agreement of that 
fabulous Open Access journal—retain the copyright.

Otherwise, if a fact or theorem is lifted from material I have pub
lished elsewhere, the source is always given.
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Chapter i

A  few motivational examples

In this chapter I w ill describe a few  examples of the problems which, 
I think, have troubled the beautiful field of form al epistemology 
throughout recent decades. I feel a bit uneasy about this—let it be 
said, then, that I firm ly believe that all the authors mentioned later 
in this chapter are w ay smarter and more philosophically competent 
than me, while also quite possibly possessing a better command of 
mathematics. It is just all the more unfortunate that their great work 
is blemished by the imperfections I wish to point out, hopefully to the 
benefit to those of us who w ish  to contribute to the field. Since I do 
not want to come out as needlessly negative, I w ill restrict m yself to 
a single example of each type of the problems.

i . i .  "P ro o fs" w hich are not really proofs

The classical Dutch Book Argument (DBA)—which we w ill discuss in 
detail in the next chapter—aims to establish some constraints on rational 
degrees of belief, or credences, based on a form al result describing a 
class of agents vulnerable to a "sure-loss" betting setup, a "Dutch 
Book" (see, e.g., Vineberg (2016); the details of this are philosophically 
controversial and thus fleshed out in innumerable ways, including some 
which seem to be decisively less pragmatic). The result at the heart 
of the argument is the so-called Dutch Book Theorem (DBT), which, 
strictly speaking, concerns the agent's betting quotients (or odds, etc.),
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the relationship between which and the agent's degrees of belief may 
not be trivial if you are not a strict operationalist like de Finetti (we will 
also talk about this below).

The Theorem is a famous foundational result of formal epistemol- 
ogy, usually attributed e.g. to Ramsey (see, e.g., the 19 3 1 paper, which 
combines a few of his earlier writings). It describes the necessary and 
sufficient conditions for the betting quotients being coherent, that is, 
such that they exclude the possibility of the aforementioned Dutch 
Book. The reason for its popularity was probably the remarkable sim
plicity of the conditions: it turns out that they correspond to the (now) 
classical axioms of probability. That is, as Gillies puts it in his 2000 
monograph Philosophical theories of probability, a fantastic and w idely 
cited introduction to the field (especially the propensity theories):

A set of betting quotients is coherent if and only if they satisfy
the axioms of probability. (Gillies (2000), Chapter 4)

To prove the theorem, one proceeds in two directions. First, that for 
each probability axiom, its violation by the betting quotients implies 
incoherence. Recipes for this can be concisely stated and are easy to 
illustrate, which is w h y most authors writing on the topic only give 
the proof of this direction of the DBT. The second one, called also the 
"Converse Dutch Book Theorem ", is— despite what you might have 
heard (I certainly did during conferences, and I'm  not particularly 
well-travelled)—much trickier and it seems to me that it is no surprise 
that its proof has been "surprisingly neglected" (Hájek (2008)); we will 
devote a serious chunk of the next Chapter to its careful presentation 
and analysis. What one needs to show is that the fact that betting 
quotients satisfy all the probability axioms guarantees coherence; that 
is, there is no "sure-loss" scenario for the agent. Let me stress here that 
all the axioms are needed for this: even without knowing any details of 
the arguments, the reader has already received the information from 
the "first" direction of the Theorem that the violation of even a single 
axiom leads to incoherence.

The way Gillies (2000) presents the proof of the Converse DBT (p. 61) 
has to then come as a surprise. The author claims he shows, for each 
axiom, that it by itself guarantees coherence. The reader should at this
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point immediately see that this cannot work: again, the fact that one of 
the probability axioms holds does not guarantee that some other does 
not, which leads to incoherence! (Apologies for reiterating the point, 
but m y excuse is that since this error has been present, apparently 
unnoticed, in so many reprints of Gillies' book, it is at least not evidently 
evident.) A n examination of the argument, I submit, has to leave one 
perplexed: the "proof" given by Gillies does not establish the Converse 
DBT, and the mistake is not hidden deep in the argument as if it were a 
reward for an enterprising reader to find, but is instead an immediate 
structural failure.

What is more, the proof is supposed to be an expanded version of 
the argument from de Finetti (1937/1964). (Gillies is an expert on de 
Finetti, see, e.g., Gillies (1972).) In the next chapter we will closely study 
three arguments for the Converse DBT, including de Finetti's, to see 
what this is all about.

1.2. A rgu in g using undefined structures

1.2.1. Undefined structures, implicit quantification: 
the Qualified Reflection Principle

Continuing the discussion of alleged proofs, but attempting to showcase 
a different argumentational flaw, I w ill now present a case—published 
in a top philosophical journal (Briggs (2009))— in which lack of defini
tions of the structures involved combined with the omission of explicit 
quantification leads to a "Theorem" which not only has arguably incon
sistent assumptions, but also possesses an incorrect "proof". A s was 
the case with G illies's book, I do not want the reader to think I have 
a negative opinion of Briggs' paper—to the contrary, I think it is of 
high philosophical merit and the idea of Distorted Reflection that is 
introduced there should be closely studied. The message should rather 
be that if the field of mathematical philosophy is to be taken seriously, 
we need to pay more attention to the math actually used in the papers.

The usual interpretations of the various variants of the norm of Re
flection (introduced in van Fraassen (1984)) deal with current credences 
of a rational agent conditional on her future credences. The argument I
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want to analyze is meant to establish the so-called "Q ualified Reflec
tion" principle (Briggs (2009), p. 69), the formalism of which uses two 
symbols for credence functions: Cro for the credence of some agent 
at time t0, and Cri for the credence of that agent at a later time t i . 
(No structure is defined as the domain of either Cr0 or Cri; I proceed 
with the typical assumption that in both cases it is the same algebra of 
subsets of some base set.) First, we need three "idealizing assumptions" 
(all quotes are from p. 69 in Briggs (2009)):

1. "I w ill assume the agent is a perfect introspecter—in other words, 
that Cr0(Cr0(A|B) =  r) =  1 if and only if Cr0(A|B) =  r". I gather 
that universal quantification over A, B and r is meant, together 
with a proviso to the effect that Cr0(B) >  0—otherwise the condi
tional credence w ill not be defined. (We should assume that both 
Cr0 and Cr1 are probability functions.)

2. "I w ill assume that the agent's possible evidence propositions— 
that is, the propositions that might represent the totality of what 
the agent learns between t0 and ti —form a partition 
{B1, B2, . . .  Bn}". Since there is no further comment on this, I gather 
that it is a partition of the base set on an algebra of subsets of 
which the functions Cr0 and Cri are defined.

3 . " I  w ill assume that all agents can reasonably be certain that 
conditionalization is the right updating procedure".

Then, the norm of Qualified Reflection is given as the following:

Qualified Reflection: Cr0(A|Cr1 (A) =  r) =  r, provided that for 
all B g {B1, B2, • • • Bn},

i. Cr0(Cr0(A|B) =  Cr1 (A|B)) =  1 and

ii. Cr0(B|Cr1 (B) =  1) =  1. (Briggs (2009), p. 69)

In the statement of the norm, B is bound, and I gather that universal 
quantification is meant over A and r.

According to Briggs, the norm of Qualified Reflection, given the 
three idealizing assumptions above, follows "from  the Kolm ogorov
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axioms". Assume, however, that some proposition A is given. It follows 
from condition i. that for all B e {B1, B2, . . .  Bn} the conditional credence 
Cri (A|B) is defined, that is, that Cri (B) >  0, and so, if n > 2, that for all 
B e {B1 , B2, . . .  Bn} Cri (B) < 1. We have thus, thanks to assumption 2, 
established that the agent will not, between times to and t 1 , update her 
credence function using conditionalization, since that w ould require 
that for one of the B /s, Cr1 (B J  should be equal to 1. This is not an 
outright logical contradiction with assumption 3 (such a contradiction 
will be hard to find anyway, since that assumption is not given a formal 
statement), but clearly something is w rong here: we require (in 3) 
that the agent be certain that conditionalization is the right updating 
procedure, and yet the norm we w ish to impose makes it impossible 
for that agent to conditionalize. Isn't this unfair towards the agent?

What is more, the proof given by Briggs of the fact that Qualified 
Reflection "follow s from the Kolm ogorov axiom s" on p. 69 of the 
paper is incorrect, and for a reason which it may be instructive to 
inspect. Namely, the argument requires divisions by results of various 
sums taken over the sets {B e {B1 , B2, . . .  Bn} | Cr1 (A|B) =  r} and {B e 
{B1 , B2, . . .  Bn} | Cr0(A|B) =  r} (these sets are defined by the choice of 
r). But there is no guarantee in general that these sets are nonempty, 
and so no guarantee that the sums are not equal to zero! In fact, it is 
immediate that given a proposition A, each of these sets w ill be empty 
for all but finitely m any choices of r. So, if the proof is supposed to 
go through, the norm of Qualified Reflection needs to be additionally 
constrained; I do not see a convenient and nontrivial way of doing this.

These issues could have been avoided if the structures employed had 
actually been defined and the quantification had been made explicit. 
However, defining structures appropriate for rigorous argumentation 
regarding credences about credences or credences about chances is 
no mean feat and is not usually attempted. I w ill now point out an 
example of a different problem to which this situation leads.
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1.2.2. Conclusions about structures which are undefined: 
arguing about chance propositions

Another famous norm which, taken seriously, requires one to con
sider probabilities of probabilities, that is, higher order probabilities, 
is D. Lew is's "Principal Principle", some issues regarding which we 
w ill discuss in Chapter 3. It refers to rational credences about chances, 
so if rational credences are probabilities (as argued for example in the 
DBA) and chances are probabilities also, higher order probabilities are 
certainly involved. Done properly, these probabilities would be defined 
on an algebra of propositions, some of which w ould be "chance pro
positions", that is, they w ould be propositions that the probability of 
some proposition equals some value. Such decidedly nontrivial con
structions were the topic of for example the seminal Gaifman (1988) (see 
Chapter 4 below); however, this is not usually done. Typically, authors 
are just content w ith slapping a "chance proposition" label on some 
seemingly arbitrarily chosen propositions, proving some mathematical 
statement, and inferring some philosophical conclusions about chance 
propositions.

A n interesting example of this can be found in Hawthorne et al. 
(2017), a paper which intends to deliver a potent philosophical message 
connecting two famous principles: the Principal Principle and the Prin
ciple of Indifference. For the time being, let me notice that (as discussed 
in Gyenis and Wronski (2017) the main result of the paper is equivalent 
to the following:

Proposition 2 from Hawthorne et al. (2017): Let P(A|X) =  
P(A|XE) =  P(A|FXE) =  P(A|(A ^  F)XE). Then from x =  0, 
x =  1 and from the Principal Principle P(A|X) =  x it follows 
that P(F|XE) =  1/2 .

on the assumption that, quote, X "says that the chance at time t of 
proposition A is x and E is any proposition that is compatible with X and 
admissible at time t". Forget about "compatibility" and "adm issibility" 
for now. But do notice that the status of X as a chance proposition is set 
only by the vague "says that ( ...)"  in the metalanguage, with no bearing 
on the actual mathematics, since the result (which in m y opinion is 
correct) follows only from the specified independence assumptions.
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However, the authors take it to be a discovery that the "line of 
argument does not depend on the structure of the proposition X". 
I cannot help but be quite puzzled by this. It cannot depend, because 
the structure is not there—it was not defined anywhere! The rigorous 
mathematical argument is fully oblivious to what labels we put on the 
propositions using the natural metalanguage; if we wanted, we could 
call them "ethical propositions", "colour propositions" or what have 
you. For the argument to uncover something other than a relationship 
between a specific type of statement regarding the conditional pro
bability of 1/2 and a series of independence assumptions, and rather 
to involve propositions about probabilities of other propositions, the 
relationship between a proposition about the chance of a proposition 
A and the proposition A itself needs to be a feature of the structure 
on which the probability functions are defined. (One w ay of looking 
at what Gaifm an (1988) does is to see it as formalizing this notion of 
"aboutness".)

1.3 . Not really  reading w hat one cites

When one does want to try to get more serious about higher order prob
abilities, it is customary to cite Gaifman's seminal paper "A  Theory of 
Higher Order Probabilities" and offer a few words of commentary. For 
example, Dziurosz-Serafinowicz (2016), in Section 1.4 .1, writes that ac
cording to Gaifman "we can enlarge the original set of propositions over 
which a probability function is defined by adding propositions about 
probabilities that this probability function assigns over propositions 
in the original set", which is a concise w ay of describing exactly what 
the paper is about. However, most authors, like Dziurosz-Serafinowicz 
him self later in the cited work, are m ostly interested in probabilities 
of "chance propositions", that is, propositions that the whole chance 
function is this or that, and not just propositions that the chance of 
some event equals some value. That chance propositions do belong 
to the structures defined by Gaifm an is trivial in countable cases, but 
requires an argument in others, an argument I have never seen anyone 
make.
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What is more, authors who aim to produce the Gaifman-inspired 
structures typically do not check whether the objects they construct 
indeed satisfy Gaifm an's requirements. After reading m any papers 
allegedly employing Gaifm an's techniques and talking to a few of the 
authors at some conferences, I began to suspect that actual knowledge 
of what Gaifman wrote is not that common.

These suspicions seem to have been confirmed by the appearance 
in 2016 of a "Sourcebook" entitled "Readings in Formal Epistemol- 
ogy" (Arlo-Costa et al. (2016)), with the honorable aim of presenting 
"38 classic texts in formal epistemology", including the one by Gaifman. 
Note that three of the editors are towering figures in epistemology. 
Now, Gaifm an actually published two papers with the same title, in 
1986 and 1988. The later version is in some respects superior to the 
earlier one. Not only does it better connect the issue to existing work, 
offering about twice as m any references and, for example, slightly 
extending the connection to m odal logic at the very end, but also it 
contains a worked-out Dutch-Book-style argument which is only hinted 
at in the 1986 paper, making it significantly more interesting from the 
philosophical point of view. It is also more clearly typeset. It seems to 
me, then, that currently the only reasonable motivation for consulting 
the 1986 paper would be an interest in the history of the evolution of 
Gaifm an's thought.

On the assumption that one is interested in the actual content 
of the Paper, it is therefore quite surprising to notice that the 2016 
"Sourcebook" contains the older version of Gaifman's work; that is, none 
of the five (!) editors spotted that they were offering newcomers to 
the field a text which had been improved by the author him self in 
a publication almost three decades before.1 On the other hand, on 
the assumption that the paper is just something one should cite to 
show erudition w hen writing about higher order probability spaces, 
the situation is perfectly understandable.

1 Somewhat grotesquely, it seems that someone was actually hired to LTeX an old 
version of the Gaifm an paper even though the later one is properly typeset.
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1.4. M isquote a classic, no one notices

In modern formal epistemology it might also happen that quotations 
are not accurate. It is of course norm al to change the notation when 
quoting a form ula so that it fits one's chosen formalism. It is another 
thing, though, when similar changes inadvertently m odify the philo
sophical argument itself. This is doubly unfortunate if the issues under 
discussion are so notoriously muddled as those of "adm issibility" and 
the "Principal Principle"—to which we will return in Chapter 3—which 
seems to be what happened in the otherwise magnificent paper by 
Ismael (2008). Consider this quote, allegedly from (Lewis (1994), p. 485), 
which I'm  reproducing here with Ism ael's notation, with the symbol 
"C h " denoting "chance", and "P P orig " denoting the "Principal Princi
ple", which we w ill not talk about until Chapter 3:

[O]ur problem, where F is an unactualized future that would 
undermine the actual chances given by E is that Ch(F/E) = 0, be
cause F and E are inconsistent, but Ch(F/E)=0 by PPorig because 
E specifies that F has some present non-zero chance of coming 
about. (Ismael (2008), p. 295)

And now compare it with the Lewis original:

Our problem, where F is an unactualized future that would un
dermine the actual present chances given by E, is that C(F/E) = 0 
because F and E are inconsistent, but C(F/E)=0 by the Principal 
Principle because E specifies that F has non-zero chance of coming 
about. (Lewis (1994), p. 485)

Notice the differences. One puzzling thing is Ism ael's interesting 
relocation of the word "present", which in itself could spark, I am sure, 
a few pages worth of discussion, a temptation I shall resist. More impor
tant, though, is the seemingly innocuous transformation of Lewis's "C " 
into Ismael's "C h "; the change is not innocent at all, since the symbol 
signifies the credence function for Lewis, and the chance function for 
Ismael, so if chance-credence principles are the topic, this can only 
introduce confusion.
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Ismael by mistake attributes to Lewis a passage which is not trivially 
w rong2; in fact, it suggests a certain direction of reasoning using the 
Principal Principle which at first glance might be novel (though not 
Lewisian, and ultimately mistaken). Even though, as it seems to me, 
the portion of Ism ael's paper discussing the quote suffers from the 
quote itself being inaccurate, the author proceeds to introduce a w ay 
of connecting credence (and thus ignorance) with chance, which has 
m any things speaking for it (The "General Recipe", p. 298). It is quite 
interesting to see that in his critique of it, Pettigrew (2015) gives it a 
form (labelled as 'IP ', p. 179) in which I at least cannot recognize the 
original (for starters, conditional chances are introduced which are 
missing in Ismael's formulation). This, however, has led to some fruitful 
philosophical discussion (see the response in Ismael (2015)).

I will try to contribute to the topic in Chapter 3, where I w ill propose 
a w ay of understanding what the so called Best System analysis can 
offer so that the problem alluded to in the two quotes disappears.

2 That said, there w ill surely be people w ho w ill claim  the m istake w as trivial. 
Well, none of the editors and reviewers for Nous found it, apparently.



Chapter 2

The Dutch Book Theorem 
and Argument

In this chapter I w ill present the Dutch Book Argum ent (DBA) for 
Probabilism, dealing with rational degrees of belief, and the Dutch Book 
Theorem (regarding Probabilism) (DBT), which deals with numbers 
intimately related to betting, that is, betting odds or betting quotients. In 
the first section I will attempt to elucidate some technicalities regarding 
the DBT, in particular its converse direction. The relation between the 
D BA  and DBT w ill be the topic of the second section.

Note that we w ill only be concerned with finite structures and so 
the only version of the additivity axiom of interest to us is the finite 
one. I encourage any reader interested in the issues regarding infinite 
sets of bets and so on to consult Arntzenius et al. (2004).

Throughout this chapter assume (even though we w ill repeat this 
for clarity from time to time) that for some nonempty set W, the 
Boolean algebra of propositions F  =  P(W) is given (with the usual 
set-theoretic operations), with T being the top element (the tautological 
proposition). For future reference, let A tF be the set of atoms of F, that 
is, the singletons of elements of W; these are the "atomic propositions", 
corresponding to the most fine-grained possibilities.
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2.1. The Dutch Book Theorem  and w h y  it holds

Ideally, to completely demarcate one from another, it would be possible 
to go "mathematics first, philosophy second". However, the mathe
matics w ill only make real sense, that is, w ill offer a clue as to w hy 
we are proving the things we are, if an interpretation is included. 
Therefore, some discussion of betting, a description of the framework 
chosen to display the mathematics behind the DBT, belongs in this first 
section too.

Definition 1  (Finitely additive probability function (measure), space):
Assum e that W =  0 and F  =  P(W). A  function p : F  ^  R  is called a 
finitely additive probability function (or measure) iff the following three 
axioms are satisfied:

(Ai) for any A 6 F, p(A) > 0 (nonnegativity);

(A2) p(T) =  1 (normalization);

(A3) for any A, B 6 F  such that A n  B =  0, p(AU B) =  p(A) +  p(B) (finite 
additivity).

If p is a finitely additive probability function, then the triple (W, F, p) is 
a (finite) probability space, with W frequently called a sample space.

(This is a simplification of the usual mathematical definition of a pro
bability space; there, the F  need not be the full power set of W, but 
may be any a-algebra of its subsets, and countable instead of finite 
additivity is called for in the axioms. This w ill have no bearing on the 
arguments below.)

This section is devoted to the mathematics of the DBT. To study it we 
need to introduce a certain class of numbers related to betting: the given 
agent's betting quotients. The crucial thing is the relationship between a 
betting quotient and the payoff matrix of a bet. Many authors, including 
de Finetti and Kemeny, wrote about them as if they resulted from actual 
betting situations in which an agent really "offers to pay (...)"  (Kemeny 
( i955), p. 263). This gives the analysis more rhetorical bite and offers a 
pleasing illusion of empiricism, but introduces unnecessary problems; 
in Kemeny's case, for example, there is implicit universal quantification
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over the stakes, while in reality it w ould matter whether hundreds 
or millions of dollars potentially changed hands. It seems to me that 
the author w as sim ply not concerned with this, but with the beautiful 
mathematical result whose goal w as to furnish a justification of the 
above three probability axioms. I will, then, continue to write about the 
bets an agent "b u ys" or "sells", etc., but advise the reader to take any 
mention of "ga in " or "lo ss" with a grain of salt (for example since— 
obviously—to avoid loss any agent could abstain from betting); we 
w ill analyze this issue more closely in Section 2.2. For now, feel free to 
imagine real people exchanging real money of arbitrary value; also, I 
w ill write of "q 's profit" when q is a betting quotient function, and the 
intended interpretation is that the function codes some agent's attitude 
towards bets.

That said, you will probably need to throw the knowledge you have 
about actual books, bets and stakes out of the window. The intended 
framework, that is, the fram ework which in m y opinion makes the 
mathematics simplest, has the following view  in mind. Assum e S is 
some sum of money in agent B's pocket. A n  agent A buys the bet for 
some proposition E by giving the person B some other sum of money s, 
on the condition that:

•  if E turns out to be false, that money is lost to him, so s stays in 
B's pocket and A ends up with a "profit" of —s;

•  if E turns out to be true, B pays S to A but does not return the s, 
so A ends up with a profit of S — s.

In this picture the stake, therefore, is not lum ped together from the 
contributions of two agents; it sits wholly in the pocket of one of them. 
An agent's betting quotient function determines the s: given the S and 
a proposition E, it returns a fraction of S for which the agent is willing 
to buy the bet for E.

In the mathematics below the stakes can be negative; note that 
nothing of essence changes in the picture just sketched, apart from the 
two agents exchanging places.

If you take a look at a few randomly chosen texts which try to introduce 
some version of the DBT, typically both "bu yin g" and "selling" bets
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both "fo r"  or "against" events is mentioned. At the risk of belaboring 
the point, I w ill now attempt to clarify these issues since in m y experi
ence they are frequently quite convoluted. Fortunately, it w ill turn out 
that only one of the four logical combinations, for example "bu yin g" 
bets " fo r"  events, w ill suffice for us to say everything that we want.

A  betting quotient function q : F  ^  R  attaches real numbers to 
propositions; abstractly, it is indistinguishable from a credence (a degree 
of belief function), which we w ill start discussing in Section 2.2. For an 
E e F, we w ill frequently write qE instead of q(E). A  bet for E is one 
that pays some stake S if E is true and 0 otherwise. The quotient qE 
is the portion of the stake the agent is w illing to pay (or considers to 
be a fair price, etc.) for the bet for E (and is to be independent of the 
stake). With such a betting quotient for E, the agent will also accept the 
payment qES for a bet for E which w ill have her pay out S to the buyer 
if E is true; in other words, the agent sells the bet for E for qES.

A  bet against E is one that pays S if - E  is true and 0 otherwise. If the 
agent's betting quotient for E is qE, then she is willing to pay (1 — qE)S 
for the bet against E, and to sell the bet for the same.1

In other words, the quotient qE determines the following payoff 
table for bets bought by the agent (columns correspond to states of 
affairs, rows to types of bet, and each entry is the profit of the agent 
buying a bet of a given type if the given state of affairs obtains):

BOUGHT E - E

bet for E (1 -  qe)S -qES
bet against E - ( 1  -  qE)s qES

As for the bet sold by the agent, the situation is as follows (each entry is 
now the profit of the agent selling the bet of the given type if the given 
state of affairs obtains):

SOLD E - E

bet for E - ( 1  -  qE)S qES
bet against E (1 -  qE)S - qES

1 If you would like to raise some concerns that we are presum ing too much about 
betting quotients at this point, please wait for Section 2.2.
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Observe that a sold bet against E is identical to a bought bet for E 
(with the same stake). (Assuming that the criterion of identity for bets 
is the identity of all the entries in the payoff tables; the actual words 
possibly used during the betting and so on are irrelevant.) A  sold bet for 
E is identical to a bought bet against E (with the same stake). Therefore, 
we do not need to talk about bets which are sold at all: we can restrict 
our attention only to bets which are bought by the agent.

W hat's more, notice that a bet bought against E with stake S is 
identical to a sold bet for E with the stake —S. Therefore, if we allow 
negative stakes (and we do), we can talk exclusively about bets bought 
for propositions. This means we w ill only need to use the following 
profit table:

BOUGHT E -E

bet for E (1 -  qE)S - qES

If instead of talking about betting quotients, one prefers to speak 
about "od d s", keeping w ith the common usage of the word we can 
define "odds on E" as the fraction qE/i-qE. (That is, the betting quotient 
qE =  3/4 translates into 3:1 odds on E. One can see then w hy the word 
"quotient" is in the name "betting quotient".) This, however, forbids us 
from talking about betting quotient functions which obtain value 1, at 
least before we make some decision about such cases; prima facie, our 
arguments w ill be less general. We w ill therefore not employ odds in 
this section and stick with quotients otherwise.

Definition 2 (Bet): A  bet is a pair (E, S), where E e F  and S e R .

In the bet (E, S), E is the event for which the bet is bought, and S is 
the stake. If B is a set of bets, we w ill write "E e B "  with the intended 
meaning "E is one of the events bet upon", that is, as a shortcut for 
3 (Bi, Si) e B Bi =  E.

Note that the set of bets {(E, S 1 ), (E, S2)} is equivalent payoff-wise to 
the singleton {(E, S 1 +  S2)}. We will then assume that for any set of bets 
B and for any proposition E, there is at most one pair in B such that E 
is its first element.
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Definition 3 (Full set of bets): A  set of bets B is called a fu ll set of bets 
if for every E e F  it is the case that E e B.

That is, a full set of bets contains bets on all propositions in F.

A s already mentioned, the singletons of elements of W, that is, 
the elements of A tF, correspond to the most fine-grained possibilities. 
Many people like to think of elements of W as possible worlds; during 
betting it is not known which of them is the actual world. Afterwards 
reality is uncovered and all the parties involved know of some member 
A of A tF that it obtains. If A ç  E, then E is true in the actual world: 
therefore, a bought bet for E is won and the buyer receives the stake. If 
A Ç E, then E is false in the actual world; a bought bet for E is lost and 
the buyer receives nothing.

It is conceivable that for a given betting quotient function a set of 
bets exists which ensures the agent's loss whatever happens. That is, 
for any A e A tF, the profits from the stakes of won bets are strictly 
lower than the losses resulting from the prices paid for all bought bets. 
Such a set of bets is called a Dutch Book and is the topic of the next 
definition.

Definition 4 (Dutch-book(able)): Let q be a betting quotient function, 
A e A tF and B be a set of bets. q's profit from B if A is true is defined as

Prfq B) :=  (1 — qE)SE +  —qESE.
E:Ee®,ACE E:Ee®,AgE

A  set of bets B is a Dutch Book for q if and only if for any A e A tF 
Prfq (A, B)<0.

A  betting quotient function is called Dutch-bookable iff a Dutch Book 
exists for it.

One popular term for "not Dutch-bookable" in the literature is 
"coherent". I w ill also occasionally use it.

The remarkable theorem whose proof and import is the topic of this 
chapter runs as follows:

Theorem 1  (Dutch Book Theorem). A  betting function q is not Dutch- 
bookable if  and only if  it is a finitely additive probability function.
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The discovery of the DBT has been attributed to m any authors, 
most frequently to Ram sey (19 31, originally published in 1928) and 
de Finetti; some even write of the "Ram sey-de Finetti theorem". De 
Finetti definitely proved it in his 1937/1964 paper, which we w ill 
discuss in Section 2 .1.1.2 . I do not see an argument for the DBT in 
Ram sey's paper, just some suggestions. Not being a historian, I w ill 
only say that if indeed Ramsey proved the DBT, he did not manage to 
make it deservedly w ell known, since in 1955 Shimony, Lehman and 
Kem eny published three independently discovered proofs of results 
which from the modern standpoint and after some work can be seen as 
corresponding to the DBT in the Journal of Symbolic Logic.

We w ill divide the DBT into two lemmas, corresponding to the 
"Forw ard" (left to right; violation of probability axioms implies Dutch- 
bookability) and "Converse" (right to left; satisfaction of probability 
axioms gurantees un-Dutch-bookability) directions. It is typical for 
m odern texts on the topic only to talk about the "Forw ard" direction, 
since it can be easily illustrated w ith examples. In comparison, the 
proof of the "Converse" direction has been "surprisingly neglected" 
(Hajek (2008), p. 796), therefore I w ill devote the whole next section 
to it.

Lemma 1  ("Forw ard" Dutch Book Theorem). I f  a betting function q is 
not Dutch-bookable, it is a finitely additive probability function.

Proof. We w ill prove the contrapositive: if a betting function q violates 
any of the axioms (A 1)-(A3), a Dutch Book for it exists.

Suppose q violates (A1). Therefore, for some A e F , qA < 0 . Let S 
be any real number lower than 0 . {(A, S)} is then a Dutch Book for q.

Suppose q satisfies (A 1) but violates (A2). Then either qy  > 1  or 
0 ^ qy  < 1. If the former is true, take any S >  0. If 0 ^  qy  < 1, take any 
S < 0. Your choice of S leads to a Dutch Book for q of the form {(T, S)}.

Suppose q violates (A3), that is, there are two propositions A, B e F  
such that A n B =  0, but p(A U B) =  p(A) +  p(B). If p(A U B) < p(A) +  
p(B), then set S to be any strictly positive real number. If p(A U B) > 
p(A) +  p(B), then set S to be any strictly negative real number. Set 
Saub := - S . Your choice of S and SAuB leads to a Dutch Book for q of 
the form {(A U B, SAuB), (A,S), (B,S)}. □
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In the next section I w ill present three ways of proving the Converse 
Dutch Book Theorem. (In fact, the presented arguments of Freedman 
(Section 2.1.1.4) and de Finetti (2.1.1.2) prove both directions of the DBT, 
but all in due course; the "added value" will be the converse direction.)

2.1.1. Proving the (Converse) Dutch Book Theorem

2 .1 .1 .1 . Kem eny: let us clearly em ploy all the axioms

M y presentation of the theorem is based on Kem eny (1955) in terms 
of the argument. The framework, however, is different. First, Kem eny 
was concerned with two-argument confirmation functions in the style 
of Carnap; here the reader w ill find the argument set in the hopefully 
familiar context of classical probability functions over fields of sets 
(Boolean algebras). Second, I w ill be using the three Kolm ogorovian 
axioms (A1)-(A3) listed above, which are currently considered classical 
(although in subsection 2 .1.1.2 , for presentation of the de Finetti argu
ment we w ill move to a two-axiom setting), while Kem eny uses five 
axioms. The "additional" ones, not needed once we move to Boolean 
algebras and classical probability functions, concern conditional proba
bility and probabilities of equivalent propositions. Third, Kemeny uses 
sets of bets including bets bought both for and against the same event, 
allowing the stakes to differ between the two cases. I have already 
mentioned that this is not needed, since anything we need to say using 
a bought bet against some E we can say using a bought bet for E, and 
two bets for E with different stakes are equivalent to a single bet for E. 
Therefore, for any event we can consider just a single bet for it, which 
simplifies the presentation of the argument.

Note the following trivial fact:

Fact 2. I f  a betting function q is Dutch-bookable, there exists a Dutch Book 
for q which is a fu ll set of bets.

Proof. A  set of bets B which is a Dutch Book for q can be extended to a 
full set of bets C := B U |(E, 0)|E F}. Obviously, C is also a Dutch Book 
for q. □
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By Fact 2, to show that some betting function q is not Dutch- 
bookable, it is enough to prove that there is no Dutch Book for it 
by means of a full set of bets.

For a given betting function q and a full set of bets B with stakes 
for each proposition E equal to SE, q's profit if some A e A tF is true 
equals, by Definition 4, the following:

B) :=  0 — qE)SE +  qESE. (2.1)
E:ACE E:AgE

Let us define Prf as the expectance of q's profits:

Prf := Y _  prfq(A, B) ■ qA. (2.2)
AgAtj

In the argument below I have marked in bold the places in which 
the axioms are invoked for the first time. The crucial lemma will be the 
following:

Lemma 3. Suppose a betting quotient function q satisfies the probability 
axioms (Ai)-(A^). Then Prf =  0.

Proof. By elementary transformations,

Prf =  qA(1 — qE) s e +  qa ( qe )s e ^
AeAtF E:ACE E:AgE

=  ( qA(! — qE)s e ) +  ( qA(—qE)SE^
A6AtF E:ACE AeAtF E:AgE

=  ( ^  qA(1 — qE)S^  +  qA(—qE) s e )
EeF AeAtj,ACE EeF A6AtF,AgE

=  ^ (  qA(1 — qE)SE +  qA(—qE)S^  =
EeF A eAtj ,ACE AeAtF,AgE

=  y  ( ( qA (1 — qE) +  qA ( qE)) 'SE  ̂.
EeF A eAtj ,ACE AeAtF,AgE

'-----------------------------------------------------------------------V.-----------------------------------------------------------------------'

=  0

We will show that for any E e F, the underbraced expression is indeed 
equal to 0. Fix, then, some E e F. Note (here we use normalization and
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additivity) that 1 =  qT =  qEu-E =  qE +  q-E , therefore q-E =  1 — qE. 
From additivity we again see that

y  q A =  q E 
AeAtF ,ACE

and

y  q A =  q —E.
AeAtj ,ACE

Therefore, the underbraced expression equals qE(1 — qE) — qE(1 — qE) =
0. This holds for any choice of E e F, therefore Prf =  0. □

Note that only two axioms were used in the proof of the above 
lemma; nonnegativity was not needed. We will now show the Converse 
DBT:

Lemma 4 (Converse Dutch Book Theorem). Suppose a betting quotient 
function q satisfies the probability axioms (Ai)-(A^). Then there is no Dutch 
Book for q.

Proof. For a reductio, assume that q satisfies the probability axioms, and 
yet there is a Dutch Book for q. Then there exists a full set of bets B 
such that VA e A tF Prfq (A, B) < 0 . We know (from normalization and 

additivity) that 1 =  qT =  qu{A}A6AtF =  L A e A tF qA, therefore, for some 
A e A tF qA > 0. This, coupled with the assumption that VA e A tF 
Prfq (A, B) < 0 and the fact that from nonnegativity we know that 
VA e A tF qA > 0, allows us to infer that Prf < 0, which contradicts 
Lemma 3. □

The proofs of Lemmas 1  and 3 together constitute proof of the 
Theorem 1 , that is, the Dutch Book Theorem.

In the next section I w ill present a reconstruction of de Finetti's argu
ment with a beautiful application of linear algebra. Next, we will see an 
argument inspired by Freedman (2003) in which the notion of expected 
value occupies the spotlight.
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2.I.I.2 . De Finetti: linear algebra

In this subsection I w ill present an argument for probabilism which 
can be recovered from de Finetti (1937/1964) (it is the one alluded to 
by Gillies (2000) in the passage I mentioned in the last chapter). Notice 
first that the notion of a finitely additive probability measure can be 
equivalently formulated using only two axioms.2 A  partition of the 
Boolean algebra F  is a family of sets E C F  which are pairwise disjoint 
and exhaust the whole W, that is, (1) VE, F e E, if E =  F then E n F =  0, 
and (2) UE =  T. (If F  =  P(W), we will use the terms "partition of F  and 
"partition of W " interchangeably.)

Fact 5. A function p : F  ^  R  is a finitely additive probability function iff the 
following two axioms are satisfied:

(Bi) for any A e F, p(A) > 0;

(B2) for any partition E =  ( E i , . . . ,  En}, p(E-|) +  . . .  +  p(En) =  1.

Proof. (B1) is identical to (A1). (A3) implies that for any partition 
E =  { E i , . . . , En}, p(Ei) +  . . .  +  p(En) =  p(T), which, by (A2), equals 1: 
therefore (A2) and (A3) together im ply (B2).

Consider any A, B e F  such that A n B =  0. Since {A U B ,—(A U 
B)} and {A, B, — (A U B)} are partitions, from (B2) we know that p(A U 
B) +  p(—(A U B)) =  1 =  p(A) +  p(B) +  p(—(A U B)); therefore p(A U B) =  
p(A) +  p(B) and so we have established that (B2) implies (A3). Since 
p(T) =  p(A U —A), by (A3) p(T) =  p(A) +  p(—A), which by (B2) equals 1. 
Therefore (B2) implies (A2). □

What follows is a proof of the Converse Dutch Book Theorem based 
on de Finetti's insights from de Finetti (1937/1964). I now need to clarify 
m y statement above that "de Finetti definitely proved" the DBT in that 
paper. This statement is warranted, in m y opinion, since de Finetti 
offers an observation from the realm of linear algebra which can be 
used as the main engine behind the proof of the Converse DBT; while 
he writes that his result shows a necessary and sufficient condition 
for coherence, it does not actually do it when read completely literally.

2 For more reading about the subject of axiomatizing elementary probability theory 
I'd  recommend Goosens (1979).
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First, it shows that a quotient function satisfying (B1) and (B2) is not 
Dutch-bookable using a set of bets on elements of some partition, but a 
priori different sets of bets should also be considered. Second, it shows 
that violation of (B2) leads to a Dutch Book, but is silent regarding the 
violation of (B1). I suppose de Finetti considered the latter to be trivial.

Theorem 2 (Converse Dutch Book Theorem, de Finetti style). Suppose 
a betting quotient function q satisfies the probability axioms (B i) and (B2). 
Then there is no Dutch Book for q.

Proof. Since q satisfies (B2), as already mentioned, q is finitely additive. 
Therefore, any bet on E =  U{Ai}ie{i/.../k} (At e A tF for any i) with a 
stake S is equivalent payoff-wise to the set of k bets {(At, SA )}i.e{i,...,k} 
(since qE =  qAl +  . . .  +  qAk). Therefore, any Dutch Book for q is equiva
lent payoff-wise to a Dutch Book consisting solely of bets made for all 
elements of A tF (some of these can have null stakes).

Suppose F  has n atoms. For convenience let us write qt for qAi. Let 
St be the stake of the bet for A t. q' s profit if A h is true equals

Gh — Sh qiSi .
i=1

Consider the system of n equations of this form for h e {1, . . . ,  n} and 
treat the n stakes as the unknowns. Suppose, given a betting quotient 
function q, you have a specific set of gains in mind (for example, 
all negative, i.e., a Dutch Book); is it possible to find a set of stakes 
ensuring precisely these gains? That is, does the aforementioned system 
of equations have a solution?

Note the determinant:

1 -  qi -q 2
- q i  1 -  q2

qi q2

qn
qn

1 -  qT

=  1 -  (qi +  . . .  +  qn).3

(Note that if (B2) is violated, then that determinant is not equal to 
zero, that is, a solution exists: it is possible to set the stakes to achieve

n

3 If you would like to have a hint as to how to compute it, this is Exercise 6.2.14 in 
M eyer (2000), p. 484.
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arbitrary gains, and so q is Dutch-bookable. This is a part of the proof 
of the Forward Dutch Book Theorem which de Finetti notes.)

Since we have assumed that q satisfies (B2), we can use the fact that 
qi =  1 to show that

n n n n
y~ qhGh =  ( q hS ^  — ( qh qiS0  =  C
h=1 h=1 h=1 i=1

from which it follows by (Bi) that not every Gh can be negative. There
fore, no Dutch Book for q exists. □

De Finetti only points out that the determinant for a system of 
equations corresponding to gains from bets for all elements of some 
partition E 1, . . . , Ek equals 1 — (qi +  . . .  +  qk). This immediately gives us 
a part of the Forward Dutch Book Theorem, that is, not being Dutch- 
bookable requires (B2): if (B2) is violated, then there exists a partition 
for which it is violated, and we can construct a Dutch Book using it. 
However, this, even coupled with (Bi), does not give us the Converse 
Dutch Book Theorem: we only see that q cannot be Dutch-booked using 
a set of bets consisting exclusively of bets for elements of some partition. 
One w ay to obtain complete proof is to point out, as I have done, that 
in the context of (B2), which implies additivity, any Dutch Book would 
be equivalent to one concerning only the elements of the m axim ally 
fine-grained partition. De Finetti does not mention this; again, he was 
possibly thinking this was too trivial to address.

2 .I.I.3 . D igression: de Finetti's determinant argument 
for conditionalization

I would like to point out another application of linear algebra in de 
Finetti (1937/1964) which might be of interest for different reasons than 
de Finetti himself proposed. His proclaimed goal (p. 68) is—assuming 
the rationality of the probability axioms discussed so far has already 
been established— to defend the choice of the "axiom " governing con
ditional probability, namely, that the conditional probability p(E'|E") 
is to be equal to p(E AE")/p(E' ); we w ill speak about betting quotients 
instead (for de Finetti they seem to have been the same thing). The idea 
is to think about E'|E"  as a "tri-event" and a bet for it as a conditional
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bet which is won if E' 'A  E ', lost if E' 'A  —E', and void if —E''. Suppose 
the betting quotient for E'|E' ' is q. This leads to the following payoff 
table for a bet for E' |E'' with a stake S:

BOUGHT E' 'A  E' E ' ' A - E ' - E ''

bet for E'|E'' (1 -  q)S -q S 0

Suppose, then, that E' C E '' (this does not diminish the generality of 
the argument), that q' is the betting quotient for E' and q '' for E ''. De 
Finetti shows that coherence requires that q' =  q ■ q ''. Consider three 
bets: for E with the stake S , for E w ith the stake S , and for E |E
with the stake S. The three possible states of affairs of interest to us
lead to the following payoffs:

E' : G! = (1  -  q ')S ' +  (1 -  q '')S '' +  (1 -  q)S

E '' A —E' : G2 =  —q 'S ' +  (1 -  q ' ') S ' ' -  qS 

—E'' : G3 =  - q 'S '  -  q ''S ''

Treating this as a system of equations with the stakes as unknowns, 
calculate the determinant:

1 -  q' 1 -  q'' 
1 -  q''

1 -  q 1 -  q'' 1 -  q 1 w // 1 - q  1 - q
- q - q =  - q' 1 -  q - q +  q .
- q - q 0

- q  - q

=  q ' -  q ■ q' '•

So, if q' =  q ■ q'', then arbitrary gains, for example, exclusively negative 
gains, can be obtained, and so the betting quotient function is Dutch- 
bookable.

De Finetti seems to consider this to be justification for a particular, 
now standard, treatment of conditional probability. But I w ould like 
to propose that, in addition to this, the linear algebra insight can be 
used in an argument for a diachronic requirement of rationality; m y 
discussion needs to remain sketchy here because I w ill not propose a 
formal definition of a diachronic Dutch Book which would deal with 
betting quotient functions of an agent at different times, hoping that
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the idea w ill be intuitive enough. The requirement just mentioned is 
that of conditionalization: upon learning that E, an agent should revise 
his betting quotient in a proposition A from qA to qA AE/qE . (We w ill 
encounter the rule of conditionalization in Chapter 5.) This is because 
otherwise, if the revised betting quotient is some q =  q a a e/qE , then we 
could apply the above argument putting q'' := qE and q' := qAAE and 
find a set of stakes leading to a set of bets such that after it is decided 
whether E actually takes place and then if A is true, the agent's profits 
are negative regardless of which of the options materializes.

It is typical in the literature to cite Teller (1973) as first reporting 
a Dutch Book argument to the effect that violating conditionalization 
entails Dutch-bookability, and to attribute the original argument to 
Lewis (his note regarding this w as eventually published as Lewis 
(1999)). However, it seems to me that we can use de Finetti's insights 
as the basis for a more concise argument. Whether it also gives us 
the converse result that adhering to Conditionalization makes one 
un-Dutchbookable is something I would like to study in the future.

2.I.I.4. Freedman: just use the expected value

I trust that at this point the reader has seen enough of the arguments for 
the DBT to be convinced that it holds. I have tried to indicate carefully 
where exactly the axioms are called upon in the arguments. I w ill 
now present reasoning based on the argument by Freedman (2003 )4; 
the original author mentions no axioms and relies on the notion of 
expected value (see below) to do the job. Since Freedman uses odds 
instead of betting quotients and requires them to be positive and finite, 
propositions for which a betting quotient function obtains a value of 0 
or 1 (which might be propositions different from 0 or T!) are outside 
the scope of his reasoning. I w ill generalize his result in that respect 
and fill in all the gaps so that it is clearly seen where the axioms are 
employed. Since I have already given two proofs of the Converse DBT, 
I have opted for a slightly less formal style in this subsection.

4 Who claim s to “ sketch the m athem atics behind de Finetti's argum ent for the 
Bayesian position".
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A  random variable a  is sim ply a function W ^  R ; it attaches a 
num ber to each possible world. For example, if a betting quotient 
function is fixed, then any bet is a random variable— its value is the 
profit depending on whether the given proposition is true in the given 
world. The range of a, ran (a), is the set of values obtained by a. (For 
those with a mathematical background, recall that we are dealing with 
finite structures only, so I'm  skipping the requirements regarding the 
measurability of the values of a - 1 , etc.)

What the random variable is is independent of any probability 
function; it can be thought of as coding the functional dependence of 
some value on the state of the world. Therefore, instead of defining 
a random variable in the context of a particular probability space (as 
done e.g. in Rosenthal (2006)) I w ill proceed like e.g. Schervish and 
DeGroot (2014) and define it as a function with a domain which might 
be a sample space of various probability spaces.

Definition 5 (Random variable): Let W be a finite nonempty set. 
A  random variable on W is a function a  : W ^  R . The range of a  is 
defined as

ran(a) =  (a e R  | 3w e Wa(w) =  a}.

Suppose (W, F, p) is a finite probability space and a  is a random variable 
on W. The expected value of a  according to p is defined as

E X p (a)=  Y _  P (a- 1  (a)) ■ a.
aeran(a)

Note that for any random variable a, the set (a - 1  (a)|a e ran(a)} forms 
a partition of W.

One and the same random variable may have different expected 
values according to different probability functions. For example, if W 
is the six-element set of all possible outcomes of a roll of a six-sided 
die, and the random variable attaches the value 1 to each of the worlds 
with an even outcome and 0 to all other worlds, the variable has an 
expected value of !/2 if the die is fair. However, if the die is loaded, and 
some outcomes have different probabilities of occurring, then the exact 
same random variable might have a different expected value.
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Given a betting function q, it may be natural to think of 
H aeran(«o q«-!(a) ' a as something like “ the expected value of a  ac
cording to q"; furthermore, if that q codes some agent's approach to 
bets, and a  corresponds to a bet, it may be intuitive that the formula 
gives the expected value of the bet according to that particular agent. 
We w ill eventually settle for this w ay of thinking, as is actually typical 
in the literature. When discussing the Dutch Book Argum ent (as op
posed to the Theorem) below, we w ill need to talk about the expected 
values of bets according to various agents. However, we need to be 
conscious of the fact that w hen doing so we w ill be departing from 
the usual mathematical notion of expected value, which requires the 
function whose values are multiplied by the values of the variable to be 
a probability function. We w ill return to these issues repeatedly below.

A  sum of two random variables obviously is a random variable; its 
expected value is the sum of the expected values of the two. Assum e 
again that some betting function q is fixed. Since any single bet is a 
random variable, then a finite set of bets (and we only consider these) 
is also one. If that set of bets is a Dutch Book for q , it means that as a 
function of W it has exclusively negative values. Therefore, it has a ne
gative expected value according to any probability function. Therefore, 
to prove the Converse DBT, that is, to show that a probabilistic q is not 
Dutch-bookable, it is enough to show that for any set of bets there exists 
a probability function according to which this set has a nonnegative 
expected value. It w ill turn out that the probability function doing the 
trick (that is, leading to a nonnegative expected value of any set of bets) 
is q itself.

We w ill use the notion of the indicator function for a proposition 
E e F, which is the function ie  : W ^  (0, 1} such that

Assum e then that q is a betting quotient function of some agent 
and is also a probability function. We w ill show that q is not Dutch- 
bookable.

1 if w 6 E 

0 otherwise.
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Consider the following random variable $ A, which attaches to each 
w 6 W the profit from betting for E with the stake S:

:=  ! a (! — qA )S — (1 — ÍA )qAS-

The total payoff function for any full set of bets is another random 
variable on W, equal to

0  := Y _  ^ a -
AeF

Let us calculate the expected value of ^ A according to q:

EXq (^ a ) =  qA (1 — qA )S +  q —A ( qA)S) =  qA (1 — qA )S — (1 — qA )qAS =  °

where we have, as above in presenting Kem eny's argument, used 
normalization and additivity to substitute 1 — qA for q- A .

Since 0  is a finite sum of random variables with expected value 0, 
EXq (0 ) =  0 . The values of 0  are the possible profits of the agent from 
the given set of bets. From EXq (0 ) =  0 and nonnegativity we see that 
these values cannot all be negative, therefore q is not Dutch-bookable.

It can be protested that in the argument just given the role of the 
probability axioms is somewhat unclear, since we rely on q being a 
probability function already when starting to calculate the expected 
value of ^ A with respect to q. We can re-run the argument, keeping the 
old definitions of the "profit from bet for A " random variable ^ A and 
"total profit from the given set of bets" random variable 0 , but using 
the following notion, which poses no similar restrictions:

Definition 6 (Generalized expected value): Let W be a finite nonempty 
set, F  =  P(W ) and let a  be a random variable on W. Let r be any function 
from F  to R . The generalized expected value of a  according to r is defined 
as

GEXr (a) =  r (a - 1  (a)) ■ a.
aeran(a)

One (instructively mistaken) train of thought could be the following: 
It would seem that, like before, we can arrive at GEXr (0 ) =  0 just by 
requiring from r that for any A 6 F  r(A) +  r(—A) =  1, the condition of 
"negation coherence", which w ill be of great interest to us in the next
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Figure 2.1. A function r which satisfies nonnegativity and negation coherence, 
but violates additivity

a P a  +  p
W1 1 5 6
W2 4 2 6
W3 0 4 4

Table 2.1. Singletons of the w t’s are atoms of the algebra depicted in Figure 6 .1. 
This table defines random variables a  and p for which GEXt (a) +  GEXt (p) =
0.5 +  1.1 =  1.6 =  5.8 =  5.4 +  0.4 =  GEXr (a +  p)

section. Then we could add the requirement of nonnegativity of r to 
be able to infer from the fact that for any set of bets GEXt (0 ) =  0 the 
conclusion that r is not Dutch-bookable. We would therefore seemingly 
establish the Converse DBT without appealing to additivity.

This, however, is a mistake, since the generalized expected value 
of a sum of two random variables does not in general equal the sum 
of the generalized expected values of these variables. Figure 2 .1 and 
Table 2 .1 depict an example using a function r which satisfies both 
nonnegativity and negation coherence, but violates additivity. To move 
from GEXt (^a ) =  0 to GEXt (0 ) =  0, we can appeal to additivity; let us 
note the following elementary fact:
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Fact 6. Let W be a finite nonempty set, F  =  P(W) and let a  and p be random 
variables on W. Let r be any function from  F  to R . Then if  r is additive, 
GEXr(a) +  GEXr(p) =  G EX r(a +  p).

Therefore, I propose one "conceptually clean" form of the argument 
for the Converse DBT which appeals to the notion of the expected value 
being as follows:

1. use the notion of General Expected Value instead of Expected 
Value;

2. appeal to negation coherence to argue that GEXr (^A) =  0 for any 

A;

3. appeal to additivity to obtain from this the conclusion that 
GEXr(0 ) =  0;

4. appeal to nonnegativity to conclude that r is not Dutch-bookable.

Since additivity and negation coherence are together equivalent to 
additivity and normalization, this is another w ay of establishing the 
Converse DBT.

*

We have seen three ways of establishing the Dutch Book Theorem. I will 
now argue that the Dutch Book Argument fails and offer a repaired, 
weaker argument.

2.2. The Dutch Book Argum ent and w h y  it fails

The Dutch Book Argument tries to establish the norm of Probabilism, 
which says that the degrees of belief (or, interchangeably, "credences") 
of a rational agent should conform to the classical probability axioms. 
A s already mentioned, the DBT is at the heart of the argument. But 
something needs to be said about the relationship between credences 
and betting quotients. I w ill argue now that there is a largely unexplored 
lacuna here which leads to the demise of the Dutch Book Argument for 
Probabilism in its full generality; at the very least, while us probabilists 
can use it to reinforce our beliefs that we're doing the right thing (but
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bordering on a petitio principii), it cannot in general be used to convince 
a non-probabilist.

Before we continue, let us define the concept of an agent's belief 
space and degree of belief function.

Definition 7 (Belief space): A  belief space is a tuple (W, F, b), where 
W is a nonempty finite set, F  is the power set of W (containing 'pro
positions'), and b is a function from F  to R , called the degree of belief 
function.

A  degree of belief function may also be called a "belief function" or 
a "credence function". Mathematically, of course, it is indistinguishable 
from a betting quotient function. However, the relation of one to the 
other in the case of a given agent is not immediate.

The problem can be seen already in the case which was the easier 
part of the DBT: showing the consequences of violating the probability 
axioms. Typically, the Dutch Book Argument w ill attempt to proceed 
as follows:

1. Assume that the agent's degree belief function violates the proba
bility axioms;

2. define the agent's betting quotient for a proposition E to equal 
one such that the agent expects neither profit or loss (such a bet 
is called "fa ir"  according to the agent);

3. observe that this leads to the identification of the agent's credences 
with his betting quotients;

4. appeal to the DBT to point out that the agent faces sure loss;

5. conclude that the agent's degrees of belief are irrational.

Step 2 can be skipped by those who w ish  to identify degrees of 
belief with betting quotients from the start. I fail to see what this form of 
strict operationalism gives us apart from a pleasing but fleeting illusion 
of empiricism. I suggest that, in the spirit of Eriksson and Hajek (2007), 
we try to keep an open mind regarding what degrees of belief are, and 
investigate the relationship between them and betting quotients using 
just the basic assumption that whatever they are, they can be expressed 
by a real number.
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To hopefully elucidate a possibly disturbing aspect of step 2 above, 
it is quite common to furnish a bridge between credences and betting 
quotients by means of "fairness"; for example, suppose your b(A) =  1/3 
and your b(—A) =  2/3. Then if you consider a betting quotient qA =  1/2, 
you expect the bet for A with a stake equal to 1 to end with your "profit" 
of 1/3 ■ (1 — 1/2) +  2/3 ■ (—1/2) =  —1/6, which is not "fa ir" according to the 
w ay the term is used in a big portion of Dutch-book related literature 
(and not, of course, in real life). The choice of qA =  1/io w ill lead to 
positive expected profit, which is also not "fa ir". For a different angle, 
notice that it is not the quotient you w ould choose if you knew you 
would take part in the bet, but did not know whether you w ould buy 
or sell, and would like to avoid loss. The one and only betting quotient 
satisfying this requirement equals b(A).

The DBA has been criticized in many ways which I will not attempt 
to rehearse here; instead I w ill try to promote m y own criticism. I sug
gest the interested reader go through the concise treatment given in 
Chapter 3.4 of Childers (2013) and explore Joyce (1998) as the source of 
the modern discussion about the supposedly pragmatic nature of the 
argument being a defect from the point of view  of epistemology.

Imagine, then, an attempt to convince your nonprobabilist friend of the 
error of his ways. Your friend claims that his degree of belief function 
b is not a probability function and that is how he wants it to be. You 
go through all the steps of the above argument to show that he is 
vulnerable to a Dutch Book, a sure-loss betting setup. You discover, 
though, that he is not convinced, and his reasons are none of the usual 
criticisms of the D BA  from the literature. He agrees that his betting 
quotient for the bet for A with a stake S is that particular q for which 
b(A) ■ (1 — q)S +  b(—A) ■ (—q)S is equal to 0, and he agrees with the 
interpretation that it is the quotient for which he expects the profit from 
the bet to equal 0. Still, he claims that his betting quotients are different 
from his degrees of belief.

He claims that this is because in his case b(A) +  b(—A) is in general 
not equal to 1 , but rather, that for each proposition A there is a non-zero 
number rA for which it holds that b(A) +  b(—A) =  rA; of course some of 
these numbers may be equal to 1 . Therefore, his betting quotient for the
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bet for a proposition A is in general equal to Ma )/ta . In other words, the 
agent claims he is "negation incoherent", that he violates the condition 
we have already met in the previous Section (first discussed in print by 
Hedden (2013)). Can we re-run our argument using betting quotients 
of an agent who is negation incoherent, and so his degree of belief 
function violates at least one of the conditions of normalization and 
additivity? We w ill see below that in some cases we can: it is possible 
to rigorously specify the class of nonprobabilistic agents susceptible to 
the argument.

In fact, I find it quite puzzling that the prevailing consensus in 
philosophy has been that violation of probability axioms by one's 
belief function is a sign of one's irrationality. Take the normalization 
axiom. Surely the choice of number 1 as the probability of tautologies 
(or "certain events", etc.) is conventional; there are plenty of numbers 
which would do similarly well. (Some calculations might become more 
cumbersome for us trained in the "classical w ays", but can we say with 
full confidence that classical probability axioms offer us the simplest 
w ay of reasoning about these matters?) But apparently, if we set our 
credences in tautologies to something different from 1 , we can be Dutch- 
booked. For me this is one of the main reasons to suspect the Dutch 
Book Argument.

To come back to negation incoherence, in my opinion it can be seen 
as another reason for which "betting odds and credences come apart" 
(Bradley &  Leitgeb (2006); Rees (2010)). Unlike the reasons from the 
cited works, though, it has nothing to do with the issues related to 
self-location (see Elga (2000) for one of the main sources of modern 
discussions of that subject). A s the reader hopefully is convinced by 
now, there is nothing w rong with the classical Dutch Book Theorem; 
however, it concerns betting quotients, while the Dutch Book argument 
tries to reach some conclusion about credences. If there are situations 
in which these two "com e apart", then we should try to describe a 
rigorous link between them and reassess the strength of the argument.

The idea is, then, that an agent has some belief function, but whether 
he is Dutch-bookable or not depends on his betting quotient function.
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The link between the two comes in the form of "being induced" in the 
form of the following definition:

Definition 8 (Induced betting quotient, Dutch-bookable belief func
tion): A  belief space (W, F, b) induces a betting quotient q : F  ^  R  if 
for any A 6 F:

1. b(A) +  b(—A) — 0,

2 q(A) — b (A)2. q(A) — b(A) + b(-A) .

A  belief function (or space) is called Dutch-bookable if and only if its 
induced betting quotient function is Dutch-bookable as per Definition 4 .

In light of this definition we can, I think, reasonably say that q(A) 
is the betting quotient which makes a bet for or against A such that an 
agent with a belief function b expects it to have value 0. More formally, 
it is the quotient for which the bet has Generalized Expected Value 
0 from the perspective of b (see Definition 6). It also follows that if 
a belief space induces a betting quotient function, that is, if the first 
condition of the above definition holds, then that function is unique. 
So, if a belief function b is such that for some A b(A) +  b(—A) — 0, it 
does not induce a betting quotient function at all; otherwise, it induces 
one and only one.

The question which now arises is the following: are there any non-pro- 
babilistic epistemic agents who are not Dutch-bookable? Formally: are 
there nonprobabilistic belief functions which are not Dutch-bookable 
by Definition 8? In other words, are there belief functions which violate 
at least one of the three probability axioms and which induce a not 
Dutch-bookable betting quotient function, that is, they induce a betting 
quotient function which is a probability measure? The answer is given 
by the following theorem:

Theorem 3 (Wroriski &  G odziszew ski (2017)). The betting quotient func
tion q induced by a belief space (W, F, b) is a classical probability function iff 
the following conditions hold:
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0

degrees of belief 
to the left 

induce 
betting quotients 

to the right

0

Figure 2.2. A nonprobabilist, Dutch-bookable belief space and its induced 
betting quotient function. (This example first appeared in Wroński &  Godzi- 
szewski (2017), but was incorrectly captioned.)

1. b(0) =  0,

2. for any A in F  b(A) ■ b(-A ) > 0,

3. for any A and B in F  with an empty intersection:

b (A U B) b(A)
+

b(B)
b(A U B )+  b(—(A U B)) b(A) +  b(—A) b(B) +  b(-B)

To see an example of a Dutch-bookable, nonprobabilist belief space, 
consider the space with three atomic propositions depicted in Fi
gure 2.2, where the left algebra depicts the function b defined on 
P((wi, w 2, w 3}), and the right one represents the induced betting quo
tient function q .5

We can see that the betting quotient function q is not additive, and so is 
not a probability measure, therefore the belief function b which induces 
it is Dutch-bookable; as the reader may check, it does not satisfy the 
third condition of Theorem 3.

1

5 This and the following example appeared first in Wronski &  Godziszewski (2017) 
and are cited here with corrections.
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- 3

- 1 degrees of belief 
to the left 

induce 
betting quotients 

to the right

0 0

Figure 2.3. A nonprobabilist, un-Dutch-bookable belief space with a “wild” 
belief function. (This example first appeared in Wroński &  Godziszewski 
(2017).)

1

However, a nonprobabilistic belief function may be intuitively 
"w ild "  and yet induce an un-Dutch-bookable betting quotient func
tion, as evidenced by Figure 2.3.

I should stress here that I do not suggest that possessing negative 
credences, whatever this could mean, is rationally permissible. M y 
goal here is to establish the exact power of the Dutch Book Argument 
on the assumption that degrees of belief—whatever they really are— 
are expressible by real numbers, and the agent's betting quotients 
are induced in the above way, so that "individual bets involved in 
making the book are fair, which is to say they have an expected value 
of zero, when calculated using the agent's betting quotients" (Vineberg 
(2016)). Negative betting quotients, as we have seen, lead to a sure loss. 
Negative credences might also make the agent exploitable, but this 
would depend on the particular interpretation of credences one would 
offer; negative credences by themselves are not enough to render one 
susceptible to a Dutch Book.

There is something we can say about negative credences, though, 
which might be seen as somewhat undermining m y work in this section,
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or at least, if w e're being positive, rules out one interpretation of 
negative credences which might initially be seen as intuitively plausible.

Consider, then, the following w ay of thinking about credences: 
positive ones are degrees of belief, and negative ones are degrees of 
disbelief. Suppose your b(A) =  1/4 and b(-A ) =  2/3. Your induced 
betting quotient for A equals qA =  3/ n ; the fact that it is less than 
1/2 is somewhat intuitive since you believe A to a lower degree than 
-A . But note that you would obtain exactly the same betting quotient 
were your credences equal to b(A) =  —1/4 and b(-A ) =  —2/3. This seems 
counterintuitive to me, since on the assumed interpretation of credences 
in such a case you disbelieve A less than - A , and so according to you 
a fair price for a bet for A should be higher than half of the stake. 
Therefore, negative credences are not degrees of disbelief, and if you'd 
like to furnish an interpretation of the notion (I do not), you should 
look elsewhere.

2.3. On two notions of expected value used

in the literature

I have argued that the D BA  is not a valid argument against all non- 
probabilists. In this section I would like to point out that different 
approaches to calculating expected value are used in different parts of 
the literature, and that, at least at first glance, a nonprobabilist might try 
to use it to defend his or her stance. For example, both the widely cited 
(Greaves and Wallace (2006), p. 615) and (Pettigrew (2016), Chapter 14) 
use effectively the following notion of expected value when calculating 
"expected epistemic utility" (the name of the notion is mine):

Definition 9 (Generalized atomic expected value): Let W be a finite 
nonempty set, F  =  P (W), and let a  be a random variable on W. Let r 
be any function from F  to R . The generalized atomic expected value of a  
according to r is defined as

GAEXr(a) =  L  L  r({w}) • a.
aeran(a) wer(a-1 (a))
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That is, you go over the possible values of the random variable; for 
each value you consider the subset of W for the elements of which 
this particular value is obtained; for each element w of such a set you 
multiply the value of r({w}) by a(w): these are the elements of the sum 
you are calculating.

For example, consider a bet for A with a stake S. It is a two-valued 
random variable with the generalized atomic expected value equal to

X  b({w}) • (1 — qS) +  ^  b({w}) • (—qS), (2.3)
weA w/A

while its generalized expected value, as used up to this point, equals

b(A) • (1 — qS)+  b(-A ) • (—qS). (2.4)

If b is a probability measure, it doesn't matter whether we calculate 
its expected value, or generalized expected value, or generalized atomic 
expected value. Therefore, I do not want to impute any error on part 
of the cited authors since they are using the "atom ic" notion when 
discussing some variants of the conditionalization norm at a point at 
which probabilism can be already assumed to hold.6 However, I would 
like to suggest that em ploying this w ay of calculating the expected 
value is only valid in such contexts.

If b is nonadditive, expressions (2.3) and (2.4) might have different 
values. Accepting G A EX  as a legitimate w ay of calculating expected 
value potentially opens new avenues for discussion.

For example, a nonprobabilist trying to defend his belief function 
might point out that when calculating his betting quotient, he "expects" 
the bet to have the same value as according to GAEX. Therefore, to 
assess whether he is Dutch-bookable or not we would need to perform 
different calculations than the ones offered up to now.

However, it is unclear whether this option is really open to the 

agent. It might be tempting to ask him how exactly he proceeds to 
assess the quotient for a bet for A. If he claims, for example, that he 

takes into account how probable he thinks A and - A  are— which is to

6 The difference between the two approaches to calculating expected value dis
cussed here is also noted in section 3.3 of Leitgeb &  Pettigrew (2010a).
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say that he considers his credence in winning the bet and his credence 

in losing the bet, and his profit in those two cases— it seems intuitive 

that in calculating the expected value he should use equation (2.4). He 

might say, though, that he goes through all the possible options, that 

is, elements of W, and considers his credences in that that particular 

option is the actual world (the b ({w}'s) and his profits in such cases, 

which might be seen to lead to the equation (2.3). This, however, makes 

all credences in nonatomic propositions irrelevant for betting quotients, 

even if the bet under consideration concerns such a proposition, which 

seems to me to be changing the topic: the agent effectively considers 

only a part of his belief function, while he might be irrational due to 

the part he leaves out.

To sum up this short section, while I wanted to point out that a 

different, "atom ic" notion of expected value is fruitfully used in other 

areas of form al epistemology, I would like to stress that it should not 

be used in discussions regarding probabilism.

*

In this chapter I have tried to convince the reader that the Dutch Book 

Theorem holds (not that anyone needed convincing— I wanted to elab
orate on the form al details), w h y the classical Dutch Book Argum ent 

fails, and how it can be repaired. M y arguments regarding the latter 

are surely unacceptable to anyone w ho claims that degrees of belief 

sim ply are betting quotients; however, as already mentioned, I see no 

benefits to this position. I claim that I have various degrees of belief in 

m any propositions I have never bet on, w ill never bet on, and could 

never bet on, all reasonable combinations of modalities of time and 

real possibility considered. I w ould therefore like to make a minimal 

assumption that whatever they really are, they can be expressed by a 

real number, and see whether I can discover what restrictions on them 

are imposed by the Dutch Book Argument.
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It could be said that Dutch Book considerations should concern ideal 

agents. In such a case I would have to say that if an ideal agent bets on 

everything, I wouldn't want to aspire to such an ideal (what a waste!), 

and if such an agent actually does not, but can bet on everything, 

this seems to me to be an aspect of his that is separated from any 

epistemological considerations.



Chapter 3

The Principal Principle, 
Best Systems and 
Humean Supervenience

In this short chapter I w ill explore a few issues related to the well- 
known Principal Principle, introduced by Lewis (1986a) as a starting 
point for analysis of objective chance from a subjective standpoint, 
and later seen as essential to the problematic task of fleshing out his 
philosophical program  of Hum ean Supervenience so that it offers an 
analysis of chance. The Principle connects "reasonable" initial credence 
functions to knowledge about chances ("The Principal Principle requires 
that the chancemaking pattern (...) would, if known, correspondingly 
constrain rational credence" (Lewis (1994))) and so, indirectly, connects 
such credences with chances themselves. I would like to stress here 
that Lew is's goal was to elucidate the concept of chance; he claimed 
the Principle captures "all we know about chance" (p. 87)1 and wished 
to use it to learn more about chance. That is, the goal was not—at least 
not primarily—to introduce another item to the list of norms of rational 
belief discussed in the literature, but rather to point to a principle which 
might offer us a firmer grip on the elusive concept of (objective) chance.

The Principle has am assed an enormous body of literature I w ill 
not attempt to summarize here. (Probably the most extensive study, as

1 In this chapter all sourceless page references are to Lew is (1986a).
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well as a veritable goldmine of creative ideas on the topic, is Masterton 
(2010).) Its introduction in Lewis (1986a) is a paragon of slow and clear 
philosophical argumentation; any attempts on m y side to sum it up 
certainly wouldn't be able to hold a candle to it—the paper is huge 
for a reason. I submit, therefore, that the current chapter is not as 
self-contained as the previous one w as. I'm  assum ing the reader is at 
least vaguely familiar with the papers Lewis (1986a) and Lewis (1994).

I believe I can offer some at least semi-original thoughts on a few 
subjects related to the Principle; due to the size of the literature I cannot 
be sure that the concerns I raise have not been mentioned by someone 
somewhere, but I do have confidence that m y take on them is novel. 
I w ill try to convince the reader of the following:

•  that the problems regarding the notion of "adm issibility" nullify 
the explanatory prospects of the project with regard to chance;

•  that the "underm ining problem " supposedly infecting Humean 
Supervenience is actually a modern take on an old, if not ancient, 
philosophical problem to which most philosophers already have 
their favorite solution;

•  and finally, that someone w ho— following Lew is— thinks that 
the Principal Principle leads to contradiction in the presence of 
underm ining futures can attempt to save the whole project by 
relaxing an assumption I call "chance-conditioning uniqueness", 
possibly concluding something about the Best System in the 
process: namely, that it is weaker than most debaters assume.

In this chapter I w ill attempt to be as form al as the authors involved 
in this subfield of philosophy, that is, almost not form al at all; like 
almost all the cited authors, I w ill sim ply assume that the structures 
and objects we are talking about exist, not because I believe it is the 
best way to go, but because I think I have something to add to the topic 
which is somewhat philosophical in nature and would not benefit from 
full formalization. It has to be noted that, finally, the topic of chance- 
credence norms has reached the level of mature form al discussion in 
the forms of papers like Bana (2016), Gyenis and Redei (2016) and most 
importantly Gyenis and Redei (2017).
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Note that I am assum ing that both the credence functions under 
discussion ("rational" or "reasonable" credences) and chance functions 
are probabilities, that is, that they conform to the axioms we discussed 
in the previous chapter. Lewis assumes reasonable credences are prob
abilities for "well-known reasons" (p. 98); I would like to point to 
those we have just seen as an example. That chances are probabilities 
supposedly follows from the Principal Principle; I w ill not discuss this 
here and w ill sim ply continue under this assumption. Whatever the 
interpretation of the chance function turns out to be, that is, whichever 
philosophical concept of chance we end up with while following the 
Lew isian project, it is—according to Lew is— supposed to conform to 
the classical probability axioms. Let us grant him this assumption.

I will also assume that propositions are sets of possible worlds. This 
is a view Lewis in general subscribed to (see, e.g., Lewis (1986b)); some 
might describe objects featuring in Lewisian approaches to attitudes de 
se as "relativized propositions" (see, e.g., Kallestrup (2012)), but to the 
best of my knowledge Lewis considered them objects of thought which 
are not propositions (sometimes, for example in Lewis (1979), calling 
them "properties"). It is true that in the "Subjectivist's Guide (. . .)" 
Lewis mentions the possibility of extending the approach so that an 
agent's "credence might be divided between different possibilities 
within a single w orld", but the only motivating example is that of 
"someone who is sure what sort of world he lives in, but not at all sure 
who and when and where in the world he is" (Lewis (1986a), p. 88-89); 
since we are not interested in problems of self-location in this book, 
I propose ignoring this. Let us then assume propositions are sets of 
possible worlds and continue.

3 .1. A dm issib ility— first observations

Consider the following formulation of the Principal Principle (Lewis 
(1994), p. 483, formalism somewhat amended):

Let Cr be a rational credence function for someone whose evi
dence is limited to the past and present. (...) Let ch be the function
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that gives the present chances of all propositions.2 Let A be any 
proposition. Let E be any proposition that satisfies two conditions:

•  it specifies the present chance of A in accordance with ch;

•  it contains no "inadmissible" information about future his
tory; that is, it does not give any information about how 
chance events in the present and future will turn out. (We
don't assume E is known.) (...)

Then the Principal Principle is the equation

Cr(A|E) = ch(A). (3.1)

(We assume that some moment t is fixed, and the chance function "at t" 
is considered; we suppress the reference to time notation-wise, but we 
need to note its presence, since using terms like "the present" would 
otherwise make little sense.)

The Principal Principle w ill offer some message about objective 
chance if we understand what "inadm issible" really means. First, it 
seems natural to think of E as being a conjunction of two parts: one that 
specifies that ch(A) =  x for some number x, and another, let's call it G, 
which may concern anything whatsoever, inasmuch as the information 
it carries is "adm issible" in the above sense. (The tacit assumption is, of 
course, that the information that ch(A) =  x is admissible; this is the root 
of the problem we will be discussing in the next section.) The Principle
can then be restated, after repeating all the previous assumptions, as

Cr(A|ch(A) =  x A  G) =  x. (3.2)

Second, applying the Principal Principle with an empty G leads, of 
course, to

Cr(A|ch(A) =  x) =  x. (3.3)

So, it would seem that we arrive at some conclusion about inadmissible 
propositions: if G is one, then it might very well happen that for some 
rational credence function Cr and some proposition A,

Cr(A|ch(A) =  x A  G) =  Cr(A|ch(A) =  x).

2 Note that Lew is (1986a) left an option for the domain of chance functions not to 
include all propositions.
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Note the similarity of these issues to the phenomenon of screening- 
off3 :

Definition 10  (Screening off): Assume a probability space (W, F, P) is 
given. A  proposition C screens off propositions A and B if  and only if

P(AB|C) =  P(A|C) ■ P(B|C) (3.4)

or, equivalently,
P(A|C) =  P(A|BC). (3.5)

(The equivalence holds, of course, only if all the conditional probabilities 
are defined.)

Notice that screening off does not seem to favor any interpretation 
of probability. Subjectivists can read form ula (3 .5) as saying "given 
the information that C, gaining additional information that B does not 
change the credence in A ". Frequentists of the finite persuasion w ill 
read it as saying that a relative frequency in a sequence is preserved 
when considering one of its subsequences. Hypothetical frequentists 
w ill say that what is preserved is the limiting frequency as sequence 
length goes to infinity. I am confident that propensity aficionados, once
they figure out what to do with Hum phrey's Paradox (for a relatively
modern sum m ary of the issue and some attempts at solutions see 
Hum phreys (2004)), w ill also have a natural reading for the condi
tion. (A promising newer attempt at a propensity interpretation of 
conditional probabilities is offered in Drouet (2011).) The point is that 
screening-off is a purely formal condition. Once we know that a func
tion P defined on propositions is a probability measure, we can pick 
any three propositions and receive an answer to the question whether 
the first screens off the second from the third. N o reference to any 
interpretation is needed.

We are, as already mentioned, operating under the assumption that 
rational credences are probabilities. Therefore, we can at least formulate 
a sufficient form al condition for inadmissibility: if for some rational

3 Masterton (2010) has studied screening-off in the context of the Principal Principle, 
but in m y opinion his research takes him  in a different direction.
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credence Cr and for some time t, G is not screened off from A by the 
proposition specifying the chance of A, that is, if

Cr(A|ch(A) =  x A  G) =  Cr(A|ch(A) =  x),

then G is inadmissible w.r.t. A at time t. Note that Lewis writes "A d 
missible propositions are the sort of information whose impact on 
credence about outcomes comes entirely by w ay of credence about the 
chances of those outcomes" (p. 92). So, it seems we are on the right 
track: if the mentioned screening-off does not hold, then what happens 
is exactly that some rational credence in A is informed not only about 
the credence in the chance of A, but also about something else, namely, 
by G.

We could take these matters further and posit that the universal 
holding of the screening-off of the sort just mentioned was definitional 
of admissible propositions: that is, a proposition G is admissible w.r.t. 
A at time t if and only if any proposition to the effect that ch(A) =  x 
for some real number x screens off G from A according to any rational 
credence Cr. (Obvious questions regarding the relative positioning 
of time and quantification appear; Lewis him self did not seem to be 
troubled by this.)

If the class of all propositions was given, and if the probability func
tions on them which were rational credence functions were specified, 
we would seem to have a clear—and, as a bonus, somewhat formal— 
notion of admissibility, which would be a welcome change from the 
literature which abounds in examples involving seers and crystal balls.

However, it would then seem doubtful whether the Principal Prin
ciple can do the job of "capturing all we know about chance" (p. 86), 
or even perform  a seem ingly lesser task of elucidating the concept of 
objective chance by invoking subjective probability (if you recall the 
title of Lewis's original paper on the topic). To understand the scope of 
the Principal Principle, to know for which propositions and credence 
functions the equation (3.2) holds,4 we need to know which proposi
tions are adm issible; but to know which propositions are admissible,

4 Yes, a priori, it m ay hold also in cases w hich in w hich the assum ptions of the 
Principal Principle are violated; I propose noting this w orry  here but not elaborating 
on it.
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we need to know all the true instances of (3.2). Therefore, appealing to 
the notion of screening-off w ill not help us here.

A  different route w ould be to reformulate the Principle so that it 
w ould not involve any other propositions apart from A and the one 
specifying the chance of A, effectively culminating in equation (3 .3); this 
would make the Principal Principle a variant of the so-called M iller's 
Principle (Miller (1966); note 1) that M iller tried to argue against it, 
not propose it, and 2) there are interesting issues regarding rigidity of 
designation and M iller's argument discussed in Jeffrey (1970)). H ow 
ever, this would certainly narrow the scope of the Principal Principle as 
intended by Lewis, who claims we have at least some intuitions about 
admissibility (p. 92-96: propositions about the past, propositions about 
how chance depends on history, and Boolean combinations of these are 
to be admissible).

There might be other ways to elucidate the notion of admissibility 
in a somewhat rigorous w ay (see, e.g., Meacham (2010) for a pro
posal which makes essential use of propositions expressing "theories 
of chance", which I w ill mention later). The spirit of the previous para
graph is not meant to suggest that there is some conceptual vicious 
circle in Lew is's view, but rather that finding the proper place for the 
notion of adm issibility might lead to similar methodological issues 
as those regarding the concept of "natural properties", as extensively 
discussed in Lewis (1983): the notion appears in explications of notions 
useful in explicating it.

3.2. "A b o u tn e ss" and underm ining

The issue of "underm ining futures" is one that supposedly plagues 
accounts which attempt to analyze the concept of chance in a frame
work subscribing to Humean Supervenience: the claim "that the whole 
truth about a world like ours supervenes on the spatiotemporal distri
bution of local qualities". More explicitly, "a ll else supervenes on the 
spatiotemporal arrangement of local qualities throughout all of history, 
past and present and future" (Lewis (1994), p. 474). In m y opinion 
whether we take it to be a substantial problem may depend on our
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view  regarding what it means for a proposition, i.e., a set of worlds, to 
be about something.

Lewis gives the following characterization of a proposition being 
about a subject matter: "A  proposition is about a subject matter—about 
history up to a certain time, for instance—if and only if that proposition 
holds at both or neither of any two worlds that match perfectly with 
respect to that subject m atter" (Lewis (1986a), p. 93). Since we w ill 
never be in position to know exactly which worlds are possible, we 
should not expect to be able to apply this criterion with full confidence; 
however, it gives us some argumentative direction.

Consider the following consequence of this view  of "aboutness". 
Suppose one subscribed to the following view, which might be seen as 
a form of determinism: if the arrangement of local qualities coincides 
at two possible worlds at some time, it also coincides at all other times. 
(This might be reasonable for example for those w ho take seriously 
talk of the future fundamental physical Theory of Everything being 
deterministic.) Suppose we grant the assumption of Humean Superve- 
nience and restrict our attention to the set of possible worlds in which 
there are no two worlds with exactly the same arrangement of local 
qualities throughout all history (any difference between such worlds 
would be non-Humean). Then, colloquially, all propositions are propo
sitions about the future. That is, for any world w and time t, the class of 
"worlds which match perfectly with w with respect to the arrangement 
of local qualities at all times later than t "  is just {w}. So, if we want to 
subscribe to Humean Supervenience, and would like to claim that some 
propositions are about the past but not about the future, we cannot 
be determinists in the above sense: that is, we have to allow for the 
possibility that some worlds initially differ in the arrangement of local 
qualities but "converge" to identity in that respect.

(There might be various interesting notions of "aboutness" of pro
positions in the neighborhood of the one Lewis proposed, based on 
the fact that some regions of some worlds might match in some sense. 
However, it appears to me that any such notion is doomed to be prob
lematic, since, for all we know about what's possible and not, it might 
very well be that in any possible world in which Caesar was killed by 
Brutus a specific configuration of sunspots materializes on the 15 th of
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May 2000, and so any treatise on the history of the Roman Empire will 
turn out to be also about some aspects of astronomy.

Interestingly, a rigorous sort of the "branching" approaches to pos
sible worlds (approaches which Lewis vehemently opposed in his 1986 
book)— the "Branching Space-times" framework by Nuel Belnap—fea
tures a similar problem, called in that context "funny business" (see, 
e.g., Belnap (2003).)

It should also be noted that (as Lewis eventually realized) propo
sitions specifying the chance of some proposition at some time t may 
be not about the past, that is, about the (arrangement of local qualities) 
at times earlier than t, but about the future; specifically, for some pro
positions A, worlds w and times t, some propositions about chances at 
t of A are about the spatiotemporal arrangement of local qualities in 
world w at some times t later than t. Suppose at t a coin is about to 
be tossed by a machine set to a specific angle and force. After the coin 
begins its flight through the air a magnet might be repeatedly turned 
on and off nearby in a very specific pattern which influences the result 
in a rigorous way (see Diaconis et al. (2007)). The chance at t of the coin 
landing heads up is determined, therefore, not only by the physical 
properties of the coin together with the "usual" physical features of the 
environment (gravity, air density, etc.), but also by whether the magnet 
is turned on or not during the coin's flight. There are therefore two 
chance propositions of interest: CHI, to the effect that cht (Heads) =  a, 
which is true in all worlds in which the magnet is not turned on, and 
CH2, to the effect that cht (Heads) =  p for some p =  a, which is true 
in all worlds in which the magnet is turned on. A nd so CHI and CH2 
are chance propositions, specifying the chance of some proposition at 
time t, which are nonetheless about the future, that is, about times later 
than t.

With this in mind let us look at how Lewis introduces the problem 
of "undermining futures" in (Lewis (1994), p. 482-483):

[S]uppose we have a Humean analysis which says that present 
chances supervene upon the whole of history, future as well as 
present and past. (...) Then different alternative future histories 
would determine different present chances. (...) And let's sup
pose, further, that the differences between these alternative futures
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are differences in the outcomes of present or future chances events.
Then each of these futures will have some non-zero present chance 
of coming about.

Let F be some particular one of these alternative futures: one that 
determines different present chances than the actual future does.
F will not come about since it differs from the actual future. But 
there is some present chance of F (...) some present chance that 
events would go in such a way as to complete a chancemaking 
pattern that would make the present chances different from what 
they actually are. The present chances undermine themselves. (...)

[considering some future different from the actual one]
Could it come to pass, given the present chances? Well, yes and 
no. It could, in the sense that there's non-zero present chance of 
it. It couldn't, in the sense that its coming to pass contradicts the 
truth about present chances. If it came to pass, the truth about 
present chances would be different. Although there is a certain 
chance that this future will come about, there is no chance that 
it will come about while still having the same present chance 
it actually has. It's not that if this future came about, the truth 
about the present would change retrospectively. Rather, it would 
never have been what it actually is, and would always have been 
something different.

This undermining is certainly very peculiar. But I think that, so 
far, it is no worse than peculiar.

Note the last bit: Lewis does not consider underm ining to be a 
big problem in itself. The real issue, the Big Bad Bug, is a supposed 
contradiction resulting from the application of the Principal Principle, 
to which we w ill turn in the next section. A ll the same, I w ould like 
to claim that the undermining phenomenon is actually a well-known— 
ancient, actually—philosophical problem in disguise, and is not peculiar 
at all in its own way.

Consider the "fa ir coin toss + m agnet" scenario we have just dis
cussed. Consider chances at t, before the toss, which takes place at some 
moment t ' > t. Introduce an additional random element: the magnet is 
switched on if and only if a certain radium atom decays in the interval 
between t and t . In the actual world the magnet is not turned on and, 
since we are trying to be Humean, we should say that the chance at t
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of the coin ending "heads u p " is 1/2: chances supervene on the past, 
present and future, and not on what goes on in other worlds. However, 
it is possible that the radium atom decays between t and t ' . If it indeed 
decayed, the magnet would be turned on, and the chance at t of the coin 
ending "heads up" would be something other than 1/2. But notice that 
we have changed the possible world we are talking about: it should not 
be surprising that if the chancemaking pattern after t differs between 
the actual world and some possible world, chances at t also differ.

Let us add some more detail to the example: in the actual world 
the coin falls "heads u p" and, if the magnet is turned on, it falls "tails 
u p " (see again Diaconis et al. (2007) for a discussion of such setups). 
Suppose t is the present time. In the actual world it is presently true 
that the coin will fall "heads up". Is it possible for the magnet-future to 
realize? Well, it is, since the radium  atom can decay between t and t ' ; 
there's a non-zero present chance of it. However, i f  it decayed, the truth 
about the present truths would be different: for example, it w ould be 
false that the coin will fall "heads up". It is not possible for the magnet- 
future to realize without the change of truth values of statements about 
the future at t.

What I wish to say is that the "undermining futures" issue is simply 
another rendition of the ancient problem of future contingents. Since 
we have already seen that, for Humeans at least, some chance propo
sitions are about the future, and since there are non-zero chances of 
various futures being realized, so it is possible for various futures to 
be realized and Humeans should accept that chance statements may be 
future contingents. There is a plethora of view s regarding these: note, 
for example, that for Lew is him self all future contingents are true or 
false; for an overview of various positions see 0 hrstrom and Hasle 
(2015). It seems to me that a wise move would be to choose one of the 
general approaches to the issue, for example the assessment sensitivity 
idea from MacFarlane (2014), and then see whether it ties properly 
with how one would like to conduct one's Hum ean research: there is 
nothing particularly peculiar to the "undermining futures" issue. One 
does not need even to follow in Lewisian footsteps regarding one's 
view  of possible worlds; instead, a branching view  could be combined 
w ith a Hum ean approach to chances and a version of the Thin Red
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Line position with regard to future contingents (see, e.g., M alpass & 
Wawer (2012)).

However, there is a different problem to be tackled if one tries to 
combine Humean Supervenience with the Principal Principle: it is the 
"Big Bad Bug", as it is popularly called, and is the one to which we now 
turn.

3.3. The Big Bad Bug: the Best System  m ay be

w eaker than you think

To get a grasp on the issue look, first, at how Lewis continues the quote 
we used on p. 65 when introducing the Principal Principle:

(...) the Principal Principle is the equation

Cr(A|E) = ch(A). (3.1)

Now take A to be F, our alternative future history that would 
yield present chances different from the actual ones; and let E be 
the whole truth about the present chances as they actually are.
We recall that F had some present chance of coming about, so by 
the Principal Principle, Cr(F|E) = 0. But F is inconsistent with E, 
so Cr(F|E) = 0. Contradiction. I could tolerate undermin[ing] as 
merely peculiar. But not contradiction! (Lewis (1994), p. 483)

The Big Bad Bug, as Lewis him self called the problem, is this contra
diction: the Principal Principle seems to be incompatible with Humean 
Supervenience.

The reader will, of course, be perfectly excused if (s)he thinks that a 
serious discussion of anything resembling a formal contradiction has 
to proceed beyond the vague talk displayed in and around the quotes 
in this chapter. In that case I suggest exploring the already cited papers 
by Rédei, Z. Gyenis and Bana.

It has to be mentioned that some philosophers have thought that 
there is no need for any "debugging"; see, e.g., Roberts (2001). It 
seems, though, that most, including Lewis himself, believed that some 
modification of the Principal Principle was in order (from the vast 
literature on the subject I suggest starting with Hall (1994)). While I will
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also suggest a modification of the Principle, it w ill be motivated by a 
suggestion regarding the so-called "Best System" approach to lawhood— 
another famous idea by Lewis which can be tied to a reformulation of 
the Principal Principle he proposed.

According to the Best System approach, to quote Cohen and Cal
lender (2009) (p. 2), "the laws of nature are the true generalizations 
that best systematize our scientific know ledge"; a bit more explicitly, 
"a  true generalization is a law if and only if it is an axiom of all the 'Best 
System s'— axiomatic systematizations that best balance strength and 
sim plicity" (p. 5). Lewis him self in his 1994 paper uses the singular, 
saying that "[t]he best system is the one that strikes as good a balance as 
truth w ill allow between simplicity and strength. How good a balance 
that is w ill depend on how kind nature is. A  regularity is a law iff it is 
a theorem of the best system" (p. 478). We w ill ignore the issue of how 
m any Best Systems there are in what follows. The important thing is 
that Lewis stresses that the best-system analysis is "H um ean" (p. 480). 
I w ill suggest a way in which one can coherently subscribe to Humean 
Supervenience, the best-system analysis, and a version of the Principal 
Principle, on pain of believing that the Best System does not provide 
theorems as strong as, I think, is commonly presumed.

Are propositions about chances theorems of the Best System? Not 
according to the initial conception, since there the propositions making 
up the system are required to be true, and before an analysis of chance 
is proposed, it w ould be premature to set the same requirement on 
propositions of this type. Lewis adds, then, another balancing factor to 
simplicity and strength: the one of "fit". The higher the fit of a system, 
the higher the chance of the actual future according to the system 
(Lewis (1994), p. 480). The Best System is the one which displays the 
best balance of strength, simplicity, and fit. Lewis can then say that 
"the chances are what the probabilistic laws of the best system say they 
are" (ibid.).

Lewis explicitly assumes that some systems say "w hat the chances 
w ill be when situations of a certain kind arise" (ibid.). In the earlier 
"Subjectivist's Guide ( ...)"  he considers a version of the Principal Prin
ciple in which after the conditioning sign a specific kind of adm issi
ble propositions is featured, nam ely "history to chance conditionals".
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Am ong others, they should satisfy these two requirements: "(1)  The 
consequent is a proposition about chance at a certain time. (2) The an
tecedent is a proposition about history up to that time; and further, it is a 
complete proposition about history up to that tim e" (Lewis (1986a), 
p. 95); they might be systematic, "compressible into generalizations" to 
be thought of as probabilistic laws (p. 96). With all this in mind we can 
now cite one of Lew is's reformulations of the Principal Principle:

Given a time t and world w, let us write cht w  for the chance dis
tribution that obtains at t and w. For any proposition A, cht w (A) 
is the chance, at time t and world w, of A's holding. (The domain 
of cht w  comprises those propositions for which this chance is 
defined.) Let us also write Ht w  for the complete history of world 
w up to time t: the conjunction of all propositions that hold at w 
about matters of particular fact no later than t. Ht w  is the propo
sition that holds at exactly those worlds that perfectly match w, 
in matters of particular fact, up to time t.

Let us also write Tw  for the complete theory of chance for world 
w: the conjunction of all the conditionals from history to chance, 
of the sort just considered, that hold at w. Thus Tw  is a full 
specification, for world w, of the way chances at any time depend 
on history up to that time.

Taking the conjunction Ht w Tw , we have a proposition that tells 
us a great deal about the world w. It is nevertheless admissible at 
time t, being simply a giant conjunction of historical propositions 
that are admissible at t and conditionals from history to chance 
that are admissible at any time. (...) Therefore we have:

The Principal Principle Reformulated. Let Cr be any
reasonable initial credence function. Then for any time 
t, world w, and proposition A in the domain of cht w

cht w  (A) = Cr(A|Ht w Tw  ). (3-6)

In words: the chance distribution at a time and a world comes 
from any reasonable initial credence function by conditionalizing 
on the complete history of the world up to the time, together 
with the complete theory of chance for the world. (p. 96-98, some 
changes in notation)
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On the one hand, this looks to be a weaker principle than the one 
quoted earlier: it restricts our attention to a specific type of proposition 
to the right of the conditioning sign.5 On the other hand, I suggest that 
it is still very strong, and some weakenings of it can be suggested which 
avoid the Big Bad Bug and are still able to say something meaningful 
about the relationship of chance and rational credence. However, I 
w ill say upfront that significant doubts about the rationality of the 
principles I w ill propose can certainly be formulated.

The main observation is the following: considering the rational 
credence in some proposition A , both the original Principle and the just 
cited rephrasing formulate a conditional constraint given a proposition 
which specifies the chance of A  uniquely. Let me call this feature 
of the principles chance-conditioning uniqueness. If this is relaxed, the 
contradiction may be avoided. There are many intuitive weak principles 
of this kind; for example "given the information that the chance of A  is 
in the [0 .4, 0.7] interval, a credence of 0 .1 in A  w ould be irrational". In 
the remaining part of this chapter I w ill sketch a few proposals for how 
a version of the Principal Principle formulated in this spirit might look. I 
am not worried too much that these proposals have clearly visible flaws 
since I believe a serious discussion of these topics should eventually 
move to the fram ework of higher order probability spaces (see the 
already mentioned Gyenis and Rédei (2017) and the next chapter).

Let us set aside the issue of adm issibility of the history-to-chance 
conditionals and concentrate on what the conditionals say. Notice that 
the only requirement Lewis proposes for their consequent is, as already 
mentioned, that it "is a proposition about chance at a certain time". The 
contradiction in the Big Bad Bug is reached, remember, because a non
zero chance is appropriated to an inconsistent proposition. However, 
there is no need for a true history-to-chance conditional to specify 
the chance exactly; not only could it be given as belonging to an 
interval ("if the experimental setup is prepared so-and-so, the chance 
of obtaining this particular measurement result is 0 .3 ±  0 .00005"),6 but

5 Lewis himself treated (in the "Subjectivist's Guide (...)") the two formulations as 
equivalent, m odulo a few  quibbles.

6 I am  not suggesting that chances are unsharp, but there are best-system -style 
analyses which do, see, e.g., Dardashti et al. (2014).
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also to some discrete set ("since, in the future, before the measurement 
an intervening factor may come into play, the current chance that in the 
future this particular measurement result w ill be obtained is either 0.3 
or 0.7").

Consider, then, the above quote regarding "Principal Principle Re
formulated". Change the beginning of the second paragraph so that it 
does not describe Tw, and instead speaks about Ttw:

Let us also write Ttw for the complete theory of chance for world 
w up to time t: the conjunction of all the conditionals from history 
up to time t to chance that hold at w. Thus Ttw is a full specifica
tion for world w of the way chances at time t depend on history 
up to that time.

It might very well happen, as it does for example in Lewis's tritium 
example, that for some A the proposition HtwTtw does not entail that 
the chance of A equals some single specified value. Since the main intu
ition behind the discussed principles is that rational credence should 
conform to credence about chance, we should expect that on the basis 
of that proposition rational credence is constrained, but sometimes not 
uniquely determined, which the following principle tries to capture7:

A  Debugged Reform ulated Principal Principle 
(DRPP). Let Cr be any reasonable initial credence 
function. Then for any time t, world w, and propo
sition A in the domain of chtw,

Cr(A|HtwTtw) e {chtv(A) | v is indistinguishable

from w up to time t }.

(3 .7)

In words: the chance distribution at a time and a world 
constrains what is obtainable by conditionalizing a reason
able initial credence function on the complete history of the 
world up to the time, together with the complete theory of 
chance for the world up to that time.

7 This perhaps comes close to the "loophole" Ismael (2008) mentions in her footnote 
9 but decides not to explore.
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While it is clear to me that if we stay on the vague level of discourse 
particular to the mainstream discussions about the Principal Principle, 
the DRPP avoids the Big Bad Bug, it certainly gives rise to peculiar 
issues. As will be the case with other variants discussed below, they are 
most easily seen when reading the Principle "from left to right"; that is, 
for example, asking the question "w hat is the rational credence in A 
given HtwTw?" The " e "  sign in the DRPP can be interpreted in at least 
two ways. One of them would say that there are as many Cr(A|HtwTw )'s 
as there are chtv(A)'s—that any chance function compatible with the 
given information about the past gives rise to a rational credence. 
However, given that the conditionalization operation is a function, that 
is, it uniquely determines the posterior given the prior, it would follow 
that there are nontrivially different unconditional rational credence 
functions. While this is by no means absurd, it is perhaps unfortunate 
and unexpected that it is a consequence of what is to be a principle 
connecting credence about chance to credence.

Another reading of the " e " ,  somewhat weaker, w ould have the 
DRPP state that the rational credence in A given HtwTtw, whatever it is, 
belongs to the set of chtv's for v indistinguishable from w up to time t. 
This avoids the previous problem, if it is a problem at all, but some 
m ay find it to be too w eak if the basis for excluding some chtv's as 
irrational values for the credence in A is not given (and I w ill hazard 
no proposals for it).

Perhaps a fruitful direction to pursue would be to consider chance- 
credence principles not as concerning rational credence, but as credence 
it is epistemically permissible to have (for an interesting discussion of 
the two notions see, e.g., Hughes (2017), although the author defends 
the claim that in the case of full belief, the notions are coextensive). The 
principles violating chance-conditioning uniqueness could be seen, then, 
as describing how chance constrains the set of epistemically permissible 
credences.

This, however, does not solve a different issue. Suppose there are 
two values of the chance of A compatible with the given past; take 
the "coin + m agnet" example with two different chances, a  and (3, 
depending on whether the magnet is turned on in the future. W hy 
should we insist that before the toss and before the state of the magnet
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is decided the rational credence in A given all information about the 
past and the complete theory of chance of the given world up to that 
time should belong to the set {a, 3}? Choosing one of these over the 
other w ould seem arbitrary, so we might be tempted to say that it is 
epistemically permissible to hold any of the two (and, to reiterate, the 
value of the DRPP for the analysis of chance lies in its description of 
how chance constrains the sets of epistemically acceptable credences). 
But this disregards the prior credences about the chances of each future 
actualizing. It might very w ell be that the agent has learned, e.g., 
something about the w ay the magnet is operated which leads her to 
the credence 0.9 that it w ill be turned on, that is, that the future w ill 
be such that the chance of A is 3. If the fact that the agent obtains a 
rational credence about the chance of the magnet being turned on in the 
future is already inside Htw, this is especially troubling. This suggests 
that the set of epistemically permissible credences in A given HtwTtw 
should contain at least some convex combinations of the possible chance 
values.

This— that is, not only removing the requirement of chance-condi
tioning uniqueness, but also taking into account the prior credences in 
which of the possible futures w ill actualize— seems to take us (more 
in spirit than in the letter) in the direction of the General Recipe of 
Ismael (2008) (p. 298). Instead of trying to w ork out the details of the 
connection, which I'd  consider fruitful in a more form al framework 
of higher-order probability spaces, I would like to propose a different 
approach to what is conditionalized upon in the variations of the 
Principal Principle one can propose to avoid the Big Bad Bug: we could 
turn to what is offered by the Best System.

The "complete theory of chance" (whether "up to some time" or with
out that qualification) is most likely not a part of the best system—it 
deals with, recall, "complete propositions about history" up to a cer
tain time. If this w as a part of the Best System, then at least w hen it 
comes to chance the system would seem to peculiarly favor strength 
over simplicity. Lew is himself, in the postscript to the "Subjectivist's 
Guide ( ...) " , made the decision not to require that chances should 
be completely governed by laws, requiring only that the "history-to-
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chance conditionals w ill not conflict with the system of laws of chance" 
(p. 126-127). However, we do not need to impose such a strict require
ment; rather we only need to formulate a restricted version of the 
Principal Principle where what is given to the right of the conditioning 
bar is the information from the Best System together with the historical 
data which make the former applicable.

The resulting principle, while certainly weaker than the original, 
w ould have an advantage in that we know that however we think of 
the language of the eventual Best System—be it fundamental physics 
or something else (see Frisch (2014))—we can be reasonably sure that 
people are working on (something leading towards) it. This makes 
it at least prima facie reasonable to formulate a constraint on rational 
credence that ties the credence about chance to what the Best System 
says about chance. In contrast, I think it is fairly certain that no one 
is pursuing the goal of providing a complete history of any possible 
world or a complete theory of chance (in the Lew isian sense) for it 
(even up to a certain time). However, it is not evident that the issues of 
practicality (for lack of a better term) should be in the spotlight in the 
context of metaphysics.

Let BS(t, w, A) be a set of numbers: the possible values chtv(A) 
might have according to the Best System given that the past of v and w 
are indistinguishable from the point of v iew  of the Best System; that 
is, there is no theorem of the Best System specifying a difference in 
the arrangement in local qualities in w and v before t. For example, 
in our "coin + m agnet" case, if w is the actual world and v the one 
in which the magnet is turned on in the future, it might very w ell be 
that BS(t, w, A) =  {a, 3}. Note the "m ight": we need to be careful when 
talking about the Best System since we do not have a clear idea of what 
it w ill be. I am fine w ith this since I want to sketch a position which 
a Hum ean can coherently maintain while avoiding the Big Bad Bug, 
and for this the particulars of the Best System are of little importance. 
However, I need to note that for example Loewer (2004) decided to 
boldly claim that "there are coherent credence functions that violate 
the Principal Principle for L-chance", where L-chances are chances as 
given by the laws of the Best System; this without knowing what the 
laws are, and so, it would seem, without being able to produce any
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example of such a violation. The set BS(t, w, A) might not exist at all, 
if for example the proposition A is chosen so that the Best System is 
silent about its chances. (One could define BS(t, w, A) to equal 0 in such 
a case, of course.)

Let me now present the idea behind another version of the Prin
cipal Principle: the Best System Principal Principle (BSPP). Chance 
constrains credence (at least) as follows. A  rational credence in A, given 
what the Best System says about the chance of A, is consistent with 
that information: if the Best System specifies a single value, then the 
rational credence is that value, while if the Best System specifies a 
set of values, then these are precisely those which are epistemically 
perm issible at that time (given what the Best System says, remember: 
additional information may change this). That is:

The Best System  Principal Principle (BSPP). Let
Cr be any reasonable initial credence function. Let 
BS be the part of the Best System containing laws 
governing chance and let Htw be the information 
about world w and its history up to time t from 
which, together with BS, there is a derivation of 
what the set BS(t, w, A) is. Then

Cr(A|Htw BS) e BS(t,w ,A). (3.8)

A  few additional issues crop up, of course. One of them is whether 
the applicable part of the Best System is equivalent to a single proposi
tion. A  more serious one concerns the actual strength of this principle, 
namely, how big a constraint on rational credence it expresses and how 
successful it is in avoiding the Big Bad Bug. It might be that some exam
ples of undermining in which an application of the original Principle 
leads to the Bug involve situations which fall under the laws forming 
the Best System; the more the better for the BSPP. But, since we do 
not know what the Best System is, we cannot exclude the possibility 
that most—if not all—derivations of the contradiction which forms the 
Big Bad Bug involve matters on which the Best System is silent, which 
would make the BSPP quite toothless.
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Com ing back to one previously mentioned problem, note that in 
our "coin + magnet" example if the Best System entails that, say, a  =  0.3 
and 3 =  0.7, it does not follow that the rational credence is 0 .5, or any 
number different from 0.3 or 0 .7, or, in fact, that it is any particular 
number at all. The Best System may say "the laws dictate that there are 
two chances of A compatible with the past, 0.3 and 0 .7", and this simply 
underdetermines rational credence, or even epistemically permissible 
credence. So, just like before, where instead of the Best System we 
discussed complete theories of chance for a world up to some time, 
perhaps another version of the principle is required, this time accepting 
as epistemically perm issible values of the conditional credence in A 
some values of convex combinations of the elements of BS(t, w, A).

While I meant it to be clearly visible that I do not have a version of the 
Principal Principle w ith which I would be fully happy, I hope I have 
convinced the reader at least of the potential for relaxing the chance- 
conditioning uniqueness assumption as one w ay of dealing with the 
Big Bad Bug.





Chapter 4

A  few remarks on 
higher-order probabilities

I mentioned a few  times in the previous chapter that in m y opinion a 
serious discussion of the Principal Principle would best take part in 
some framework featuring higher-order probabilities. This idea—that 
is, the notion that it makes sense to say (and model formally) things like 
"the probability that the probability of an event A equals x equals y " , or 
"the credence that the chance of A equals x equals y " , if both credences 
and chances are probabilities—has been taken seriously in logic and 
computer science in recent decades. (For a classical account, see Fagin & 
Halpern (1994); for some recent takes on the topic, see for example De 
Bona et al. (2015) and Atkinson and Peijnenburg (2013) (for a description 
of infinite-order probabilities).) It seems that in formal epistemology the 
approach by Gaifman has gathered the biggest popularity. In his classic 
1988 paper he defines a HOP to be a quadruple (W, F, P, Pr), where 
(W, F, P) is a classical probability space, Pr is a m apping associating 
with each pair (an element of F, a Borel subset of R) an element of F, 
and the quadruple satisfies six axioms. The intended reading of, say, 
the expression Pr(A, (0.5, 1]) is "(the event that) the probability of A 
is higher than 0.5". Axiom  VI, which I w ill not discuss here in detail, 
connects Pr and P. Not only does it bear some resemblance (noted by 
Gaifman himself) to the Principal Principle, but also its violation leads 
to Dutch-bookability. (One of the examples of this in the original 1986
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version of the paper (p. 285) seems to me to be incorrect, while the 1998 
version offers a long, carefully written out, and—to m y eyes—correct 
argument: this is another reason for reading the 1998 version and not 
the reprint of the previous one in Arló-Costa et al. (2016).)

A s I have already mentioned, Gyenis and Rédei (2017) (among 
others) study in detail the feasibility of various kinds of the Principal 
Principle in a formal framework. Speaking a bit informally, they inves
tigate whether it is possible that for any Boolean algebra of random 
events there exists a Boolean algebra—on which the credence functions 
are to be defined— which w ould contain the previous one and also 
all propositions specifying the probabilities of those random events 
so that appropriate algebraic relationships hold which w ould ensure 
that the conditional probabilities in the given variant of the Principle 
are defined. This is at the core of one of the notions of consistency 
the authors are considering. However, at a certain point they discuss 
Gaifman's HOP framework and, indeed, formulate a concise open prob
lem regarding the consistency of the Principal Principle: "whether any 
objective probability theory can be made part of a HOP [Higher-Order 
Probability Space] in such a w ay that the objective probabilities are 
related to the subjective ones in the manner of [Gaifman's Axiom  VI]" 
(p. 21). They proceed to present the problem formally, but doing so 
here w ould require introducing the details of Gaifm an's framework, 
which I w ill not do since I do not have a solution to that problem. I just 
want to direct the reader's attention to the fact that there is an open 
problem of immediate relevance to the possibility of formal argumenta
tion about variants of Principal Principle in the esteemed framework of 
higher-order probability spaces: see Gyenis and Rédei (2017, p. 21).

In Section 4.2 I w ill investigate a greatly simplified but constructive 
version of the problem, now turning to an issue regarding the capturing 
of learning the chance of a proposition as Bayesian Conditionalization.
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4.1. U pdating on learning a chance

of a proposition: a negative result

In a sense, Bayesian Conditionalization is a general method of updating, 
when you allow for expanding of the probability spaces involved. We 
w ill use the formal notion of "extension of a probability space" in the 
next section, but here it w ill suffice to say that one of the w ays of 
thinking about it is that of "fine-graining": the extension, or expansion, 
of the original probability space "contains" the old one, but includes 
more propositions which result from dividing the old ones. For a pio
neering result regarding the generality of Bayesian Conditionalization 
see Diaconis and Zabell (1982), and for a more generalized approach 
unifying many update methods consult Gyenis (2014)1 .

Consider now what happens when you learn (only) "that the chance of 
A is x". One might be tempted to think in the following manner:

•  you should set your credence in A to x (possibly by adhering to 
some form of the Principal Principle);

•  but doing just that w ill make you violate Probabilism, so set your 
credence in —A to 1 — x and update using Jeffrey Conditionaliza- 
tion2 ;

•  taking a cue from the Diaconis and Zabell result, we could believe 
it should be possible to capture all this using a single probability 
space containing both the proposition "A "  and "the chance of A 
is x", so that in that space the update is just Bayesian Condition
alization (on "the chance of A is x").

But this turns out to be impossible due to the following result:

Fact 7 (B. G yenis, personal communication3). There exists no probabi
lity space (W, F, P) for which the following principle holds:

VH e F  P(H|"Ch(A) =  x " ) =  x ■ P(H|A) +  (1 — x) ■ P(H|—A), (4.1)

1 We are preparing a substantially im proved version, intending to publish it as a 
joint paper.

2 If the Reader does not know this method, I advise consulting Section 5 .1.2  below.
3 B. Gyenis proved the result and inform ed me of it w hen w e w ere w orking on 

Gyenis &  Wronski (2017).
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where A and "Ch(A) =  x" are propositions in F  satisfying 0 <  x, P(A) < 1, 
x =  P(A).

(For an almost immediate proof of this fact, take H =  —"Ch(A) =  x".)

Note that it is an elementary fact that, for any H, P(H) =  P(A) ■ 
P(H|A) +  P(—A) ■ P(H|—A), and so, if the chance of A is x, and P is the 
credence of an agent after she learns this (which also means that the 
chance of — A is 1 — x and the agent has learned this), we should expect P 
to satisfy—remember, for any H—the right-hand side of equation (4.1). 
However, due to Fact 7, in such a situation P cannot be the result of 
conditionalization on the proposition that "Ch(A)=x".

This might suggest that one cannot just take a proposition, slap a 
label on it with the inscription "I'm  saying that the chance of A equals 
x" and expect it to do the work of a chance proposition when its truth 
is learned. More troublingly, due to the universal quantifier used the 
result suggests that no proposition is fit to fill this role!

One route which might suggest itself would be to use for example 
Gaifm an's notion of a higher-order probability space, where chance 
propositions are not elements of the algebra on which the measure is 
defined with some more or less arbitrary labels, but rather the values 
of the function Pr, which has a rigorous connection with the probability 
measure P; the issue of capturing learning a chance proposition as 
conditionalization w ould take a different form in such a case and for 
example the Diaconis and Zabell result would not be expected to hold.

However, it is not evident that the message of Fact 7 is indeed so 
troubling as I just suggested.4 To prove the contradiction, one has to 
use as H a proposition defined in terms of the proposition "C h(A )=x" 
(at least, this is what I believe until someone finds a different proof). We 
may think of the belief update situation as combining two steps: first, 
an agent with the space of propositions E fine-grains it into F  (again, for 
a form al discussion of this see the next Section), which now includes 
propositions about chance, and then conditionalizes on one of the "new " 
propositions. Equation (4.1) w ould then be expected to hold just for 
those elements of F  which were already in E. Perhaps, for example, a 
version of the above principle which constrains the application of the

4 I would like to thank Ronnie Hermens for asking me about this.
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equation (4.1) only to propositions which are Boolean combinations of 
propositions which are not about chance could be given a precise sense 
and be shown to be satisfiable. This is work for the future.

4.2. Higher-order probabilities as expert functions: 

a construction

I w ill now turn to a constructive contribution to the problem of extend
ing a probability space with propositions which are about probability, 
in a minimal, precise sense I w ill soon introduce. Consider a finite 
probability space (W, F, P) corresponding to credences of some agent A. 
Suppose an agent B has her own view  on the same matters (i.e., on F), 
given by a probability function Q. Metaphysics enthusiasts or just those 
interested in the Principal Principle m ay think of a possible objective 
chance function instead of a credence function of a different agent. 
Similarly, belief update aficionados may think of the other agent as 
a future version of the first agent. (These options have already been 
suggested, for example in Gaifm an (1986).) If A  thinks that B is an 
expert when it comes to the propositions in F, her conditional credence 
in a proposition A, given that B is right, should equal Q(A). Is there an 
event in F  which would play the role of "that B is right" ( ... "that the 
objective chance is given by Q", etc.), that is, an event E such that for 
any A e F, P(A|E) =  Q(A)? Sometimes there is one—precisely in those 
cases in which Q is P conditional on some event in F. But in general, 
such an event does not exist. We need to extend the original space so 
that apart from the propositions in F  it contains additional material we 
can use to generate the relevant events.

Additionally, if we consider more experts, i.e., different functions Qi, 
their verdicts w ill be incompatible, and so the events, say, "that B1 is 
right" and "that B 2 is right", need to be disjoint. These two conditions 
I take to be minimal if we want to say that the resulting extended space 
corresponds to degrees of belief an agent has towards the propositions 
in F  as well as towards propositions expressing the degrees of belief of 
some experts. We w ill be using the following notion:
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Definition 1 1  (extension of a probability space): A  probability space 
(W', F ' , P ') is an extension of the probability space (W, F, P) by means 
of a homomorphism $  if $  is a Boolean algebra embedding of F  into 
F ' such that for any A e F  P '($(A )) =  P(A).

In other words, an extension of a given space preserves the "o ld " 
probabilities, while possibly introducing some new events which may 
correspond to new factors the agent has taken into account—in a 
sense the space becomes more fine-grained. In philosophy this idea 
has been frequently used, for example in the context of Reichenbach's 
Common Cause Principle (see the discussion in Wronski (2014)). Similar 
structures are used in the theory of stochastic processes and are known 
as "filtrations".

Using the above notion of extension we can now formulate and prove 
the following:

Theorem 4. Given a finite probability space (W, F, P) and probability 
measures Q 1, . . . ,  Qn on F  there exists a finite probability space (W', F ' , P') 
which is an extension of (W, F, P) by means of a homomorphism $  and is 
such that for any 1 <  i, j < n there exist E ,̂ Ej e F ' such that:

•  VA e F  P'($(A)|Ei) =  Qi(A);

•  if  i =  j, then Ei n Ej =  0.

Proof. The construction of the extension is given as Algorithm 1  (p. 92). 
The algorithm requires F  =  2W but is easily adaptable to other cases.

Line 2 ensures that the image of $  is a subalgebra of 2W' isomorphic 
to 2W. Due to lines 7 and 1 1  it holds for every atom of the original 
space, that is, a singleton {wi} for some 1 <  i < |W|, that P' ($({w i})) =  

P'(Uo<k<n{wk}) =  no^k^n P'({w k}) =  P({w i})> therefore the new space 
is an extension of the old one. Line 4 guarantees that for i =  j Ei n 
Ej =  0. That each event Ei plays the role summarized by "probability 
on the original algebra is given by Qi ", that is, that for any A C W 
P'($(A)|Ei ) =  Qi (A), is guaranteed by line 7.

A ll the above is made possible by line 5, which is the key step in 
the construction. There we put P' (Ek) as the highest fraction ym (for 
m > n) which can be distributed among the singletons of elements of
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Ek in such a way that (*) Ek plays the expert role w.r.t. the atomic events 
of the original algebra 2W (the left conjunct) and (**) the probabilities 
of these singletons w ill be low enough that satisfying the extension 
requirement remains possible (the right conjunct). That such a number 
exists is a matter of elementary algebra— the probability of Ek can be 
put arbitrarily low. Each atom of the original space, {wi}, corresponds 
(via $) to the event {w0, . . . ,  wn}. The right conjunct in line 5 ensures 
that we set the probabilities of P'({w}}), P'({wj}) and so on such that 
their sum w ill not exceed P({wi})— and the remainder is set in line 1 1  
to be P ( {wio }) .

The algorithm defines P on all atoms of 2W , which, since in this 
chapter we are dealing only with classical probability, is equivalent to 
defining the whole P' as a measure on 2W' . □

Notice that if Qi is an expert function for P and that in the extended 
space Ei is the event "the expert i is right"; that is, if P'($(A)|Ei ) =  
Qi(A), then

P' (E i) =  P' ($(A) A  Ei) ^ P(A)
Qi(A) Qi(A)'

That is, the P and each Qk impose an upper bound on the probability 
of Ek. This bound makes some sense when P is interpreted as some 
agent's subjective probability: if I believe some A to a very low degree, 
then presum ably I w ill not have a high degree of belief that an expert 
who believes it to a very high degree is correct. This has to be taken with 
a grain of salt—the upper bound on P' (Ei) is the minimal of all fractions 
Q(Aa) for any A. Therefore, we see that some degree of coherence is 
built into the extended structure, although no "sym m etrical" lower 
bound is imposed.

4.2.1. Questions

I have shown that Algorithm  1  produces extensions of probability 
spaces that satisfy two conditions which are minimal if one wants to say 
that these extensions result from adding expert functions (or objective 
chance functions, etc.) to the initial space. It might be interesting to 
consider some refinements or possible outright improvements of the 
algorithm.



Algorithm  1 . Extend a given probability space as specified in Theo
rem 4.

Require: A  nonempty set W =  (w1 , . . .  w |W|} and probability measures 
P, Q i,...,Q n  on 2W.

Ensure: A  probability space (W ' , 2W , P ' ) which is an extension of 
(W, 2W, P) by means of a homomorphism ^ and is such that for 
any i, j e (1, . . . ,  n} there exist Et, Ej e 2W' such that:

•  VA e 2W P ' ( $ (A )|Ei) =  Q i(A );

•  Et n Ej =  0.

1 : W ' ^  (wk | 1 ^  i ^ |W|, 0 ^  k ^ n}

2: ^ ^  ((A, Uo^ k< n,wi e A(wk}) |A -  2W}
3 : for k =  1 to k =  n do

4: Ek ^  Uo^ i ^ n(wk}
5 : P'(Ek) ^  ma^ j  2̂  | m > n, 3(ci}i ^ |W |V i <i<|W|( c1 =  Qk((wi}) ■

2^  A  c i <  (P((w i}) -  £ 1 < k k P ' ((w l })) )  }

6: for i =  1 to i =  |W| do

7: P ' ( (wk}) ^  Qk((wi}) ■ P ' ( Ek)

8: end for
9: end for

10 : for i =  1 to i =  |W| do

1 1 : P ' ((w0}) ^  (P((wi}) -  L i < k^ n P ' ((wk}))

1 2 : end for
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First, one might want to impose some other bounds on P' (Ek) that 
derive from the features of P and Qk apart from the upper bounds 
described at the end of the previous subsection. Perhaps if the minimal 
absolute value of the differences between P(A) and Qk(A) for various 
A (or the minimal logarithm of the relevant quotient, etc.) is e, then we 
could require, e.g., that the maximal probability of Ek in the extended 
space should be 1 — e? There are obviously m any variants which can 
be explored, but it is not trivial that in each case a suitable extension 
algorithm w ill exist.

Second, is it possible to produce a similar extension algorithm which 
satisfies the additional requirement that according to the agent "some 
expert is right", namely, that U-| ^k^nEk =  W '? This might be especially 
interesting in the context of variants of the Principal Principle, where 
expert functions would be possible objective chance functions, and the 
disjunction of all considered propositions of the form "The objective 
chance functions is given by ch" should be a tautology.

Third, the construction offered here cannot (outright) model nesting, 
that is, having opinions regarding experts who have their own opinions 
regarding experts, etc.

Fourth, it might be practical to have an algorithm which would take 
as additional input the agent's degree of belief that a particular expert 
is correct, that is, the target P' (Ek) for one or more k. It is not evident 
for which sets of such inputs constructing an appropriate extension is 
possible.

Producing an algorithm which would achieve one of the above goals is 
another task for the future.





Part II

Measuring the value of one's 
credal state





Chapter 5

A  case for Inverse Relative 
Entropy

Suppose that an agent at a certain time has credences in propositions 
which form a Boolean algebra. These credences, or degrees of belief (we 
w ill use these terms interchangeably), are given by a "belief function", 
b. Suppose that subsequently the agent obtains evidence which entails 
constraints that b does not meet. Which belief function should the agent 
adopt? This chapter is concerned with problems of this kind ("belief 
update problems"), in particular with two specific issues posed as open 
problems at the end of Leitgeb and Pettigrew (2010b). The larger context 
is assessment of the qualities of different w ays of approaching belief 
update problems in general; we w ill see a few disadvantages of some 
proposed solutions, and as you may guess from the title of this chapter, 
I would like to suggest that the method involving the minimization of 
inverse relative entropy is a promising one.

Some belief update problems have answers with which many people 
feel comfortable; the most common example would be that if, for some 
proposition E, the agent learns that E (and nothing more), she should 
update her belief function by conditionalization, provided that her 
initial credence in E was not equal to zero (more on this in Section 5.1). 
However, with respect to other Problems, intuitions m ay vary  wildly. 
What if the evidence entails (only) new credences in two overlapping 
propositions? (This is the "simultaneous update problem".) Or what if
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it entails (only) a new conditional credence? (This is the "Judy Benjamin 
problem".) Some might want to say that in such cases there is no unique 
answer; that is, that the evidence underdetermines the choice of the 
new belief function. Still, some answers m ay be more reasonable than 
others. Given a belief update framework, it m ay be fruitful to check 
whether it suggests a specific reaction in such cases, and if so, whether 
its form m ay suggest some shortcomings of the framework we might 
want to try to avoid.

What follows requires some setting up. We assume that we are 
considering an agent w ho holds credences in a Boolean algebra of 
propositions which are subsets of a finite set, W, which has n elements.1 
We can think of W as containing worlds epistemically possible for the 
agent. Each w t e W is to be identified with a unit vector in R n (with 
0s on all axes apart from the ith and a 1 on the ith). The credences are 
given by a function b. We assume we are dealing w ith probabilistic 
agents— that is, b is a classical probability function. Thanks to this 
assumption, we can think of a belief function b as an element of R n, 
namely, a tuple containing the values of b((wt}) for all i. Throughout 
the chapter, b, if not treated as a variable, w ill always be the "p rio r" 
belief function of the considered agent, that is, the one she has before 
she receives the evidence which is the topic of the given belief update 
problem, and b w ill be the function to be adopted after she receives 
that evidence. Therefore, b w ill be the "p rio r" belief function, and b 
the "posterior" one.

The structure of the chapter is as follows. In Section 5 . 1 1 propose 
a distinction between belief update methods and rules which I hope 
w ill be beneficial to the clarity of the arguments. Section 5.2 covers 
the Jud y Benjamin problem. Subsequently, in Section 5.3 I tackle the 
simultaneous update problem. For ease of reading, the proofs of the 
results given there are relegated to the A ppendix (p. 135). Then, in 
Section 5.5, I introduce a new, "symmetric" variant of the Judy Benjamin 
problem and use it to present other features of the discussed belief 
update methods which differentiate them. I finish the chapter by writing 
out the proof that the inverse relative entropy is a Bregman divergence

1 We make the finitude assum ption following Leitgeb and Pettigrew (2010a).
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and briefly discussing the relationship between the different divergence- 
style formulas used in various corners of the literature.

5.1. Belief update methods and rules

One can propose a w ay of updating belief functions by formulating 
statements which may be varyingly specific. One can, for example, say 
"alw ays, if possible, minimize relative entropy". This way, one has a 
pleasingly general proposal which may, on the other hand, be at first 
glance uninformative in specific cases: how does one go about obtaining 
the needed belief function in a given situation? On the other hand, one 
can say, for example, "when you learn that E is true (and nothing more), 
adopt, if possible, the belief function b ' such that, for any proposition 
A, b'(A) =  b(A|E)". This way, one has an easy rule for constructing the 
new belief function provided the evidence is in a certain format. I w ill 
call statements of the first kind "m ethods", and those of the second 
kind "rules". Methods do not distinguish between the different types 
of constraints which are implied by evidence, but rules do. Rules can 
be motivated by methods; in fact, once the appropriate definitions are 
given, one m ay attempt to prove theorems to the effect that a rule 
(say, Conditionalization—see below, p. 102) follows from a method (say, 
Minimizing Relative Entropy— see below, p. 101). If there are convincing 
arguments against a rule which follows from a given method, then they 
speak also against that method. In this section I w ill give definitions of 
methods and rules which I w ill use later.

5 .1.1. Methods

Suppose one subscribes to the popular project of accuracy-first epis- 
tem ology2 and claims to have a specific inaccuracy measure I(b, w j  
which associates with each belief function b and possible world w j 
a number which, intuitively, is to be a measure of b's "distance from 
truth" if w j is the actual world. Then one could propose a belief update

2 For a recent m onograph see Pettigrew (2016). For the field-opening paper see 
Joyce (1998).
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method by saying "alw ays, if possible, minimize the expected inaccu
racy". The specifics w ill depend on the inaccuracy measure proposed 
and the chosen way of calculating its expected value. In the case of the 
framework from Leitgeb and Pettigrew (2010a), which we w ill hence
forth dub the "L P " framework, and in the context of which the two 
problems mentioned above will first be considered, so-called "quadratic 
inaccuracy measures" are used. The relevant method is the following:

The Quadratic Update Method (QUM):
Given evidential constraints C, the belief function b ' which should 
be adopted is such that it satisfies C and minimizes the expression

Y  b({wn})||wn -  b'||2.
n

(|| ■ || is the Euclidean norm.) Remember that b is the agent's belief 
function before she receives new evidential constraints, and that since 
we assume that belief functions are probability functions, b can be 
considered as a vector. The "the" in the formulation of (QUM) is there 
because for all update problems discussed in this chapter the empirical 
constraints define a convex and closed set of belief functions, so the 
appropriate minimum exists. This is the case for all update methods 
considered here.

After giving a critique of the LP framework, Levinstein (2012) pro
poses that the inaccuracy of a function b if w j is the actual world be 
captured just by — lnb({wt}).3 This leads to the following method:

The Local-logarithmic Update Method (LLM):
Given evidential constraints C, the belief function b ' which should 
be adopted is such that it satisfies C and minimizes the expression

— Y  b({wn}) ■ lnb'({wn}).
n

3 Those fam iliar w ith the form al epistem ology literature should recognize this as 
using "the only local proper scoring rule", see, e.g., Dawid, Lauritzen and Parry (2012). 
We w ill return to this topic in the next chapter.
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Notice that both of these methods pay attention to the expected inac
curacy of a considered future belief function as calculated from the 
perspective of the current one, that is, one which the agent finds to be 
incompatible with the evidence. For doubts regarding the reasonability 
of this see, e.g., Pettigrew (2016, Chapter 15). If I were to mount a 
defense of this, I would attempt to say that it is only due to having the 
particular initial function that what the agent experiences is interpreted 
as this, and not some other, piece of evidence, for example learning 
that a particular proposition E is true. Spelling this out properly would 
require a whole formal system that models evidence, but I am unable 
to provide one at this point.

The remaining two methods I would like to introduce here use the 
notion of relative entropy. The first one is widely used in epistemology, 
the second one less so.

The Method of M inim izing Relative Entropy (MRE):
Given evidential constraints C, the belief function b ' which should 
be adopted is such that it satisfies C and minimizes the expression

The Method of M inim izing Inverse Relative Entropy (MIRE):
Given evidential constraints C, the belief function b ' which should 
be adopted is such that it satisfies C and minimizes the expression

Notice that the only difference between the two expressions to be mini
mized is the position of the variable. In the MRE expression the variable, 
that is, the value of the "n ew " belief function b ', occurs twice in each 
summand, while in the M IRE expression it does so only once since b 
and b ' switch their roles. Readers who have encountered these expres
sions before might wonder about the choice of the labels; they might
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for example have arguments for the reverse labelling of the notions, 
referring to the first one above, and not the second, as minimizing 
inverse relative entropy. I do not want to enter into such debates; if 
one wants to label these notions in a different w ay I w ill not oppose. 
I would not like to suggest any particular "directionality" here, so I 
w ill avoid writing that, say, MRE minimizes relative entropy "from " b 
to b ', or vice versa. For obvious reasons of (lack of) symmetry, I w ill 
also never write that what we are minimizing is the (inverse) relative 
entropy "between" b and b ' . I  believe that doing either of these things 
can only cause confusion.4 I am using the labels as they appear in the 
recent and influential paper Douven and Romeijn (2011). In the 1981 
paper in which van Fraassen introduced the Judy Benjamin problem, he 
referred to the M RE method as "InfoM in", that of minimizing relative 
information. (I w ill return to these issues in Section 5.6 below.)

The first small observation I w ould like to make in this chapter 
is the following: the method of m inim izing inverse relative entropy 
is equivalent to the local-logarithmic method. Simply, the relevant 
expressions share their minima. The M IRE expression looks similar 
to an expected value calculated from the perspective of the belief 
function b. This might be interesting for those who would like to link 
entropy with epistemic inaccuracy. I w ill not pursue this matter here.

5.1.2. Rules

Here I w ill introduce the belief update rules—the w ays of updating 
one's belief function in response to evidence of a specific type—which 
we w ill use later. The first one is the well-known conditionalization 
rule.

The Full Conditionalization Rule (FC):
Evidence: entails (only) that a proposition E is true.
Response: if b(E) > 0, then b ' should be such that for any proposi
tion A, b'(A) =  b(A|E).

4 For an exam ple, see the "Talk" page of the W ikipedia entry for the Kullback- 
Leibler divergence, Section 12.
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It can be shown by a limit argument that the FC rule follows from 
both M RE and MIRE (see remarks in Chapter 15  of Pettigrew, 2016). 
H ow this relates to QUM is a more delicate matter to which we w ill 
turn soon. In what follows I w ill refer to the evidence which features 
in FC—namely, evidence which entails (only) that a proposition E is 
true—by the name "Bayesian evidence".

Let us now present the rule which many think to be a generalization

The Jeffrey  Conditionalization Rule (JC):
Evidence: entails (only) new credences q i, . . . ,  qm in propositions 
E i, . . . ,  Em which form a partition of W.
Response: if for any i e { ! , . . . ,  m} b(E^) >  0, then b ' should be such 
that for any proposition A

That the JC rule follows from both MRE and M IRE methods can 
again be shown by a limit argument (see Pettigrew, 2016). This was 
proven in Diaconis and Zabell (1982) for cases in which every qi is 
nonzero.

However, as shown in Leitgeb and Pettigrew (2010b), the quadratic 
method used in the LP fram ework entails a different response to the 
same information:

The Alternative Je ffrey  Conditionalization Rule (AJC):
Evidence: entails (only) new credences q1 , . . . ,  qm in propositions 
E i, . . . ,  Em which form a partition of W.
Response: For any i e {1, . . . ,  m} let di be the unique number such

of FC:

m
b'(A) =  Y _  qi ■ b(A|Ei).

i=1

that

L
{w€Ei:b({w}) + di>0}



Then b ' should be such that for any w e W such that w e E ,̂

ib({w}) +  di if b({w}) > 0
b ({w}) =  <

0; otherwise.
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In what follows, I w ill refer to the evidence which features in JC 
and A JC —namely, evidence which entails (only) new credences in 
propositions forming a partition of W—by the name "Jeffrey evidence".

Since we assume probabilism, A JC  uniquely determines b '. Notice 
that A JC  is applicable in some cases in which JC  is not since the 
former does not need to assume that for each proposition Ei the initial 
credence in it is nonzero. (Consult Leitgeb and Pettigrew (2010b, p. 255) 
for a geometric interpretation of AJC.) The rule has been criticized by 
Levinstein (2012) for its various shortcomings; among those not covered 
in that paper but discussed by Leitgeb and Pettigrew themselves is 
A JC 's cardinality dependence: unlike in the case of JC, the new credence 
in an arbitrary proposition A depends not only on the prior credences 
in the various Ei 's and the conditional credences of the form b(A|Ei ), 
but also on how many elements the Ei 's have.

You might justifiably think that A JC  is incompatible with FC. It is 
easy to construct a W, a belief function b and a proposition E such that if 
we first assume that one's evidence entails that b '(E) =  1 and b '(—E) =  0 
and then use AJC, we will end up with a different function b ' from the 
one we would have reached had we initially assumed that the evidence 
entailed that one learned that E and then used FC. However, in the 
LP framework both A JC  and FC are valid. This is because the authors 
think that the two situations should be modelled differently. Namely, 
the authors think that learning that E requires one to narrow one's set 
of epistemically possible worlds while obtaining credence 1 in E and 
credence 0 in —E does not. This is just one of the subtleties which lead 
them to endorse something different from the QUM above in cases 
when one learns that some proposition is true.5 In this way they are able 
to obtain the surprising result that their framework endorses both AJC

5 Another subtlety concerns the distinction between "lo cal" and "g lobal" inaccu
racy, which w e w ill discuss in Chapter 6; see Leitgeb and Pettigrew (2010a, p. 204).
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and FC. Fortunately, for all other belief update situations concerned 
in Leitgeb and Pettigrew (2010b), apart from "learning that E", and in 
particular for the situations which are at the heart of the two problems 
to which we w ill now turn, the authors decide on QUM as the belief 
update method.6

I w ill now turn to the two belief update problems posed in Leitgeb 
and Pettigrew (2010b, p. 262-263), adjusting the wording to the formal
ism used in the current chapter. I w ill approach the problems in what I 
believe to be the order of increasing difficulty.

5.2. The Ju d y  Benjam in problem

The essence of the problem is the following: for some propositions A 
and B, your evidence entails (only) your new conditional credence in A 
given B. What should your new belief function look like?

Observe that JC  cannot be used, at least not until the evidence is 
processed in some way which would lead to establishing new credences 
in all elements of some partition of W. We need, then, a different rule. 
Some people think there are many belief functions it would be rational 
to adopt in this situation; in other words, that no unique solution exists. 
A  recent detailed exposition of such a view  can be found in Huisman 
(2014). A  (too) quick response would be that formal epistemology treats 
belief update problems in the context of ideal rationality, which may 
im ply in every evidential situation a unique rational belief update 
procedure, even if we, real agents, can only attempt to imperfectly 
imitate this ideal. Another direction would be to notice that there are 
obviously ridiculous w ays of responding to such evidence (say, "set 
b ' (B) to 1") , and some other responses which m any people find to be 
unintuitive (more on that below). If one's update method prescribes 
some such response, this would be to its disadvantage.

Here is the original illustration of the problem from the paper as 
introduced by van Fraassen (1981):

6 The authors call it "m inim izing expected global inaccuracy"; as before, see 
Chapter 6 below.
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[Judy Benjamin (a soldier)] and her patrol are dropped in a 
swampy area which they have to patrol. The area is divided 
into the region of the Blue Army, to which Judy Benjamin and 
her fellow soldiers belong, and that of the Red Army. The Red 
Army region is further divided into Headquarters Company Area 
and Second Company Area. The patrol has a map which none of 
them understands, and they are soon hopelessly lost. Using their 
radio they are at one point able to contact their own headquarters.
After describing whatever they remember of their movements, 
they are told by the duty officer 'I don't know whether or not 
you have strayed into Red Army territory. But if you have, the 
probability is 3/4 that you are in their Headquarters Company 
Area.' At this point the radio gives out. (van Fraassen (1981))

There seem to be three propositions of interest: B ("JB 's unit is 
in the Blue A rm y region"), Ri ("JB 's unit is in the Red A rm y region, 
Headquarters Company Area"), and R2 ( " ... Red Arm y region, Second 
Com pany Area"). B, Ri and R2 are pairw ise incompatible and jointly 
exhaustive; that is, they form a partition of whatever W we use as 
the set of Jud y 's epistemically possible worlds. The evidence Judy 
receives seems to entail (only) that b '(R 1) =  3 ■ b '(R2).7 Her prior belief 
function b is set to b(Ri) =  b(R2) =  0 .25, b(B) =  0.5 . Van Fraassen's 
(1981) discovery is that according to MRE the belief function b ' which 
Judy should adopt is such that b'(B) =  0.532, approximately. (This 
holds regardless of the cardinality of W.) Many, including van Fraassen 
himself, found this result to be unintuitive: w h y should Judy's degree 
of belief that her unit is in the Blue A rm y region increase? What the 
duty officer says seems to concern only the Red Arm y areas. In fact, for 
any fraction different from 3/4  (and 1  or 0) the situation is similar: MRE 
has it that Judy's credence in B should increase. (See Lukits (2014) for a 
recent defense of this view.) I w ill now argue that the LP framework 
shares this unintuitive feature because it employs QUM as its belief 
update method.

I have already mentioned above that the updating rule prescribed 
by the LP fram ework in cases involving Jeffrey evidence displays de

7 In this presentation we abstract away from details like the need to m odel Jud y 's 
beliefs in the reliability of her d uty officer. For an approach exploring this direction, 
see Grove and Halpern (1997).
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pendence on cardinalities. It turns out that the same is true for the 
Judy Benjamin problem. Let us first consider the smallest possible case, 
w ith W as {w i, w2, w 3}, Ri =  {w i}, R2 =  {w2}, B =  {w3}, and with the 
initial belief function b as the triple (0 .25, 0 .25, 0.5). A  short exercise in 
minimizing a real-valued function of one variable shows that according 
to QUM the belief function b that Jud y should adopt is such that 
b ' (B ) =  7/i3. So, just like with MRE, the LP framework w ill have Judy 
increase her degree of belief that her unit is in the Blue A rm y region. 
Still keeping with the 3-element W, we can generalize a bit with respect 
to the evidence given and assume that the evidence entails, for some 
non-negative m, that b ' (Ri ) =  m ■ b ' (R2 ) .8 A  slightly longer exercise in 
analysis9 shows that if m is not equal to 1 , then according to QUM, 
b ' (B ) >  b (B ) . Therefore, we can see that if we use the smallest possible 
(3-element) model for the situation, then QUM perform s sim ilarly to 
M RE, that is, it shares with it the disadvantage of not giving the intu
itive solution (which w ould keep the degree of belief in B constant). 
I do not think the particular numeric details of the posterior credences 
are important.

A  variant of the Judy Benjamin problem involves splitting the Blue 
A rm y region into two areas, mirroring those of the Red A rm y region, 
and assuming that Judy's initial belief function is uniform with regard 
to the placement of her unit in the four regions involved. Consider, 
then, the case in which W =  {w i,w 2,w 3,w 4}, b ({wi}) =  i/4 for any 
i e {1, . . . ,  4}, Ri =  {wi}, R2 =  {W2}, Bi =  {W3}, B2 =  {W4}, and B =  

Bi U B2. If, as above, the evidence entails (only) that b ' (Ri ) =  3 ■ b ' (R2 ), 
then QUM dictates that b ' (B ) =  5/9. Therefore, according to the LP 
fram ework Jud y's posterior credence in B depends on the cardinality 
of the propositions involved.10 I do not want to claim that this is a 
particular problem for the fram ework since I believe the points from

8 Observe that this is equivalent, since Ri and R2 are disjoint, to the evidence 
entailing (only) a specific new  conditional credence. In the original exam ple Ju d y  
learns that b '(R i |Ri V  R2) =  3/4, w hich (if b '(Ri ) and b '(R 2) are not equal to 0) is 
equivalent to b '(R i ) =  3 ■ b '(R 2 ).

9 I omit the argum ents for this and the previous observation. They are sim ilar to 
the proofs of Facts 8 and 9 below given in the A ppendix (p. 135).

10 I am  unable to give a general account of this cardinality dependence. For the 
current purposes it is enough to notice that the dependence exists.
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the previous paragraph already show that its belief update method, 
QUM, does not fare better than M RE in response to the Judy Benjamin 
problem.

Consider, however, what LLM  would mandate as the solution here. 
Take the original formulation of the problem and start with the sim
plest case, w ith W having 3  elements. The prior belief function b is, 
again, (0 .25, 0.25, 0.5). The posterior belief function b ' can be written as 
(3p, p, 1 — 4 p). The expression we should minimize according to LLM  
(p. 100) is thus just a function of p and is equal to the following:

—0.25 ■ ln(3 p) — 0.25 ■ ln p — 0.5 ■ ln(1 — 4 p) (5.1)

the derivative of which is

0.25 0.25 2 1----------
p p 1 —4 p

which equals 0 exactly when

p =  0.125

where (since the second derivatives are positive) the expression (5.1) 
reaches its minimum. Therefore, the belief function minimizing the 
expected inaccuracy as given by the logarithmic measure is 
(0 .375, 0 .125, 0.5), which means that b'(B) =  b(B) =  1/2. A  simple La- 
grangian M ultiplier argument extends this to cases of arbitrary finite 
cardinality of all propositions involved.

This is not a novel finding, but an easy (I think) w ay of showing a 
result by Douven and Romeijn (2011), who found that the MIRE method 
does give the "intuitive" solution to the Judy Benjamin problem. Since 
we have already observed that LLM is equivalent to MIRE, the "good" 
behavior of LLM  shown above should not be surprising.

So far we have seen that the LP fram ework's answer to the Judy 
Benjamin problem is "unintuitive" in the same sense in which M RE's 
answer is: the degree of belief in a proposition which is not explicitly 
talked about is supposed to increase. In addition, the answers man
dated by the LP  framework are cardinality dependent, as opposed to 
those given by MRE. M IRE offers both the intuitive and cardinality 
independent solution to the problem. It also has the pleasing feature
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of giving a graspable reduction of the Jud y Benjamin problem to one 
solvable by Jeffrey Conditionalization— "graspable" in the sense that it 
can be given only by referring to old credences and new constraints, 
as we w ill see shortly. In contrast, any application of M RE to the Judy 
Benjamin problem with a particular m arrives at a belief function which 
is also obtainable using Jeffrey Conditionalization, but no "graspable" 
reduction seems to exist.

The rule which M IRE endorses for the Ju d y  Benjam in 
problem:
Evidence: entails (only), for some disjoint propositions A and B 
and a nonzero positive real number m, that b '(A) =  m ■ b '(B). 
Response: Consider this as a case in which the evidence entails 
(only) new credences in all elements of the partition {A, B, — (A V  B)}:

•  b '(—(A V B)) =  b(—(A V  B));

-  b ' (B) -  b(AVB) •
•  b (B) — m+i ;

•  b ' (A) — 1 -  b ' (—(A V  B ) ) -  b ' (B) 

and use the JC  rule.

If we generalize the evidential situation so that it involves an arbitrary 
number of finite disjoint propositions, we w ill see that MIRE endorses 
a rule called "Adam s Conditionalization", which is a special case of JC 
(see Bradley, 2005).

In what follows, I w ill refer to the evidence which features in the 
Judy Benjamin problem—namely, evidence which entails (only) a new 
conditional credence, or equivalently a proportion of credences in two 
disjoint propositions—by the name "Ju d y Benjamin evidence".

5.3. The Sim ultaneous Update problem

We w ill now turn to the second belief update problem to be discussed. 
It boils down to the following: what is one's rational posterior belief 
function if one's evidence entails (only) one's new credences in overlap
ping propositions? (I w ill call such evidence "overlapping evidence".)
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That is, suppose you know of your new belief function b ' that b ' (A) =  p 
and b'(B) =  q for some p and q, but as a matter of fact A n B =  0. What 
is the precise shape your b should take?

Notice that the situation does not allow us to use JC (or AJC) right 
away: we are not given new credences in all elements of some partition. 
What we do receive are new credences in all elements of two partitions: 
{A ,-A } and {B, —B}. One direction in which we could proceed would be 
to argue for some transformation of the data entailed by the evidence 
so that new credences in all elements of a single partition would be 
obtained; seemingly the most natural partition to be used here consists 
of the four logical combinations of A and B. If this were successful, we 
could then use an appropriate update rule, for example JC  or AJC, that 
is compatible with our chosen belief update method. I will argue below 
that in the case of the LP framework, such an approach is only partially 
successful, while the goal is obtained with no reservations if we use 
MIRE.

The problem is called a "simultaneous update" because it relates to 
a well-known feature of Jeffrey Conditionalization (shared by AJC): its 
noncommutativity. JC  is sensitive to the order in which it is applied to 
numerical constraints following from the evidence. That is, applying 
JC twice, using two sets of new credences in elements of some two 
partitions, will typically lead to a different belief function depending on 
which set is used first. Some people consider this to be a problem since 
the new credences are taken to correspond to the evidence received and 
the order of evidence should—they say—not matter for the eventual be
lief function. In m y opinion this worry is insubstantial because changing 
the order of using the numerical constraints usually has to change the 
evidence from which these constraints are supposed to follow. (Think 
about the different evidence needed to change your degree of belief that 
the coin you are repeatedly tossing is fair to 0.9 depending on whether 
your initial credence in that is 0.01 or 0.8.) This is not an original view; 
Lange (2000) and Osherson (2002) present arguments to the effect that 
changing the order of application of the purely numerical constraints 
results in describing two different evidential situations.11 Still, there

11 This does not put the issue fully to rest. See Weisberg (2009) on "com m utativity 
on experiences".
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have been attempts at combining the data about two partitions into 
one, thus reducing two updates to be perform ed consecutively into a 
single "sim ultaneous" one. A n example of this is the recent paper by 
Park (2013), in which the author analyses in detail an earlier suggestion 
from Williams (1980) regarding the application of M RE to that task. 
The subsection 5.3.3 below can be seen as complementing the results of 
Park (2013), using MIRE instead.

5.3.1. How Q UM  approaches the problem

We w ill first consider the simplest non-trivial case, which involves four 
possible worlds and two two-world propositions sharing one world. 
Notice that in this case the task reduces to figuring out b '(A  n B). It turns 
out that the LP framework, with its choice of QUM as its belief update 
method, offers a simple solution to the simultaneous update problem 
in this case (see the Appendix for the proof, p. 137 , but remember the 
note on notation just before the argument):

Fact 8. Let W =  {w 1 , w 2, w 3, w 4} be the set of epistemically possible worlds 
for some agent. Let A be the proposition {w 1 , w 2}; let B be {w2, w 3}. Suppose 
that the agent's evidential constraints are that her posterior belief function b ' 
satisfies the following: b ' (A) =  p and b'(B) =  q, for some p and q. Let us 
label the number b(A n B) +  p-b(A)+ q-b(B) as K. The belief update function 
which the agent should adopt according to QUM is fu lly  determined by the 
two constraints and the following condition:

b'(A  n B) =  <

0 if  K < 0

min {p, q} if  min {p, q} < K

K otherwise.

That is, the change in your credence in A n B is the average of the 
changes in your credences in A and in B (whenever it makes mathemat
ical sense, i.e., you don't go above 1 or below 0). I w ould say that the 
solution is at least not im mediately absurd. I w ill now illustrate it by 
an example using a modified story from Osherson (2002).

Suppose that listening to the radio I hear a forecast for rain but 
I'm  not sure whether it comes from the chief meteorologist or from his
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unreliable deputy. After the broadcast concludes I have the following 
belief function b 1, where R is "It rains today" and C is "The chief was 
speaking":

-RC RC R -C  - R - C

bi .2 .4 .1 .3

Now, a glance at the sky raises m y credence in R to .7. Suppose also 
that the forecast is rebroadcasted and even though I strain m y ears, I 
conclude I should not change m y credence in C. The following is m y 
new credence as dictated by Fact 8:

-R C  RC R -C  - R - C

b1 .1 .5 .2 .2

This is because m y credence in R increases by .2, and m y credence 
in C stays the w ay it was. The average of these changes is .1, which 
according to Fact 8 is the increase in m y credence in RC. In this simple 
case, all other credences are directly calculable.

Even though the solution of the problem offered by QUM in the 
simplest non-trivial case m ay look reasonable, I w ould like to raise 
some problems regarding it:

1. I w ill show that the simple method offered by Fact 8 does not 
work if the cardinality of the events is different; that is, in the LP 
framework the information entailed by the agent's evidence is not 
directly translatable into information about a partition (Section
5 .3 .U1 );

2. I will also argue that in the four-world case the updating rule dic
tated by the LP framework already leads to unfortunate updating 
behavior (Section 5.3.1.2).

5 .3 .I.I. Cardinality dependence again

Given Fact 8, at this point a prima facie reasonable way to proceed inside 
the LP framework would be the following:

•  given any similar situation with an arbitrary finite W, calculate 
b ' (A n B) using the above formula;
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•  this, together with the two constraints, w ould presum ably give 
us the posterior credences in all propositions from the set {A n 
B, A n - B, - A  n B, - A  n - B}, which is a partition of W; in this way 
w e w ould obtain constraints such as w ould follow from Jeffrey 
evidence;

•  having that, we should now (it would seem) use A JC  to derive 
the full shape of b ' (since we know this is the rule QUM leads to 
in response to Jeffrey evidence).

It turns out, however, that the LP fram ework itself w ould judge this 
procedure as wrong. It turns out the answer depends on the cardinality 
of the propositions. We already knew that cardinality is a factor that 
plays an important role for A JC ; we w ill now see that in situations 
involving new credences in two overlapping propositions cardinality 
is relevant also for the input for A JC ; depending on the cardinality 
of the propositions involved, the new credences in the four logical 
combinations of the two propositions w ill be different. I think that 
this is an unfortunate consequence which we should try to avoid. I 
w ill now illustrate it by the following Fact and a modification of the 
previously used weather forecasting example. The relevant feature of 
the LP framework is the following (for the proof and some discussion of 
the mathematical details, see again the Appendix, p. 137, but remember 
the note on notation on p. 135):

Fact 9. Let W =  {w0, w 1 , w 2, w 3, w 4} be the set of epistemically possi
ble worlds for some agent. Let A be the proposition {w0, w 1 , w 2}; let B be 
{w2, w 3}. Suppose that the agent's evidential constraints are that her posterior 
belief function b ' satisfies the following: b ' (A) =  p =  b(A) and b ' (B) =  q, 
for some p and q. I f  the belief update function which the agent adopts is the 
one fu lly  determined by the two constraints and the following condition

b'(A  n B) =  b(A n B )+  4/7(q -  b(B)), 

b'({wo}) =  b({wo}) — 2/7(q - b(B)),

b ' ({wi}) =  b({wi}) — 2/7(q — b(B)),

then it is the one which QUM dictates the agent should adopt in this case.
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I do not want to suggest that this is in any w ay a profound discovery: 
it is a result of a simple minimization argument which will allow me to 
produce examples which point, in m y opinion, to some deficiencies of 
QUM.

Consider, then, a modification of the previous story about the chief 
meteorologist and the weather. The goal is now to split one possible 
world into two worlds—to transform the previous four-world case 
to an example where the proposition -R C  contains two worlds and 
so the whole space contains five worlds. Suppose, then, that I owe 
the chief meteorologist money and I don't want to meet him. I know 
that whenever it doesn't rain, he always walks home through a park 
he never otherwise visits and in which I w alk m y dog (which I do 
regardless of the weather); not wanting to disturb m y dog's routine, I 
w ill also go to the park today. (If it rains, the chief meteorologist takes 
a bus home.) The chief meteorologist can traverse the park v ia  one of 
two paths, call them " 1 "  and "2 ". Let B be the proposition "the chief 
meteorologist w ill walk via path 1 today". M y four epistemic possible 
worlds

-R C  RC R-C -R - C

become

-RCB -R C -B  RC-B R -C -B  - R - C - B  

and m y initial credence becomes, say,

-RCB - RC-B R C -B R -C -B  - R -C -B

b2 .1 .1 .4 .1 .3

(it is not important that m y credences in —RCB and —RC—B are equal: 
they just need to sum up to .2). Notice that the —RC world has effectively 
split in two; think of the two stories as describing two agents with a 
similar but different space of epistemically possible worlds.

Consider now the same evidential situation and suppose (which 
I think is intuitive enough12) that it gives rise to the same numerical

12 Although I realize that for some it would need an additional argument regarding 
context (in)sensitivity and related issues. I hope to tackle these topics in a future paper.
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constraints: a glance at the sky raises my credence in R to .7; the forecast 
is rebroadcasted and even though I strain m y ears I conclude I should 
not change m y credence in C. The following is, by Fact 9, m y new 
credence, as mandated by QUM:

—RCB —RC—B RC—B R—C—B —R—C—B

b2 .043 .043 .514 .186 .214

Now recall the initial and updated credences for the first agent:

—RC RC R—C —R—C

bi .2 .4 .1 .3

b1 .1 .5 .2 .2

Comparing b1 and b2 we notice that the two agents:

•  started with the same credences in R, C, and RC13;

•  faced the same evidence implying (only) that they should increase 
their credence in R by the same amount and not change their 
credence in C;

•  ended with a different credence in RC;

•  and it seems the only difference was whether the park was consi
dered or not.

In m y opinion, this updating behavior is unintuitive: the role of the park 
is unclear at best. It would seem to me that we should avoid this kind 
of cardinality dependence if we can; in the next section I w ill show that 
the MIRE method succeeds in this. I also do not see a w ay of invoking 
context-dependence, which for some is a natural w ay of replying to 
similar cardinality-dependence-related issues troubling Leitgeb's (2014) 
stability theory.

13 This is not literally true, for example since C is for one agent a doubleton, and for 
the other a three-element set. To be technically correct I would have to write something 
like “ the agents started w ith  the sam e credences in the propositions (sets of worlds) 
they associate w ith  the sentence 'the chief w as speaking' " ; I decided to avoid the 
verbiage.



1 16 Chapter 5: A case for Inverse Relative Entropy

There are also cases in which not only the credence in a suitably 
chosen proposition ends up being different, but the two agents end up 
with different probability rankings regarding two propositions which 
they initially believe to the same degree (and so rank in the same way); 
that is, cases in which for some two propositions $  and ^

bi ($) =  b2($) and bi (^) =  b2(^)

but
b2($) < b2(^) while b \ ($) >  b \ (^).

As an example, consider two agents with sets of epistemically possible 
worlds and propositions as discussed above, and suppose the initial 
belief functions of the agents look like this:

—RC RC R—C —R—C

b i .21 .3 .3 .19

—RCB —RC—B RC—B R—C—B —R—C—B

b2 .105 .105 .3 .3 .19

Notice that b 1 (—RC) =  .21 =  b2(—RC) and b 1 (—R— C) =  .19 =  
=  b2(—R—C). So, both agents initially rank —RC as more probable than 
—R—C. Suppose now that the empirical constraints dictate that the cre
dence in C is to stay the same, while the credence in R is to become .9. 
The following tables show the posterior belief functions of the two 
agents as calculated using Facts 8 and 9:

—RC RC R—C —R—C

b 1 .06 .45 .45 .04

—RCB —RC—B RC—B R—C—B —R—C—B

b2 .019 .019 .472 .428 .062

Notice that b ̂  (—RC) =  .06 >  .04 =  b ̂  (—R— C), while b2(—RC) =  .038 < 
.062 =  b2(—R—C). Therefore, despite the fact that the agents received the 
same empirical constraints regarding their new credences in R and C, 
one of them reversed her ranking of two logical combinations of these 
propositions.
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5.3.I.2. QUM: The four-world cases

Cardinality issues aside, I w ill now argue that Fact 8 alone already 
has some unintuitive consequences which indicate deficiencies of the 
LP framework. Consider a different modification of our original story 
involving an agent with the initial belief function b 1 (p. 112). Suppose 
two pieces of evidence are given:

•  a glance at the sky lowers the credence in R to .4 (by .1);

•  a rebroadcasting of the forecast increases the credence in C to .7 
(by .1).

The following is the new credence as dictated by Fact 8:

-R C RC R -C  - R - C

b 'i .3 .4 .0 .3

Because the average of the two changes is 0, the credence in the conjunc
tion has to stay the same. Notice that, for unknown reasons, the agent 
has ended up with credence 0 in R—C—that is, the lowest possible for a 
probabilist. That by itself is unintuitive, but situations in which similar 
phenomena arise have already been described by Levinstein (2012). I 
want to add to this an interesting feature of the updating behavior 
which follows from Fact 8. What happened in the last example is that 
the agent updated her credences in R and C as if these two were perfectly 
anticorrelated; that is, she interpreted an increase in the credence in C 
as an increase in the credence in —RC, and she interpreted a decrease 
in the credence in R as a decrease in the credence in R—C. She acted as 
if she was either oblivious to the fact that she holds a positive credence 
in RC, or she thought the influence of the two pieces of evidence on 
her credence in RC cancels out exactly, which should be supported by 
some additional argument.

In general, we can notice that Fact 8 dictates the following update 
behavior:

•  if increase in the credence in R equals the increase in the cre
dence in C: update as if they are perfectly correlated (increase the 
credence in RC by the same amount);
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•  if increase in the credence in C equals the negative of the increase 
in the credence in R: update as if they are perfectly anticorrelated 
(leave the credence in RC as it was, increase the credence in —RC 
and decrease the credence in R—C by the same amount),

whenever it makes mathematical sense (no credences end up being 
negative, etc.).

Even if I think that the main disadvantage of QUM presented in this 
section is the cardinality dependence (Subsection 5.3.1.1), the updating 
behavior just outlined may also be w orrying: I w ould say this is not 
obvious and definitely requires some supporting argument. I w ill also 
note that this behavior extends to some extent beyond the four-world 
case, but I only calculated some specific five-world examples.

5.3.2. Cardinality dependence and fine-graining

Cardinality dependence is in m y opinion a serious problem, not just 
because it sometimes is hard to explain, but more importantly because 
we might not know the cardinalities of the propositions we w ill be 
dealing with in some future phases of our belief update. That is, it 
might very well happen that some other features of the considered 
situation become apparent and relevant; this w ill "fine-grain" the de
scription, effectively "divid ing" the worlds. For a formal theory of this 
and concrete examples I suggest looking at the notion of "filtrations" 
(mentioned in the previous chapter) in the theory of stochastic pro
cesses (Nikeghbali (2006)) and how they are applied for example to 
insider training (Imkeller (2002)); for an application of similar ideas in 
the context of probabilistic causality, see Marczyk and Wronski (2014). 
A ny update method which, like QUM, features cardinality dependence, will 
not commute with fine-graining. It would be safest in general, then, to use 
a belief update method which does not feature cardinality dependence. 
We w ill now see that using the M IRE method allows us to avoid the 
sort of cardinality dependence described here.
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5.3.3. The M IRE solution to the problem

It turns out that the MIRE method (p. 101), or equivalently the local-lo
garithmic method, offers a solution to the simultaneous update problem 
which is independent of the cardinality of the propositions involved; 
that is, the problem is reduced to figuring out the credences in the 
four logical combinations of the propositions, at which point Jeffrey 
Conditionalization is invoked (for the proof, see again the Appendix, 
p. 139 , and again remember the note on notation on p. 135).

Fact 10. Let A and B be two propositions such that A n B =  0 and let b be the 
agent's prior belief function. Suppose that the agent's evidential constraints 
entail (only) her new credences b '(A) and b '(B). To arrive at the belief func
tion b ' the agent should adopt according to M IRE, we should first calculate 
the agent's new credences in the logical combinations of A and B so that the 
following is true

b(A n —B) b(—A n  B) b(A n B) b(—A n  —B) 
b '(A  n —B) +  b '(—A n  B) =  b '(A  n B) +  b '(—A n  —B)

and then use Jeffrey Conditionalization.

If we write the new credences in A and B as p and q, we can rewrite 
the condition in Fact 10 as

b(A n —B) b(—A n B) b(A n B) b(—A n —B)
p — b '(A  n B) +  q — b '(A  n B) b '(A  n B) +  b '(A  n B) +  1 — p — q

at which point it is more im mediately seen that what we have is just 
an equation with a single variable. Moreover, the solution— that is, the 
value of b '(A  n B)— is always available for the agent (see the proof in 
the Appendix). I would say that an intuitive advantage of this solution— 
apart from what I take to be its modest mathematical elegance, though 
this of course is a matter of taste—is that the new credences in the four 
logical combinations of A and B are independent of the cardinalities 
of the propositions, and so no such unfortunate updating behavior 
as the one described in Section 5 .3 .1.1  can arise. This for me forms 
another argument in favor of using the MIRE update method instead 
of the quadratic one. Just to reiterate, in my opinion MIRE also has the
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edge over MRE because it delivers the "intuitive" solution to the Judy 
Benjamin problem.

The difference between the M IRE method and QUM is already 
visible in our original, four-world updating case: as the reader may 
verify, the eventual belief function b 1 mire dictated by the MIRE update 
method is approximately displayed in the following table:

-R C RC R-C - R - C

bi .2 .4 .1 .3

b1 .1 .5 .2 .2

bi1 M IR E
0.107 0.493 0.207 0.193

The new credences allotted by MIRE to the four propositions will be as 
above, regardless of how m any (but finitely many) worlds belong to 
each of them. The w ay of updating mandated by M IRE w ill also not 
exhibit the w orrying features described on p. 1 1 7  ("updating as if the 
events were perfectly anticorrelated", etc.).

To connect this development with the results in Park (2013), I w ill 
now present a Fact containing a direct formula for the posterior belief 
function mandated by MIRE in response to the simultaneous update 
problem concerning some two propositions A and B. It w ill be conve
nient to use characteristic functions. Define, then, for any w j e W and 
E e {A, B},

{1 if Wj e E 

0 otherwise.

Fact 1 1 .  Let A and B be two propositions such that A n B =  0 and let b be the 
agent's prior belief function. Suppose that the agent's evidential constraints 
entail (only) her new credences b '(A) =  p and b ' (B) =  q. The belief function 
b ' the agent should adopt according to M IRE is defined as follows:

For any i e {1, . . . ,  n}, b '({w j)  =  with parameters A0,
A 1 and A2 determined by the following three equations:

b({wj})
j =  —A0 — A 1 XA,i -  A2XB,i 

^  b({wi}),LXA,i —̂ —

=  1;

i=1 A0 — AlXA,i — A2XB,i p
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b({wt})
/ _ x b ,i —i i 1 --= q.—A0 — AlXA,i — A2XB,i

For a proof, see the A ppendix (p. 14 1). Unfortunately, neither Fact 
10  nor 1 1  is easily generalizable either with respect to the number of 
partitions or the number of elements of the partitions.

One benefit of formulating the results in the above form is that 
it can immediately be seen that updating in the w ay mandated by 
M IRE is equivalent to updating using Jeffrey Conditionalization on 
the more "fine-grained" partition {A, —A} x {B ,—B}. One w ay to see 
this is to notice that if MIRE is used, then for any cell c of the more 
fine-grained partition there is a number r c such that for any world w j 
inside that cell b '({w j}) = b({ ^ }) ■ r c, which is characteristic of Jeffrey 
Conditionalization. After consulting the formulas in Park (2013, p. 3517) 
we see that the same is true for updating using MRE.

For those who would like to defend JC against the criticism of 
noncommutativity (p. 110 )  by presenting a w ay of reducing the two 
consecutive updates to one, there are then at least two options, one 
using MRE (see Park (2013)), the other using MIRE (presented here).14 
Which of them is better has to depend on the specifics of the given 
situation and on the interpretation of the relative entropy expressions 
the two methods employ. I leave investigating these issues for a future 
paper.

In this section I tried first to show what QUM says about the 
simultaneous update problem in certain types of cases, and next to 
argue that this points to some deficiencies of the LP framework. I then 
showed that M IRE provides a cardinality-independent solution which 
also allows adherents of Jeffrey Conditionalization to respond to some 
versions of the criticism regarding the rule's noncommutativity.

14 Unfortunately, as m entioned before, in this chapter I only show  the w ay M IRE 
deals w ith  the issue if two partitions w ith  two elements are involved. Park describes 
also the case of three two-element partitions.
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5.4. (Intermediate) conclusions

The goal of this chapter was to respond to two open problems regarding 
belief update in the LP framework, which employs the quadratic update 
method. I have given partial answers in sections 5.2 and 5.3. I tried to 
argue that the answers exhibit some troubling features of QUM: most 
importantly, a sort of cardinality-dependence which has not, as far as 
I know, been discussed in the literature (Section 5 .3 .1.1) , but also not 
giving the "intuitive" (p. 106) solution to the Jud y Benjamin problem 
(Section 5.2). Along the way I tried to show that the method employing 
inverse relative entropy fares better in that regard.

The following table displays the status ("acceptable" /  "not accept
able") of the three belief update methods' responses to the considered 
types of evidence from the perspective of someone w ho prefers the 
"intuitive" solution to the Jud y Benjamin problem and cardinality- 
independent solutions to belief update problems in general:

Jeffrey
evidence

overlapping
evidence

Jud y Benjamin 
evidence

QUM X X X
MRE / / X
MIRE / / /

I do not want to suggest that MIRE trumps all other belief update 
methods, full stop. M y goal w as to argue that there are situations 
in which MIRE works at least as well as M RE, while QUM leads to 
unintuitive results. Of course, intuitions vary. Those, w ho— like van 
Fraassen—were dissatisfied with MRE's approach to the Judy Benjamin 
problem, and those w ho prefer cardinality independent solutions to 
belief update problems, should, I think, be relatively happy with what 
MIRE offers.
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5.5. The sym m etric Ju d y  Benjam in Problem, 

or learning from  conditionals 

w hose antecedents form  a partition

I have argued that both MRE and QUM do not answer w ell to the 
Judy Benjamin problem. We also already know that QUM suffers from 
cardinality-related problems that MRE and MIRE seem to be free of. In 
this section I w ill present a variant of the Judy Benjamin problem which 
w ill allow the display of some additional differences in the behavior 
of QUM and MRE. However, it is doubtful whether these differences 
point to some advantage one of these methods w ould have over the 
other.

Consider the four-world setup described on p. 107, w ith B1 given 
the meaning "JB 's unit is in the Blue Arm y region, Headquarters Com
pany A rea", and B2 given the meaning " . . .  Blue A rm y region, Second 
Com pany A rea", and R =  R1 U R2. Suppose the duty officer gives Judy 
the following information:

I don't know whether or not you have strayed into Red Army 
territory. But if you have, the probability is 3/4  that you are in their 
Headquarters Company Area. Also, if you are still in the Blue 
Army territory—again, I don't know whether you are or not— 
the probability is just 1/3 that you are in the Blue Headquarters 
Company Area.

Note that in this case the information received can be thought of 
as containing two conditionals with exclusive and jointly exhaustive 
antecedents: loosely speaking, " if  R" and " if  B". That is, two posterior 
credences conditional on elements of a partition are imposed. We will 
call this a "sym m etric" Judy Benjamin problem. It is symmetric in the 
sense that two posterior conditional degrees of belief are given, b '(Ri |R) 
and b'(Bi |B).

A s can be seen in Figure 5 .1, the situation does not differ dramati
cally from the original JB problem: MIRE tells us to keep our original 
credence in R (and so in B), while both MRE and QUM tell us to de
crease it. It w ill be interesting to see how the situation depends on what 
conditional credences are specified in the added conditional regarding 
the Blue regions.
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MIRE MRE QUM

Figure 5 .1. P o ster io r cred en ce  in  R as m andated  b y  the three update ru le s  in  

w h ich  w e are interested , in  resp o n se  to the in form ation  fro m  the d uty  o fficer 

g iven  in  the quote on p. 123; th is is  a  sp e c ia l c a se  o f  the sym m etric  Ju d y  B e n 

ja m in  p rob lem .

5.5.1. The symmetric Judy Benjamin problem, generalized

Consider, then a somewhat generalized form of the symmetric Judy 
Benjamin problem: the duty officer issues a statement which fixes the 
posterior credence b'(Ri |R) at 3/4, and the posterior credence b'(Bi |B) 
at some 0.

5.5.2. The uniform prior

Suppose the prior belief function is uniform over the four singletons. 
Figure 5.2 portrays the behavior of QUM, MIRE and M RE in this 
case.15 The vertical axis is the posterior b '(R). The horizontal lines mark 
the posterior b'(R) in the original Jud y Benjamin problem in its four- 
world variant— that is, w hen 0 is not mentioned at all, and the prior 
is uniform— according to M IRE (red), M RE (blue) and QUM (green). 
The curves are graphs of the dependence of the posterior credence 
in R on the 0 according to M RE (blue) and QUM (green), which both 
reach their minima for 0 =  0 .5 . That is, the answers given by both

15 The figures in this chapter have been prepared using Mathematica. Please contact 
me for a notebook file if you are interested.
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b'(R)

Figure 5.2. The symmetric JB problem for the uniform prior over four atoms.

QEM and M RE to the original JB problem mandate that the posterior 
b '(Bi |B) =  0.5— that is, this conditional probability is preserved.

Note that w hen 0 =  3/4, all three methods w ill not lead to any 
change in the credence in R: in a sense, the "influence" of one condi
tional balances the influence of the other.

Observe also that the two functions reach their minima on the 
corresponding horizontal lines. This means that, in the "uniform prior" 
case, according to both QUM and MRE one cannot specify a 0 such that 
one would reach a posterior b '(R) lower than the one mandated for the 
original JB problem. In other words, adding the information about the 
0 can only increase the recommended b '(R) or keep it the same as in 
the original problem (in the very particular case of 0 =  3/4).

It is well known that for the original Judy Benjamin problem, MRE 
mandates keeping the prior uniformly divided between the singletons 
inside the B proposition (this behavior w ould persist no matter how 
many atoms w 5, . . . ,  w n we would add to B, keeping the prior uniform 
over the whole B) and, regardless of the posterior b '(R 1 |R) imposed, 
leads to the decrease of the credence in R (see Appendix B of Seidenfeld 
(1986) for a proof). Here, as already said, we fix b '(R1 |R) at 3/4, but we 
are investigating the various options for b '(B 1 |B), that is, 0; it turns out 
that the more extreme (closer to 0 or 1) 0 is, the higher the posterior
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b'(R) as mandated by M RE; for some 0, it w ill be higher than the 
original b(R) . The same is true for QUM.

Some might entertain the notion that, if MIRE gives the "correct" 
verdict by not requiring us to m odify the credence in R, we m ay want 
to judge the relative qualities of M RE and QUM by how  far they stray 
from what MIRE prescribes. Figure 5.2 makes it clear that this w ill not 
do: for some values of 0, QUM gives values of b'(R) closer to 0.5 than 
the values given by MRE, but for some the situation is the opposite.

5.5.3. A  nonuniform prior

Consider now a case in which the prior is non-uniform: b(R i) =  0 .5, 
b(R2) =  0.3, b(Bi) =  0 .15, b(B2) =  0 .05. Figure 5.3 portrays the be
havior of the update methods we are dealing with in this case. The 
interpretation is as before.

Consider where the horizontal lines intersect the curves, that is, for 
what values of 0 the update methods achieve the minimum inaccuracy 
in response to the a four-world version of the Judy Benjamin problem 
which resembles the original one in that it only has a single conditional, 
but departs from it in that it features our chosen non-uniform prior. 
MRE does this for 0 =  3/4; however, QUM achieves the minimum 
inaccuracy for 0 close to 0 .63. This means that for a non-uniform prior 
in response to the Judy Benjamin problem featuring only the posterior 
b'(Ri |R), QUM would have us not only m odify the credence in R, but 
also the conditional credence in Bi given B, which MRE keeps intact.16 
This seems to be a slight advantage of MRE.

Note that it is clearly seen from Figure 5.3 that QUM, for some val
ues of 0, would have us lower the credence in R below what it mandates 
for the original problem, with 0 unspecified. This is a marked difference 
between QUM and MRE, which does not allow such situations.

16 The already m entioned paper (Levinstein, 2012) reports sim ilarly unwanted 
behavior of the A JC  rule mandated by QUM.



b'(R)

Figure 5.3. The symmetric JB problem for a nonuniform prior. (For the inter
pretation consult the text.)
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5.6. Inverse Relative Entropy is a Bregman

Divergence

I have been using the terms RE and IRE as they appear in Douven 
and Romeijn (2011); typically, whenever people speak about "relative 
entropy", they do not clearly specify the order of the arguments of the 
function they are concerned with, which leads to all sorts of confusions. 
Acknowledging this, I have followed this lead from Section 5 .1 .1  on
wards; m y task in this section is to describe and hopefully deal with 
some of them.

In a belief revision context, suppose your prior credence function is 
b and you are looking for a posterior b ' . I f  you would like to choose 
between the two formulas in the M(I)RE definitions on p. 101, the choice 
is effectively between having the posterior only inside the logarithm 
(in each summand), or both before and inside the logarithm (in each 
summand). The latter option has met with widespread approval; it is 
the one called "Infom in" by van Fraassen and "M inim ising Relative 
Entropy" by Douven and Romeijn.17 At this point I just wanted to 
rehearse the terminology I have adopted for this chapter, following 
Douven & Romeijn: if the posterior is only inside the logarithm, we are 
said to minimize the inverse relative entropy.

It would seem that notwithstanding Douven and Romeijn (2011), MIRE 
has not met with widespread approval. One of the reasons I have heard 
m any times at conferences is that it is supposedly "not a Bregm an 
divergence", that is, it does not belong to a class of functions that 
are the topic of a few practical theorems in Predd et al. (2009) and 
which have found philosophical application for example in the recent 
m onograph Pettigrew (2016). This is not true. Actually, the inverse 
relative entropy function most definitely is a Bregm an divergence, as 
we w ill shortly see. It is unclear, however, whether the same can be

17 The labeling is a bit m isleading as one m ight think that a m ethod m inim izing 
inform ation should maximize entropy and vice versa. However, this w ill be the least 
of our problem s, so I w ill leave this particular term inological issue aside. I w ill just 
m ention here that Dziurosz-Serafinowicz (2015), on p. 1 14 7 , describes the m ethod 
as that of "maximum  relative entropy (MRE), also know n as the rule of minimizing 
cross-entropy" (emphasis mine).
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said about relative entropy! Later, after noting the connection between 
MRE, MIRE and the Kullback-Leibler divergences, I will point out that 
both MIRE and M RE are members of another class of divergences, 
the so-called /-divergences, which have found fruitful application in 
statistical inference, and so perhaps both should be welcome in formal 
epistemology.

To facilitate the later comparison with the literature on KL-divergences, 
we w ill m odify our notation slightly.

Suppose p =  (pi, . . . , pn) and q =  (qi , . . . ,  qn) correspond to proba
bilistic mass functions, that is, they are vectors of probabilistic credences 
in members of an n-element partition; in other words, in each vector 
all the entries are nonnegative real numbers from the [0,1 ] segment 
which sum up to 1. Let us assume that p is the prior credence and that 
q is the posterior, that is, the variable. We can rewrite the two method 
definitions from p. 10 1  as follows:

M inim izing Relative Entropy (MRE), rewritten  
Given evidential constraints C and the prior p, the belief function q 
which should be adopted is such that it satisfies C and minimizes 
the expression

q) = H  q iln ( - 1 ) .
i — 1 p i

That is, the variable occurs twice in each summand, both before the 
logarithm and inside it.

M inim izing Inverse Relative Entropy (MIRE), rewritten  
Given evidential constraints C and the prior p, the belief function q 
which should be adopted is such that it satisfies C and minimizes 
the expression

n
IRE (p ,q ) =  Y _ P i ln (q ).

i=i qi

I w ill now argue that IRE is a Bregman divergence, in fact, an additive 
Bregman divergence.
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Definition 12  (Additive Bregm an divergence, Pettigrew (2016), p. 84):
A  function D : [0, 1]n x [0, 1]n ^  [0,00] is an additive Bregman divergence 
generated by $  if:

•  for all x ,y  6 [0,1]n D(x,y) > 0, with equality iff p =  q (diver
gence);

•  there exists a function d : [0,1]2 ^  [0,00] such that

n
D(x, y) =  Y _  d(xi,yi); 

i = i

•  $  : [0,1 ] ^  R  satisfies the following conditions:

-  $  is continuous, bounded, and strictly convex on [0,1];

-  $  is continuously differentiable on (0,1);

-  for all x,y 6 [0,1],

d(x,y) =  $(x) -  $(y) -  $ '(y) ■ (x - y)

where the dot denotes multiplication and for i 6 {0 ,1} we 
define $  '(i) =  limx^ i $  '(x).

Note that if D is an additive Bregm an divergence generated by $ , 
we can put O(x) =  Y .n= i $ (x i ) and write the divergence as follows:

D(x,y) =  ® ( x ) -  ® ( y ) -  VO(y) ■ (x - y)

where the dot is the dot product.

Let us check if we can construct IRE as a Bregman divergence. Choose 
$(x) =  x ln(x) as the generating function.18 Observe that
(x ln(x))' =  1 +  ln(x). Notice that

d(x, y) =  x ln(x) y ln ( y ) - ( 1  +  ln(y))(x -  y) =
x

=  xln(x) -  y ln (y) -  (xln(y) +  x -  y ln(y) -  y) =  y -  x +  x ln ( - ) .

18 I do not w ish  to claim  originality— this function is g iven in m any sources, e.g., 
Basu et al. (20 11), as the generating function of one of KL-divergences w e w ill soon 
turn to.
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Therefore, since the vectors are probabilistic and thus the entries 
sum to 1 , we see that

n n
D(x, y) = Y_ d(x i ,y i) = Y- xi ln ( — ) = IRE(x, y).

i=i i=i y i

Ergo, inverse relative entropy is a Bregman divergence with the 
generating function x ln(x). As for obtaining RE, the "popular choice", 
as a Bregman divergence, see the next subsection. Note that you can 
of course define, for a Bregman divergence D(x, y), an inverse Bregman 
divergence D !(x, y) := D(y, x). RE is of course an inverse
Bregman divergence in this sense (with the generating function x ln(x)).
5.6.1. Relation to Kullback-Leibler divergence 

and /-divergences

In form al epistemology it is customary to use the terms "relative en
tropy" and "Kullback-Leibler divergence" (KL-divergence for short) 
interchangeably; possibly because this has been the w ay information 
scientists have used the terms and how they are typically introduced 
in textbooks. However, usually not enough (if any) attention is paid 
to the fact that the order of arguments matters, even though it is com
mon knowledge that the KL-divergence is not symmetric and does not 
satisfy the triangle inequality, so it is most decidedly not a metric. In 
a philosophical context, apart from computational results, we might 
really care about the functions which generate our inaccuracy measures 
(because they might for example be related to scoring functions with 
some known features). Therefore, it seems to me that it w ill pay off to 
minutely study the expressions we are dealing with on such occasions.

The following definition is from Cover and Thomas (2006), one of 
the popular textbooks in information theory (p. 19). The authors use 
logarithms with base 2; we will use the natural logarithm to continue the 
thread from the previous sections (this has no bearing on minimization, 
which is what we are concerned with).19

19 A ssum e that w e adopt the typical conventions that 0 ln( 0 ) =  0 ln (§  ) =  0 and 

P ln ( § ) =  00.
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Definition 13  (Kullback-Leibler divergence): The Kullback-Leibler 
divergence of probabilistic mass vectors p and q is defined as follows:

n

K L ^  q) = Y -  P i ln (qr ) .
i=i q i

It seems to me that in the context of information theory and ap
plication of divergences to economics the above definition is w idely 
adopted; that is, K L(p, q) denotes a function in which the p i 's come 
before the logarithm. The reverse K ullback-Leibler divergence of p 
and q, which, if needed, we may write as R K L(p, q), is simply K L(q, p). 
If the arguments are not carefully chosen, these two expressions w ill 
have different values. It seems to me, then, that introducing a term D KL 
as supposedly denoting the Kullback-Leibler divergence, but defining it 
so that D KL(p ,q) equals K L(q ,p) in the above (and common) sense, as 
is done for example by Gaifman and Vasudevan (2012, p. 150), hampers 
rather than promotes understanding and should be avoided.

Cover and Thomas, in a move which seems to be typical of the 
literature, introduce K L(p, q) as a divergence "between p and q". Since 
KL-div is not symmetric, which seems also to be pointed out in every 
typical textbook, this of course has the consequence that the KL-div 
between p and q is different from the one between q and p. A  philo
sophical reader might wish to wonder, then, what the word "between" 
means in an information theory context, since it doesn't seem to be 
explained very often (if at all). Perhaps one could entertain asymmetric 
applications of "between" as in "The difference between 8 and 10 is 
25%, while the difference between 10 and 8 is only 20% ", but whether 
this is correct English, or introducing such ways of speaking to English 
might be fruitful, is not for me to judge. I am just puzzled about the 
insistence on using terms suggesting metricality as denoting something 
which most certainly is not a metric. Perhaps it is of some didactic 
help for information theory students, but my philosophical background 
precludes me from seeing it.

Other authors suggest using the terms "from " and "to", or "forward" 
and "backw ard". It is interesting that even extremely well-published 
and widely cited non-philosophical researchers differ in the application 
of these terms. For example, Csiszar (1991) considers K L(p, q) to be a
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divergence "o f p from q" (p. 2037-2038), while Abbas (2009) takes it as 
a divergence "from  p to q " (p. 26).

One thing which should be clear, if not completely trivial by now, 
and which I suspect at least some of the philosophers publishing on 
the topic might find a tiny bit surprising, is that we should realise 
that when minimising relative entropy RE(p, q) (in the sense we have 
used in this work, which is the one in the well-known paper Douven 
and Romeijn (2011)) we are not minimizing the KL(p, q), but rather the 
reverse Kullback-Leibler divergence of p and q, that is, KL(q, p).
We have already noted that it is easy to obtain IRE(p, q), that is, KL(p, q), 
as a Bregman divergence with the generating function x ln x. More gen
erally, for any real numbers m and k, the function k + m ■ x + x ■ ln x 
generates KL(p ,q) = IRE(p, q) as a Bregman divergence. However, com
pleting a similar task for the RKL seems to be a tricky matter. For exam
ple, Basu et al. (2011) write on p. 347 that with the generating function 
x — ln(x) — 1 "a  reverse Kullback-Leibler divergence is obtained". Note 
the "a " ; if you carry out the calculation, you will see the reason for it. At 
this moment I do not know a generating function with would generate 
exactly RKL(p, q) as a Bregman divergence. (I take this to suggest that 
philosophers using the term "Bregm an divergence" in the context of 
entropy minimization problems should be doubly careful.)

However, both KL and RKL divergences belong without any rea
sonable doubt to a class of functions which has found w ide usage in 
various areas of statistical inference (see the bibliography in Basseville 
(2013)): /-divergences.

Definition 14  (/-divergence (Basu et al. (2011), p. 342, Basseville (2013), 
p. 622): /-divergences are all and only/unctions o/the kind

n

M w  q ) =  Y -  qif(  “  ̂
i=i qi

where p and q are probability mass vectors and f  (x) is a convex function 
satisfying f  (1) = 0 and which is strictly convex at x = 1 .20

20 The two references given agree as to the form  of the function, w hich w ill be 
im portant below, but I w ould  like to mention here that the Basseville paper requires
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It is easy to check that both the Kullback-Leibler divergence and 
the reverse Kullback-Leibler divergence are /-divergences, with the 
generating convex functions being x ln x and — ln x, respectively.

Sadly, this field is also not free of confusion. Nielsen and Nock (2014) 
give (p. 3) the opposite assignment of the generating convex functions 
/  to K L and RKL; that is, in their approach — ln x generates the KL 
divergence as an /-divergence and x ln x generates the RKL divergence. 
This is sim ply because they use the opposite order of arguments than 
Basseville when reporting on the definition of /-divergences; I am not 
judging, just noting the discrepancy (though Nielsen and Nock seem 
to be in a minority).

5.6.2. (Less intermediate) conclusions

It seems to me that it is not easy to form  a philosophically satisfying, 
coherent picture out of this collection of variously chosen definitional 
conventions which lead to different roles played by different functions.

On the one hand, basic common sense seems to speak against defin
ing /-divergences so that one and the same function x ln x generates the 
KL as a Bregman divergence, but generates the RKL as an / -divergence, 
as this, without some good additional arguments I was unable to lo
cate, would seem to introduce confusion. This then speaks against the 
Nielsen and N ock option and for the more common w ay of defining 
things chosen for example by Basseville.

This, however, would have the consequence that the function — ln x 
—the only proper local scoring rule, which we know as the fundamental 
building block of the local-logarithmic inaccuracy measure from the 
previous chapter, and which, as we have seen, is intimately related to 
the method of minimizing IRE(p, q), that is, KL(p, q)—would generate 
RKL(p, q) as an /-divergence. This is a conceptual disparity which is 
hard to philosophically justify without some additional insight about 
the roles the generating functions play in the two types of divergences, 
insight I am unfortunately lacking.

of /  some additional derivative-related features w hich are not met by some standard 
/ -divergences, and which we w ill ignore here.
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Neither of the two options seem entirely satisfactory, then, and the 
precise role played by the function — ln x still seems quite mysterious, at 
least to me. I hope that in the future, researchers more knowledgeable 
in information theory than me w ill step up to clear up these issues, 
and that what I have done in this chapter shows that there is genuine 
confusion regarding these matters in the literature, and it might be 
beneficial to philosophers in form al epistem ology to double-check 
what exactly they are speaking about w hen they mention terms like 
"Kullback-Leibler divergence" or "relative entropy", since the results 
might surprise them.

I have also tried to collect arguments rehabilitating the method of 
minimizing inverse relative entropy. It seems to me that the fact it man
dates Conditionalization and Jeffrey Conditionalization, its behavior 
with regard to the Judy Benjamin problem and its variants, how it faces 
the simultaneous update problem, the fact that it is a Bregm an diver
gence, and possibly the fact that it uses an inaccuracy measure which 
is free of the so called "elimination counterexamples" (see Section 6.1 
below) all speak in favor of it.

A pp en dix (proofs of facts from Section 5.3)

A  note on notation: In all facts below we w ill be speaking about pro
positions A and B. There w ill be a finite number of possible worlds 
w i , . . . ,  w n (and in one case also w 0). Prior credences in these w ill be 
denoted by v 1 , . . . , vn (and in one case also v0). For clarity (I hope) in 
the proofs below, we w ill denote posterior credences in singletons of 
elements of A n — B, in ascending order of the indices, by a0, . . . ,  am; 
in the trivial one-element case we w ill just use a. (In fact, below we 
w ill only explicitly write out one proof using just a0 and a 1 ). The 
posterior credence in B n — A w ill be denoted by b; that in A n B by k 
(for kommon), while that in — A n — B by z. We w ill not use subscripts 
for b, k, and z, since in the proofs below the cases w ill be suppressed 
in which the three corresponding logical combinations of A and B are 
involved as consisting of more than one possible world; when written 
out in full, subscripts would be needed just as in the case of a.
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Proof of Fact 8

Fact 8. Let W =  (w i, w 2, w 3, w 4} be the set of epistemically possible worlds 
for some agent. Let A be the proposition {w 1 , w 2}; let B be {w2, w 3}. Suppose 
that the agent's evidential constraints are that her posterior belief function b ' 
satisfies b'(A) =  p and b'(B) =  q,for some p and q. Let us label the number 
b(A n B) +  p-b(A)+ q-b(B) as K. The belief update function which the agent 
should adopt according to QUM is fu lly  determined by the two constraints 
and the following condition:

Proof. The expected inaccuracy of a belief function b ' as given by the 
quadratic measure is as follows:

Using the equalities a =  p — k, b =  q — k, z =  1 +  k — p — q we can write 
this expression as a function of k only (since p and q are given). After 
expansion and some tedious but straightforward calculation (using also 
the equality v4 =  1 — (v1 +  v2 +  v3)), we see that it reaches its minimum 
for the same argument as

The derivative of (5.2) is an increasing linear function reaching 0 at

k _  p — vi +  q — V3

' 0 if  K < 0

b '(A  n B ) _  < min {p , q } if  min {p , q } < K

K otherwise.

4

i= i

which reaches its minimum for the same argument as

(v i +  ■ ■ ■ +  v 4) ( a 2 +  ■ — + z 2) — 2 v i a  — 2 v 2k  — 2 v 3b — 2 v 4z . 
v .. '

k2 +  (vi +  V3 — p — q)k. (5-2)

2

and so (5.2) is minimized for this value of k. We leave it to the reader 
to show that k =  K where K is as specified in Fact 8.
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Now, the value of k as given by (5.2) might turn out to be negative 
or higher than p or q, and thus be unavailable to the agent. Since, as 
noted, the derivative of (5.2) is an increasing linear function, in these 
cases to minimize the expected inaccuracy the agent should set k to 0 
or the lower of the values p and q, accordingly. □

Proof of Fact 9

Com pared to the previous proof, this one adds one possible world to 
the proposition A n —B; we will index it as well as the prior credence in 
its singleton by 0.

Fact 9. Let W =  {w0, w i , w 2, w 3, w 4} be the set of epistemically possi
ble worlds for some agent. Let A be the proposition {w0, w i , w 2}; let B be 
{w2, w 3}. Suppose that the agent's evidential constraints are that her posterior 
belief function b ' satisfies the following: b '(A) =  p =  b(A) and b '(B) =  q, 
for some p and q . I f  the belief update function which the agent adopts is the 
one fu lly  determined by the two constraints and the following condition

b'(A  n B) =  b(A n B )+  4/7(q — b(B)), 

b '({wo}) =  b({wo}) — 2/7(q — b(B)),

b '({wi}) =  b({wi}) — 2/7(q — b(B)),

then it is the one which QUM dictates the agent should adopt in this case.

Notice that the main claim of Fact 9 is (only) an implication: this 
is because here it is less convenient to deal with the cases in which it 
would seem from initial calculations that one's credence in a proposition 
should be negative than in the four-world case; we are not concerned 
with such examples. This is similar to the problems Leitgeb and Petti
grew have to deal with in their proof that QUM dictates that AJC is the 
method of updating in response to Jeffrey evidence. We are interested 
only in the "favorable" cases, because we want to use them to illustrate 
some deficiencies of the QUM method.

Notice also that this is a case of A JC  updating: the change in cre
dence in each element of A n — B is obtained by decreasing the prior 
credence by the same number.
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Proof. The change from the proof of Fact 8 is that instead of a single 
a, we now have to consider a0 and a i . The expected inaccuracy of the 
considered belief function reaches its minimum for the same argument 
as the following expression:

(vo +----- + V4)(a2 +------- + z2) — 2voao — 2vi ai — 2v2k — 2v3b — 2V4Z.
' --------------------- V --------------------- '

i

Using the equalities a0 =  p — k — a i, b =  q — k and z =  1 +  k — p — q we 
can write this expression as a function of k and ai only. After expansion 
and some more tedious but still straightforward calculation, we see 
that it reaches its minimum for the same arguments as

2k2 +  (ai — 2p — 2q +  2vo +  vi +  2v3)k +  a f +  (vo — vi — p )ai,

which, after using the equality p =  v0 +  v i +  v2 (true since we assumed 
the the credence in A does not change), transforms into

2k2 +  (ai — 2q — vi — 2v2 +  2v3)k +  a i  +  (—2vi — v 2 )a i. (5.3)

(5.3) is a function of two variables, k and a i . Its partial derivative w.r.t. 
ai reaches 0 for ai =  2vi+2̂ 2-k ; w hen we plug this into the partial 
derivative w.r.t. k and assume it equals 0 (since we are looking for a 
minimum) we arrive at

7k =  4 q +  3v2 — 4v3

which is equivalent to

k =  v2 +  4/7 (q — v2 — v3),

that is, to
b '(A  n B) =  b(A n B )+  4/7(q — b(B))

as required. The other two conditions of Fact 9, on b'({w0}) and b '({w i }), 
follow now by straightforward calculation (remember that the credence 
in A does not change). □

The next proof is a bit lengthy but does not use the method of Lagrange 
multipliers. Fact 10  contains a more approachable description of the 
belief update function which is fully specified in Fact 1 1 .  For that Fact, 
I give below a concise proof using Lagrange multipliers, so if the reader 
is familiar with the method, it might be better to go there (p. 141).
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Proof of Fact 10

Fact 10. Let A  and B be two propositions such that A  n B =  0 and let b 

be the agent's prior belief function. Suppose that the agent's evidential con
straints entail (only) her new credences b '(A ) and b '( B ). To arrive at the 
belief function b ' that the agent should adopt according to M IRE, we should 
first calculate the agent's new credences in the logical combinations of A  and 
B so that the following is true

b (A  n —B ) b (—A n B ) b (A  n B ) b (—A n —B ) ( )
b '(A  n —B ) +  b '(—A n B ) =  b '(A  n B ) +  b '(—A n —B ) (5 4 )

and then use Jeffrey Conditionalization.

Proof. First, in what follows we w ill use the following simple observa
tion.

O bservation 1. Suppose that for some natural number j , x 0, . . . , x j 
and y 0, . . . , y j are strictly positive real numbers. If Vi  e {1, . . . , j }y1  =  y -,

then i 0 =
yo y i

Z i = 0 * i

y o Z i = o  y i  "

Second, remember that it can be shown by a limit argument that 
according to MIRE the agent should use Jeffrey Conditionalization once 
the new credences in the four logical combinations of A  and B are 
determined (see Pettigrew (2016) and Diaconis and Zabell (1982)).

We need to show that the relationship (5.4) holds independently of 
the number of atoms in the probability space. We w ill first show that 
it holds in the simplest four-world case, and then show that adding a 
finite number of worlds to each of the logical combinations of the two 
propositions does not break the relationship. Since the MIRE method is 
equivalent to the local-logarithmic one (p. 102), we w ill use the latter 
for calculations.

The four-world case. The local-logarithmic method tells us we need 
to minimize the following expression containing the single variable k :

—v i ■ ln(p  — k ) — v 2 ■ ln k  — v 3 ■ ln(q — k ) — v 4 ■ ln(1 + k  — p  — q) (5.5)

A  modicum of analysis shows us the above expression reaches its 
minimum if k is chosen so that the following is true:
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v i  +  v3 _  v2 +  v4
a b k 1 +  k — p — q' 

which is equivalent to (5.4).
One could be worried that such a k might be unavailable for the 

agent, that is, that it could be negative or higher than either p or q. 
Fortunately, this never happens. Assume without loss of generalization 
that p ^ q. The derivative of (5.5) is a continuous function of k in the 
segment (0, p); with k approaching 0 it approaches negative infinity, 
while with k approaching p it approaches positive infinity, therefore by 
the intermediate value theorem it reaches 0 at a point inside the segment 
(0,p). At that particular point, as analysis of the second derivatives 
shows, (5.5) reaches a minimum. The number k mandated by the loga
rithmic update method— and so by MIRE—is thus always available to 
the agent.

Cases with more worlds. We will consider what happens when we 
add more worlds to the proposition A n — B. In fact, the technique will, 
I hope, be evident after we deal with adding just a single world. To 
avoid much repetition, I w ill skip the three remaining cases of the other 
logical combinations of A and B.

A s already mentioned, I believe it w ill be worthwhile to start with 
the case in which just a single world is added to A n —B; that is, assume 
that W =  {w0, w i , w 2, w 3, w 4}, A is the proposition {w0, w i , w 2}, and B is 
{w2,w 3}. Label b'({v0}) with a0 and b'({vi}) with a i ; using the equality 
a0 =  p — k — ai we can write the expression to be minimized according 
to the local-logarithmic update method as

—v0 ■ ln(p — k — a i ) — vi ■ ln ai — v2 ■ ln k — v3 ■ ln(q — k)+
w i  1  ̂ (5 .6)—v4 ■ ln(1 +  k — p — q).

We w ill find expression (5.6)'s minimum when we calculate the values 
of a i and k for which its partial derivatives w.r.t. those variables equal 
0 (and second derivatives are positive, checking which we leave to the 
reader). Now, (5.6)'s partial derivative w.r.t a i equals 0 iff

v i  -  vo 
a i p — k — a i
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from which by Observation l we get that

Vo _ Vo + Vi 
p — k — ai p — k

Now, expression (5.6)'s partial derivative w.r.t. k equals 0 precisely 
when

Vo + V3 _ V2 + V4
p — k — ai q — k k l + k — p — q 

which we now see to be equivalent to

Vo + Vi + V3 _ V2 + V4
p — k q — k k l + k — p — q

that is, to (5.4), as required.
Notice now that if we add not just one, but more worlds to A n —B, 

nothing of essence changes. Instead of just two partial derivatives, we 
need to consider more, but the information we receive is again that for 
each world in A n —B, the ratio of the old credence in its singleton to 
the new credence in its singleton is the same, and so is also the same 
(by Observation l) as the ratio of b(A n —B) to b '(A n —B), at which 
point we turn to considering the partial derivative w.r.t. k and get (5.4) 
immediately.

Adding more worlds to the remaining three logical combinations of 
A and B changes, again, nothing of essence: we just need to consider 
more partial derivatives w.r.t. new variables, but what we learn is uni
form ly the information that inside the given logical combination of 
A and B the ratio of old credence to new credence is constant over 
singletons of all worlds, and (5.4) continues to hold regardless of how 
m any (but finitely many) worlds we add. □

Proof of Fact 1 1

Fact 1 1 .  Let A and B be two propositions such that A n B _ 0 and let b be the 
agent's prior belief function. Suppose that the agent's evidential constraints 
entail (only) her new credences b '(A) _ p and b '(B) _ q. The belief function 
b ' the agent should adopt according to M IRE is defined as follows:

For any i e { l , . . . ,  n}, b '({wi}) _ with parameters Ao,
Ai and A2 determined by the following three equations:
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V-  ______ b ({w i })  _  l .
i= i —Ao — A i X A,i — A2X B/i '

^  b ({w i })
/  X A,i—^ ^ ----------_  1
i= i —Ao — A i X A,i — A2X B/i

Vo ; —
_Ao — Ai X A,i — A2X B

T- _______ b({wi})_______ _  q
2_— XB,i —a — A-ix* ■ — A~.x™ ■
-=1

Proof. The constraint b'(A) — p is equivalent to Y .n=i XA/-b'({w -}) — p; 
b'(B) — q is equivalent to Y .n=i XB/-b '({w -}) — q. Using the method of 
Lagrange multipliers (see, e.g., Cover and Thomas (2006)) we have:

A  — ^  b({w-}) ln ( b « ; -»  ) — Ao ( ^  b ' ({w-}) — 1) —
-=i b ' ({w-}) \ t i

n n
Ai ( Y _  XA,-b' ({w-}) — p) — A ^ ^ ^  XB,-b' ({w-}) — q).

-=1 -=1

Taking the partial derivative w.r.t. b '({w-}) we obtain 

9A b({w-})
9b '({wi}) b '({wi}) — Ao — A i X A,i — A2X B,i.

This equals 0 precisely w hen b'({w-}) — • . Since the
second derivatives are all positive, and our constraints define a closed 
and bounded set, we have arrived at a minimum. □



Chapter 6

Regarding the Brier Score

In Sections 5.2 and 5.3 of the previous chapter, I presented a few  ar
guments which m ay be seen as suggesting that the Quadratic Update 
Method (QUM) is not best suited to some belief update problems. The 
QUM is a specific application of the so-called "Brier Score" (originally 
proposed by Brier (1950)), which is frequently used in formal epistemol- 
ogy in various forms. Since a major goal of the aforementioned section 
w as to answer update problems posed in the specific framework of 
Leitgeb and Pettigrew (2010a and 2010b), I decided not to introduce 
the various forms the Brier Score might take in different applications. I 
believe the best introduction to that vast topic is the unpublished but 
publicly accessible work by Landes (2014).

While the main topic of the previous chapter was that of (minimiz
ing (inverse)) relative entropy, and the argument against employing 
the QUM was something of a byproduct of this, the current concern is 
general arguments for and against using the Brier Score for assessing 
the value of an agent's cognitive state, in particular in the context of 
accuracy-first frameworks. Section 6.1 w ill concern the "elim ination 
counterexam ples" by Fallis and Lewis (2016) and Lewis and Fallis 
(2016), aimed at showing that one should not use the Brier Score to 
measure the epistemic utility of a credal state. I w ill argue that similar 
examples can be presented to argue against a few other inaccuracy 
m easures, and so, that the Brier Score does not fair so badly as Lewis 
and Fallis would have it. In Section 6.2 I w ill study the arguments for 
using the QUM proposed by Leitgeb and Pettigrew (2010a): if QUM
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is not satisfactory, as I have argued, maybe we can spot some holes in 
these arguments? To the contrary, it turns out that the arguments by 
Leitgeb and Pettigrew can be strengthened, as I show in Section 6.2 
below.

A nd so, the upshot of the current chapter is delicately opposite to 
the previous one: MIRE, while performing better in terms of belief up
dating, is not a clear winner in the context of accuracy-first frameworks.

6.1. Against: the elimination counterexamples

The QUM, which we encountered in the previous chapter, is closely 
related to a w ay of evaluating an agent's belief function called the 
"Brier Score"; effectively, it requires the agent to minimize the expected 
value of it. For the moment, following the previous chapter, assume 
that we are interested in the 'global' credence functions, that is, vectors 
of the agent's credences in 'singleton' propositions. This is a special 
case in which the set of propositions which is of interest to us forms 
a partition of the underlying set W; what we w ill say in this chapter 
w ill be independent of the choice of partition, and so we will make the 
choice of dealing with the most fine-grained one.

Assum e that W — {w i, . . . ,  w n}, w- is the real world, and b, the belief 
function, is a probabilistic mass function over W, that is, recall, a 
vector where all the entries are nonnegative real numbers from the [0,1 ] 
segment which sum up to 1 . In other words, b is a vector of credences 
in all members of a list of exclusive and jointly exhaustive hypotheses, 
interpreted as singleton sets of possible worlds. b- is to be read as 
b({w-}). For such b's the following definition makes sense:

The Brier Score, partition version:

B(b) — (1 — b({w-}))2 +  Ln=i,j=- b({w-})2.

That is, in this version the Brier Score takes into account the squares of 
differences between the given proposition's truth value (which equals 1 
only in the case of {w-}) and the agent's credence in it. Propositions 
different from singletons are entirely ignored.
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Two other inaccuracy measures appropriate for partitions (Bickel 
(2007)):

•  the logarithmic measure: L(b) — — ln(b({w-})

•  the spherical measure: S(b) — —b({w-})/y/L jLi b({wj})2

However, we w ill also consider belief functions as defined over the 
whole set of propositions from F  — P(W), and not just the 'all the 
singletons' partition. In fact, the three measures about to be defined 
allow us to take an arbitrary set of propositions F  and a belief function 
b defined on it. Like before, assume x(A) is the truth value of the 
proposition A from F.

Two inaccuracy measures appropriate (also) for whole Boolean 
algebras (Joyce (2009), p. 275):

•  the additive logarithmic rule: AL(b) — Y_AeF — ln(|(1 — x(A)) — 
b(A)|)

•  the additive spherical rule: AS(b) — ^ ApF l( 1- x(A))-b(A)l ^f  y j V b(A)2 + (1-b(A))2

The Brier Score, a general version (Pettigrew (2016), (p. 36):

G B ( b ) — L a s f  (x (A ) — b ( A ) ) 2

Fallis and Lewis (2016) argue that the Brier Score, at least in the par
tition version, is not a good tool for measuring the value of an agent's 
belief function.1 The reason is that conditionalization is supposedly 
always of epistemic benefit to the agent, yet the Brier Score seems to 
disagree. That is, there are cases in which, according to the Brier Score, 
the inaccuracy of a belief function increases after conditionalization; we 
w ill label cases like this 'elimination counterexamples', slightly depart
ing from Fallis and Lew is's terminology. This happens for example

1  Fallis and Lew is actually use a slightly different version of the Brier score 
(partition version) than the one offered above, but the difference has no bearing on the 
argument, and the version used in the current text generalizes, I think, more intuitively 
to the context of Boolean algebras.
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with the update from (0 .25, 0 .5, 0 .25) (Brier score 7/8) to (i/3 ,2/3,0) (Brier 
score 8/9), with the first entry corresponding to the actual world. Note 
that the authors are concerned with the partition version of the score. 
It seems to me that a natural initial reaction to the counterexamples 
of Fallis and Lewis would be to say that excluding a false hypothesis 
leads to num erous changes in the agent's credences, especially if we 
consider those in other propositions instead of the ones belonging to 
the particular partition. If we take the whole Boolean algebra of the pro
positions the agent has an opinion about, then, after conditionalization, 
credences in some true propositions increase, credences in some true 
propositions decrease, and the same holds for false propositions, so the 
verdict should not be immediate. We w ill concisely consider Boolean 
algebras in Section 6.1.3 and w ill stick with partitions for now.

Note that the both the logarithmic and spherical measures are im
mune to elimination counterexamples. This is trivial for the logarithmic 
measure, since after conditionalization the credence in the true hypoth
esis increases, which is all that matters from the standpoint of this 
measure. That this holds also for the spherical rule is proven by Fallis 
and Lewis.

I would like to suggest a train of thought which, at least for me, di
lutes the force of elimination counterexamples. In Chapter 5 we judged 
several update methods based on which update rules they lead to. 
However, one can reverse the tables, and ask for the justification of 
conditionalization (as opposed to other reactions to learning that some 
proposition is true; see for example the discussion of im aging imme
diately below). A  natural thing to do in an inaccuracy-first framework 
is to point out that conditionalization minimizes expected inaccuracy 
(which is one w ay to describe some facts mentioned in 5.1.2). Notice 
that this does not entail (nor, to me, does it even suggest) that condi- 
tionalization w ill invariably decrease the inaccuracy—we presumably 
should have some other reason to expect this.

The epistemic benefit of conditionalization seems to come for the 
most part from excluding a false hypothesis. The credence form erly 
bestowed upon it needs to be transferred to the remaining hypotheses. 
This can of course be done in a number of ways. Conditionalization 
prescribes multiplying one's remaining credences by the same number



6.1. Against: the elimination counterexamples 147

so that their sum equals 1. This however seems to be unsuitable in many 
situations, some examples of which can be found for example in the 
first section of Perea (2009). David Lewis (1976) proposed a method he 
labelled 'im aging', which would have the agent transfer the whole cre
dence from the excluded hypothesis to just one of the remaining ones, 
on the basis of (the agent's beliefs in) which possible world was most 
similar to the excluded one. This approach was generalized in Garden- 
fors (1982), and as far as the resulting 'general im aging' is concerned, 
there is no distribution of the credence in the excluded hypothesis 
among the remaining ones which w ould be a priori disallowed. For 
example, a version of imaging we will call 'uniform imaging' would let 
us add the same number to each credence in a remaining hypothesis so 
that their sum equals 1 , which the reader might take to be quite close 
in spirit to the A JC  rule discussed in the previous chapter.

Fallis and Lewis (Peter J.) are only concerned with conditionaliza
tion, but their argument might be strengthened if it can be shown that 
the Brier Score presents a similar behavior when faced with some rea
sonable alternative update rules. It is very easy to show that elimination 
counterexamples exist for imaging. For example, in the update from 
(0 .25, 0 .5, 0.25) to (0.25, 0.75, 0), which is an application of the original 
Lewisian imaging, the Brier score—if we assume that wi is the actual 
w orld— of the credence function increases from 7/8 to 9/8. However, 
we w ill prove that uniform im aging coupled with the Brier Score is 
immune to elimination counterexamples.

6.1.1. Uniform imaging

In this subsection we w ill continue to only deal with vectors where all 
the entries are nonnegative real numbers from the [0,1 ] segment which 
sum up to 1, that is, probabilistic mass functions: vectors of credences 
in all members of a list of exclusive and jointly exhaustive hypotheses, 
which, when needed, w ill be interpreted as singleton sets of possible 
worlds.

Assum e that n hypotheses are entertained (at least 3), and the nth 
one is to be excluded, while the 1 st one is true (assuming this leads to



148 Chapter 6: Regarding the Brier Score

no loss of generality, since everything we w ill say holds for any choice 
of the true hypothesis).

Definition 15  (Update by uniform  imaging): A  vector q — (q i, . . . , qn)
is the update by uniform im aging of a vector p — (pi, . . . ,  pn) (pn >  0) if 
and only if:

•  qn — 0;

•  for any i e { 1 , . . . ,  n — 1}, q- — p- +  pn/n - i .

For example, (0 .6, 0.4 ,0) is the update by uniform im aging of 
(0.5, 0.3, 0.2), while conditionalization would lead from the same prior 
to (0.625, 0.375,0). Of course, uniform im aging is equivalent to condi- 
tionalization if the prior is uniform.

We w ill now show that no case of update by uniform imaging can 
lead to elimination counterexamples, that is, the Brier Score of the 
posterior is always strictly lower than that of the prior.

Fact 12. Suppose q is the update by uniform imaging of p. Then B (q) < B (p).

Proof. In the update from p to q, changes in two entries influence the 
Brier Score negatively: the last one (since the credence in the false 
hypothesis {wn} is transformed from pn, which we assum ed to be 
strictly positive, to 0) and the first one (since the credence in the true 
hypothesis {w-|} is transformed from pi to qi — pi +  n—1 ). So, the
decrease in the Brier score is equal to pn +  (1 — pi )2 — (1 — (pi +  n— 1 ))2 —

2

pn + 2 n- 1 —2pi n— r — ( n- 1 ) 2 — (1 — (n- i ) 2 )pn + 2(1 — p i ) n— r.
A ll the remaining n — 2 entries offer an increase in the Brier score

2

equal to (p- +  n— r)2 — p2 — (n— i ) 2 +  2p-n—1  in each case, and so the 

total increase in the Brier score equals (n — 2) (n—n  ) 2 +  ^ £= 2 2p-n—1 .

Since pn >  0, we know that Y .n=2 p- < 1  — p i , and so Y .n=2 2p-n—1  < 
2(1 — p i )n—1. Since for natural n >  2 it holds that n — 2 <  n 2 — 2n, 

we know that (n — 2) ^ —1 )2 < (1 — (n— )2 )p— We see, then, that in the 
update from p to q the total increase in the Brier score is strictly lower 
than the total decrease, that is, that B(q) < B(p). □
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6.1.2. The case of the 12  drawers

Before we consider credence functions over Boolean algebras, I would 
like to show another update example in which not only might an ex
clusion of a false hypothesis increase the Brier Score, but in fact it is 
in some sense expected to happen: the agent, w ho obviously received 
beneficial evidence, would have to be exceptionally lucky to avoid the 
problem. Perhaps those who are worried by the elimination counterex
amples w ill find that this strengthens their opinion on the subject. I do 
not want to put much stress on it, since, as the reader w ill see, vari
ous details of the story might be fleshed out so that it could support 
different arguments.

Consider the following situation: an agent is interested in the precise 
location of a document which she knows is in one of 12 drawers. 
The drawers are opened one at a time without the influence of the 
agent. The intelligence she has gathered leads her to credence 0.1 
that the document is inside drawer number 1 , credence 0.4 that it 
is inside drawer number 2, but leaves her indifferent w ith regard to 
the remaining drawers (which leads to 10 credences of 0.05 each). In 
reality the document is in drawer number 1 . Suppose our agent uses 
conditionalization. Now, if any of the drawers 3 to 12 is opened, that 
is in 10 out of the 12 possible cases, the Brier score of the agent's 
credence increases, despite the epistemic benefit to the agent in the form 
of excluding a false hypothesis.

For example, if drawer number 12 is opened, then the initial cre
dence (.1, .4, .05, .05, .05, .05, .05, .05, .05, .05, .05, .05), whose Brier score is 
lower than 1, gets transformed via conditionalization into (.105, .421, 
.053, .053, .053, .053, .053, .053, .053, .053, .053, 0), the Brier score of which 
is higher than 1 .2

If the drawers are opened by a random device and each drawer 
has the same chance of being opened, our agent faces an 80% risk 
of lowering her Brier score despite conditionalizing after excluding a 
false hypothesis. Other similar examples can be easily constructed if 
relatively many false hypotheses are used.

2 Yes, these fractions do not add up to 1 — this is a result of rounding m any entries 
up and few  down.
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Figure 6.1. Conditionalization in the original “elimination counterexample” 
from Fallis &  Lewis (2016): the “overall” inaccuracy also increases.

6.1.3. Credences over Boolean algebras

In this subsection I w ill show that in the context of Boolean algebras, 
conditionalization may lead to an increase of inaccuracy not only when 
it is measured by a version of the Brier score, but also if we opt for the 
additive logarithmic or additive spherical measures.

Consider, first, Figure 6.1, which depicts the original example from 
Fallis and Lewis, but in a version in which the belief function is defined 
over the whole Boolean algebra of propositions. The set F  contains 8 
propositions, two of which (the top and the bottom) are irrelevant since 
the credences in them are perfectly accurate. The true propositions 
are those in the upper left parallelogram. We can see that all changes 
in credences in true propositions have corresponding changes in the 
opposite direction (but with the same value) in credences in false 
propositions. Still, since quadratic functions are involved, the GB of the 
whole belief function increases from 1.75 to about 1.78. So, in a sense 
the message of the original elimination counterexample by Fallis and 
Lewis seems to be strengthened since it doesn't require us to restrict our 
attention to partitions: whole Boolean algebras also provide suitable 
examples.

1
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Figure 6.2. An example of conditionalization which features an increase in 
“overall” inaccuracy regardless of whether the inaccuracy measure of choice 
is the Brier score, the additive logarithmic measure, or the additive spherical 
measure.

1

However, the situation is not so simple. Figure 6.2 depicts a situation 
in which an agent increases her inaccuracy after conditionalization 
according to all three suitable measures we have mentioned: the General 
Brier score (from about 1.94 to about 2 .04), the additive logarithmic 
measure (from about 5.00 to about 5.01), and the additive spherical 
measure (from about - 3.64 to about - 3.49). Examples like this abound; 
only rudim entary program m ing skills are needed to code a program  
which finds them via random search.

6.1.4. Elimination counterexamples: summary

If we restrict our attention to credences over partitions, it m ay seem 
that indeed there is something w rong with the Brier score as a mea
sure of inaccuracy, or, more broadly, as a measure of the epistemic 
utility of one's credal state. Moreover, there are clear alternatives in 
the form of the spherical and logarithmic measures; this m ay be seen 
as another argument for an approach to belief update that requires 
the agent to minimize the inverse relative entropy, as advertised in the
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previous chapter, since, as was already mentioned, it is equivalent to 
the approach of minimizing the logarithmic measure.

However, w hen thinking about the merits and flaws of the Brier 
Score, there is no need to concern ourselves with partitions only. Con- 
ditionalization typically requires num erous changes in credences in 
propositions outside any given partition. A s can be seen in examples 
like the one depicted in Figure 6.2, measures other than the Brier Score 
also lead to 'elimination counterexamples' in this context. One reaction 
to this could be that the Brier Score should not be singled out as the 
problematic measure since other measures seem to be equally problem
atic. Another reaction to which I am sympathetic would be, though, 
that this speaks against the idea of elimination counterexamples as 
providing insight about the value of inaccuracy measures. At best, they 
can serve as a reminder that there definitely has to be more to the value 
of one's credal state than a single accuracy-related number.

Consider for example a true proposition and its negation, and a 
change in the two corresponding credences from (0.25, 0 .75) to (0.3, 0.7). 
In terms of the absolute value, the differences in credence are equal, 
yet the GB, A L  and A S measures w ill score them differently. When 
evaluating the change in credences after conditionalization, we might 
care about different things: we might, e.g., prefer a measure which 
counts equally each change in a credence in some proposition which 
possesses the same numeric value (e.g., an increase of .05 should count 
equally regardless of whether the prior credence was .25 or .75) or, say, 
a measure which takes the same stance regarding the ratios (that is, an 
increase from 0.2 to 0.3 should count for as much as the one from 0.4 
to 0.6). The situation seems to be similar to the one with confirmation 
measures (see, e.g., Eells &  Fitelson (2002)); we might want to take into 
account how  our inaccuracy measure treats different symmetries.

One could consider what might prima facie seem to be a route towards 
a better sort of argument against the Brier Score (partition version), 
or against any other inaccuracy measure in the more general version. 
Notice that all the examples discussed so far have dealt with the elimi
nation of the last hypothesis {wn}, assumed that the first one, {w i}, was 
true, and observed that the measure in question led to an increase of
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inaccuracy after conditionalization. However, it is a matter of simple 
calculation that in all the displayed cases there w as a different world 
w m such that, were that world the actual one, the inaccuracy would 
decrease. While, when evaluating an inaccuracy measure, I am not 
moved too much by the fact that it allows that it might happen (or 
even, as in the case of the 12 drawers, that in some situations it is in 
some sense likely to happen) that the inaccuracy increases after con
ditionalization, I would take it as its real flaw if it allowed situations 
in which after conditionalization the inaccuracy increased whatever the 
actual world was. However, I was unable to find such examples for any 
of the inaccuracy measures discussed here, and I conjecture they do not 
exist. For the particular case of partitions, the case is already settled:

Fact 13 . There are no probabilistic mass vectors p and q such that q is ob
tained from p via conditionalization and B(p) < B(q), regardless of the choice 
of the actual world wj.

(The conjecture was mine, and it has been recently shown to be true by 
Michał Tomasz Godziszewski; we are working on a joint paper on this 
and similar issues.)

In m y opinion, Fact 13  acts as a sort of "sanity check" for the Brier 
Score: it is not such a bad measure of the value of one's credal state 
that it would permit conditionalization to be detrimental to that value, 
regardless of what the actual world is.

6.2. For: strengthening the arguments 

from the O ught-Can Principle

At this point the reader might be of the belief that the QUM is not 
the ideal belief update method, and— despite the arguments from the 
previous section—have some doubts whether the Brier Score is in 
general a good w ay of assessing the value of an agent's credal state.

Among the most extensively developed arguments for using quad
ratic inaccuracy measures are the three offered in Leitgeb and Pettigrew
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(2010a).3 If these lead to the QUM, and that method is inadequate, per
haps something is wrong with them? We w ill study this in this section. 
Examining the first two arguments w ill actually strengthen them (that 
is, we w ill arrive at the same conclusion from weaker assumptions), 
while after studying the third one I w ill propose an open question.

The arguments to be discussed are mathematical theorems inter
preted in the context of the following two principles (Leitgeb and 
Pettigrew (2010a), p. 209):

Ought-Can Principle (OCP): A  norm should not demand any
thing of an agent that is beyond her epistemic reach.

Accuracy: A n epistemic agent ought to approximate the truth. 
In other words, she ought to minimize her inaccuracy.

The OCP goes back, arguably, to Kant (but see Stern (2004)); for a 
modern discussion see for example Vranas (2007). The norm of Accu
racy is fleshed out in greater detail in Joyce (1998, p. 579).

The arguments given by Leitgeb and Pettigrew claim that if inaccu
racy measures other than quadratic ones are used, in some situations 
the agent might end up facing a dilemma. That is, it is possible she 
w ill end up in a situation in which there are two reasonable w ays of 
proceeding towards minimizing her inaccuracy which give different 
answers. Then, minimizing inaccuracy w ould be indeed "outside the 
epistemic reach" of the agent and the OCP would not hold. Assuming 
we are not satisfied with quadratic inaccuracy measures, at this point a 
reasonable conjecture would be, then, that the formal conditions which 
are to follow from the O CP are too stringent. Can we properly relax 
them so that more inaccuracy measures are admissible?

3 Note also the recent book Pettigrew (2016), w ith  a general argum ent for such 
inaccuracy m easures appealing to som e features of Bregm an Divergences. I have to 
leave discussing this for the future.
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6.2.1. The framework and the shared assumptions

For this chapter to be self-contained, and specifically so that the theo
rems make sense to the reader, I need to review the particulars of the LP 
framework in a more detailed manner than in Chapter 5. A ll definitions 
in this subsection are taken from Leitgeb and Pettigrew (2010a), and 
the page numbers given refer to that paper unless specified otherwise.

A s before, assume we are given a finite set W of possible worlds. 
Each possible world w j is identified with the ith unit vector in R n, 
that is, with a vector consisting of 0s and a single 1 in the ith place. 
Belief functions are mappings of the form b : P(W) ^  R + . Bel(W) is the 
set of all belief functions (note that no assum ption of probabilism is 
made). Global belief functions are m appings of the form bglo : W ^  R + . 
Belglo(W) is the set of all global belief functions.

Inaccuracy measures belong to one of two types, local or global, 
depending on whether they measure the inaccuracy of a credence in a 
specific proposition (given its truth value), or the inaccuracy of a whole 
belief function (from the perspective of a possible world), respectively. 
So, a local inaccuracy measure is a function I : P(W) x W x R +  ^  R + . 
I (A, w, x) is a measure of the distance of x from x A (w), the truth value 
of A at w. In contrast to this, a global inaccuracy measure is a function 
G : WxBel(W) ^  R + . G(w, b) is a measure of the inaccuracy of a belief 
function b at world w.

Notice that since no assumption of probabilism is made (in fact, 
giving another justification for it is one of the aims of that paper), it 
is not obvious that the two types of inaccuracy measures are equally 
useful. Given a possible world, a global inaccuracy measure w ill give 
us the same verdict for all nonprobabilistic and the single probabilistic 
belief function compatible with a given bglo, since global belief functions 
encode the agent's credences only in the singleton propositions. For 
this reason, one could claim that in cases in which local and global 
inaccuracy measures disagree, the local one should be given priority. 
It turns out that this is not the w ay to go: as proven at the very end 
of Leitgeb and Pettigrew (2010b), the norm of minimizing expected 
local inaccuracy cannot be satisfied in some quite natural situations (in 
which minimizing expected global inaccuracy is achievable). This fact
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somewhat offsets the just mentioned advantage that local inaccuracy 
measures seem to have over global ones. Therefore, in this section we 
will be treating local and global inaccuracy measures as philosophically 
on a par.

In view  of the Accuracy norm, in response to incoming evidence 
which might influence the set E of worlds epistemically possible for 
the agent and entail constraints on belief functions, the agent with the 
current belief function b should adopt a credence in a proposition (in 
the local case) or a belief function (in the global case) which minimizes 
expected inaccuracy, defined as follows:

Definition 16  (Expected local inaccuracy, p. 206): Given a local inaccu
racy measure I, a belief function b, a degree of credence x, and propositions 
A, E ç  W, we define the expected local inaccuracy of degree of credence 
x in proposition A by the lights of b, with respect to I, and over the set E of 
epistemically possible worlds as follows:

LExpb(I, A, E, x) =  b({w})I(A, w, x).
w6E

Definition 17  (Expected global inaccuracy, p. 206): Given a global inac
curacy measure G, belief functions b and b ', and a proposition E ç  W, we 
define the expected global inaccuracy of b ' by the lights of b, with respect 
to G, and over the set E of epistemically possible worlds as follows:

G Expb(G ,E ,b ') =  ^  b({w})G(w,b').
w6E

The key claim of Leitgeb and Pettigrew (2010a) is that the only "legi
timate" inaccuracy measures—that is, the only measures which avoid 
certain problems when applied in the context of norms dictating that 
when updating her belief function the agent should minimize expected 
inaccuracy as defined above—are quadratic ones:

Legitim ate inaccuracy measures (p. 218): The only legitimate
inaccuracy measures are quadratic functions of lxA (w) — x| (in 
the local case) or ||w — b glo || (in the global case).
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As already mentioned, the first two arguments for this claim follow 
the same structure. A  situation is proposed in which there are two 
methods of calculating the inaccuracy of a belief function, none of which 
is clearly preferable. These methods lead to numerically different results. 
Given that, the agent (supposedly) ends up in an epistemic dilemma, 
and thus the fram ework violates the OCP. A  theorem is proven that 
a condition blocking this unwelcome consequence necessitates that 
quadratic inaccuracy measures are used.

We will discuss the two arguments in the next subsections. However, 
we should first state the four shared assumptions of these arguments 
(below, the expression "shared assumptions" refers to these four):

Local N orm ality and Dominance (p. 219): If I is a legitimate 
inaccuracy measure, then there is a strictly increasing function 
f  : R +  ^  R +  such that, for any A C W, w e W, and x e R + ,

I (A, w, x) =  f  ( Ix a  (w) x|).

G lobal N orm ality and Dominance (p. 219): If G is a legitimate 
global inaccuracy measure, then there is a strictly increasing 
function g : R +  ^  R +  such that, for all worlds w e W and belief 
functions b e Bel(W),

G(w, b) =  g(||w — b gio ||).

The Normality and Dominance conditions require sim ply that inaccu
racy be nonnegative and increase with the distance from truth if the 
distance is understood as the absolute value of the difference, or the Eu
clidean norm. (I have to note here that Pettigrew currently believes that 
these assumptions already push us too far towards the intended conclu
sion regarding the quadratic inaccuracy measures— see the discussion 
of Theorem 3.2.2 in Pettigrew (2016).)
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Local and G lobal Com parability (p. 220):

1. If I (A, w, x) =  f(lxA (w) — x|) is a legitimate local inaccu
racy measure, then G(w,b) =  f(||w — bglo||) is a legitimate 
global inaccuracy measure.

2. If G(w,b) =  g(||w — bglo||) is a legitimate global inaccuracy 
measure, then I(A ,w ,x) =  g(lxA (w) — x|) is a legitimate 
local inaccuracy measure.

Assum ing the previous two conditions, note that the functions f  and 
g used in the Com parability condition are single argument functions 
from R + . That is, the functions are "oblivious" of the dimensions of 
the space containing the propositions involved, and so should either be 
fit for defining both local and global inaccuracy measures, or not fit for 
defining either.

M inim um  Inaccuracy (p. 220):

1. If I (A, w, x) =  f(lxA (w) — x|) is a legitimate local inaccuracy 
measure, then f(0) =  0.

2. If G(w,b) =  g(||w — bglo||) is a legitimate global inaccuracy 
measure, then g(0) =  0.

The M inimum Inaccuracy condition sim ply conventionally sets the 
minimum of the inaccuracy function: in the best epistemic situation, 
when your credences match the real truth values, your inaccuracy 
should equal 0.

6.2.2. The argument from the "Discursive Dilem m a"

The first argument (p. 222) concerns the situation in which, poten
tially, the sum of locally measured inaccuracies of an agent's credences 
regarding singleton propositions mismatches the globally measured
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inaccuracy of the whole measured function. That is, the inaccuracy 
of the global belief function bglo does not equal the sum of local inac
curacies of b({wi}). Leitgeb and Pettigrew suggest that this w ould be 
analogous with some problems in judgment aggregation, and specifi
cally the "Discursive Dilemma". The term is due to Pettit (2001), who 
notes that jurisprudential circles refer to it as the "doctrinal paradox".

One w ay of looking at the problem is the following. Assum e you 
want to establish whether some propositions are true or false by taking 
a majority vote in a group consisting of an odd number of experts. 
Assum e, also, that the experts adhere to classical logic. Suppose you 
are particularly interested in a certain compound proposition a. Then 
the information about the majority verdicts on all atomic propositions 
is not enough for you to infer the majority verdict on a. W hat's more, 
classical logic may view the majority verdicts on the atomic components 
of a  as contradicting the majority verdict on a. Giving this a somewhat 
different spin, we can say that majority verdicts regarding premises do 
not in general entail majority verdicts about conclusions.

Pettit and Leitgeb and Pettigrew use a structurally identical exam
ple.4 Three judges have to decide whether the accused is guilty or not. 
Assum e that the accused is to be convicted iff propositions P and Q 
are true. Here are the judges' beliefs regarding P, Q, and whether the 
accused should be convicted, and also the verdict of the majority:

P Q convict?
Judge 1 True True yes
Judge 2 True False no
Judge 3 False True no
Majority True True yes /  no

As we can see, "the majority", considered as an "aggregated" single 
agent, has trouble w ith classical logic, since the majority verdicts on 
P and Q are positive, while the majority verdict on the conjunction is 
negative. This, of course, in itself is not a problem—the issue becomes

4 Pettit continues the discussion w ith  other cases, including for exam ple 
disjunction.
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troubling w hen we want to decide whether the convict should be 
sentenced.

(Not being an expert in jurisprudential disputes, I can offer an 
uninformed opinion I feel quite strongly about, namely, that—pragma
tically—this is not such a big problem at all: the only thing to be done 
is to clearly specify the conditions for the conviction. If another agent is 
supposed to decide on the basis of the three opinions of the Judges, then 
that agent may care only about the Judges' majority verdicts regarding 
P and Q, and construe the verdict about P Л Q herself. If, however, we 
w ish to say that the conviction is to be decided solely on the basis of 
the majority verdict regarding P Л Q, then we may not care about the 
majority verdicts regarding the constituent propositions. Still, I agree 
that—conviction or no conviction—we might face a lingering sense of 
moral doubt.)

That example serving as a backdrop, Leitgeb and Pettigrew claim 
that if m easuring the global inaccuracy of a belief function yields a 
different result than summing up the local inaccuracies of credences 
that belief function offers regarding the singleton propositions, then 
the agent in question faces an irresolvable dilemma, and so, if the 
framework allows such cases, then it violates the Ought-Can principle. 
Before proceeding with the formal analysis of a strengthening of Leitgeb 
and Pettigrew's argument, I have to note two issues I have regarding 
that idea.

First, it is not clear to me that the aforementioned agent w ill have 
a dilemma at all. True, she w ill arrive at different conclusions if she 
attempts to calculate what would appear to be the same thing—that is, 
the inaccuracy of a set of credences regarding atomic propositions—in 
two ways. Still, not only is it not obvious that, epistemically, a global 
belief function and a set of credences in singleton propositions are "the 
same thing", but also the different values at which the agent arrives 
may have no bearing regarding belief update problems. That is, the 
two procedures might recommend the same w ay of minimizing one's 
accuracy.

Second, there is a bijection between the set of all global belief func
tions on some finite W and the set of sets of credences in all singleton 
propositions from P(W): it is obvious how to go from one to the other
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and back. In contrast to that, a "m ajority belief function" contains less 
information than the set of the belief functions of the judges. If there is 
some better way of describing the analogy, unfortunately I do not see it 
forthcoming.

Putting these doubts aside, let us suppose that the analogy holds and 
so the agent in the aforementioned situation may really face a dilemma 
if the set of legitimate inaccuracy measures is not sufficiently restricted. 
Leitgeb and Pettigrew show that any possibility for the occurrence of 
such a dilemma is blocked by the following additional assumption:

Agreem ent on Inaccuracy (p. 223): Suppose I is a legitimate local 
inaccuracy measure. Then, by Local N orm ality and Dominance, 
there is a strictly increasing function f  : R +  ^  R +  such that 
I(A ,w ,x) =  f(IxA (w) — x|). Further, by Local and Global Com pa
rability, G(w,b) =  f(||w — bglo||) is a legitimate global inaccuracy 
measure. Therefore, the following must hold: if b is a belief function 
and w i is a world,

n
G(wi,b) =  Y _  I({wj}, w i, b({wj})). 

j=i

That is,
n

f(||wi — bglo||) =  Y _  f(IX{Wj}(wi) — b({wj})|). 
j = i

Leitgeb and Pettigrew then show that with the assumption in place, 
the only legitimate inaccuracy measures are quadratic functions:

Theorem (Theorem 3 from Leitgeb &  Pettigrew (2010a)). The follow
ing propositions are equivalent:

1. Function f  is strictly increasing, and for all belief functions b and 
worlds w i,

n
f(||wi — bgloll) =  Y _  f(IX{Wj}(wi) — b({wj})|). 

j = i

2. There is a A e R > 0 such that, for all x e R + , f(x) =  Ax2.
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However, is imposing Agreement on Inaccuracy the w ay to go to 
avoid the Discourse-like dilemmas?

Remember that the norm of Accuracy says that the agent should 
minimize the (expected) inaccuracy. The agent w ill not really face any 
such dilemma if the two w ays of calculating inaccuracy impose the 
same ordering on the considered belief functions, thus offering the 
same minima; that their verdicts should be num erically identical is 
unnecessary. Maybe it is precisely this addition which allows Leitgeb & 
Pettigrew to derive their intended conclusion?

Let us consider the following apparent weakening of the condition, 
which w ill require only that the two w ays of calculating inaccuracy 
agree on their verdict when asked which of some two belief functions is 
more inaccurate:

Agreement* on Inaccuracy: Suppose I is a legitimate local in
accuracy measure. Then, by Local Norm ality and Dominance, 
there is a strictly increasing function f  : R +  ^  R +  such that 
I(A , w , x ) = f (Ix A(w ) — x |). Further, by Local and Global Com pa
rability, G (w , b ) = f (||w — b glo ||) is a legitimate global inaccuracy 
measure. Therefore, the following must hold: if b 1 and b 2 are belief 
functions and w j is a world,

I K  — b J lo |) <  f (I K  — b 2lo | 

iff

X f ( I X { wj } (Wj ) — b 1 ({w j })|) <  ^ K ( I X { Wj } ( w i ) — b 2 ({w j })|). 

j=1 j=1

n n

Agreement* on Inaccuracy ensures that both w ays of calculating 
inaccuracy will arrive at the same minima, or at the same minimum—if 
it is unique— and so the OCP would not be violated. In other words, 
Agreement on Inaccuracy requires that the two w ays of calculating 
inaccuracy exactly coincide in values, which, according to Theorem 3 
from Leitgeb and Pettigrew (2010a), leaves only the quadratic func
tions as legitimate inaccuracy measures. In contrast, Agreem ent* on 
Inaccuracy requires only that the two ways impose the same ordering on
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the considered belief functions. A  legitimate question is, then, whether 
using the apparently weaker condition leaves us with more than just 
quadratic functions.

It turns out that the answer to this question is negative, due to the 
following theorem:

Theorem 5. Suppose that the function f  satisfies Local and Global Normality 
and Dominance, and Local and Global Comparability. Then the following 
propositions are equivalent:

1. Function f  is strictly increasing and satisfies Agreement* on Inaccu
racy;

2. there is a A e R>o such that for all x e R + , f  (x) = Ax2.

Proof. To show our Theorem 5 we w ill use a modified version of the 
argument from Leitgeb and Pettigrew (2010a, p. 231). We w ill argue 
that the following conditions are equivalent:

i) Function g is strictly increasing and, for all belief functions b and 
worlds w i e W,

g(I K -bllo l l 2) ̂  g(I K -b2lo l l 2) 
iff

n n
Y _  g(IX{Wj }(wi) - b 1 ({wj})|2) < Y _  g(IX{Wj }(wi) - b2({wj})|2); 
j=1 j=1

ii) There is a A e R > 0 such that for all x e R + , g(x) = Ax.

That ii) implies i) follows straight from the third paragraph of the 
proof Leitgeb and Pettigrew give on p. 2 3 1 of their paper. Since, as 
they show, an increasing function satisfies Agreement on Inaccuracy, 
from which Agreem ent* on Inaccuracy follows, then an increasing 
function has to satisfy Agreement* on Inaccuracy also. (For a A e R > 0 
the function g (x) = Ax is of course increasing.)

We now turn to showing that i) implies ii). For a reductio, suppose, 
then, that g satisfies i) but not ii), and so that g is increasing but not
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linear. It follows that there exist four real numbers a, b, c, and d such 
that b — a =  d — c but g(b) — g (a) =  g(d) — g(c). Notice that g(b +  c) =  
g(a +  d), since g is a function. We w ill show that g(b +  c) =  g (a +  d), 
thus obtaining a contradiction.

Without loss of generality let us assume that g(b) — g (a) >  g(d) — 
g(c) (the proof for the other direction is analogous). Set W as {w i, w 2}. 
Define the two belief functions b 1 and b2 on the singletons as follows: 
b 1 ({wi}) =  1 — y ü , b 1 ({W2}) =  Vd, b2({wi}) =  1 — Vb, b2({w2}) =  1 — yc . 
Therefore the functions b ̂  and b ^  are defined; we see that a +  d =  

||wi — b ^ J 2 and b +  c =  ||wi — b2 o||2. Noting that:

a =  |X{wi }(w i ) —bi ({wi})|2,

' i  "

d =  |X{w2 }(wi ) —bi ({w2})|2,

0

b =  | X{wi }(w 2)—b2({wi})|2,

0

c =  | X{w2 }(w2) —b2({w2})|2

1

we see that from g(b) — g(a) >  g(d) — g(c), that is, from g(a) +  g(d) < 
g(b) +  g(c), using i) we arrive at g(a +  d) < g(b +  c), contradicting our 
previous assertion that g(b +  c) =  g(a +  d). □

Note that, in contrast to the proof Leitgeb and Pettigrew give for 
their result, we did not need to appeal to Cauchy's theorem about the 
only additive monotone functions on the reals being linear.

To sum up, in this subsection we have actually strengthened the argu
ment from the "Discursive Dilem m a" given in Leitgeb and Pettigrew 
(2010a) for limiting the set of legitimate inaccuracy measures to only 
the quadratic ones. Still, if we are not convinced the dilemma is a real 
one, or that it translates properly to the geometric inaccuracy-based 
epistemological framework we are dealing with, we might not be per
suaded. Leitgeb and Pettigrew offer two more arguments which w ill 
be discussed in the two following subsections.
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6.2.3. The argument from separability of global inaccuracy

The second argument uses the notion of a projection of a vector 
( a i , . . . ,  a n) on an axis j (projj((ai , . . . ,  an))) or a set of axes D 
(projD ( ( a i , . . . ,  an))). Suppose 1 < j < n; D Ç {1, . . . ,  n}; ( a i , . . . ,  an) € 
Rq . Then:

Suppose a world w j is given. According to Leitgeb and Pettigrew 
(p. 224), there seem to be5 two ways of measuring the inaccuracy of the 
agent's global belief function (a i, . . . ,  an ), which use G or a combination 
of G and I:

•  simply G(wj, ( a i , . . . ,  an ));

•  for any wj with i =  j, take

In the second case we consider the subspace spanned by W — {w j} and 
divide the initial global belief function into two parts: a projection on 
that subspace, the inaccuracy of which we calculate using a global inac
curacy measure, and the credence in the singleton {w j}, for calculating 
the inaccuracy of which we use a local inaccuracy measure. We then 
sum the two numbers.

If these two w ays of calculating inaccuracy give different results, 
then, supposedly, a dilemma might arise for the agent. Leitgeb and Pet
tigrew propose blocking this possibility using the following condition:

Separability of G lobal Inaccuracy (p. 225): Suppose I is a legit
imate local inaccuracy measure. Then, by Local N orm ality and 
Dominance, there is a strictly increasing function f  : R +  ^  R +  
such that I (A, w, x) =  f(lxA (w) — x|). Further, by Local and Global 
Comparability, G(w,b) =  f(||w — b glo||) is a legitimate global inac

p ro jj((a i,. . . ,  an)) =  ( a i , . . . ,  a j_ i, 0, aj + i , . . . ,  an)

I({wj}, w i, aj) +  G(projj(wi), projj ((a i, . . . ,  an ))).

5 Regarding the "seem " see below.



curacy measure. Then, the following must hold: for all w j, wj e W 
with i =  j,

G(wj, ( a i , . . . ,  an)) =  f(||wi — ( a i , . . . ,  an)||) =

=  f (lXwj (wt) — aj |) +  f (||projj (w j) — projj ((a i , . . . ,  an )) ||).

It is again shown (Theorem 4, p. 231 of Leitgeb and Pettigrew (2010a)) 
that together with the shared assumptions presented above, this entails 
the only legitimate inaccuracy measures being quadratic functions.

But it is not evident what kind of a dilemma is made possible by 
the difference in value of the two ways of calculating inaccuracy.

First, we might agree that there are in general two w ays of mea
suring inaccuracy: the global one and the local one. It is not evident 
that any combination of the two, and in particular, the combination the 
authors propose, should be equally good. I believe some argument pro 
should be given.

Second, it is again a priori possible that the w ays do not exactly 
coincide in values, but give the same answers to all questions of the 
sort "is function bi better than b2 ?" or, in general, "which belief func
tion^) from some given set minimize (expected) inaccuracy?". A nd 
so, this apparent weakening of the Separability Condition might seem 
reasonable:

166 Chapter 6: Regarding the Brier Score

Separability* of G lobal Inaccuracy: Suppose I is a legitimate local 
inaccuracy measure. Then, by Local N orm ality and Dominance, 
there is a strictly increasing function f  : R +  ^  R +  such that 
I (A , w , x ) =  f (lx A (w ) — x |). Further, by Local and Global Com pa
rability, G (w , b ) =  f (||w  — b glo ||) is a legitimate global inaccuracy 
measure. Then, the following must hold: for all w t e W  and b i , 
b 2 e B e t (W ):

f (||w t — b Jlo|) <  f (llw t — ^loll) 

iff
for any D , E c  {1, . . . , n }, i  e D  U E :



Y _  f ( IXwj (w i ) — b i ({w j} ) |) +  f ( | |p r o jD (Wi ) — p r o j d ( b  ilo ) II ) <  
j€D

<  ^ f (IXwj (Wi) — b 2({w j})|) + f (|p r o jE(Wi) — p r o jE (b l̂o) I ). 
j€E
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The original Separability condition deals with a single axis. But since it 
requires the equality of the inaccuracy values as calculated in the two 
ways, it generalizes to any finite set of axes. In the case of Separability*, 
though, since we only require the inequality, we need to be more general 
from the start.

Due to the following theorem, the apparent weakening is again, 
however, only really apparent:

Theorem 6. Suppose that the function f  satisfies Local and Global Normal
ity and Dominance, Local and Global Comparability, Minimum Inaccuracy. 
Then the following propositions are equivalent:

i) Function f  satisfies Separability* of Global Inaccuracy;

ii) there is a A e R > 0 such that, for all x  e R + , f ( x )  =  Ax2.

Proof. Since Separability* of Global Inaccuracy is weaker than Separa
bility of Global Inaccuracy, and we know from Theorem 4 from Leitgeb 
and Pettigrew (2010a) that quadratic functions satisfy the latter, then 
we know that quadratic functions satisfy the former.

A s for whether i) implies ii), assume that f  satisfies Separability* 
of Global Inaccuracy. Choose an i  e {1, . . . , n } and define D  =  E  =  

{1, . . . , n } \ {i }. Notice that f  satisfies Agreement* on Inaccuracy, and so, 
by Theorem 5, is a quadratic function. □

It turns out, then, that also in this case we have strengthened one of 
Leitgeb and Pettigrew's arguments for exclusively using the quadratic 
functions as legitimate inaccuracy measures.



6.2.4. The argument from directed urgency

Leitgeb and Pettigrew propose (p. 226) that the agent should be able to 
assess:

•  the urgency of abandoning a given credence by the lights of some 
belief function;

•  the direction in which that credence is to be changed;

•  the relative urgencies of abandoning different credences /  belief 
functions.

These would be provided by the derivative of, say, LExpb(I, A, E, x) 
with respect to x. We need to assume such derivatives exist:
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Continuous D ifferentiability (p. 226):

1. If I(A ,w ,x) =  f(lxA (w) — x|) is a legitimate local inaccuracy 
measure, then f  is continuously differentiable on R + .

2. If G(w, b) =  g(||w — bglo||) is a legitimate global inaccuracy 
measure, then g is continuously differentiable on R + .

According to Leitgeb and Pettigrew, the values of these derivatives 
should again coincide:

Agreem ent on Directed Urgency (p. 228): If I (A, w, x) =  f(lxA (w) — 
x|) and G(w,b) =  f(||w — b glo||) are legitimate local and global 
inaccuracy measures, respectively, and f  is differentiable, then, for 
all belief functions b and b ' and all worlds wj e W,

dx LExp b(P ^  x) =

=  d “  GExpb(G, E, (b' ({w i),. . . ,  b '({w j_i}), x, b '({w j+ i}),. . . ,  b '({wn})).

As the reader might anticipate at this point, Leitgeb and Pettigrew 
show (Theorem 5, p. 232) that adopting this entails that the legitimate
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inaccuracy measures are quadratic functions. However, we should 
again ask: w h y should the agent be interested in actual values of the 
derivatives? Does the value "7 "  mean the change needs to be urgent, or 
not?

The epistemic worth of the derivatives (apart from their signs) 
seems to lie in their relative value. But how exactly should we interpret 
dXLExpb(I, {wj}, E, x), if x =  b({wj})?

•  If b is our current belief function: this is our urgency of changing 
our credence in {wj} had it been different (or what we believe to 
be the urgency with which somebody else should change their 
credence in {wj});

•  if b is not our current belief function, but x is our current credence 
in {w j}: this is our urgency of changing our credence in {w j} had 
our belief function been not as it actually is.

The point that what can be useful are the relative values of the de
rivatives already suggests a similar transformation of the condition 
proposed by Leitgeb and Pettigrew as in the previous cases. However, I 
would like to consider a related but different question. Assume we are 
to adopt a new belief function b but we cannot do it instantaneously 
and need to proceed proposition by proposition. Which ones should 
we start with? A  similar case w ould be a situation in which we want 
to give advice to another person regarding in which propositions she 
should first update her credence.

It seems reasonable that for two propositions {w j} (with credence r) 
and {wk} (with credence s), we should, then, compare (the absolute 
values of)

dx LExpb|' - E- x)L

with
dxLExpb(I, {wk}, E, x)

and the verdict should be the same had we used GExpb. This motivates 
the following condition:
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Agreement** on Directed Urgency: If I(A ,w ,x) =  f(lxA (w) — x|)
and G(w,b) =  f(||w — bglo||) are legitimate local and global inac
curacy measures, respectively, and f  is differentiable, then, for all 
belief functions b and b ', worlds w j, w k e W, and r, s e R + ,

dx LExpb (I, {wj}, E, x)

iff

— LExpb (I, {wk}, E, x)

d xG Expb(G,E, (b'({wi ) , . . . , b '({w j— }),x, 

b ' ({w j+ i}),. . . ,  b ' ({wn}))

dxG Expb(G, E, (b '({w i) , . . . ,  b ' ({wk_ i }), x, 

b ' ({wk+ i} ) ,. . . ,  b ' ({wn}))

x=r x=s

x=s

One could certainly consider variants of this condition, e.g., ones 
not referring to absolute values.

While I believe that m y condition is better motivated than the one 
proposed by Leitgeb and Pettigrew, I w as not able to obtain any hard 
results regarding the issue of the set of legitimate inaccuracy measures 
it delineates. Therefore, I would like to propose the following open 
problem:

Problem 1. Which functions satisfy the shared assumptions, Continuous 
Differentiability and Agreement** on Directed Urgency?

*

In this section I have discussed the 3 arguments Leitgeb and Pettigrew 
give for using exclusively quadratic functions as inaccuracy measures. 
I believe I have strengthened the first two arguments, but the authors 
themselves think the last one is the best (p. 226). I suggest that an answer 
to Problem 1 , according to which measures other than quadratic ones 
would also be admitted as legitimate, could, then, trump the previous 
arguments. The answer to that problem, though, remains to be found.



Conclusion: formal 
justificational pluralism

It is prima facie reasonable to think that the same method of evaluating 
the value of one's belief function, e.g., measuring its inaccuracy, should 
be used when arguing for both synchronic and diachronic norms of 
rationality. For example, the same measure of accuracy could be ap
pealed to when arguing for Probabilism, which is a synchronic norm, 
and, in the context of a minimization argument, used when backing up 
Conditionalization, which is a diachronic one.

However, the last two chapters suggest a different route. While I 
believe some of the recent arguments against the Brier Score—the ones 
using so-called "elim ination counterexamples"— do not hold water, I 
think I have also strengthened some arguments for using it as a measure 
of inaccuracy. This seems to suggest that the Brier score is a legitimate 
tool for arguing for synchronic norms of rationality.

Chapter 5, though, pulls in the opposite direction. I tried to show 
there that applying (a form of) the Brier Score to several update prob
lems leads to deficient conclusions and that using the Inverse Relative 
Entropy fares better (also in comparison with employing Relative En
tropy) with regard to all the problems considered. This suggests that 
until a belief update problem is proposed to which MIRE gives a clearly 
bad answer, it is reasonable to consider it a viable tool for belief update 
problems. However, in light of the results from Section 6.2, I do not 
w ish  to hold that the local logarithmic scoring rule (the one minimiz
ing which is equivalent to using MIRE) is the w ay to measure the 
inaccuracy of one's credence function in the context of arguments for
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synchronic norms. It would seem to follow that I should not claim that, 
if an inaccuracy measure is settled upon, then answers to belief update 
problems should appeal to minimizing the expected inaccuracy thusly 
measured. One simple reason for this may be that since a belief update 
problem asks for revision of your prior, then calculating the expected 
inaccuracy from the perspective of that prior— the one you know you 
need to abandon in order not to run afoul of the evidence you have 
gained— does not seem too reasonable. However, I do not see a clear 
alternative which would be generally preferable.

The failure of the measure supported by arguments appealing to 
the intended features of inaccuracy measures from the last section in 
application to belief update problems (Chapter 5) suggest the following 
position with regard to epistemic norms of credence, which I propose 
be labelled as formal justificational pluralism: it is possible that methods 
which may be used w hen arguing for synchronic norms are different 
from those which m ay be used when arguing for diachronic norms. I 
suggest using the Brier Score for synchronic norms and Minimizing 
Inverse Relative Entropy for diachronic ones.
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