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Abstract 

 

Nerves, in conjunction with the apical epidermal cap (AEC), play an important role in the 

proliferation of the mesenchymal progenitor cells comprising the blastema of regenerating urodele 

amphibian limbs.  Reinnervation after amputation requires factors supplied by the forming 

blastema, and neurotrophic factors must be present at or above a quantitative threshold for mitosis 

of the blastema cells. The AEC forms independently of nerves, but requires nerves to be maintained.  

Urodele limb buds are independent of nerves for regeneration, but innervation imposes a 

regenerative requirement for nerve factors on their cells as they differentiate. There are three main 

ideas on the functional relationship between nerves, AEC and blastema cells: (1) nerves and AEC 

produce factors with different roles in maintaining progenitor status and mitosis; (2) the AEC 

produces the factors that promote blastema cell mitosis, but requires nerves to express them; (3) 

blastema cells, nerves, and AEC all produce the same factor(s) that additively attain the required 

threshold for mitosis.  

 

Introduction  

 

Peripheral nerves, along with neurons of the central nervous system (CNS), blood vessels, immune 

cells, and endocrine organs, have historically been viewed as part of an integrated signaling system 

that regulates the biochemical and biomechanical functions of the body.  More recently, nerves have 

been shown to play important roles in tissue and appendage regeneration in invertebrates and 

vertebrates, and in the progression of some cancers by stimulating the growth of stem and 

progenitor cells (reviewed by Kumar and Brockes, 2012; Boilly et al, 2017).  A widely used 

experimental model to study the role of nerves in regeneration is the regenerating urodele limb 

(Dinsmore, 1991, 1998). The present review summarizes recent research results and ideas on how 
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nerves and the wound epidermis promote the proliferation of progenitor cells in regenerating 

urodele amphibian limbs, and on the identification of the molecular agents involved.  

 

 Formation of the Regeneration Blastema 

Urodele limbs regenerate via a blastema of undifferentiated progenitor cells released by the 

proteolytic histolysis of mesodermal limb tissues.  These cells aggregate under a wound epidermis 

that is thickened into a ridge called the apical epidermal cap (AEC). There are two mechanisms of 

tissue contribution, by the release of resident progenitor cells from muscle, periosteum and perhaps 

as yet undefined fibroblast populations, and the dedifferentiation of nucleated myofiber fragments, 

fibroblasts, and Schwann cells (reviewed by Stocum, 2017). The proportion of regenerate muscle 

contributed by release of resident progenitors (satellite cells) and by dedifferentiation (myofiber 

fragmentation) varies with species and developmental status (Sandoval-Guzman et al, 2014; Tanaka 

et al, 2016). The contribution of each tissue to the blastema also varies, with dermal fibroblasts 

contributing over half the blastema cells and cartilage contributing little or none (Muneoka et al, 

1986; McCusker et al, 2016).  Redifferentiation is lineage-specific except for blastema cells derived 

from dermal fibroblasts, which differentiate not only into new fibroblasts, but also transdifferentiate 

into the new chondrocytes of the skeletal elements, congruent with the minimal contribution of 

cartilage to the blastema (Kragl et al, 2009). The wound epidermis/AEC does not contribute to the 

progenitor cell population, but redifferentiates as epidermis. Figure 1 illustrates the phases and 

stages of urodele limb regeneration. 

 

Role of the nerve in blastema cell proliferation 

In the 1940s, a series of denervation studies by Singer and colleagues on regenerating newt limbs 

revealed that a threshold quantity of axons per unit area of limb tissue is required for regeneration. 
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Singer synthesized his results into the neurotrophic hypothesis (Singer, 1952, 1964, 1965), which 

states that sensory, motor and autonomic nerves provide the early blastema with a quantitative 

threshold of neurotrophic factor(s) required for blastema growth. The normal sensory innervation, 

but not the motor or sympathetic innervation, is sufficient to meet the threshold requirement. There 

is no qualitative difference in the ability of nerve type to promote regeneration, for if the motor 

nerve supply is augmented by deviating motor nerves such that they could branch into denervated 

sensory endoneurial tubes, regeneration takes place (Sidman and Singer, 1960; Thornton, 1960).  

 

The nerve is not required for histolysis and the initial accumulation of blastema cells, but is essential 

for blastema cell proliferation. Blastema cells enter the cell cycle and synthesize DNA after 

denervation of an amputated limb (Mescher and Tassava, 1976), but mitotic index is reduced to zero 

by denervation at any stage of blastema formation (Goldhamer and Tassava, 1987). Once the 

blastema has grown to a critical size, it becomes independent of the nerve for differentiation and 

morphogenesis, but remains nerve-dependent for blastema cell mitosis, as evidenced by the fact the 

blastema forms a miniaturized regenerate (reviewed by Thornton, 1968; Stocum and Cameron, 

2011; Pirotte et al, 2015; Boilly et al, 2017, Stocum, 2017). Regeneration of axons following 

amputation is stimulated by factors expressed by blastema cells, as shown by in vitro co-culture 

experiments (Richmond and Pollack, 1983; Boilly and Bauduin, 1988; Bauduin et al, 2000).  Several 

known neurotrophic factors such as brain-derived neurotrophic factor (BDNF), neurotrophins 3 and 

4 (NT3, 4), glial derived neurotrophic factor (GDNF) and hepatocyte growth factor/scatter factor 

(HGF/SF) can substitute for blastema tissue in promoting axon outgrowth in vitro (Tonge and Leclere, 

2000).  These factors are produced by Schwann cells and promote neuron survival and axon 

outgrowth in the regenerating peripheral nerves of mammals (reviewed by Fu and Gordon, 1997), 

raising the question of whether they might be produced by the subpopulation of blastema cells 

derived from Schwann cells. Retinoic acid has been shown to be produced by the blastema of the 
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regenerating newt limb, and to induce outgrowth of spinal cord axons toward the blastema via the 

RAR receptor (Dmetrichuk et al, 2005). Regardless, axon outgrowth is significantly more vigorous 

with blastema tissue, suggesting that blastema cells produce other, as yet unidentified, factors that 

encourage neuron survival and axon outgrowth. A comparison of genes expressed by axolotl dorsal 

root ganglia (DRG) cells in the presence and absence of blastema cells revealed 27 DRG genes that 

were differentially expressed in the presence of blastema cells (Athippozhy et al, 2014). Figure 2 

depicts the relationship between nerves and blastema growth, and also the influence of blastema 

cells on regenerating axons. 

 

Recently, studies of zebrafish caudal fin regeneration have defined a role for H2O2, a reactive oxygen 

species (ROS), in regeneration (reviewed by Meda et al, 2017).  Injured nerves produce high levels of 

H2O2 through activation of the Hedgehog (Shh) pathway.  The H2O2 appears to provide an 

environment conducive to blastema formation and also stimulates axon regrowth.  Denervation 

prevents this production and inhibits regeneration. ROS production has not as yet been investigated 

in the nerves of regenerating amphibian limbs.  Macrophages are essential for blastema formation in 

regenerating amphibian limbs (reviewed by Mescher, 2017), and produce bactericidal H2O2 during 

mammalian skin wound repair that might also contribute to axon regeneration and other aspects of 

wound repair and blastema formation (reviewed by Clark, 1996, Stocum 2017). 

 

Transcriptomic analysis has revealed that expression of genes specific to wound repair or muscle 

regeneration do not differ in amputated control and denervated limbs, but transcription of genes 

regulating proliferation is rapidly reduced in denervated limbs coincident with the start of blastema 

growth (Monaghan et al, 2009).  This is reflected in a 50-70% reduction of protein synthesis after 

denervation without any effect on the amino acid precursor pool, rate of protein degradation, or 
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rate of translation (Dresden, 1969; Lebowitz and Singer, 1970; Manson et al, 1976; Choo et al, 1978). 

Changes in the protein profile are quantitative (Singer and Ilan, 1977; Singer, 1978) and are 

particularly notable in the synthesis of extracellular matrix (ECM) proteoglycans, collagen, and 

collagen-associated glycosaminoglycans (GAGs).  Hyaluronate is the major GAG synthesized during 

blastema formation in adult newt limbs (Smith et al, 1975) and is reduced the most by denervation 

(Mescher and Munaim, 1986; Young et al, 1989). The effect of denervation on the regulation of a 

wide array of individual genes and proteins revealed by global transcriptomic and proteomic analysis 

of regenerating amphibian limbs (Monaghan et al, 2009; Looso et al, 2013; Rao et al, 2009, 2014; 

Voss et al, 2015) can now be investigated, facilitated by the sequencing, assembly, and analysis of 

the axolotl genome (Nowoshilow et al, 2018) coupled with CRISPR (clustered regularly interspersed 

short palindromic repeats) gene editing technology (Charpentier and Doudna, 2013; Fei et al, 2014, 

2016; Flowers et al, 2014). 

 

Role of the AEC in blastema cell proliferation 

The apical ectoderm of anuran, avian, and reptilian limb buds is thickened into a cap called the apical 

ectodermal ridge (AER) that is indispensable for outgrowth of the limb bud mesoderm via a 

reciprocal mesenchymal (Fgf10): epithelial (Fgf8) induction (Gilbert and Barresi, 2016). The apical 

ectoderm of urodele limb buds does not form an AER, but it has the same crucial outgrowth-

promoting function (reviewed by Stocum, 1975, 1995). However, the wound epidermis of the 

regenerating urodele limb is configured within a few days after amputation into the AEC that is rich 

with sensory innervation and is essential for blastema cell proliferation (reviewed by Thornton, 

1968; Stocum, 2017).  

 

The AEC synergizes with the nerve to promote the mitosis of mesenchymal progenitor cells. Endo et 

al (2004) showed that the initial formation of the AEC is independent of nerves, but that its 
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maintenance is nerve-dependent. Other experiments have shown that preventing contact between 

the wound epidermis or AEC and underlying tissues after amputation leads to regenerative failure, 

even in the presence of innervation (Mescher, 1976; Chew and Cameron, 1983; reviewed by Stocum 

and Cameron, 2011; Stocum, 2017). Blastemas deprived of the AEC during their growth phase and 

implanted into a dorsal fin tunnel such that they cannot contact wound epidermis form miniature 

regenerates, but unlike denervated blastemas, these regenerates are also truncated distally (Stocum 

and Dearlove, 1972).  Positioning the mesenchyme so that its distal tip protrudes from the tunnel 

and is re-covered by fin wound epidermis also produces a miniature regenerate, but one that is 

complete in the PD axis, as in denervated limbs (Fig. 3). In these experiments, the blastema 

mesenchyme is also denervated, but innervation by nerves of the dorsal fin is likely to be 

quantitatively insufficient. Cell proliferation was not directly assessed in these experiments, but 

miniaturization again suggests that the AEC plays a role in mitosis.  More direct evidence for a 

mitogenic role of the AEC is that there is a 3-4 fold reduction in DNA synthesis and mitosis of AEC-

free blastema cells cultured in vitro transfilter to dorsal root ganglia or with brain neurons (Globus et 

al, 1980; Smith and Globus, 1989) (Fig. 3). The molecular effects of AEC deprivation on subjacent 

blastema cells have not been assessed, but 125 genes that are highly up regulated in the AEC have 

been identified by transcriptome analysis (Campbell et al, 2011).   

 

Hypotheses Regarding the Functional Relationship of Nerve and AEC in Blastema Cell Proliferation  

 

Three major ideas have been put forward as to the nature of the nerve: AEC functional relationship 

in promoting blastema cell proliferation (Stocum, 2017) (Fig. 4).  These are (1) the nerve and AEC 

provide separate factors with different roles in the cell cycle; (2) the AEC provides all factors 

necessary for the cell cycle, but is nerve-dependent to express them; (3) multiple tissues all express 

the same mitogen that drives blastema growth.  
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Nerve and AEC have different but complementary roles in the cell cycle 

The results of experiments on DNA synthesis and mitosis by blastema cells in innervated vs. 

denervated axolotl and newt limbs have suggested different but synergistic roles for nerves and AEC 

in the blastema cell cycle (reviewed by Tassava and McCullough, 1978). Labeling of amputated limbs 

deprived of nerves or wound epidermis with [3H]-thymidine showed that DNA synthesis in nascent 

blastema cells is independent of both these tissues, but that in the absence of either one the labeled 

cells were arrested in G2, undergo apoptosis and are removed by macrophages (Mescher and 

Tassava, 1976; Loyd and Tassava, 1980; Mescher et al, 2000; Yun et al, 2015).  These results led 

Tassava and Mescher (1975) to propose that injury stimulates blastema cells to enter the cell cycle 

and that the AEC maintains the cells in an undifferentiated state that renders them responsive to 

mitogenic signals supplied by the nerve. This idea is consistent with the results of the in vitro trans-

filter experiments by Globus et al (1980) and Smith and Globus (1989) in which adult newt blastema 

cells grown opposite dorsal root ganglia or brain cells fail to undergo mitosis in the absence of the 

wound epidermis and withdraw from the cell cycle, and differentiate as cartilage, whereas in the 

presence of both epidermal cells and neural tissue, they are maintained in an undifferentiated state 

and proliferate. 

 

The AEC is dependent on the nerve to express blastema cell mitogens    

The neural requirement for regeneration is imposed on the urodele limb bud only as it becomes 

innervated at late stages of its development (Fekete and Brockes, 1988). Urodele limbs rendered 

aneurogenic by extirpating the neural tube during early embryogenesis do not acquire nerve-

dependence for regeneration (Yntema, 1959a, b), but presumably remain dependent on the wound 

AEC for blastema cell mitosis, suggesting that innervation does not alter the requirement of 

blastema cells for mitogenic factors, but rather decreases the capacity of the AEC to provide them. 
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Thus, a second hypothesis to explain blastema cell proliferation in both aneurogenic and neurogenic 

limbs is that the AEC provides diffusible mitogens, but in neurogenic limbs nerve axons impose a 

dependency for their trophic factors on the AEC to express them (Stocum, 2011). This hypothesis is 

also compatible with the in vitro experiments of Globus et al (1980). 

 

Multiple tissues produce the same mitogenic factor  

Nerve dependence/independence for regeneration can be oscillated back and forth. Nerve 

dependence of aneurogenic larval limbs can be instituted by transplanting them to neurogenic 

larvae. If the limbs are then denervated for a period of time, they can regain nerve independence 

(Thornton and Thornton, 1970). Even adult newt limbs showed some capacity for nerve-

independent regeneration when maintained in a denervated condition after grafting them to the 

back (Singer and Mutterperl, 1963). Singer (1965) explained the ability of limb buds and 

differentiated aneurogenic limbs to regenerate by postulating that all their tissues express the 

neurotrophic factor. Production of the factor is suppressed and is taken over by axons as they 

innervate the developing limb bud or aneurogenic limb. Thus, the nerve itself forces changes to the 

differentiating tissues of the urodele limb that render the progenitor cells of the blastema nerve-

dependent. 

 

Candidate AEC and neural factors 

Considering all three models, candidates to be AEC and neural factors should meet several criteria 

(Brockes, 1984). First, they should be expressed by the AEC or dorsal root ganglion (DRG) cell bodies.  

Further criteria to be an AEC mitogen are expression of the mitogen’s receptor in the blastema 

mesenchyme, loss of mitogen expression by denervation, ability of the mitogen to support 

regeneration of denervated or AEC-deprived limbs from early blastema formation to digit stages, 
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and expression of the mitogen by the AEC of regenerating aneurogenic limbs. Neural factors should 

be transported from DRG cell bodies along limb sensory nerve axons to the AEC where they bind to 

their receptor, denervation should prevent blastema cell mitosis by abolishing expression of AEC 

factors, and the nerve candidates should support regeneration to digit stages in denervated limbs.   

 

Candidate AEC factors:  Fibroblast growth factors and the anterior gradient protein (AGP) are 

candidates expressed by the AEC in vivo (Christensen et al, 2001; 2002; Han et al, 2001; Kumar and 

Brockes, 2007). Blastema cells express the bek (FGFR2) receptor for Fgfs (Poulin et al, 1993; Poulin 

and Chiu, 1995) and the AGP receptor Prod1 (Kumar and Brockes, 2007). Fgf1 elevates the mitotic 

index of cultured blastema cells (Albert et al, 1987; Albert and Boilly, 1988; Boilly et al,1991), and 

Fgf2 elevates the mitotic index of blastema cells in amputated limbs covered by full-thickness skin 

(Chew and Cameron, 1983). The only AEC candidate factors so far reported to be down regulated in 

vivo by denervation and to substitute for the nerve in supporting the regeneration of denervated 

limbs to digit stages are Fgf2 (Mullen et al, 1996) and AGP (Kumar and Brockes, 2007).  Fgf2 was 

administered in beads only to late stage blastemas.  

  

AGP is strongly expressed in the Schwann cells surrounding the axons of regenerating newt limbs at 

5 and 8 days post-amputation, when histolysis and initial dedifferentiation is under way. By 10 days 

post-amputation, AGP expression shifts to the gland cells of the AEC, coincident with formation of 

the accumulation blastema. Denervation abolishes AGP expression by Schwann cells and in the AEC, 

indicating its dependence on axons. The AGP gene supports regeneration to digit stages when 

electroporated into denervated newt limbs five days post-amputation. Conditioned medium of Cos7 

cells transfected with the AGP gene stimulates BrdU (bromodeoxyuridine) incorporation into 

cultured blastema cells. Incorporation is blocked by antibodies to Prod1, suggesting that AGP acts 
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directly on blastema cells through Prod1 to stimulate their proliferation (Kumar and Brockes, 2007). 

Finally, AGP is expressed by the AEC of regenerating aneurogenic limbs (Kumar et al, 2011), 

supporting the idea that AGP is a blastema cell mitogen that requires neurotrophins to be expressed 

in regenerating neurogenic limbs. Whether Fgf2 is expressed in the aneurogenic AEC has not been 

investigated. 

 

Nerve candidate factors: Factors expressed by DRG neurons that promote blastema cell 

proliferation in vitro include transferrin (Mescher and Kiffmeyer, 1992; Mescher et al, 1997), 

substance P (Globus and Alles, 1990; Globus et al, 1991), and Fgf2 (Mullen et al, 1996). Combinations 

of Fgf8 and BMP (bone morphogenetic protein) have also been tested as neurotrophic factors. Both 

are expressed in DRG neurons and are detectable in peripheral limb nerve axons in vivo (Satoh et al, 

2016). Furthermore, they can substitute for the nerve in the outgrowth of a supernumerary axolotl 

limb (Makanae et al, 2014). There is now evidence that glial growth factor 2 (Ggf2, neuregulin) (Law 

et al, 2004), is produced by nerves and blastema cells during blastema growth.  Neuregulin is 

mitogenic for Schwann cells (Davies, 2000) and was suggested over 30 years ago as a nerve factor for 

limb regeneration (Brockes, 1984; Brockes and Kintner, 1986).  It is expressed by DRG neurons, is 

present in the blastema, and is decreased by denervation. A newt clone of the Ggf2 gene was briefly 

mentioned to rescue regeneration to digit stages in denervated axolotl limbs when injected 

intraperitoneally during blastema formation (Wang et al, 2000).  

 

A more detailed study of neuregulin 1 (NRG1) in regenerating axolotl limbs (Farkas et al, 2016) 

showed that transcripts of nrg1 and its receptors erbb2 and erbb3 are expressed by the basal cells of 

the AEC and by 56% of the blastema mesenchyme cells. Antibody staining revealed expression of 

NRG1 and ErbB2 in dorsal root ganglia and peripheral limb nerves. Denervation of 16-day blastemas 
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decreased the number of nrg1-expressing mesenchymal blastema cells by 26%.  Western blotting for 

NRG1 shows only a slight drop in intensity in denervated blastemas, but the percentage of BrdU+ 

cells co-localizing with NRG1 was diminished by 20%, a statistically significant reduction. Inhibition of 

NRG1/ErbB2 signaling by immersion of animals in mubritinib abolished blastema formation in 

amputated innervated limbs. Treatment of 16-day innervated blastemas resulted in miniature 

regenerates, equivalent to the regenerates obtained by delaying denervation until a well-established 

blastema has formed. NRG1-soaked beads implanted under the wound epithelium of denervated 

limbs at seven days post-amputation induced blastema formation.  Bead implants every four days 

from 19-36 days post-amputation supported regeneration to digit stages, though not to the same 

degree as in innervated controls.  

 

These results support Singer’s neurotrophic hypothesis in which multiple limb tissues have the 

capacity to produce a mitogenic factor essential for blastema cell mitosis.  They suggest a synergistic 

relationship between nerve and blastema cells in which blastema cells autonomously express NRG1 

in the absence of nerve, but at a level that is insufficient for mitosis.  NRG1 from motor neurons 

would stimulate blastema cells destined to form Schwann, skeletal and muscle cells to increase their 

own NRG1 expression. The nerve and blastema cells would thus work synergistically to express a 

single molecule, NRG1, to attain a threshold level sufficient for mitosis. Although the effect of 

denervation on NRG1 expression by the AEC was not reported by Farkas et al (2016), expression of 

NRG1 by the AEC could be incorporated into the model by postulating that NRG1 expression by 

sensory innervation would stimulate NRG1 production by the AEC for diffusion into the underlying 

mesenchymal cells. This kind of synergism would explain why increasing motor innervation in the 

absence of sensory innervation enables complete regeneration, because the required threshold level 

of NRG1 could be reached in the absence of sensory nerves. The addiction to nerve for regeneration 
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that arises during limb development is thus interpreted as a nerve-induced quantitative increase in 

the requirement by blastema cells for NRG1, which conforms to Singer’s original ideas. 

 

In any event, this model predicts that (1) sensory innervation alone can maintain the threshold 

expression of NRG1, whereas sensory denervation will reduce the expression of NRG1 below 

threshold; and (2) augmenting motor innervation in the absence of sensory innervation will maintain 

the threshold expression of NRG1. Experiments to test these predictions will hopefully be 

undertaken, and to investigate the AEC as another possible source of NRG1. 

 

Several questions remain about the synergistic relationship between nerve, AEC, and blastema cells 

that require further research. (1) Can we label AEC and neural candidate factors and show that they 

move into the blastema and bind to receptors on blastema cells? (2) Are neural factors such as NRG1 

and Fgf2 expressed in limb buds or the blastemas of amputated aneurogenic limbs? (3) If they are 

not, does exogenous administration of these factors render aneurogenic limbs nerve-dependent?  

Another relevant question is whether the epithelial: mesenchymal interaction that characterizes 

urodele limb bud development and aneurogenic limb regeneration is maintained in the regeneration 

of neurogenic limbs or is completely replaced by a nerve: AEC synergy. Does the blastema 

mesenchyme produce a non-neural factor such as Fgf10 necessary to maintain the AEC in addition to 

neural factors? Growth factor-mediated epithelial: mesenchymal interaction in urodele limb bud 

development and regenerating aneurogenic limbs has not been sufficiently investigated. The 

expression of AGP in aneurogenic limbs suggests that AGP might be part of an epithelial: 

mesenchymal interaction in urodele limb bud development. Fgf8 and Fgf10 are both expressed in 

urodele limb buds and regeneration blastemas of neurogenic limbs (Han et al, 2001; Christensen et 
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al, 2001), but it has not been shown that expression of these growth factors is interdependent as it 

has for Xenopus limb bud development and limb regeneration (Yokoyama et a, 2000; 2001).  

 

Conclusion 

Progenitor cells of the regeneration blastema in urodele amphibians produce factors that support 

the regeneration of axons into the blastema.   In turn, nerves, in conjunction with the AEC, produce 

neurotrophic factors essential for the mitosis of progenitor cells during growth of the blastema. 

There are three main hypotheses on how these two tissues interact to drive blastema growth, but 

the available evidence fits all three.  Further experimentation will be required before favoring one 

idea over another.  Elements of all three hypotheses may be required to explain how the 

proliferation of blastema progenitor cells is promoted during limb regeneration, and there might be 

multiple redundant and synergistic circuits composed of different combinations of neural and AEC 

factors. 
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 Legends for Figures 

 

Fig. 1: Summary of blastema formation, which results in the formation of an accumulation blastema, 

and development, which involves growth and patterning of the blastema. This phase can be divided 

into several morphological stages, a conical medium bud, a larger late bud initiating cartilage 

differentiation, the emergence of fingerbuds and growth to complete regeneration.   A-D, 

longitudinal sections through (A) the accumulation blastema stage, (B) the medium bud stage, (C), 

the late bud stage, (D, the two-fingerbud stage. E, F, whole mounts stained for cartilage with 

methylene blue.  E, two-fingerbud stage; F, the finished regenerate. Reproduced from Stocum, 

Mechanisms of urodele limb regeneration. Regeneration 4: 159-200, Open Access. 

 

Fig. 2: Reciprocal relationship between blastema (b) and nerves (black lines and arrows). Limb 

amputated through the mid-stylopodium of forelimb (s). (A) As the blastema forms, it produces 

factors (yellow arrow) that promote axon regeneration.  (B) Regenerating axons provide 

neurotrophic factors that promote blastema growth and result in the regeneration of a normal limb.  

z = zeugopodium; c = carpals.  (C) Denervation (x) at medium bud stage does not inhibit 

differentiation and morphogenesis of the blastema, but mitosis is inhibited and the blastema forms a 

miniature regenerate. 
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Fig. 3: Experiments by Globus, et al, Dev Biol 75:358-372, 1980, demonstrating effect of the AEC on 

mitosis of blastema cells. (A) A medium bud stage blastema (red) implanted deep in a dorsal fin (DF) 

tunnel forms a miniature, distally truncated regenerate, whereas the same stage blastema 

implanted so that its distal tip protrudes from the tunnel and is re-covered by fin epidermis (yellow 

line) forms a PD-complete miniature regenerate.  VC = vertebral column; VF = ventral fin. (B) 

Blastemas cultured on the opposite side of a nanopore filter (dashed red line) from spinal ganglia 

(gold).  Left, blastema mesenchyme (blue) with AEC (green). The blastema cells undergo mitosis.  

Right, blastema mesenchyme without AEC.  The blastema cells withdraw from the cell cycle and 

differentiate into chondrocytes.  

 

Fig. 4:  Models of functional synergy between nerve, AEC, and blastema cells.  (A) The AEC (yellow) 

produces factors (black arrows) that maintain the blastema cells (blue) in an undifferentiated state.  

The nerve produces separate factors (red arrow) that stimulate mitosis of the blastema cells. (B) The 

AEC produces factors necessary to maintain the undifferentiated state of the blastema cells, but 

depends on nerve factors to carry out this function.  (C)  The nerve, AEC and the blastema cells 

themselves all produce the same factors (red arrows, red dots).  
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