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Abstract. Let f be a smooth map of the m-dimensional sphere Sm to itself,
preserving the longitudinal foliation. We estimate from below the number of fixed
points of the iterates of f , reduce the Shub’s conjecture for longitudinal maps to a
lower dimensional classical version, and prove the conjecture in case m = 2 and in
a weak form for m = 3.

1. Introduction

Let us consider the m-dimensional sphere Sm and a map f : Sm → Sm such that
Deg(f) (the degree of f) satisfies the inequality |Deg(f)| ≥ 2. What could be the
growth rate of the number of periodic points of f? Shub and Sullivan in [15] gave
an example of such map g which has only two periodic points. The map was a
composition of the discretization of the gravitation flow on S2 with the map equal to
zd on each parallel, where d ≥ 2. Thus g has the degree equal to d and has only two
periodic points. However, g is not differentiable at one of them. On the other hand,
in the class of C1 maps, the growth rate of the number of periodic points must be at
least linear [1]. Moreover, the growth rate could be relatively slow (linear) up to any
fixed period [4]. In 1974 Michael Shub conjectured that asymptotically it must be at
least exponential (Problem 4 in [13]):

(1.1) lim sup
n→∞

log |Fix(fn)|
n

≥ log |Deg(f)|,

where |Fix(fn)| is the number of fixed points of fn. The conjecture was repeated by
its author as an open problem during the International Congress of Mathematicians
in Madrid in 2006 (Problem 3 in [14]).

The exponential growth was obtained in some special cases in which the assumption
of smoothness was replaced by some topological conditions (e.g. for S2 [6] and for an
annulus [2, 7, 8]), but in the original version Shub’s conjecture remains still unsolved.

Recently, there were successful attempts to prove the conjecture for some narrower
classes of maps. Pugh and Shub [12] and Misiurewicz [11] confirmed the conjec-
ture for the class of smooth maps of S2 that preserve parallels (latitudinal maps).
In [5], smooth latitudinal maps of Sm, with m > 2, were considered and asymptotic
exponential growth of |Fix(fn)| in many particular cases was obtained.

In this paper we continue studying “toy models,” which may help one to understand
the mechanism of creating periodic points under the assumption of smoothness. We
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consider smooth maps of Sm which preserve meridians, i.e., the longitudinal foliation
with the fibres being open (m − 1)-dimensional disks Dm−1. We refer to the weak
Shub’s conjecture if in the formula (1.1) |Deg(f)| is replaced by some smaller constant
greater than 1. We estimate from below the number of fixed points of fn and prove
that if the weak Shub’s conjecture is true in dimension m− 2 then it is also true for
longitudinal maps in dimension m (Theorem 3.3 and Corollary 3.4). We also confirm
the Shub’s conjecture for smooth longitudinal maps of S2 and in the weak form for
S3 (Theorem 3.5).

2. Longitudinal maps of the m-dimensional sphere, m ≥ 2

We consider the m-dimensional sphere (m ≥ 2)

Sm = {(x1, . . . , xm+1) ∈ Rm+1 : x21 + . . .+ x2m+1 = 1}.

We introduce some geographical objects on this sphere. First we define the set of
poles P as

(2.1) P = {(0, 0, x3 . . . , xm+1) ∈ Rm+1 : x23 + . . .+ x2m+1 = 1}.

Let π : Sm \ P → S1 ⊂ R2 be the projection given by the formula

(2.2) π(x1, x2, x3, . . . , xm+1) =

(
x1√
x21 + x22

,
x2√
x21 + x22

)
,

and let σ : Sm → Dm−1 be another projection, given by the formula

(2.3) σ(x1, x2, x3, . . . , xm+1) = (x3, . . . , xm+1).

Meridians are the sets of the form lz = π−1(z), where z ∈ S1, while parallels are the
sets of the form σ−1(x), where x ∈ Dm−1. Notice that for each z ∈ S1, the map σ
restricted to the meridian lz is a homeomorphism onto the open (m− 1)-dimensional
disk, Dm−1. Similarly, for each x ∈ Dm−1, the map π restricted to the parallel σ−1(x),
is a homeomorphism onto S1. Meridians form a foliation of Sm \ P . We will call it
the longitudinal foliation.

When we think about the meridian lz as an open disk Dm−1, then the boundary, ∂lz,
homeomorphic to the sphere Sm−2, is the set of poles P , that is, we have σ(P ) = Sm−2.

Remark 2.1. In order to visualize poles, meridians and parallels in dimensions larger
than 2, let us describe a possible model of S3. We can think about it as the space R3

compactified by one point at infinity. The set of poles is the z-axis plus ∞, clearly
homeomorphic to a circle. The meridians are open vertical half-planes with the z-axis
as their boundary. The parallels are horizontal circles centered at the points on the
z-axis.

Definition 2.2. We will say that a map f : Sm → Sm preserves the longitudinal
foliation if f(Sm\P ) ⊂ Sm\P , and for every x, y, 6∈ P , if π(x) = π(y) then π(f(x)) =
π(f(y)).

The next lemma follows immediately from this definition.
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Lemma 2.3. For a given map f : Sm → Sm that preserves the longitudinal foliation,
there is a unique map ψ : S1 → S1 such that

(2.4) ψ ◦ π = π ◦ f |Sm\P ,

i.e., the following diagram commutes:

Sm \ P
f |Sm\P−−−−→ Sm \ Pyπ yπ

S1 ψ−−−→ S1

Moreover, if f is continuous then ψ is continuous.

Remark 2.4. Each fixed point of ψ in S1 is associated with an invariant meridian
of f .

Definition 2.5. We will say that a map f : Sm → Sm is longitudinal if

(1) f preserves the longitudinal foliation,
(2) f is of class C1, and
(3) f(P ) ⊂ P .

By Deg(f) we will denote the topological degree of f : Sm → Sm, while by degS1(ψ)
the topological degree of ψ : S1 → S1.

Let us explain why in Definition 2.5 the assumption that f(P ) ⊂ P does not really
weaken the results of the paper. Shub’s conjecture is trivial if |Deg(f)| < 2. However,
by the following lemma, the assumption |Deg(f)| ≥ 2 implies f(P ) ⊂ P .

Lemma 2.6. Let f : Sm → Sm preserve the longitudinal foliation. If f(P ) 6⊂ P then
Deg(f) = 0.

Proof. Assume that there is p ∈ P such that f(p) 6∈ P . Take a point z ∈ S1. The
image of the meridian lz is contained in the meridian lf(z), so the image of lz (the

closure of lz) is contained in lf(z). However, p ∈ P ⊂ lz, so f(p) ∈ lf(z). Since f(p) is

not a pole, we get lf(z) = lf(p), and hence, f(lz) ⊂ lf(p). Since the union of all sets lz
over z ∈ S1 is all of Sm, we get f(Sm) ⊂ lf(p). As a consequence, the map f is not
surjective, and thus Deg(f) = 0. �

Assume that f : Sm → Sm preserves the longitudinal foliation. Then for z ∈ S1

we have f(lz) ⊂ lψ(z), so we can treat f |lz as a map γz : lz → lψ(z). Since lz and lψ(z)
are homeomorphic to Dm−1, it is easier to think about this map as a map of Dm−1

to itself,
Γz = σ ◦ γz ◦ (σ|lz)

−1 .

Consider its Brouwer degree deg(Γz, D
m−1).

We use here the classical definition of Brouwer degree, cf. [10], that is, the degree
for a C1 map Γz is defined as a sum of signs of the Jacobian of Γz at Γ−1z (y) for y
being a regular value. Notice that deg(Γz, D

m−1, y) is independent of the choice of
y ∈ Dm−1, because Dm−1 is path-connected (cf. [10]). We will denote this value of
deg(Γz, D

m−1, y) by deg(Γz, D
m−1).

Lemma 2.7. Let f be a longitudinal map of Sm. The value of deg(Γz, D
m−1) does

not depend on a choice of z ∈ S1.
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Proof. We parametrize the circle S1 by a parameter z ∈ [0, 2π]. Outside the poles we
can write down locally our map f in the following form for (z, y) ∈ S1 ×Dm−1

(2.5) f(z, y) = (ψ(z),Γz(y)).

This is a homotopy, with the parameter z, so all maps Γz are homotopic to each other,
and thus have the same degree. �

We will denote the common value of all deg(Γz, D
m−1) by deg(Γ, Dm−1). Note that

this is just a notation, so Γ is not any specific map.
The next lemma shows the relation between degree of f and degrees of maps in the

base and the fibre.

Lemma 2.8. Let f be a longitudinal map of Sm. Then

(2.6) Deg(f) = deg(Γ, Dm−1) · degS1(ψ).

Proof. Let us take w 6∈ P , a regular value of f , then

(2.7) Deg(f) =
∑

xi∈f−1(w)

sign detDf(xi).

In the neighborhood of any point xi ∈ f−1(w) the map f has the form (2.5) and thus
xi = (zi, yi) ∈ S1 ×Dm−1. As f preserves the longitudinal foliation, ψ depends only
on the variable z, and thus locally the derivative Dfxi has the matrix

(2.8) Dfxi =

[
ai 0
∗ Bi

]
,

where ai ∈ R is the derivative of ψ at zi and B represents the (n−1)× (n−1) matrix
of the derivative of Γz at yi.

For a given zi, let us consider the finite set of yij such (zi, yij) ∈ f−1(w) and all yij
belong to the same meridian lzi . Then the formula (2.7) takes the form

Deg(f) =
∑
i,j

sign ai · sign detBij =
∑
i

sign ai ·
∑
j

sign detBij

=
∑
i

sign ai · deg(Γzi , D
m−1) = degS1(ψ) · deg(Γ, Dm−1).

�

Below we consider the Brouwer degree for a continuous map; for the definition the
reader may consult [10].

Lemma 2.9. Let γ : B → B be a continuous map of k-dimensional closed disk
B ⊂ Rk, centered at the origin and deg(γ, IntB) 6= 0. Assume that every fixed point
of γ in ∂B has a neighborhood such that for every x in this neighborhood

(2.9) ‖γ(x)‖ ≥ ‖x‖.
Then γ has a fixed point in the interior of B.

Proof. The reader can find the detailed justification of this lemma in [5], Section 3.
For the sake of completeness we give a sketch of the proof here.

We assume, contrary to our claim, that there are no fixed points of γ in the interior
of B. For distinct points x, γ(x) ∈ B we take the ray starting at x and passing
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through γ(x) and define ρ : B → ∂B as the point of the intersection of this ray with
∂B. For a fixed point x ∈ ∂B of γ we define ρ(x) = x.

Obviously, the map ρ is continuous at every point not being a fixed point of γ.
However, the condition (2.9) provides the continuity of ρ also in fixed points of γ.

Because ρ(B) ⊂ ∂B, we have deg(ρ, IntB) = 0. On the other hand, by homotopy
invariance of the degree, deg(ρ, IntB) = deg(γ, IntB) 6= 0, as there exists a linear
homotopy Ht between ρ and γ which transforms ∂B into itself for each fixed t. We
get a contradiction. �

Now we will study the form of the derivative of f at the poles which are fixed
points of f . We take a pole p ∈ P , such that f(p) = p. Without losing generality
we may assume that p = (0, 0, 0, . . . , 0, 1). In a neighborhood of p we define a local
coordinate system by taking first m variables: x1, x2, x3, . . . , xm. Notice that then
xm+1 =

√
1− x21 − . . .− x2m. Abusing notation, we will use the same letters f and π

for the maps in this coordinate system. In fact, this coordinate system is practically
the same as we described in the preceding section as a model for S3. In this system,
the point p is the origin.

Let us define ξ : Rm → R2 and ϕ : R2 → Rm by

ξ(x1, . . . , xm) = (x1, x2), ϕ(x1, x2) = (x1, x2, 0, . . . , 0).

Then define f2 : R2 → R2 by f2 = ξ ◦ f ◦ϕ and π2 : R2 \ {(0, 0)} → S1 by π2 = π ◦ϕ.

Lemma 2.10. The derivative Dfp has the form

(2.10) Dfp =

[
G 0
∗ H

]
,

where G is a 2×2 matrix related to two first coordinates and H is an (n−2)× (n−2)
matrix of the derivative on the complement. Moreover, if α ∈ S1 and G(α) 6= (0, 0),
then

(2.11) ψ(α) = π2(G(α)).

Proof. Write (y1, . . . , ym) = f(x1, . . . , xm). Since P is invariant, we have

f(0, 0, x3, . . . , xm) = (0, 0, y3, . . . , ym),

so by the definition of partial derivatives we get (2.10).
Now we will prove equality (2.11). Observe that π2 ◦ ξ = π. Since π ◦ f = ψ ◦ π,

we get
π2 ◦ f2 = π2 ◦ ξ ◦ f ◦ ϕ = π ◦ f ◦ ϕ = ψ ◦ π ◦ ϕ = ψ ◦ π2,

and thus if α ∈ S1 and t > 0,

ψ(α) = ψ(π2(tα)) = π2(f2(tα)) =
f2(tα)

‖f2(tα)‖
.

We have G = D(f2)(0,0), and thus for α ∈ S1,

G(α) = lim
t↘0

f2(tα)

t
= lim

t↘0

ψ(α)‖f2(tα)‖
t

= ψ(α) lim
t↘0

‖f2(tα)‖
t

(the last limit exists because the first one does). If limt↘0
‖f2(tα)‖

t
is positive, then we

get (2.11); if it is zero, then G(α) = (0, 0). �
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Lemma 2.11. Let f be a longitudinal map of Sm, and p = f(p) ∈ P . Assume that
| degS1(ψ)| 6= 1. Then in (2.10) G is the zero matrix.

Proof. Suppose G is not zero. Then either it is non-singular, or it has a one-
dimensional kernel.

Assume first that G is non-singular. Then, due to our assumption | degS1(ψ)| 6= 1,
there are α, β ∈ S1, α 6= β, such that ψ(α) = ψ(β). Since G is non-singular, both
G(α) and G(β) are not (0, 0), so by (2.11),

π2(G(α)) = π2(G(β)).

Therefore, G(α) = λG(β) for some λ > 0. If α and β are linearly independent, then
G is singular; otherwise α = −β, but this is impossible by the condition λ > 0. We
get a contradiction.

Assume now that G has a one-dimensional kernel. We can choose a basis {v1, v2}
in R2, such that G(v2) = 0 and G(v1) 6= 0. Let us take α = av1 + bv2 ∈ S1, with
a 6= 0. Then by (2.11),

ψ(α) = π2(G(α)) = π2(G(av1)) = sign(a)G(v1).

This proves that ψ(S1) = {G(v1),−G(v1)}, which contradicts the continuity of ψ. �

Now we will prove a fixed point theorem for meridians.

Theorem 2.12. Let f : Sm → Sm be a longitudinal map, and let lz be an invariant
meridian of f . Assume that | degS1(ψ)| 6= 1 and deg(Γ, Dm−1) 6= 0. Then there exists
a fixed point of f in lz.

Proof. We want to apply Lemma 2.9 to B = Dm−1 and γ = Γz, and obtain a fixed
point of Γz in Dm−1. Then the preimage of this point under σ|lz will be a fixed point
of f in lz. For this we have to show that if p ∈ P is a fixed point of f then (2.9) is
satisfied.

For (x1, x2, x3, . . . , xm+1) ∈ Sm, we will write

f(x1, x2, x3, . . . , xm+1) = (y1, y2, y3, . . . , ym+1).

In view of the definition of σ, (2.9) means that

y23 + . . .+ y2m+1 ≥ x23 + . . .+ x2m+1,

and thus, it is equivalent to

(2.12) y21 + y22 ≤ x21 + x22.

The coordinate system used in Lemmas 2.10 and 2.11 uses the same first two
coordinates as the original coordinate system, and therefore by those lemmas we see
that the quotient (y21 + y22)/(x21 + x22) goes to 0 as (x1, x2, x3, . . . , xm+1) approaches p.
Thus, (2.12) is satisfied in a neighborhood of p. �

3. Main results

Now we are ready to prove the main results of the paper. First we recall two
well-known facts related to the number of fixed points of circle maps and the relation
between the degree on the interior of the disk and on its boundary.
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Lemma 3.1. (cf. [9]) Let h : S1 → S1 be a continuous map of degree degS1(h). Then
|Fix(h)| ≥ | degS1(h)− 1|.

Lemma 3.2. (cf. [3]) Let g : B → B be a continuous map of a k-dimensional closed
disk B. If g(∂B) = ∂B then

(3.1) Deg(g|∂B) = deg(g, IntB).

Theorem 3.3. Let f : Sm → Sm be a longitudinal map. Assume that |Deg(f)| ≥ 2.
Then the following alternative holds:

(i) | degS1(ψ)| ≥ 2 and deg(Γ, Dm−1) 6= 0; then |Fix(fn)| ≥ |(degS1(ψ))n − 1| ≥
2n − 1; or

(ii) | degS1(ψ)| = 1 and | deg(Γ, Dm−1)| ≥ 2; then |Deg(f)| = |Deg(f |P )|.

Proof. First of all, let us notice that if f is longitudinal, and thus the diagram (2.3)
is commutative, then fn is also longitudinal and ψn ◦ π = π ◦ f |nSm\P .

As a consequence, all facts that we proved for f and ψ are also valid for fn and ψn

for any fixed n.
By the assumption, |Deg(f)| ≥ 2. By Lemma 2.8,

| deg(Γ, Dm−1)| · | degS1(ψ)| ≥ 2.

Thus, we have (i) or (ii).
In the first case we get degS1(ψn) = (degS1(ψ))n. Thus, by Lemma 3.1, |Fix(ψn)| ≥
|(degS1(ψ))n − 1| ≥ 2n − 1. On the other hand, each fixed point of ψn is associated
with an invariant meridian of fn (cf. Remark 2.4). As the assumptions on the degrees
in Theorem 2.12 are satisfied here, we deduce that in each invariant meridian there
is a fixed point of fn. This completes the proof of the statement in (i).

In the second case, by Lemma 3.2, for z ∈ S1,

|Deg(f)| = | degS1(ψ)| · | deg(Γ, Dm−1)| = | deg(Γ, Dm−1)|
= | deg(Γz, D

m−1)| = |Deg(Γz|∂Dm−1)| = |Deg(f |P )|,
which shows that the statement in (ii) holds. �

As a straightforward consequence of this theorem, we get the following corollary.

Corollary 3.4. Assume that m ≥ 3. Then if the weak Shub’s conjecture (1.1) is true
in dimension (m− 2) then it is true in dimension m for longitudinal maps.

Theorem 3.5. Shub’s conjecture holds for longitudinal maps in dimension 2 and, in
the weak form, for longitudinal maps in dimension 3.

Proof. The validity of the weak Shub’s conjecture for S3 follows from Corollary 3.4.
Let us consider a longitudinal map f : S2 → S2. Then, Dm−1 = D1 is an interval.

As a consequence, deg(Γ, D1) is either 0 or is an alternating sum of +1 and −1, and
then | deg(Γ, D1)| = 1.

Assume that |Deg(f)| ≥ 2 and consider again the alternative (i) and (ii) from
Theorem 3.3. The part (ii) is impossible, thus (i) must hold. This implies |Fix(fn)| ≥
|(degS1(ψ))n − 1| = |Deg(f)n − 1|, and thus Shub’s conjecture holds. �

To conclude this section, let us comment on the related result obtained for S2 in [8]
(Proposition 3):
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Proposition 3.6. Let f : S2 → S2 be a map of degree d, |d| > 1. Suppose that there
exists p, q ∈ S2 such that

(3.2) f−1(p) = {q} and f−1(q) = {p}.
Then, fk has at least |dk − 1| fixed points for every odd k.

Let us notice that using Proposition 3.6 one can obtain the Shub’s conjecture for
longitudinal map f of S2 under the assumption that the poles are not fixed points,
because then they constitute an orbit of period 2, which satisfies condition (3.2).

4. Examples

Let us consider the 3-dimensional sphere S3 ⊂ R4. To simplify notation, we will
identify R4 with C2, so

S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}.
With this notation, the set P of the poles is given by z = 0. The map π : S3 \ P →
S1 ⊂ C is given by the formula π(z, w) = z/|z|, so the meridians are the subsets of
S3 for which z/|z| is constant. This gives a natural homeomorphism of each meridian
with the disk D2 = {w ∈ C : |w| < 1}, since once we know w and z/|z|, we can get z
using the condition |z|2 + |w|2 = 1.

Now we can give three simple examples of smooth longitudinal maps.

Example 4.1. Let a be a complex number of modulus 1, and define f : S3 → S3 by

f(z, w) =
(
z2, a

√
2− |w|2 w

)
.

Observe that, since |z|2 + |w|2 = 1, we have

|z2|2 +
(
a
√

2− |w|2 w
)2

= 1− 2|w|2 + |w|4 + 2|w|2 − |w|4 = 1,

so the map is well defined. It is also real analytic, since on S3 the expression under
the square root sign is never smaller than 1. It is longitudinal, since

π(f(z, w)) =
z2

|z2|
=

(
z

|z|

)2

= (π(z, w))2.

This formula also shows that ψ is given by ψ(v) = v2, so its degree is 2. On the
other hand, the map of the meridians (treated as the disks D2) is given by γ(v) =

a
√

2− |v|2 v, so it has degree 1. Thus, we have the first case of Theorem 3.3, and fn

has at least 2n − 1 fixed points.

Example 4.2. Let a be a complex number of modulus 1, and define f : S3 → S3 by

f(z, w) =
(
a
√

2− |z|2 z, w2
)
.

As in the preceding example, it is well defined and real analytic. It is longitudinal,
since

π(f(z, w)) =
a
√

2− |z|2 z
|a
√

2− |z|2 z|
=

(
a
√

2− |z|2 z√
2− |z|2 |z|

)
= a

z

|z|
= a(π(z, w)).
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This formula also shows that ψ is given by ψ(v) = av, so its degree is 1. On the other
hand, the map of the meridians (treated as the disks D2) is given by γ(v) = v2, so
it has degree 2. Thus, we have the second case of Theorem 3.3. If the argument of
a divided by 2π is irrational, then there are no invariant meridians, so all periodic
points are poles. The set P is homeomorphic to the circle and f restricted to P is
v 7→ v2, so fn has 2n − 1 fixed points.

Remark 4.3. The homeomorphism (z, w) 7→ (w, z) conjugates the maps from Ex-
amples 4.1 and 4.2. Thus, we see that sometimes there can be more than one way to
introduce the geographical coordinates in such a way that the map is longitudinal in
those coordinates.

Example 4.4. Define f : S3 → S3 by

f(z, w) =
(z2, w2)√
|z|4 + |w|4

=

(
z2√

1− 2|z|2 + 2|z|4
,

w2√
1− 2|w|2 + 2|w|4

)
.

Observe that

|z2|2 + |w2|2 =
(√
|z|4 + |w|4

)2
,

so the map is well defined. It is also real analytic, since on S3 the expression under
the square root sign is never smaller than 1. It is longitudinal, since

π(f(z, w)) =
z2√

1− 2|z|2 + 2|z|4
·
√

1− 2|z|2 + 2|z|4
|z2|

=

(
z

|z|

)2

= (π(z, w))2.

This formula also shows that ψ is given by ψ(v) = v2, so its degree is 2. On the other
hand, the map of the meridians (treated as the disks D2) is given by

γ(v) =
v2√

1− 2|v|2 + 2|v|4
,

so it has also degree 2. As in Example 4.1, we have the first case of Theorem 3.3, and
fn has at least 2n − 1 fixed points.

However, for fn there are 2n − 1 invariant meridians. If |v| =
√

1/2 then also

|γ(v)| =
√

1/2, so in each of those invariant meridians there is an invariant circle with
2n − 1 fixed points of fn. Therefore fn has at least (2n − 1)2 fixed points. (Another

way to look at it is to notice that |z| = |w| =
√

1/2 defines a torus contained in
S3 and invariant for f , and f restricted to this torus is conjugate to the algebraic

endomorphism given by the matrix

[
2 0
0 2

]
.)
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