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Abstract

Motivation: Although proteomics has rapidly developed in the past decade, researchers are still in

the early stage of exploring the world of complex proteoforms, which are protein products with

various primary structure alterations resulting from gene mutations, alternative splicing, post-

translational modifications, and other biological processes. Proteoform identification is essential to

mapping proteoforms to their biological functions as well as discovering novel proteoforms and

new protein functions. Top-down mass spectrometry is the method of choice for identifying com-

plex proteoforms because it provides a ‘bird’s eye view’ of intact proteoforms. The combinatorial

explosion of various alterations on a protein may result in billions of possible proteoforms, making

proteoform identification a challenging computational problem.

Results: We propose a new data structure, called the mass graph, for efficient representation of

proteoforms and design mass graph alignment algorithms. We developed TopMG, a mass graph-

based software tool for proteoform identification by top-down mass spectrometry. Experiments on

top-down mass spectrometry datasets showed that TopMG outperformed existing methods in

identifying complex proteoforms.

Availability and implementation: http://proteomics.informatics.iupui.edu/software/topmg/

Contact: xwliu@iupui.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A proteoform is a protein product of a gene that may contain vari-

ous primary structure alterations (PSAs) including: genetic vari-

ations, alternative splicing, and post-translational modifications

(PTMs) (Smith et al., 2013). The PSAs determine protein function in

biological systems. For example, the combinatorial PTM patterns

on histone proteins play a central role in epigenetic regulation

(Cosgrove and Wolberger, 2005). Proteoform identification is essen-

tial to broadening our knowledge and deepening our understanding

of proteoforms and their functions.

Despite the existence of various proteoforms, most protein se-

quence databases, such as Swiss-Prot (Boutet et al., 2016), contain
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only one reference protein sequence for each gene or each transcript

isoform. A complex proteoform may contain multiple PSAs com-

pared with its corresponding reference sequence in the database

(Fig. 1). The differences between the target proteoform and its refer-

ence sequence make proteoform identification a challenging compu-

tational problem.

In proteoform identification, PSAs are divided into several types:

(a) sequence variations, such as mutations, insertions, and deletions;

(b) fixed PTMs, which modify every instance of specific residues in

the protein sequence; (c) variable PTMs, which may or may not

modify specific residues in the protein sequence; (d) terminal trunca-

tions, which remove a prefix and/or a suffix of the protein sequence;

and (e) unknown mass shifts of residues or subsequences, which are

introduced by unknown PSAs. In Figure 1, carbamidomethylation is

a fixed PTM that modifies every cysteine residue; phosphorylation is

a variable PTM that may modify serine, threonine, and tyrosine resi-

dues (only one serine residue is modified in the proteoform).

Top-down mass spectrometry (MS) has unique advantages in

identifying proteoforms with multiple PSAs because it analyzes in-

tact proteoforms rather than short peptides (Catherman et al.,

2014). Fragment ion series in top-down tandem mass (MS/MS) spec-

tra provide essential information for identifying PSAs in proteo-

forms. Because top-down mass spectra are complex, they are often

simplified by deconvolution algorithms (Kou et al., 2014; Liu et al.,

2010) that convert fragment ion peaks into neutral fragment masses.

Let S be a spectrum of neutral fragment masses and F a proteo-

form with PSAs. Various scoring functions (Nesvizhskii, 2010) for

peptide spectrum matches in bottom up MS can be applied to meas-

ure the similarity of the proteoform spectrum match (PrSM) (F, S).

In this paper, we evaluate (F, S) using the shared mass counting

score that counts the number of neutral masses in S explained by the

theoretical neutral fragment masses of F.

The target protein of an MS/MS spectrum is generally unknown

in proteome-wide studies, but we can assume that the target com-

plex proteoform is a product of a known protein when purified pro-

teins are analyzed. In this paper, we focus on the identification of

proteoforms of known proteins with two types of PSAs: variable

PTMs and terminal truncations. Fixed PTMs and amino acid muta-

tions can be treated as special variable PTMs.

Let P be a reference sequence of the target proteoform and X a

set of variable PTMs. We use DBðP;XÞ to represent the set of all

proteoforms of P with variable PTMs in X and/or terminal trunca-

tions. Given a spectrum S, the proteoform identification problem is

to find a proteoform F 2 DBðP;XÞ that maximizes the shared mass

counting score between F and S.

Extended proteoform databases and spectral alignment are the

two main approaches for proteoform identification. ProSightPC

(Zamdborg et al., 2007) and MascotTD (Karabacak et al., 2009)

use the first approach, in which spectra are searched against a se-

quence database of commonly observed proteoforms. However, the

number of candidate proteoforms increases exponentially due to the

combinatorial explosion of PTMs and truncations. As a result, most

uncommon proteoforms have to be excluded from the sequence

database to keep its size manageable, limiting the ability to identify

uncommon proteoforms.

Spectral alignment (Frank et al., 2008) is capable of identifying

variable PTMs and unknown mass shifts by finding a best scoring

alignment between the spectrum and the reference sequence.

However, existing alignment algorithms have their limitations. MS-

Alignþ (Liu et al., 2012) can identify proteoforms with at most two

unknown mass shifts because it treats all PSAs as unknown mass

shifts except for fixed PTMs and protein N-terminal PTMs. MS-

Align-E (Liu et al., 2013) and pTop (Sun et al., 2016) are capable of

identifying proteoforms with variable PTMs, but not those with ter-

minal truncations. MSPathFinder (http://omics.pnl.gov/software/

mspathfinder) is also capable of identifying variable PTMs, but the

identification of truncations depends on high quality sequence tags.

In this paper, we use mass graphs (Fig. 2) to efficiently represent

proteoforms of a protein with variable PTMs and/or terminal trun-

cations. We transform the proteoform identification problem to the

mass graph alignment problem and propose dynamic programming

algorithms for a restricted version of the problem.

Many graph-based approaches have been proposed in bioinfor-

matics studies. Splicing graphs were proposed by Heber et al. (2002)

for solving the EST assembly problem and have been widely used in

the identification of alternative splicing events (Xing et al., 2004). In

proteogenomics studies, splicing graphs (Woo et al., 2014a) and

variant graphs (Woo et al., 2014b) were employed for representing

transcript variants. In the variant graph approach, both genetic vari-

ations and alternative splicing junctions of a gene are represented in

a variant graph, in which each node represents a sequence of nucleo-

tide bases and each path corresponds to a transcript variant of the

gene. The transcript variants represented in a variant graph are

translated into peptide or protein sequences for the identification of

MS/MS spectra. Splicing graphs and variant graphs efficiently repre-

sent an exponential number of transcript variants and their corres-

ponding proteoforms. Another example of graph-based methods is

Fig. 1. Comparison of a complex proteoform and its corresponding reference

protein sequence in the database. The proteoform has an N-terminal trunca-

tion ‘MTTSE’, an amino acid mutation from ‘R’ to ‘K’, an insertion of ‘AA’, one

phosphorylated serine residue, and two modified cysteine residues with

carbamidomethylation.

(a)

(b)

Fig. 2. Construction of mass graphs. (a) An illustration of the construction of a

proteoform mass graph from a protein ARKTDAR and four variable PTMs:

acetylation on K and the first R; methylation on R and K, phosphorylation on

T, and dimethylation on K. Each node corresponds to a peptide bond, or the

N- or C-terminus of the protein; each edge corresponds to an amino acid resi-

due (red edges correspond to modified amino acid residues). The weight of

each edge is the mass of its corresponding unmodified or modified residue (a

scaling factor 1 is used to convert weights to integers). (b) An illustration of

the construction of a spectral mass graph from a prefix residue mass spec-

trum 0; 156; 198; 326; 340; 425; 521; 707. The spectrum is generated from a pro-

teoform of RKTDA with an acetylation on the R, a methylation on the K, and a

phosphorylation on the T. To simplify the mass graph, masses corresponding

to proteoform suffixes (C-terminal fragment masses) are not shown. The full

path from the start node y0 to the end node y7 is aligned with the bold path

from node x1 to node x6. The path from y0 to y6 and the red bold path from x1

to x4 are consistent.
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spectrum graphs that were proposed for de novo peptide sequencing

and sequence tag generation in MS data analysis (Frank and

Pevzner, 2005; Tanner et al., 2005). In a spectrum graph, each node

represents a prefix residue mass in an MS/MS spectrum, and each

path represents a peptide that may explain the spectrum. He et al.

(2013) extended the spectrum graph approach to incorporate lim-

ited number of PTMs, and Bhatia et al. (2012) proposed to use a

constraint graph to represent sequence constraints and combine a

spectrum graph and a constraint graph in de novo sequencing.

The idea of mass graphs is inspired by splicing graphs, variant

graphs, spectrum graphs and constraint graphs. Similar to variant

graphs, a mass graph efficiently represents an exponential number

of possible proteoforms of a gene. In addition, mass graphs are cap-

able of representing site specific variable PTMs. Compared with

variant graphs and spectrum graphs, the mass graph representation

has its unique properties. While variant graphs store sequences of

nucleotide bases (which can be translated into amino acids se-

quences) in nodes, mass graphs store amino acid residue masses in

edges. Replacing nucleotides (or amino acids) with masses simplifies

the representation of proteoforms with variable PTMs. (See Section

Discussion.) While nodes in a spectrum graph represent prefix resi-

due masses of an MS/MS spectrum, nodes in a mass graph represent

prefix residue masses of many possible proteoforms.

The mass graph alignment problem is different from the spectral

alignment problem (Bandeira et al., 2007; Frank et al., 2008) and

the spliced alignment problem (Gelfand et al., 1996). While spectral

alignment methods search for the best alignment between two lists

of prefix residue masses, the mass graph alignment problem finds

the best alignment between a prefix residue mass list and all possible

paths in a mass graph, each of which corresponds a prefix residue

mass list and a proteoform. In the spliced alignment problem, a vari-

ation of a nucleotide base does not significantly affect the whole se-

quence alignment. However, a mass shift in an amino acid and its

corresponding edge in a mass graph dramatically affect the similar-

ity score between a prefix residue mass list and a path containing the

edge because the mass shift ‘propagates’ to the residue masses of all

prefixes containing the amino acid. (See Section Discussion.)

We propose TopMG (TOP-down mass spectrometry-based proteo-

form identification using Mass Graphs), a software tool for identifying

modified proteoforms using top-down tandem mass spectra, which is

based on algorithms for the mass graph alignment problem. TopMG

was tested on three top-down MS/MS datasets. Experimental results

showed that TopMG was efficient in identifying proteoforms with

variable PTMs and outperformed MS-Align-E (Liu et al., 2013) and

ProSightPC (Zamdborg et al., 2007) in identifying complex proteo-

forms, especially those with terminal truncations.

2 Materials and methods

Mass graphs are used to represent candidate proteoforms and top-down

MS/MS spectra. Mass graphs representing proteoforms are called pro-

teoform mass graphs; those representing MS/MS spectra spectral mass

graphs. With the representation, we formulate the proteoform identifi-

cation problem as the mass graph alignment problem and design dy-

namic programming algorithms for a restricted version of the problem.

2.1 The mass graph alignment problem
2.1.1 Proteoform mass graphs

A proteoform mass graph is constructed from an unmodified protein

sequence and its variable PTMs with three steps (Fig. 2a). (1) A

node is added to the graph for each peptide bond of the protein. In

addition, a start node and an end node are added for the N and C-

termini of the protein, respectively. The left node of an amino acid is

the one representing the peptide bond left of the amino acid.

Specifically, the start node is the left node of the amino acid at the

N-terminus. The right node of an amino acid is the one representing

the peptide bond right of the amino acid. Specifically, the end node

is the right node of the amino acid at the C-terminus. (2) For each

amino acid in the protein, we add into the graph a directed black

edge from its left node to its right node. The weight of the edge is

the residue mass of the amino acid. (3) If an amino acid is a site of a

variable PTM, we add into the graph a directed red edge from its

left node to its right node. The weight of the edge is the residue mass

of the amino acid with the PTM.

The locations of a PTM can be specified in a mass graph, thus

reducing the number of candidate proteoforms. For example, the

mass graph in Figure 2a specifies that acetylation occurs on only the

first arginine residue, not the second, in the protein. As a result,

mass graphs are capable of representing amino acid mutations be-

cause a mutation can be treated as a variable PTM that modifies

only the amino acid at the mutation site. To represent an amino acid

with a fixed PTM, the weight of the black edge corresponding to the

amino acid is assigned as the mass of the residue with the fixed

PTM.

Each path in a mass graph represents a proteoform of the pro-

tein. A path from the start node to the end node is called a full path

of the graph, representing a proteoform without terminal trunca-

tions. In the graph, the number of nodes is proportional to n, and

the number of edges is proportional to ln, where n is the length of

the protein sequence and l is the largest number of edges between

two nodes.

2.1.2 Spectral mass graphs

Mass graphs are also used to represent top-down MS/MS spectra. In

the preprocessing of spectra, peaks are converted into neutral mono-

isotopic masses of fragment ions by deconvolution algorithms (Horn

et al., 2000; Kou et al., 2014; Liu et al., 2010). Peak intensities are

ignored to simplify the description of the methods. These monoiso-

topic masses are further converted to a list of candidate prefix resi-

due masses, called a prefix residue mass spectrum (Liu et al., 2013).

A prefix residue mass spectrum with masses a0; a1; . . . ; an in the

increasing order is converted into a spectral mass graph as follows

(Fig. 2b). A node is added into the graph for each mass in the spec-

trum. The nodes for a0 ¼ 0 and an ¼ PrecMass�WaterMass are

labeled as the start and the end nodes, respectively. For each pair of

neighboring masses ai and aiþ1, for 0 � i � n� 1, a directed edge

is added from the node of ai to that of aiþ1, and the weight of the

edge is aiþ1 � ai. The spectral mass graph contains only one full

path.

In the construction of mass graphs, the masses of all amino acids

and PTMs are scaled and rounded to integers (a scaling constant

274.335215 was used in the experiments (Liu et al., 2013)).

Precursor masses and candidate prefix residue masses in highly ac-

curate top-down mass spectra are discretized using the same

method. As a result, all edge weights are integers in mass graphs.

2.1.3 Formulation of the mass graph alignment problem

With the mass graph representation, the proteoform identification

problem is transformed to an alignment problem between a proteo-

form mass graph and a spectral mass graph. The objective of the

alignment problem is to find a path in the spectral mass graph and a
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path in the proteoform mass graph such that the similarity score be-

tween the two paths is maximized.

Let A be a path with k edges e1; e2; . . . ; ek. The weight of the pre-

fix e1; e2; . . . ; ei, 1 � i � k, is called a prefix weight of A, denoted

as wi. Specifically, w0 ¼ 0 and wk is the weight of the whole path.

The path A is also represented as a list of prefix weights

w0;w1; . . . ;wk. For example, the prefix weight list of the red bold

path in Figure 2a is 0; 198;340; 521. Two paths are consistent if

their weights are the same. For example, the red bold path in Figure

2a and the path from y0 to y6 in Figure 2b are consistent because

they have the same weight 521.

We define the shared mass counting score of two consistent

paths A and B as the number of shared prefix weights in their prefix

weight lists, denoted as ScoreðA;BÞ. For example, the shared mass

counting score of the red bold path in Figure 2a and the path from

y0 to y6 in Figure 2b is 4 because they share 4 prefix masses 0, 198,

340 and 521. If A and B are inconsistent, ScoreðA;BÞ ¼ �1.

Given a proteoform mass graph G and a spectral mass graph H,

the mass graph alignment problem is to find a path A in G and a

path B in H such that ScoreðA;BÞ is maximized. There are several

variants of the mass graph alignment problem. In the local align-

ment problem, the two paths in the mass graphs are not required to

be full paths (from the start to the end node). It can identify a se-

quence tag of the target proteoform as well as its matched masses in

the spectrum. For example, the alignment between the red bold path

in Figure 2a and the path from y0 to y6 in Figure 2b is a local align-

ment. The proteoform identification problem is transformed into

the semi-global mass graph alignment problem in which the path B

in the spectral mass graph is required to be the full path. If the path

A is a full path, a proteoform without terminal truncations is identi-

fied. Otherwise, a truncated proteoform is reported. For example,

the bold path (not a full path) from x1 to x6 in Figure 2a is aligned

with the full path in Figure 2b, corresponding to a truncated proteo-

form R[Acetylation]K[Methylation]T[Phosphorylation]DA. In the

global alignment problem, both A and B are required to be full

paths, that is, terminal truncations are forbidden.

In proteoform identification, we can reduce the search space by

limiting the number of PTM sites in a proteoform. This limitation

gives rise to a variant of the mass graph alignment problem in which

the number of red edges corresponding to modified amino acids is

limited. Given a proteoform mass graph G, a spectral mass graph H,

and a number t, the restricted mass graph alignment (RMGA) prob-

lem is to find a path A in G and a path B in H such that A contains

no more than t red edges and ScoreðA;BÞ is maximized.

2.2 Consistent preceding node pairs
We use consistent preceding node pairs described below to solve the

RMGA problem. In a mass graph, if there is a path from a node u1

to another node u2, we say u1 precedes u2. There may exist different

paths from u1 to u2, each of which defines a distance that equals the

weight of the path. Let Dðu1;u2Þ denote the set of all distinct dis-

tances defined by the paths from u1 to u2. The size of Dðu1; u2Þ is

smaller than the number of paths from u1 to u2 when there are many

duplicated distances introduced by consistent paths. For example, in

Figure 2a, there are a total of 12 paths from x1 to x3, but Dðx1; x3Þ
contains only 7 distances f284; 298; 312;326; 340;354; 368g. When

u1 is not a preceding node of u2, Dðu1;u2Þ is an empty set.

Let u1, u2 be two nodes in G and let v1, v2 be two nodes in H.

The node pair (u1, v1) is a consistent preceding node pair of the

other node pair (u2, v2) if Dðu1;u2Þ \Dðv1; v2Þ 6¼1, that is, there

exist two consistent paths: one from u1 to u2, the other from v1 to

v2. For example, the node pair (x1, y0) is a consistent preceding

node pair of the node pair (x3, y4) in Figure 2, because

Dðx1; x3Þ \Dðy0; y4Þ ¼ f340g.
Given a proteoform mass graph G and a spectral mass graph H,

the consistent preceding node pair problem is to find all consistent

preceding node pairs for every node pair (u, v) where u is in G and v

is in H. We study a variant of the problem in which the number of

red edges in a path in G is restricted. Let Dðu1; u2; rÞ denote the set

of distances defined by the paths from u1 to u2 that contain exactly r

red edges, called an r-distance set. A node pair (u1, v1) is an r-con-

sistent preceding node pair of the other node pair (u2, v2) if

Dðu1; u2; rÞ \Dðv1; v2Þ 6¼1.

2.2.1 Computing r-distance sets

Let x0;x1; . . . ;xn be the nodes in the proteoform mass graph G in

the topological order. We propose a dynamic programming algo-

rithm (Fig. 3) for computing Dðxi;xj; rÞ for 0 � i � j � n and

0 � r � t. In the initialization (Steps 1 and 2), we set for each node

xi in G

Dðxi;xi; rÞ ¼
f0g if r ¼ 0;

1 otherwise:

(

For 0 � i < j � n and 0 � r � t, the set Dðxi; xj; rÞ is com-

puted based on the distances between xi and xj�1. Let Rðu1;u2Þ
(Bðu1; u2Þ) be the set of all red (black) directed edges from a node

u1 to another node u2. The weight of an edge e is denoted by w(e).

For each red edge er 2 Rðxj�1;xjÞ and each distance

d 2 Dðxi;xj�1; r� 1Þ, we add d þwðerÞ into Dðxi;xj; rÞ (Steps 7-10).

For each black edge eb 2 Bðxj�1;xjÞ and each distance

d 2 Dðxi;xj�1; rÞ, we add d þwðebÞ into Dðxi; xj; rÞ (Steps 11-13).

When the number of the types of variable PTMs in proteoform iden-

tification is c, the number of operations of the algorithm is propor-

tional to n2tcþ1, where n is the number of nodes in the mass graph

and t is the largest number of variable PTMs in a proteoform. (See

the Supplementary Material for details.)

2.2.2 Finding r-consistent preceding node pairs

A node pair (u1, u2) in G and its r-distance set ðu1; u2; rÞ ¼ fd1;d2;

. . . ;dkg are represented by triplets < u1;u2; d1 >; . . . ; < u1;

u2;dk >. For a given r, the triplets of distance sets (u, v, r) for all

node pairs (u, v) in G are merged and sorted based on the distance.

Fig. 3. The algorithm for computing all the r-distance sets of a proteoform

mass graph.
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Similarly, node pairs in H and their distances are also represented

by a list of triplets sorted by the distance. The two sorted triplet

lists are compared to find the r-consistent preceding node pairs

for all node pairs (u, v) satisfying that u is in G and v is in H.

The number of operations in this step is proportional to

n2L log ðnLÞ þm2 log mþ Z, where L is the size of the largest r-

distance set in G, m is the number of nodes in H, and Z is the total

number of reported r-consistent node pairs.

Prefix residue masses in deconvoluted top-down MS/MS spectra

may contain small errors introduced in measuring the m/z values of

fragment ions. To address this problem, an error tolerance � is used

in finding r-consistent preceding node pairs. With the error toler-

ance, two paths are consistent if the difference of their weights is no

larger than �, and a triplet <u1; u2;du> from G matches a triplet

<v1; v2; dv> from H if jdu � dvj � �.

When the number of the types of variable PTMs in a proteoform

is a constant, the algorithms for computing r-distance sets need poly-

nomial time. In practice, we can further speed up the algorithms by

removing some node pairs (u1, u2) from the computation. That is,

we compute Dðu1; u2; rÞ only if the number of edges of the shortest

path from u1 to u2 is no large than a user defined parameter L.

2.3 Algorithms for the RMGA problem
We present a dynamic programming algorithm (Supplementary Fig.

S1) for the local RMGA problem. The algorithm can be modified to

solve the semi-global and global RMGA problems. Let x0;x1; . . . ;xn

be the nodes in the proteoform mass graph G in the topological

order, and let y0; y1; . . . ; ym be the nodes in the spectral mass graph

H in the topological order. We fill out a three dimensional table

Tði; j; kÞ for 0 � i � n; 0 � j � m, and 0 � k � t. The value

Tði; j; kÞ is the highest shared mass counting score among all consist-

ent path pairs (A, B) such that A ends at xi and contains k red edges,

and B ends at yj. Let Cði; j; rÞ be the set of all r-consistent preceding

node pairs of (xi, yj). The values of Tði; j; kÞ are computed using the

following function:

Tði; j;kÞ ¼

max
0� r�k

max
ðxi0 ;yj0 Þ2Cði;j;rÞ

Tði0; j0;k� rÞ þ 1

if [k
r¼0 Cði; j; rÞ 6¼1;

1 if [k
r¼0 Cði; j; rÞ ¼1 and k ¼ 0;

�1 otherwise :

8>>>>>><
>>>>>>:

(1)

When (xi, yj) has no consistent preceding node pairs and k¼0,

the value Tði; j;0Þ is set as 1 because two empty paths have a shared

prefix weight 0. After all values in the table Tði; j; kÞ are filled out,

we find the largest one in the table and use backtracking to recon-

struct a best scoring local alignment. The number of operations of

the algorithm is proportional to t2nmM, where M the size of the

largest set Cði; j; rÞ.
The recurrence relation can be slightly modified to solve the

semi-global and global RMGA problems. For the semi-global align-

ment problem, we change the second line in Equation (1) to Tði; j;kÞ
¼ 1 if [k

r¼0Cði; j; rÞ ¼1 and j ¼ k ¼ 0, that is, yj is required to be

the start node. For the global alignment problem, we change the se-

cond line in Equation (1) to Tði; j;kÞ ¼ 1 if [k
r¼0Cði; j; rÞ ¼1 and

i ¼ j ¼ k ¼ 0, that is, both xi and yj are required to be the start

nodes.

3 Results

We developed TopMG (TOP-down mass spectrometry-based pro-

teoform identification using Mass Graphs) based on the proposed

algorithms using Cþþ. All the experiments were performed on a

desktop with an Intel Core i7-3770 Quad-Core 3.4 GHz CPU and

16 GB memory.

3.1 Datasets
Three datasets were used in the evaluation of TopMG: one was gen-

erated from Escherichia coli (EC) K-12 MG1655 and the other two

from histone proteins.

For the EC dataset, protein extract of Escherichia coli K-12

MG1655 was analyzed by a liquid chromatography system coupled

with an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific,

Waltham, MA). MS and MS/MS spectra were collected at a 60 000

resolution. The top 4 ions in each MS spectrum were selected for

LC-MS/MS analysis, in which the alternating fragmentation mode

was used. In total, 2027 collision-induced dissociation (CID) and

2027 electron-transfer dissociation (ETD) top-down MS/MS spectra

were collected.

The first histone dataset was generated from the histone H4 pro-

tein. Core histones were separated by a 2-dimensional reversed-

phase and hydrophilic interaction liquid chromatography (RP-

HILIC) system of which the histone H4 protein was isolated in the

first dimension. The protein separation system was coupled with an

LTQ Orbitrap Velos mass spectrometer to generate CID and ETD

MS/MS spectra. A resolution of 60 000 was used for both MS and

MS/MS spectra, and a total of 1 626 CID and 1 626 ETD spectra of

the histone H4 protein were acquired. More details of the MS ex-

periment can be found in Liu et al. (2013).

The second histone dataset was generated from the histone H2A,

H2B, H3, and H4 proteins. Core histones were separated in the first

dimension using a Jupiter C5 column and further separated in the se-

cond dimension by a weak cation exchange hydrophilic interaction

LC (WCX-HILIC) using a PolyCAT A column. All acquisitions

were performed by an LTQ Orbitrap Velos mass spectrometer with

a 60 000 resolution. In total, 11 378 CID and 11 378 ETD top-

down MS/MS spectra were collected. More details of the MS experi-

ment can be found in Tian et al. (2012).

3.2 Evaluation on speed, memory usage and accuracy
A test dataset of PrSMs with mutations, which were treated variable

PTMs, was generated from the EC dataset for evaluating the speed,

memory usage, and accuracy of TopMG. The proteome database of

Escherichia coli K-12 MG1655 was downloaded from the UniProt

database (The UniProt Consortium, 2015) (Jun 18, 2015 version,

4 305 entries) and concatenated with a shuffled decoy database of

the same size. All the 4 054 top-down MS/MS spectra from the EC

dataset were deconvoluted by MS-Deconv (Liu et al., 2010) and

then searched against the target-decoy concatenated EC proteome

database using TopPIC (Kou et al., 2016). In the database search,

the error tolerances for precursor and fragment masses were set as

15 ppm and no mass shifts were allowed. The settings of other par-

ameters are given in Supplementary Table S1. A total of 861 PrSMs

were identified with a 1% spectrum-level false discovery rate (FDR),

which were further filtered by the number of matched fragment

ions, resulting in 767 PrSMs with at least 15 matched fragment ions.

The distribution of the matched fragment ions of these PrSMs is

given in Supplementary Figure S2.

The 767 PrSMs without PTMs were used to generate test PrSMs

with PTMs (mutations). Three mutations: lysine (K) to cysteine (C),

threonine (T) to alanine (A), and valine (V) to glycine (G),

were treated as variable PTMs. Let (P, S) be a PrSM between a spec-

trum S and a protein sequence P ¼ a1a2 . . . an without PTMs and
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truncations, and X a set of variable PTMs (mutations). We change

the protein sequence P to introduce variable PTMs (mutations) into

the PrSM. We first randomly select a mutation from amino acid x to

y in X and an amino acid ai¼y in P, then replace ai with the amino

acid x, resulting in a protein sequence P1 with a mutation. In add-

ition, a random amino acid sequence with a random length between

1 and 20 is appended to the N terminus of P1, and another random

sequence with a random length between 1 and 20 is appended to the

C-terminus of P1. The PrSM between the resulting sequence and S

contains a variable PTM (mutation), an N-terminal truncation, and

a C-terminal truncation. Using this method, a total of 11 505 test

PrSMs (15 for each of the 767 PrSMs) were generated. In addition,

PrSMs with 2; 3; . . . ;10 PTMs and N- and C- terminal truncations

were generated using a similar method. A total of 11 5050 PrSMs

were generated.

The semi-global mass graph alignment algorithm in TopMG was

employed for identifying a top proteoform for each test PrSM. If

the proteoform reported by TopMG has more than 15 matched

fragment ions, we say TopMG identifies a PrSM. A reported proteo-

form may contain some mass shifts that are localized to several can-

didate PTM sites, not single ones. If one candidate site of a mass

shift is correct, we say the mass shift is consistent with the correct

site in the target proteoform. If a reported proteoform has the same

N-terminal and C-terminal truncations as the target one and each

mass shift in the reported proteoform is consistent with its corres-

ponding PTM site in the target proteoform, the identification is

treated as correct.

We tested the running time, memory usage, and accuracy of

TopMG on the 11 505 test PrSMs with 5 variable PTMs each using

various settings for L: 10; 20; 30;40;50;60; 70; 80; 90; 100 (see

Section ‘Finding r-consistent preceding node pairs’). The error toler-

ance � was set as 0.1 Dalton (Da); the largest number of red edges

(PTMs) t was set as 10; the three mutations were treated as variable

PTMs. When the setting of L increases from 10 to 100, the running

time increases from 328 minutes to 947 minutes, the memory usage

increases from 1.2 GB to 2.2 GB, and the percentage of correctly

identified proteoforms increases from 38.8% to 81.8% (Fig. 4).

TopMG achieved a good balance between the speed and the accur-

acy rate when L¼40. Of the 11505 test PrSMs, TopMG (L¼100)

reported 11308 (98.3%) PrSMs with at least 15 matched

fragment ions, 11101 (96.5%) PrSMs with correct N- and C-ter-

minal truncations, and 11019 (95.7%) PrSMs with both correct ter-

minal truncations and correct numbers of variable PTMs. Most

incorrectly identified proteoforms contained some PTMs that were

not correctly localized because of the existence of random matches

between experimental fragment masses and theoretical prefix resi-

due masses.

We tested the accuracy rates of TopMG on the test PrSMs with

various numbers (1 to 10) of variable PTMs, in which the parameter

L was set as 40 and all other parameters were set as the same as the

previous experiment. When the number of variable PTMs increases

from 1 to 10, the accuracy rate decreases from 92.6% to 65.9%

(Fig. 5). Of the 11505 test PrSMs with 10 variable PTMs, TopMG

reported 11019 (95.7%) PrSMs with at least 15 matched fragment

ions, 10552 (91.7%) PrSMs with correct N- and C-terminal trunca-

tions, and 10056 (87.4%) PrSMs with both correct terminal trunca-

tions and correct numbers of variable PTMs, showing that most of

the incorrectly identified proteoforms contained incorrectly local-

ized PTMs.

3.3 Proteoform identifications from the histone datasets
We deconvoluted all the MS/MS spectra in the histone datasets using

MS-Deconv (Liu et al., 2010). Five common variable PTMs in the

histone protein (Table 1) were included in the construction of pro-

teoform mass graphs. For precursor masses, 61 and 62 Da errors

were allowed, which may be introduced by the deconvolution algo-

rithm. For a spectrum with a precursor mass m, we generated five

candidate spectra with precursor masses m – 2, m – 1, m, mþ1,

Fig. 4. The running time and percentages of correctly identified PrSMs for the

11505 test PrSMs with 5 variable PTMs each when the parameter L is set as

10; 20; . . . ; 100.

Fig. 5. The percentages of correctly identified PrSMs for the test PrSMs with

various numbers of variable PTMs.

Table 1. Five variable PTMs used in the identification of proteo-

forms of histone proteins

PTM Monoisotopic mass shift (Da) Amino acids

Acetylation 42.01056 R, K

Methylation 14.01565 R, K

Dimethylation 28.03130 R, K

Trimethylation 42.04695 R

Phosphorylation 79.96633 S, T, Y
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mþ2, respectively, and the spectrum with the best alignment result

was reported. The error tolerance � was set as 0.1 Da and the largest

number of red edges t was set as 10; the parameter L was set as 40.

By aligning the spectra against the proteoform mass graph,

TopMG (the algorithm for the semi-global RMGA problem) identi-

fied from the first histone dataset 1087 PrSMs with at least 10

matched fragment ions, including 918 matches with at least 20

matched fragment ions (Fig. 6a). Of the 1087 matches, 239 contain

more than 3 PTM sites (Fig. 6b). Detailed results are provided in

Supplementary Table S4.

The running time of TopMG was about 88 minutes. The run-

ning time depends on the sizes of the r-distance sets and the num-

bers of r-consistent preceding node pairs reported from the

proteoform and spectral mass graphs. For the histone H4 protein

with the five variable PTMs, the size of the largest r-distant set

was 553. For each spectral mass graph, we count the total num-

ber N of the consistent preceding node pairs used in the mass

graph alignment algorithm, that is, N ¼
P

i

P
j

Pt
r¼0 Cði; j; rÞ. The

average value of N for all the 3 252 spectra was 5:60� 106, and

the maximum value of N was 6:20� 107.

We compared the performance of TopMG and MS-Align-E

(Liu et al., 2013) on the first histone dataset. For MS-Align-E, the

error tolerance for fragment masses was set as 15 ppm and all the

other parameters were set as the same as TopMG. The running

time of MS-Align-E was 505 minutes. MS-Align-E identified 1 031

PrSMs with at least 10 matched fragment ions (Supplementary

Table S5). TopMG identified 991 of 1 031 matches reported by

MS-Align-E as well as 96 PrSMs missed by MS-Align-E, all of

which correspond to proteoforms with terminal truncations. The

main reason why the 96 PrSMs were missed by MS-Align-E is that

MS-Align-E is not able to identify truncated proteoforms. The

comparison demonstrated that TopMG outperformed MS-Align-E

in identifying truncated proteoforms. TopMG missed 40 PrSMs

identified by MS-Align-E because it may fail to identify PrSMs

with very low sequence coverage with the parameter setting

L¼40. When L was set as 200, TopMG identified all the 40

PrSMs. Proteoforms reported by TopMG tend to have more

matched fragment ions (Fig. 6a) and less PTM sites (Fig. 6b) com-

pared with those reported MS-Align-E.

The second histone dataset contains 1 349 CID and 1 349 ETD

spectra of the histone H4 protein. TopMG identified from these

spectra 1 051 PrSMs of the histone H4 protein with at least 10

matched fragment ions, including 851 matches with at least 20

matched fragment ions (Supplementary Table S6). Of the 1 051

matches, 291 contain more than 3 PTM sites. Coupled with the

Thrash algorithm (Horn et al., 2000), the absolute mass mode of

ProSightPC reported 89 proteoforms as well as their corresponding

PrSMs with at least 10 matched fragment ions from these spectra

(In the supplementary material of Tian et al. (2012), 105

proteoform-spectrum matches are reported, of which 89 have at

least 10 matched fragment ions.) (Supplementary Table S7). The

parameter settings of ProSightPC are given in Supplementary Table

S2. TopMG identified all the 89 spectra corresponding to the 89

matches reported by ProSightPC. In addition, TopMG identified 79

PrSMs whose precursor masses cannot match any proteoforms re-

ported by ProSightPC, showing that the corresponding proteoforms

were missed by ProSightPC (Supplementary Table S8). Manual in-

spection confirmed that a proteoform with an N-terminal truncation

(18 amino acids are removed) was identified by TopMG, but missed

by ProSightPC. TopMG also identified proteoforms missed by

ProSightPC from the spectra of the histone H2A, H2B, and H3 pro-

teins in the second histone dataset. (See the Supplementary Material

for details.)

4 Discussion

Unlike splicing graphs (Heber et al., 2002) and variant graphs (Woo

et al., 2014b), amino acid residue masses are stored as weights of

edges, not of nodes, in mass graphs. Suppose residue masses are

stored as weights of nodes. Let u1; u2;u3 be the three nodes represent-

ing the first arginine (R) and its modified forms R[Acetylation] and

R[Methylation] in the protein in Figure 2 and v1; v2; v3; v4 be the four

nodes representing the first lysine (K) and its modified forms

K[Aceyltation], K[Methylation] and K[Dimethylation]. We need 12

edges to connect all node pairs (ui, vj) for 1 � i � 3 and 1 � j � 4,

making the graph more complex than the mass graph representation.

The example shows that using edge weights in graphs is more efficient

than node weights in representing proteoforms with variable PTMs.

The mass graph alignment problem is similar to the spliced align-

ment problem (Gelfand et al., 1996), but they are different. The

spliced alignment problem studies sequence alignment, not mass

alignment. In a sequence alignment problem, a substitution in a se-

quence does not significantly affect the alignment results. For ex-

ample, changing ‘A’ to ‘T’ in x in the sequence alignment between

x¼ACGT and y¼ACGT does not affect the matching pairs of

CGT. However, this property does not hold for mass alignment. For

example, the red bold path in Figure 2a and the path from y0 to y6

in Figure 2b has a shared mass counting score 4 because they share 4

prefix masses 0, 198, 340, and 521. If we change the mass on the

red edge between x1 and x2 from 198 to 156, the two paths share

only one prefix residue mass 0. The reason is that the mass shift

‘propagates’ to all non-zero prefix residue masses of the red bold

(a) (b)

Fig. 6. Histograms for the PrSMs reported from the first histone dataset by TopMG with L¼40 and MS-Align-E. (a) the number of matched fragment ions; (b) the

number of variable PTM sites.
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path. The ‘propagation’ property makes mass alignment more chal-

lenging than sequence alignment.

Compared with MS-Align-E (Liu et al., 2013) and pTop (Sun

et al., 2016), the main advantage of TopMG is that it is capable of

identifying proteoforms with terminal truncations. Although using

MS-Align-E or pTop to search spectra against a database containing

all possible proteoforms with terminal truncations can also identify

truncated proteoforms, the size of the database is extremely large,

making the approach inefficient. For example, a protein sequence

with 300 amino acids has 45150 different truncated forms.

The parameter L determines the sensitivity and speed of

TopMG. The experiments showed setting L¼40 obtained a good

balance between speed and sensitivity. In practice, users can adjust

the setting of L to satisfy specific requirements in data analyses.

When a long running time is acceptable, the setting of L can be

increased to 100 or even the length of the target protein to increase

the sensitivity of TopMG.

TopMG still have limitations. First, the speed of TopMG is slow

for analyzing large top-down MS datasets. Analyzing one top-down

MS dataset may take several hours, even several days. A pipeline

that consists of the extended database approach and TopMG can

speed up proteoform identification. The extended database ap-

proach is used to identify spectra that are matched to commonly

observed proteoforms, and TopMG is used to analyze only spectra

that are not identified by the extended database approach. Second,

TopMG is designed for purified protein studies, not for proteome-

level MS analyses. Efficient filtering algorithms are needed for

proteome-level MS analyses. One possible filtering strategy is to

keep a protein only if the difference between the precursor mass of

the MS/MS spectrum and the molecular mass of the protein can be

explained by a combination of variable PTMs and/or truncations.

Another possible method is to filter proteins using sequence tags.

Third, TopMG does not provide confidence scores for identified

PTMs, which are important for proteoform characterization.

Fourth, TopMG lacks a framework for the estimation of false dis-

covery rates (FDRs) of identified proteoforms and modifications.

The estimation of proteoform level FDRs is a challenging problem

because an identified proteoform may have terminal truncations and

multiple modifications compared with the database protein se-

quence. There is no existing method for solving this problem. As for

FDRs of identified modifications, LuciPHOr (Fermin et al., 2013)

and LuciPHOr2 (Fermin et al., 2015) provide a method based on

the target-decoy framework for estimating false localization rates

(FLRs) of identified phosphorylation sites in bottom-up MS. This

method may be extended to estimate FLRs of modifications identi-

fied by top-down MS.
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