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1 Introduction

Asymptotic safety provides an exciting possibility of formulating a nonperturbative and

background independent theory of Quantum Gravity. The idea was put forward in a sem-

inal paper of S. Weinberg [1] who proposed to extend the notion of renormalizability into

the nonperturbative regime defined at non-Gaussian ultraviolet fixed point(s) (UVFP) of

renormalization group trajectories. If the renormalization group flow originating in the

UVFP lies (in an abstract space of coupling constants) on a hypersurface of finite dimen-

sion then only a finite number of (important) couplings are attracted to the UVFP. Such

couplings could in principle be determined by a finite number of experiments making the

whole formulation finite and predictive for arbitrarily large energy scale. As a result it might

be possible to overcome the well-known problem of (perturbative) nonrenormalizability of

gravity treated as a conventional quantum field theory (QFT) expanded around any fixed

background geometry [2, 3]. There are known examples of perturbatively nonrenormal-

izable but asymptotically safe QFTs [4–6], and for gravity the Weinberg’s conjecture is

strongly supported by functional renormalization group studies [7–12] which provide grow-

ing evidence that gravitational UVFPs really exist. A key difficulty remains: in order to

investigate an asymptotically safe theory in full-glory one is forced to apply nonperturbative

tools. Such tools are provided in the research program of Causal Dynamical Triangulations

(CDT) [13] which is an attempt to quantize gravity based on a latice regularization of the

nonperturbative path integral

ZQG =

∫
DM[g] eiSHE[g] (1.1)

over spacetime geometries [g], i.e. equivalence classes of metrics g with respect to dif-

feomorphisms, and SHE is the classical Einstein-Hilbert action. To give precise meaning

to expression (1.1) CDT introduces a lattice regularization by constructing (continuous)
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spacetime geometries from four-dimensional simplicial building blocks. It is assumed that

spacetime inside each such block is flat and the nontrivial geometry depends on how these

blocks are glued together (e.g. a local deficit angle in D dimensions is encoded in the num-

ber of simplices sharing a given D-2 dimensional subsimplex). By gluing simplices together

one obtains piecewise linear simplicial manifolds, also called triangulations, and the formal

path integral (1.1) is defined as

ZCDT ≡
∑
T
eiSR[T ] , (1.2)

where the sum is over triangulations T , and SR is the Einstein-Hilbert action for a tri-

angulation obtained following Regge’s method for describing piecewise linear simplicial

geometries [14].

A theory of quantum gravity should describe spacetime at the Planck scale, where one

may expect large fluctuations of the geometry. Such fluctuations could in principle lead

to changes in spatial topology. Therefore there is a longstanding discussion if in the path

integral (1.2) one should allow for topology changes and, if so, which topologies should be

taken into account. Including topological fluctuations was considered in the easiest case of

two-dimensional toy models in the Euclidean formulation [15]. It was shown that in this

case a naive understanding of the topology of the Universe breaks down and if we want

to stay in a formalism similar to QFT we must suppress such fluctuations. The problem

is that there are many more geometries of complicated topology than there are of simple

topology and any sum over geometries is dominated by these complicated topologies and

plainly divergent.1 The problem is somehow eased in the Lorentzian formulation where

one is able to define two-dimensional models with spatial topology fluctuations but at

a cost of restricting the class a geometries taken into account to those causally ‘well-

behaved’ [16–19]. In higher dimensions the situation becomes much worse, and in particular

in four dimensions the problem is not even well posed as four-dimensional topologies are

not classifiable. Therefore in CDT one adopts a pragmatic point of view by considering

only spacetimes admitting a global proper time T foliation into spatial hypersurfaces Σ

of fixed topology. This requirement is compatible with imposing an additional causal

structure of global hypebolicity on admissible geometries (triangulations) which enter the

path integral (1.2), such that each triangulation T is topologically M = Σ× T . The idea

of an imposed global time-foliation also appears in Hořava-Lifshitz gravity [20], which is

an attempt to define the UV completion of general relativity by introducing anisotropic

scaling of space-time coordinates in the high-energy regime. It has been actually shown

that the continuum limit of two-dimensional CDT is compatible with the two-dimensional

projectable Hořava-Lifshitz gravity [21, 22], and that both approaches share many features

in three [23–26] and four [27–29] space-time dimensions.

In four-dimensional CDT, each spatial layer of integer (lattice) time t is constructed

from equilateral tetrahedra with space-like links as. The neighbouring spatial layers at

t and t ± 1 are linked by four-(dimesional-)simplices, with additional time-like links at,

1The number of geometric configurations of a given genus h grows super-exponentially with h and the

resulting genus expansion of the path integral is not even Borel-summable.
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Figure 1. Visualization of the elementary building blocks of four-dimesnional CDT, the (4, 1)-

simplex (left) and the (3, 2)-simplex (right).

glued together in such a way that also all intermediate spatial layers between t and t ± 1

have the requested fixed topology Σ. One can show that the four-dimensional simplicial

complex obeying the CDT topological restrictions can be constructed from just two types

of building blocks (see figure 1), the (4, 1) simplex with 4 vertices (a tetrahedron) in time t

and one vertex in t±1, and the (3, 2) simplex with 3 vertices (a triangle) in t and 2 vertices

(a link) in t± 1. In this case the Einstein-Hilbert-Regge action takes a form [30]

SR = − (κ0 + 6∆)N0 + κ4
(
N(4,1) +N(3,2)

)
+ ∆ N(4,1) , (1.3)

where N(4,1), N(3,2) and N0 denote the total number of (4, 1) simplices, (3, 2) simplices and

vertices, respectively. The action includes three bare dimensionless coupling constants κ0,

∆ and κ4. κ0 is inversely proportional to the bare Newton’s constant, ∆ is related to the

ratio of the length of space-like and time-like links on the lattice (a2t = −α a2s, where α > 0 is

called the asymmetry parameter) and κ4 is proportional to the bare cosmological constant.

Such a formulation is coordinate-free (all geometric degrees of freedom are expressed

by topological invariants - lengths and angles) and nonperturbative (all possible triangula-

tions are included in the path integral (1.2)). It is also manifestly background independent

as there is no preferred triangulation put in by hand but macroscopic geometry emerges

dynamically from fluctuations. It is important to note that no ad hoc discreteness of space-

time is assumed from the outset, and the discretization appears only as a regularization of

the path integral (1.1). The finite length a of the links in a triangulation constitutes an

ultraviolet cutoff which is intended to be removed in the continuum limit a → 0, which

should be consistent with the perspective UVFP of the renormalization group trajectories.

In a lattice formulation, as CDT, the UVFP should appear as a phase transition of second

or higher order, where infinite correlation lengths enable one to go simultaneously with

the lattice spacing a → 0 and the linear lattice size L → ∞, such that physical lengths

aL remain constant and thus observable quantities expressed in physical units are kept
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fixed. Therefore analysis of the CDT phase structure and the order of the phase tran-

sitions constitute first steps in a quest for the ultraviolet limit (in CDT formulation) of

quantum gravity. At the same time it is very important to be able to correctly reproduce

the infrared limit compatible with classical Einstein’s general relativity.

This paper is organised as follows. After reviewing some technical details regarding

the numerical implementation in section 2 we summarize the state of the art of CDT in

section 3. In section 4 we define the order parameters and we explain how to study the CDT

phase structure. In section 5 we present the results of numerical simulations performed

with the spatial topology fixed to that of a three-torus. A discussion and a summary of

the results obtained in this work are presented in section 6.

2 How to perform numerical simulations

The study of the regularized path integral (1.2) in four spacetime dimensions requires

using numerical methods. This is possible by applying a Wick rotation of the proper time

coordinate from Lorentzian (real) time t(L) to Euclidean (imaginary) time t(E) = − it(L).
Such a Wick rotation is well defined in CDT due to the assumed spacetime foliation into

Cauchy hypersurfaces of constant proper time. The causal structure enables one to change

time-like links into space-like links by changing the asymmetry parameter α → −α and

accordingly the length of the time-like links becomes a2t = α a2s , α > 0. As a result the

four-simplices become parts of Euclidean space. At the same time one should change the

Lorentzian action S
(L)
R into the Euclidean action S

(E)
R = −iS(L)

R by analytically continuing

the bare coupling constants κ0, ∆ and κ4 from eq. (1.3), which are all analytic functions of

α in the lower half of the complex α plane.2 Consequently the path integral of CDT (1.2)

becomes a partition function of a statistical theory of random geometries

ZCDT =
∑
T (L)

eiS
(L)
R [T (L)] −−−−−→

α→−α
ZCDT =

∑
T (E)

e−S
(E)
R [T (E)] . (2.1)

One should keep in mind that the class of admissible (Euclidean) triangulations T (E)

which enter the partition function (2.1) keeps track of the imposed Lorentzian structure

by the proper time foliation constraint, and it is not the same as for Euclidean Dynamical

Triangulations (EDT) where such a constraint is absent. EDT have not been able to

correctly reproduce the suitable infrared limit [31–35] nor to define a continuum limit3 [37,

38], irrespective of the spacetime topology chosen [39]. The problem with EDT probably

lies in the fact that the formulation is Euclidean from the outset and thus the distinction

between space and time is lost and time has to be reconstructed dynamically, which leads

to its pathological behaviour. These problem seems to be cured in CDT, where time is

treated semi-classically.

2The functional form of the bare Euclidean Einstein-Hilbert-Regge action S
(E)
R is the same as for the

Lorentzian action S
(L)
R from eq. (1.3). Of course the form of κ0, ∆ and κ4 as functions of α is modified,

but anyway they are bare coupling constants and as such their functional dependence of the bare Newton’s

constant, cosmological constant and α is irrelevant.
3Authors of ref. [36] conjecture that a continuum limit may exist if bare coupling constants are fine-tuned

in a specific way.
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The above construction makes it possible to study the partition function (2.1) using

numerical Monte Carlo techniques. One starts from an arbitrary simple initial triangulation

(configuration of simplices), consistent with the requested fixed spacetime topology, and

updates its geometry using Monte Carlo moves. The moves are local (they create, delete

or reconstruct simplices in the closest neighbourhood of some randomly chosen place in a

triangulation), causal (preserve fixed spacetime topology as well as the foliation structure)

and ergodic (any triangulation obeying CTD topological restrictions is achievable from

any other triangulation by a sequence of moves). By using the Metropolis algorithm the

numerical code applies the moves in such a way that the system performs random walk

in the space of admissible triangulations and, after a thermalization period, statistically

independent triangulations T (E) are generated with probabilities consistent with Boltzman

weights ∝ exp(−S(E)
R [T (E)]). As a result one can use generated triangulations to estimate

expectation values or correlators of observables.

In a typical Monte Carlo simulation one sets the values of the bare coupling constants:

κ0, ∆ and κ4. Simulations show that for fixed values of κ0 and ∆ the number of triangu-

lations with a fixed lattice volume N4 = N(4,1) + N(3,2) is, to leading order, proportional

to exp(κc4N4), i.e. it grows approximately exponentially with N4. κc4 is a function of κ0
and ∆. Due to this entropic effect, and thanks to the fact that in the bare CDT ac-

tion (1.3) the κ4 is conjugate to N4, the leading behaviour of the partition function (2.1)

is Z(κ0,∆, κ4) ∝ exp((κc4 − κ4)N4) and the partition function is divergent for κ4 < κc4.

In numerical simulations it is more practical to fix the total lattice volume N4 and in such

a case one should also choose κ4 ≈ κc4(N4, κ0,∆).4 The volume is usually controlled by

introducing an additional volume fixing term to the bare action. In this work we use a

quadratic volume fixing5

SV F = ε(N(4,1) − N̄(4,1))
2 , (2.2)

which makes the total number of (4, 1) simplices oscillate around N̄(4,1), and the impact of

such volume fixing can easily be removed from the numerical data.

Finally, before starting the numerical simulations, one should choose the fixed topology

of spatial slices Σ and the length / boundary conditions for the proper time axis T . For

practical reasons the CDT simulations are usually done for a periodic time axis of fixed

length with ttot spatial slices, resulting in a global spacetime topologyM = Σ×S1. Most of

the previous results of CDT were obtained for the spatial topology of a three-sphere Σ = S3,

and in this article we focus on the spatial topology of a three-torus Σ = T 3 = S1×S1×S1.

Summing up, in the numerical simulations described below we set: M = T 3×S1, ttot =

40 or 4, ε = 0.00002, N̄(4,1) = 80000 or 160000 and we scan the parameter space spanned

by κ0 and ∆. For each data point we adjust κ4 to the critical value κc4(N̄(4,1), κ0,∆), see

figure 2, so we are effectively left with a two-dimensional parameter space: (κ0,∆).

4By performing simulations this way one in fact investigates the properties of Z(κ0,∆, N4) which is

related to Z(κ0,∆, κ4) by a Laplace transformation. One can investigate the infinite volume limit as well

as reconstruct Z(κ0,∆, κ4) from extrapolations of measurements done for different N4.
5Note that technically we fix N(4,1) instead of N4, but for fixed values of κ0 and ∆ the ratio N4/N(4,1)

is approximately constant and volume fixing method does not have much impact on the results.
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Figure 2. The critical surface κc4(κ0,∆) for fixed N̄(4,1) = 160000 and ttot = 4, measured in

spacetime topologyM = T 3×S1. Colors denote various phases of geometry described in section 5.

Figure 3. Phase diagram of CDT with spherical spatial topology.

3 State of the art

The key assumption of CDT is a choice of fixed spatial topology used in computer simu-

lations. Most of the numerical studies performed in the past were for the specific choice

of a three-sphere and time-periodic boundary conditions resulting in the global spacetime

topology M = S3 × S1. This particular choice led to many interesting results, including

discovery of four distinct phases of spacetime geometry, historically called A, B, CdS [28, 40]

and Cb [41, 42], see figure 3.

In phase A spacetime disintegrates into many causally uncorrelated baby universes

with very short proper time extension, see figure 4 where the typical spatial volume profile
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Figure 4. Typical volume profiles nt ≡ N(4,1)(t) in various CDT phases in spherical spatial

topology Σ = S3.

nt ≡ N(4,1)(t) (i.e. the number of simplices with 4 vertices in lattice time t) is plotted.6

The Hausdorff and spectral dimensions of triangulations inside this phase are approximately

equal two. The phase is the CDT analogue of the branched polymer phase observed earlier

in EDT. In phase B the spacetime geometry collapses into a single spatial slice, see figure 4,

with (probably) infinite Hausdorff and spectral dimensions. The phase is the CDT analogue

of the crumpled phase of EDT and it does not have a physical interpretation. A nontrivial

result is the existence of the phase CdS, also called the de Sitter phase, where one observes

the dynamical emergence of a large scale four-dimensional geometry [40, 43] consistent

with a semiclassical (Euclidean) de Sitter universe [44, 45], see figure 4. At the same

time the spectral dimension shows a non-trivial scale dependence and ranges from ≈ 2 for

short scales to 4 at large scales (diffusion times) [46–48]. In the phase CdS the quantum

fluctuations of the spatial volume are well described by the minisuperspace reduction of the

Hilbert-Einstein action [45, 49], and the contribution of such fluctuations vanishes in the

infinite volume limit. This phase can be interpreted as the infrared limit of CDT, consistent

with Einstein’s GR. The recently discovered phase Cb, also called the bifurcation phase [41],

has a very nontrivial spacetime geometry. The volume profile nt resembles the one observed

in the CdS phase, see figure 4, but spatial homogeneity is strongly broken by the appearance

of compact spatial volume clusters concentrated around vertices with macroscopically large

coordination numbers present in the every second spatial layer [42, 50]. This phase is still

being studied carefully and conclusive physical interpretation of its geometry has not yet

been found.

The phases are separated by first order (A− CdS) and second (or higher) order (B −
Cb) [51, 52] phase transition lines. The recently discovered CdS−Cb phase transition is also

second (or higher) order [53, 54] and all the phases might meet in a common point.7 This

may in principle allow one to establish the perspective continuum limit by approaching

a second order transition line or a multiple point from the physically interesting phase

6For historical reasons we keep a convention in which nt is in fact twice the volume of a spatial slice t,

i.e. twice the number of equilateral spatial tetrahedra forming a spatial slice t.
7The existence of such a common ‘quadruple’ point is entirely conjectual (and maybe even unlikely) and

just based on a not too precise extrapolation of the measured phase transition lines. Unfortunately our

Monte Carlo algorithm looses efficiency in the vicinity of this point, resulting in extremely long autocorre-

lation times, which currently makes simulations in this region of the CDT phase space intractable.
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CdS, thereby defining a smooth interpolation between the low and high energy regimes of

CDT [55, 56].

All results described above were obtained for a spherical spatial topology Σ = S3, but

recently we have been interested also in imposing toroidal spatial topology. One reason

this is of interest is the background independence of CDT. No background geometry is

imposed. However, in the case of spherical spatial topology we saw semiclassical four-

dimensional (Euclidean) de Sitter-like configurations emerge, around which there were well

defined quantum fluctuations. By changing the spatial topology to a toroidal topology Σ =

T 3 one would expect different semiclassical solutions to dominate, so if the emergence of

semiclassical geometry is a universal aspect of CDT one would expect to observe completely

different geometries at least for choices of bare coupling constants where one obtained

semiclassical configurations for spherical spatial topology. Further, we were inspired by

the functional renormalization group research adapted to the ADM-formalism, where the

authors of [57, 58] started to investigate time foliated (Euclidean) spacetimes with topology

T d × S1. Recently a similar study was performed for the topology Sd × S1 [59] leading to

conclusions that the renormalization group flow linking IR and UV fixed points is essentially

independent of the spatial topology chosen. Our results suggest that in CDT with a fixed

spatial topology of a three-torus (Σ = T 3) there exists a semiclassical phase C, similar to

phase CdS earlier observed for the topology of a three-sphere (Σ = S3) [60, 61]. However

the dynamically generated (flat) background geometry of the new semiclassical phase C

observed in toroidal topological conditions is completely different than the (four-sphere)

geometry of phase CdS observed for spherical topological conditions. As mentioned above

this is a quite non-trivial result and it gives strong support to the idea that there is a phase

of CDT where semiclassical geometries emerge. We have in addition shown that the spatial

volume fluctuations are still well described by a suitable minisuperspace reduction of the

(toroidal) Einstein-Hilbert action in this phase, and one is even able to measure quantum

corrections with much higher precision in the toroidal case.

In the current work we want to investigate the existence of other phases in CDT with

toroidal topological conditions Σ = T 3 and to check if the phase diagram is similar to the

case of spherical topology. As phase transition studies are very resource consuming, in this

paper we focus on the phase structure itself, and the order of the phase transitions will be

investigated in forthcoming articles.

4 Order parameters for the phase transitions

Before investigating the phase diagram of CDT one should define appropriate order pa-

rameters (OPs) that capture differences between generic triangulations observed in various

phases of quantum gravity. The differences are usually caused by breaking of some global

or local symmetries of the triangulations making the order parameter jump (first order

transition) or rapidly change (second or higher order transition) from one phase to an-

other. At the same time there is some freedom in choosing the order parameters and one

should do it carefully to get clear signals of the transitions.
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In this work we focus on four order parameters, selected in such a way that they capture

the most important differences between the CDT phases. We use the experience gained in

previous studies of CDT with spherical spatial topology, where various phases of geometry

were observed (see section 3) and similar order parameters were used in the study of the

phase transitions. The order parameters discussed in this paper can be divided into two

groups. The first group comprises order parameters which capture very global properties

of CDT triangulations, such as

OP1 = N0/N4 , (4.1)

OP2 = N(3,2)/N(4,1) , (4.2)

which were previously used in the analysis of the A−CdS and B−Cb transitions observed

in the case of spatial topology S3 [51, 52]. The A − CdS transition was related to the

time-translation symmetry breaking from (a symmetric) phase A to a (less symmetric)

phase CdS where one could see a spacetime blob structure, i.e. some macroscopic extension

of the universe in time direction. This time-extended universe persisted in phase Cb and

the symmetry was further broken in (the least symmetric) phase B, where the universe

collapsed to a single spatial layer, see figure 4. Such symmetry differences resulted in the

order parameter OP1 being large in phase A, medium in phases CdS and Cb, and small in

phase B, see figure 5. At the same time the breaking of causal connections of neighbouring

spatial layers caused the order parameter OP2 to be small in (time uncorrelated) phases A

and B and large in (time correlated) phases CdS and Cb, see figure 5.

The second group of order parameters focuses on microscopic properties of the under-

lying CDT triangulations, namely the shape of the spatial volume profiles nt:

OP3 =
∑
t

(
nt+1 − nt

)2
, (4.3)

and the existence of vertices of very large order:

OP4 = max
v
O(v) , (4.4)

where O(v) is the vertex coordination number, i.e. the number of simplices sharing a

given vertex v, thus OP4 is just the coordination number of the highest order vertex in a

triangulation. When one looks at the volume profiles nt, see figure 4, one observes that

the profile is quite smooth in phase CdS where there are no big differences in nt and nt+1.

In phase Cb the volume profile narrows in time direction causing slightly bigger differences

between nt and nt+1. The profile is much less smooth in phase A, where a kind of “zig-

zag” shape is observed and very non-smooth is phase B where there is a sudden jump in

the slice where all spatial volume is concentrated. As a result, the OP3 is small is phase

CdS, medium in phases A and Cb, and large in phase B, see figure 5. Last but not least,

the existence of high order vertices is related to the formation of spatial volume clusters

which are characteristic for the bifurcation phase Cb [42, 50] and phase B (one huge volume

cluster in the collapsed slice), resulting in large OP4 inside these phases. In phases CdS and

A some spatial volume concentrations may also form from quantum fluctuations but they

– 9 –
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Figure 5. Behaviour of the order parameters OP1, . . . , OP4, defined in eqs. (4.1)–(4.4), in CDT

with spherical spatial topology (Σ = S3). The left plot shows the OPs as a function of ∆ for

fixed κ0 = 2.2, which corresponds to a vertical line in the phase diagram in figure 3 starting in

phase B (∆ < 0.05), going through phase Cb (0.05 < ∆ < 0.35), to phase CdS (∆ > 0.35). The

right plot shows the OPs as a function of κ0 for fixed ∆ = 0.6, which corresponds to a horizontal

line in the phase diagram in figure 3 starting in phase Cb (κ0 <∼ 1.0), going through phase CdS

(∼ 1.0 < κ0 < 4.7), to phase A (κ0 > 4.7). The OP1, OP2 and OP4 were rescaled to fit into a

single plot, and due to a very large range of OP3 (a few orders of magnitude) we plot the rescaled

lnOP3 instead of OP3, the rescaling in the left plot being identical to that in the right plot.

OP Phase A Phase B Phase CdS Phase Cb

OP1 large small medium medium

OP2 small small large large

OP3 medium large small medium

OP4 small large small large

Table 1. Order parameters used in CDT phase transition studies.

do not form any distinguished large-scale structures, making the OP3 small, see figure 5.

The order parameters are summarised in table 1.

We expect that in the case of toroidal spatial topology Σ = T 3 there exist phases

similar to those observed for spherical spatial topology and that we should see a similar

behaviour of the order parameters defined above. Thus one can scan the (κ0,∆) parameter

space and measure the averages 〈OP1〉, . . . , 〈OP4〉 in order to identify the various phases, if

they exist. In order to establish a precise position of the phase transition in the parameter

space one can also look at the susceptibilty of an order parameter

χOP ≡ 〈OP 2〉 − 〈OP 〉2 , (4.5)

which should peak at the phase transition point. For each case we will choose the set of

the order parameters which gives the clearest signal / noise ratio. We will also analyze

χ∗OP ≡
χOP
〈OP 〉

(4.6)

or

χ∗∗OP ≡
χOP
〈OP 〉2

. (4.7)
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Figure 6. Susceptibility of
√
OP2 (left chart) and ln(OP2) computed directly from raw data (line)

and using approximations (4.6) and (4.7) (points). Data collected for the A − C phase transition

in the case of toroidal topology Σ = T 3 for fixed ∆ = 0.3.

Note that there is always some freedom in choosing the order parameter, and instead of OP

one can use any monotonic function f(OP ) of OP . For small fluctuations of OP around

the mean value 〈OP 〉 one has

χf(OP ) ≈
(
f ′(〈OP 〉)

)2
χOP . (4.8)

Up to a numerical constant, the χ∗OP and χ∗∗OP are obtained for f(OP ) =
√
OP and

f(OP ) = lnOP , respectively, and such a choice is useful when an order parameter changes

by a few orders of magnitude at a phase transition. The approximation (4.8) seems to

work very well, see figure 6 where the results obtained by a redefinition OP → f(OP ) in

the raw data and by using approximation (4.8) cannot be optically distinguished.

5 Phase structure in toroidal spatial topology

We begin with a rough scan of the CDT parameter space for fixed spatial topology of a

three-torus and time-periodic boundary conditions, i.e. spacetime topology M = T 3 × S1.

We choose the lattice volume N̄(4,1) = 80000 and the length of the time period ttot = 40.

For such a choice of simulation parameters one could observe all four CDT phases in the

the case of spherical topology. We split the parameter space8 (κ0,∆) into a grid of equally

separated points (see figure 7) and run simulations in which we measure spatial volume

profiles nt (see figure 8) and the order parameters OP1, . . . , OP4 described in section 4 (see

figure 9).

By looking at these data one can easily notice three distinct phases of spacetime

geometry, denoted A, B and C. The position of phases A and B on the phase diagram in

figure 7, as well as the spatial volume profiles (series of uncorrelated spatial slices in phase

A, and time-collapsed volume structure in phase B) and values of the order parameters (see

figure 9 and table 1) suggest that the phases are in one-to-one correspondence to phases A

and B of CDT with spatial topology Σ = S3 (see figure 3).

Existence of phase C in spatial topology Σ = T 3 was already reported in [60, 61], where

the authors noticed that the spatial volume profile nt is highly correlated and can be well

8The κ4 coupling constant is adjusted to the critical value κc
4(N̄(4,1), κ0,∆), see section 2 for details.
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Figure 7. Preliminary phase diagram of the CDT with toroidal spatial topology ( Σ = T 3) for

N̄(4,1) = 80000 and ttot = 40. Three distinct phases of geometry can be identified. Phase A is

observed for large values of κ0 (orange points), phase B for small values of ∆ (black points), and

phase C for small κ0 and large ∆ (green points). Approximate position of phase transitions is

denoted by dashed lines.

Figure 8. Typical volume profiles nt ≡ N(4,1)(t) in various CDT phases in toroidal spatial topol-

ogy Σ = T 3.

described by a toroidal minisuperspace-like action with small quantum corrections. It can

be argued that this is the toroidal analogue of the semi-classical phase CdS, earlier observed

for the spatial topology Σ = S3 (see figure 3). This is further confirmed by behaviour of

the order parameters OP1, . . . , OP4 (see figure 9 and table 1).

The fact that we don’t see the toroidal analogue of the bifurcation phase Cb in the

above data is not very surprising as the (expected) constant volume profile of spatial slices

causes the volume of a single slice to be too small (nt ∼ N̄(4,1)/ttot = 2000) to allow

for a creation of large volume clusters and consequently for the emergence of high-order

vertices. The same effect appeared in the spherical topology for small systems where high

order vertices could be observed only in slices with spatial volume higher than the, so-called

bifurcation point volume. In CDT with spherical spatial topology the volume profile nt
had a characteristic blob structure (see figure 4) with the central part volume much higher

than the average volume N̄(4,1)/ttot and thus the choice of N̄(4,1) = 80000 and ttot = 40 was

good enough to let the central part volume be higher than the bifurcation point volume.
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Figure 9. Behaviour of the order parameters OP1, . . . , OP4, defined in eqs. (4.1)–(4.4), in CDT

with toroidal spatial topology (Σ = T 3) and N̄(4,1) = 80000, ttot = 40. The left plot shows the OPs

as a function of ∆ for fixed κ0 = 2.0, which corresponds to a vertical line in the phase diagram in

figure 7, and the right plot shows the OPs as a function of κ0 for fixed ∆ = 0.6, which corresponds

to a horizontal line in the phase diagram in figure 7. The OP1, OP2 and OP4 were rescaled to

fit into a single plot, and due to a very large range of OP3 (a few orders of magnitude) we plot

the rescaled lnOP3 instead of OP3, the rescaling in the left and right plots being the same. The

qualitative behaviour of the OPs is the same as for phases A, B and CdS in CDT with spherical

spatial topology (see figure 5 and table 1). Approximate positions of the B − C and the C − A
phase transitions are marked by dashed lines on the left and right plots, respectively.

As a result the high-order vertices could form inside the blob part of the spherical CDT

triangulations, which seems not to be the case in the toroidal CDT with flat volume profiles.

To circumvent this obstacles, i.e. to let the average spatial volume of the toroidal CDT

triangulations exceed the bifurcation point volume, we decided to pursue a detailed study

of the toroidal CDT phase structure for much bigger average volume N̄(4,1)/ttot = 40000,

by setting N̄(4,1) = 160000 and ttot = 4, respectively. To use our computer resources

effectively, we have also carefully fine-tuned the grid of the (κ0,∆) points in which we

performed numerical simulations, such that we have much higher precision near expected

phase transition points, see figure 10 where the phase diagram is shown. These results

reconfirm the findings of the initial phase transition study from figure 7, and also confirm

the existence of the fourth phase, denoted Cb (blue points in figure 10). The phase is again

a toroidal analogue of the bifurcation phase Cb observed in the spherical topology, with

spatial homogeneity broken by a formation of volume clusters around high order vertices

emerging in the every second spatial layer, see figure 11.The behaviour of all four order

parameters as functions of κ0 and ∆ is shown in figure 12 and their susceptibilities in

figure 13. These results can be used to draw the phase transition lines with high precision,

as presented in figure 10. The phase structure looks very similar to the one observed for a

spherical spatial topology, see figure 3.

6 Discussion and conclusions

We studied the phase diagram of four-dimensional CDT with toroidal spatial topology

(Σ = T 3) and time periodic boundary conditions, see figure 14. Our results confirm the

existence of four distinct phases of quantum geometry which are direct analogues of the
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Figure 10. Phase diagram of CDT with toroidal spatial topology ( Σ = T 3) for N̄(4,1) = 160000

and ttot = 4. Points denote the actual numerical simulations. The measured phase transitions

are marked by solid lines with error bars denoted by shaded areas of the same color. The error

bars for the C −Cb transition are due to the observed hysteresis of the measured order parameters

(see section 6 for discussion), the error bars for the other phase transitions are purely due to the

resolution of the measurement grid. Dashed black lines are extrapolations of the measured phase

transition lines. All four distinct phases of geometry can be identified. Phase A is observed for

large values of κ0 (orange points), phase B for small values of ∆ (black points), phase Cb for small

κ0 and medium ∆ (blue points), and phase C for small κ0 and large ∆ (green points).

Figure 11. Time structure of highest order vertices in CDT triangulations with spherical (left

plot) and toroidal (right plot) spatial topology. maxvt O(vt) denotes the coordination number of

the highest order vertex with time coordinate t. Distinction between the bifurcation phase Cb with

characteristic high order vertices in every second time layer, and phase C/CdS is clear in both

topologies.

phases previously observed for the spherical spatial topology (Σ = S3). The position of

the critical lines in the (κ0,∆) parameter space is also very similar in both topologies.

The A − C and B − Cb phase transition lines measured in the toroidal case are slightly

shifted compared to the lines measured in the spherical case. Using our present data one

– 14 –



J
H
E
P
0
6
(
2
0
1
8
)
1
1
1

Figure 12. Behaviour of the order parameters OP1, . . . , OP4, defined in eqs. (4.1)–(4.4), in CDT

with toroidal spatial topology (Σ = T 3) and N̄(4,1) = 160000, ttot = 4. The left plot shows the mean

OPs as a function of ∆ for fixed κ0 = 1.5, which corresponds to a vertical line in the phase diagram

in figure 10, and the right plot shows the mean OPs as a function of κ0 for fixed ∆ = 0.4, which

corresponds to a horizontal line in the phase diagram in figure 10. The OP1, OP2 and OP4 were

rescaled to fit into a single plot, and due to a very large range of OP3 (a few orders of magnitude)

we plot the rescaled lnOP3 instead of OP3, the rescaling in the left plot being identical to that in

the right plot. The qualitative behaviour of the OPs is the same as for phases A, B, CdS and Cb

in CDT with spherical spatial topology (see figure 5 and table 1). The positions of the B −Cb and

Cb − C phase transitions on the left plot and the Cb − C and C − A phase transition on the right

plot are marked by dashed lines.

cannot completely exclude that the shifts are real effects which might be attributed to

the topology change. However it is much more likely that the shifts are due to final size

effects as the positions of (pseudo-)critical points in the parameter space depend on the

lattice volume and similar parallel shifts were observed in the spherical case when the

lattice volume was increased [51–54]. On the one hand, the finite size effects should be

much stronger in the toroidal CDT, where the minimal triangulation is much larger than

in the case of the spherical CDT [60]. On the other hand, the length of the (periodic) time

axis used in the toroidal CDT simulations presented herein was much shorter than in the

spherical simulations, and the resulting effective volume per slice was much larger in the

toroidal case.

The critical region near the point where the phase transition lines meet is the most

interesting place to concentrate on, since, following the asymptotic safety arguments, it

is a natural candidate for the physical UV limit of CDT [55, 56]. This region could not

be studied with a sufficiently high precision for the spherical topology. The reason was

purely technical: the local Monte Carlo algorithm we use to update triangulations was

very inefficient in this critical region. As a result we couldn’t make precise measurements

there and our conjecture about the existence of a common “quadruple point” where all

four phases meet was based on an extrapolation of the measured phase transition lines.

The situation is different for the toroidal case, where the Monte Carlo algorithm works fine

in the critical “corner” region of the parameter space, as can be seen from a plot shown in

figure 14. In this case the common “quadruple point” seems less likely. The Cb −C phase

transition line is now shifted slightly to the left and tilted in the (κ0,∆) plane compared

to the Cb − Cds phase transition line observed in the case of spherical spatial topology.
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Figure 13. Susceptibilities χ (top plots) and χ∗ (bottom plots) of the order parameters OP1, . . . ,

OP4, defined in eqs. (4.5) and (4.6), respectively, in CDT with toroidal spatial topology (Σ = T 3)

and N̄(4,1) = 160000, ttot = 4. The left plots show the susceptibilities as a function of ∆ for fixed

κ0 = 1.5 and the right plot shows the susceptibilities as a function of κ0 for fixed ∆ = 0.4, which

corresponds to the order parameters shown in figure 12. The susceptibilities were rescaled to fit

into a single plot. The positions of the B−Cb and Cb−C phase transitions on the left plot and the

Cb − C and C − A phase transition on the right plot are signaled by peaks in the susceptibilities,

which is marked by the same dashed lines as in figure 12.

Figure 14. Phase diagram of CDT with toroidal spatial topology from figure 10 together with the

phase transition lines (thick lines) of CDT with spherical spatial topology from figure 3.
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Consequently, in the toroidal case, it seems more likely that we have the “old” triple point

around (κ0 = 4.50,∆ = −0.05) where A, B and C phases meet and a “new” triple point

around (κ0 = 3.75,∆ = −0.02) where the bifurcation phase Cb meets the phases B and C.

As a result there exists a region in the parameter space, where one can observe a direct

transition line between the semiclassical phase C and the collapsed phase B, see figure 14.

We will concentrate our future precise measurements in the “critical corner” region to

determine accurately the phase diagram. Although the grid of measured points presented

in the article seems rather dense, we cannot exclude that the exact shape of transition lines

is more complicated in the sense that they may bend and meet in one “quadruple point”

(again see figure 14). In this precise study we will also measure a sequence of volumes

which should enable us to analyze finite size effects affecting the infinite volume position

of the phase transition lines more accurately. The results will be published in forthcoming

publications.

In the data presented above we did not measure the order of the phase transitions. Such

a study would require massive numerical simulations to be performed for a suitable choice

of various lattice sizes enabling one to extrapolate the results to the infinite volume limit

and to measure critical exponents. Nevertheless we have made some initial observations.

First, in CDT with toroidal spatial topology one can observe a clear C −A transition

signal (peak in susceptibilities) both for the OP1 and OP2 parameters, as it was the case for

the spherical CDT. Nevertheless the behaviour of the parameters at the phase transition

is quite different from the behavior originally observed for CDT with spherical spatial

topology where one could observe that the order parameters jump between two clearly

separated metastable states, one for phase A and one for phase CdS [52]. This suggested it

was the first-order transition and this was confirmed by a detailed finite size analysis. In

the toroidal case the order parameters change smoothly between the two phases and one

does not observe any separation of states. While this could be an indication of a higher

order transition, it is more likely that it reflects that one is using a constraint of the four-

volume (namely (2.2) where N(4,1) is kept fixed) different than that used in [52] (where N4

was kept fixed). A similar phenomena were observed for the B−Cb transition [50]. Clearly

the only way to settle the issue is to perform a carefull finite size analysis to determine the

order of the transition.

Secondly, the Cb−CdS phase transition in case of CDT with spherical spatial topology

was found to be a second (or higher) order transition [53, 54]. Now, in the toroidal case,

one can observe a clear hysteresis of all measured order parameters when moving from

phase C to phase Cb or the opposite. There is a large region in the parameter space,

denoted by the orange shaded area between phases C and Cb in figure 14, where the value

of an order parameter depends on its initial value, or more precisely on the geometric

configuration (triangulation) used to initiate Monte Carlo simulations. If one starts with

an initial triangulation from phase C and makes simulations inside the hysteresis region

the generated triangulations persist in phase C, if one starts instead with a triangulation

from phase Cb the system persists in phase Cb, even for very long simulation runs (a few

months of CPU time, or a few ×1012 attempted Monte Carlo moves). Of course if one

goes deep enough into phase C or alternatively into phase Cb (outside the shaded region in
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Figure 15. Rescaled order parameters OP1, . . . , OP4 in CDT with toroidal spatial topology

(Σ = T 3) measured for many different starting triangulations for each ∆ (κ0 = 2.0 is kept fixed),

the number of starting configurations being different for various ∆. Each data point denotes 〈OP 〉
measured from last 105 sweeps (or equivalently 1012 attempted Monte Carlo moves), data from

initial thermalization period were skipped. Shaded regions between the dashed lines denote the

range of the measured data. Hysteresis is clearly visible for ∆ ≥ 0.38, especially for the OP4

parameter which is the most sensitive to the bifurcation phase transition.

figure 10) the system finally thermalizes to phase C or phase Cb, respectively, independent

on the starting configuration. This is illustrated in figure 15, where we show the OPs as

a function of ∆ for fixed κ0 = 2.0. For each ∆ we plot the measurements done in many

independent Monte Carlo runs with different initial configurations. The hysteresis region

between phases C and Cb is clearly visible for ∆ ≥ 0.38. Again, while this can indicate a

first order transition, and thus a change of transition order with topology, it could also be an

algorithmic issue with the Monte Carlo simulations since our configurations are relatively

small and the toroidal topology clearly is more constraining than the spherical topology.

Again the only way to settle the issue is to perform a proper finite size analysis, which is

of course quite computer demanding.

Summing up, the general phase structure of CDT with toroidal spatial topology is

very similar to phase structure of the CDT with spherical spatial topology and even the

positions of phase transition lines are almost the same. We have observed some qualitative

difference in phase transitions but it is impossible to say presently if this implies that the

order of some of the phase transitions should change with topology. It would indeed be

somewhat surprising if the transitions can be related to continuum physics, in particular

UV physics which one would imagine was related to short distance phenomena. Short

distance phenomena should be insensitive to topology. However, the precise nature of the

transitions requires further studies which will be presented in forthcoming publications.
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gravity, Phys. Lett. B 722 (2013) 172 [arXiv:1302.6359] [INSPIRE].

[22] L. Glaser, T.P. Sotiriou and S. Weinfurtner, Extrinsic curvature in two-dimensional causal

dynamical triangulation, Phys. Rev. D 94 (2016) 064014 [arXiv:1605.09618] [INSPIRE].

[23] D. Benedetti and J. Henson, Spectral geometry as a probe of quantum spacetime, Phys. Rev.

D 80 (2009) 124036 [arXiv:0911.0401] [INSPIRE].
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