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Summary. We consider the problem of testing functional constraints in a class of functional
concurrent linear models where both the predictors and the response are functional data mea-
sured at discrete time points. We propose test procedures based on the empirical likelihood
with bias-corrected estimating equations to conduct both pointwise and simultaneous infer-
ences. The asymptotic distributions of the test statistics are derived under the null and local
alternative hypotheses, where sparse and dense functional data are considered in a unified
framework. We find a phase transition in the asymptotic null distributions and the orders of de-
tectable alternatives from sparse to dense functional data. Specifically, the tests proposed can
detect alternatives of

p
n-order when the number of repeated measurements per curve is of an

order larger than nη0 with n being the number of curves. The transition points η0 for pointwise
and simultaneous tests are different and both are smaller than the transition point in the esti-
mation problem. Simulation studies and real data analyses are conducted to demonstrate the
methods proposed.

Keywords: Empirical likelihood; Functional analysis of variance; Non-parametric hypothesis
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1. Introduction

We consider statistical inference problems under a general functional concurrent linear (FCL)
model (Ramsay and Silverman, 2005), where both the response Y.t/ and the p-dimensional
covariate X.t/ = {X.1/.t/, : : : , X.p/.t/}T are defined continuously on a time interval [a, b]. The
relationship between Y.t/ and X.t/ is given by

Y.t/=βT
0 .t/X.t/+ ε.t/, .1:1/

where β0.t/= .β10.t/, : : : , βp0.t//T is a p-dimensional vector of unknown functions and ε.t/ is a
zero-mean error process independent of X, with a covariance function Ω.s, t/= cov{ε.s/, ε.t/}.
Without loss of generality, we allow X.t/ to be a multivariate random process with mean function
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μ.t/=E{X.t/} and covariance function Γ.s, t/= cov{X.s/, X.t/}. Recent literature on the FCL
model includes Fan and Zhang (2000), Faraway (1997), Zhang and Chen (2007), Zhang et al.
(2010) and Zhang (2011).

Let {Yi.t/, Xi.t/}, i=1, : : : , n, be independent realizations of {Y.t/, X.t/}. Instead of observing
the entire trajectories, one can observe Yi.t/ and Xi.t/ at only discrete time points {tij, j =1, : : : ,
mi} (Hall and Van Keilegom, 2007). For convenience, denote Yij = Yi.tij/ and X

.k/
ij =

X
.k/
i .tij/, and assume that mis (1� i�n) are all of the same order as m=nη for some η �0, i.e.

mi=m are bounded below and above by some positive constants. Functional data are considered
to be sparse or dense depending on the order of m (Hall et al., 2006; Li and Hsing, 2010). Data
with bounded m, or η =0, are called sparse functional data; those satisfying η �η0, where η0 is
a transition point to be specified below, are referred to as dense functional data. The scenarios
with η ∈ .0, η0/ are in a grey zone in the literature and we refer to them as ‘moderately dense’ in
this paper.

Historically, sparse and dense functional data were analysed with different methods. For dense
functional data, one can smooth each curve separately and proceed with further estimation
and inference based on the presmoothed curves. A partial list of recent literature on dense
functional data includes Castro et al. (1986), Rice and Silverman (1991), Zhang and Chen
(2007), Eubank and Hsing (2008) and Benko et al. (2009). For sparse functional data, the
presmoothing approach is not applicable and, instead, one needs to pool all data together to
borrow strength from individual curves (Yao et al., 2005a, b). Hall et al. (2006) investigated
the theoretical properties of functional principal component analysis based on local linear
smoothers. They found that, for dense functional data with η � 1

4 , the presmoothing errors are
asymptotically negligible and quantities such as the mean, covariance and eigenfunctions can
be estimated with a parametric

√
n-rate, whereas these quantities can only be estimated with

a non-parametric convergence rate for sparse functional data with η =0. However, sparse and
dense functional data are asymptotic concepts and are difficult to distinguish in reality. Li and
Hsing (2010) proposed an estimation procedure treating all types of functional data under a
unified framework. More recently, Kim and Zhao (2013) proposed a unified, self-normalizing
approach to construct pointwise confidence intervals for the mean function of functional data.
Both Li and Hsing (2010) and Kim and Zhao (2013) established η0 = 1

4 as the transition point
to a parametric convergence rate.

In contrast with estimation, less is known about inferences for functional data, with a few
exceptions such as Zhang and Chen (2007) and Kim and Zhao (2013). The focus of this paper
is on proposing pointwise (at a specific t) and simultaneous test (for all t in [a, b]) procedures
for the following hypothesis under model (1.1):

H0 : H{β0.t/}=0 versus H1 : H{β0.t/} �=0, .1:2/

where H.z/ is a q-dimensional function of z = .z1, : : : , zp/T ∈Rp such that C.z/ := @H.z/=@zT is
a q ×p full rank matrix (q �p) for all z. The test problem (1.2) is very broad, including many
interesting hypotheses as special cases. For instance, if H.z/=z, the null hypothesis is equivalent
to H0 :βk0.·/=0 for all k. If H.z/= .z1 − z2, z2 − z3, : : : , zp−1 − zp/T, then hypothesis (1.2) is an
analysis-of-variance type of hypothesis on the coefficient functions βk0.·/. If H.z/ =Λz − c0
for a q × p known constant matrix Λ and a known vector c0, then hypothesis (1.2) becomes
H0 :Λβ0.·/=c0, which is a test for linear constraints on β0.·/. Zhang and Chen (2007) and Zhang
(2011) studied similar linear constraints test problems for dense functional data with η > 5

4 .
Besides linear constraints, non-linear constraints are also special cases of hypothesis (1.2), which
have broad applications in econometrics and neuroimaging studies. See Phillips and Park (1988),
Critchley et al. (1996) and Ashby (2011) for some explicit examples of non-linear hypotheses.
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In this paper, we propose both pointwise and simultaneous tests for the non-parametric
hypothesis (1.2) based on empirical likelihood (EL). We show that EL-based tests enjoy a
nice self-normalizing property such that we can treat both sparse and dense functional data
under a unified framework. EL is a non-parametric likelihood which was introduced by Owen
(1988, 1990), which maintains two key properties of a parametric likelihood: the Wilks property
(Owen, 1990, 2001) and the Bartlett correction property (DiCiccio et al., 1991; Chen and Cui,
2006). An overview of EL methods can be found in Owen (2001) and Chen and Van Keilegom
(2009). There has been some work on EL methods for sparse functional data with η=0, such as
Xue and Zhu (2007), Chen and Zhong (2010) and Tang and Leng (2011). However, to the best
of our knowledge, EL methods for dense functional data with η > 0 have not been investigated.

To investigate the power of the tests, we consider the local alternatives

H1n : H{β0.t/}=bnd.t/, .1:3/

where bn is a sequence of numbers converging to 0 at a rate to be specified later and d.t/ �=0 is
a q-dimensional function. For any fixed non-zero d.·/, let bÅ

n be the smallest order of the local
alternatives such that a test has a non-trivial power (i.e. the power of a test is larger than its
nominal level). Here bÅ

n quantifies the order of signals that a test can detect. For sparse data with
η=0, Chen and Zhong (2010) proved that the EL method using a global bandwidth h can detect
alternatives of order bÅ

n = .nh/−1=2 and bÅ
n = n−1=2h−1=4 for pointwise and simultaneous tests

respectively. Because h→0 in a typical non-parametric regression setting, both orders are larger
than the parametric rate n−1=2. However, for dense data with η > 0, the detectable order bÅ

n is
still largely unknown. One key interest in this paper is to understand the effect of η on bÅ

n . Under
some mild conditions and with a properly chosen bandwidth, we find that, for the pointwise
EL test, bÅ

n is larger than n−1=2 for η � 1
8 and equals n−1=2 for η > 1

8 . For the simultaneous EL
test, bÅ

n is larger than n−1=2 for η � 1
16 and equals n−1=2 for η > 1

16 . The transition points 1
8 and

1
16 will be respectively referred to as η0 for the pointwise and simultaneous EL tests. This phase
transition result echoes similar phenomena discovered by Li and Hsing (2010) for estimation
problems.

Our study is motivated by inference problems from two real data applications where one
involves dense functional data and another involves sparse functional data. In both data ex-
amples, the interest is to study the dynamic time varying effects of functional covariates on
the functional response. In the Google flu trend data, the response is weekly flu activity from
42 states in the USA for an entire year. One of the covariates of interest is the maximum
daily temperature variation (MDTV) in these states, which is also obtained weekly over the
same time period. As shown in Fig. 1, both flu activity and temperature variation curves are
dense functional data. In a data set collected by the Alzheimer’s disease (AD) neuroimaging
initiative at the University of Southern California, the mini-mental state examination (MMSE)
score and the volume of the hippocampus of the brain are measured for each enrolled
patient during clinic visits. These variables are repeatedly measured 3–10 times during a
1-year follow-up, which yields sparse functional data. More details of these data are provided in
Section 7.

The rest of the paper is organized as follows. In Section 2, we present a bias-corrected estimator
and some preliminary results. We propose the unified pointwise EL test in Section 3 and the
simultaneous EL test in Section 4, where we investigate the asymptotic distributions of the test
statistics under both the null hypothesis and local alternatives and obtain the transition phase for
bÅ

n . In Section 5, we address implementation issues such as bandwidth selection and covariance
estimation. Simulation studies are presented in Section 6, followed by analysis of the two data
examples in Section 7. All technical details are included in the on-line supplemental material.
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Fig. 1. Google flu trend data: (a) flu activity (percentage of influenza-like illness cases per 100000 physician
visits) and (b) the MDTV for 42 states of the USA (both variables are measured weekly during the 2013–2014
flu season; each curve represent one state)
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The data that are analysed in the paper and the programs that were used to analyse them can
be obtained form

http://wileyonlinelibrary.com/journal/rss-datasets

2. A bias-corrected estimator and some preliminary results

We first introduce a bias-corrected estimator β̌.t/ based on an initial local linear estimator β̂.t/

(Fan and Gijbels, 1996) for β0.t/ and then provide some preliminary results for β̌.t/.

2.1. A bias-corrected estimator
Let K.·/ be a symmetric probability density function that we use as a kernel and h be a
bandwidth, and denote Kh.·/ = K.·=h/=h. For any t in a neighbourhood of t0, βk0.t/ can
be approximated by βk0.t/ ≈βk0.t0/ + {@βk0.t0/=@t}.t − t0/ := ak + bk.t − t0/ for k = 1, 2, : : : , p:

Denote ϑ= .a1, : : : , ap, hb1, : : : , hbp/T and Dij.t/= .XT
ij, .tij − t/XT

ij=h/T. For each 1� i�n, put
Yi = .Yi1, Yi2, : : : , Yimi/

T, Di.t/ = .Di1.t/, Di2.t/, : : : , Dimi.t//
T and Wi.t/ = diag{Kh.ti1− t/, : : : ,

Kh.timi − t/}=mi. Further, let Y = .YT
1 , YT

2 , : : : , YT
n /T, D.t/ = .DT

1 .t/, DT
2 .t/, : : : , DT

n .t//T and
W.t/=diag{W1.t/, W2.t/, : : : , Wn.t/}. An estimator for ϑ is obtained as

ϑ̂={DT.t0/W.t0/D.t0/}−1DT.t0/W.t0/Y:

Thus the local linear estimator for β0.t0/ is

β̂.t0/= .Ip, 0p/ϑ̂= .Ip, 0p/{DT.t0/W.t0/D.t0/}−1DT.t0/W.t0/Y, .2:1/

where Ip is a p×p identity matrix and 0p is a p×p zero matrix. It is shown in lemma 1 in the
on-line supplemental material that

sup
t∈[a,b]

|β̂.t/−β0.t/|=O

[
h2 +

{
log.n/

n
+ log.n/

nmh

}1=2]
almost surely. .2:2/

The O.h2/ term in result (2.2) is the order for the bias of β̂.t/. To eliminate the influence
of bias, undersmoothing is typically needed for an unbiased testing procedure (Xue and Zhu,
2007). Instead of performing artificial undersmoothing, we propose to reduce the bias in β̂.t/ by
introducing a bias-corrected estimator β̌.t/ (Xue and Zhu, 2007) as the solution of the following
residual-adjusted estimating equation for β.t/:

ḡn{β.t/} := 1
n

n∑
i=1

gi{β.t/}=0, .2:3/

with gi{β.t/}= .1=mi/Σ
mi

j=1{Yij −βT.t/Xij − .β̂.tij/− β̂.t//TXij}XijKh.tij − t/, where β̂.t/ is the
initial local linear estimator in equation (2.1). Remark S.1 in the on-line supplemental material
provides some motivation for the above bias correction.

There are several existing methods to estimate β.t/ in the FCL literature, including the Fourier
basis approach of Faraway (1997) and Ramsay and Silverman (2005), the local polynomial
methods in Fan and Zhang (2000), Zhang and Chen (2007) and Zhang (2011), the wavelet
approach of Zhang et al. (2010) and the smoothing spline method in Eggermont et al. (2010).
Our purpose in introducing the bias-corrected estimating equation approach is not only to
reduce the bias in the estimator but also to use gi{β.t/} in the construction of our empirical
likelihood (3.1). One can develop other estimators for β.t/, such as the local cubic polynomial
estimator (Fan and Gijbels, 1996), that yield a similar bias of O.h4/ as in β̌.t/; however, those
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estimators cannot be naturally extended to empirical likelihood. For illustration, we also provide
a simulation study in the on-line supplemental material to compare the numerical performance
of the bias-corrected estimator β̌.t/ with that of the local cubic estimator. We find that the local
cubic estimator has a slightly smaller bias than β̌.t/ but higher variance and mean-squared error.
This perhaps is because the local cubic estimation method needs to estimate more nuisance
parameters such as the higher order derivatives of β.t/.

2.2. Regularity conditions and preliminary results
We now present some preliminary results regarding the asymptotics of β̌.t/. Assume that tij
are independent and identically distributed random variables following a probability density
function f.t/. For convenience, define Γ.t/=Γ.t, t/, Ω.t/=Ω.t, t/ and C.t/=C{β0.t/}. We shall
also use õp and Õp to represent respectively that op and Op hold uniformly for all t ∈ [a, b]. The
following conditions are needed for our asymptotic results.

Condition 1. The kernel function K.·/ is a symmetric probability density function with a
bounded support in [−1, 1].

Condition 2. Assume that E{supt∈[a,b] ‖X.t/‖λ1} < ∞ and E{supt∈[a,b] |ε.t/|λ2} < ∞ where
λ1, λ2 �5 and ‖ · ‖ is the L2-norm of a vector.

Condition 3. Both f.t/ and Γ.t/ are twice continuously differentiable, β0.t/ is three-times
continuously differentiable and C.t/ is uniformly bounded on [a, b].

Condition 4. Define λ=min.λ1, λ2/ and let h	n−α0 with α0 ∈ .0, 1/ the order of the band-
width. Assume that

(a) α0 < 1−η −2=λ if η ∈ [0, 1
8 ] and α0 < 1

2 −1=λ if η > 1
8 ;

(b) .1+η/=9 <α0 if η ∈ [0, 1
8 ] and 1

8 <α0 <η if η > 1
8 .

Conditions 1 and 3 are commonly used regularity conditions in non-parametric regressions.
Condition 2 is similar to that in Li and Hsing (2010). The upper bounds on the bandwidth h

in condition 4, part (a), are adapted from Li and Hsing (2010). A detailed explanation on the
restrictions of h in condition 4, part (b), will be given in remark 2 after proposition 2. Selecting
a bandwidth that satisfies condition 4 will be discussed in Section 5.

The following proposition provides an asymptotic expansion for β̌.t/, the proof of which is
provided in the on-line supplemental paper.

Proposition 1. Let A.t/=Γ.t/f.t/. Under conditions 1–3 and 4, part (a),

β̌.t/−β0.t/=−A−1.t/ξ̄n.t/{1+ õp.1/}+ Õp.h4/, .2:4/

where ξ̄n.t/=n−1Σn
i=1ξi.t/ and ξi.t/=m−1

i Σmi

j=1XijεijKh.tij − t/. Let μts =∫
usKt.u/du and r̄ =

limn→∞ n−1Σn
i=1m=mi; then

var{ξ̄n.t/}=Γ.t/Ω.t/f.t/

{
r̄

mnh
μ20 + m− r̄

nm
f.t/

}
{1+ õ.1/}: .2:5/

Remark 1. The genuine bias and variance of β̌.t/ cannot be easily obtained, but the Õp.h4/

remainder term and the variance of the leading order term in the asymptotic expansion (2.4) can
be considered respectively as substitutes for the bias and variance of β̌.t/. Similarly, throughout
the rest of this paper, the bias and variance of an estimator are not exact but those of the
leading terms in the asymptotic expansion. Our calculation of asymptotic mean-squared error
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(AMSE) is also based on these ‘pseudo’asymptotic bias and variance. Proposition 1 shows that
the AMSE of β̌.t/ is

AMSE{β̌.t/}=O

(
h8 + 1

mnh
+ 1

n

)
:

Hence the optimal bandwidth hopt that minimizes the AMSE of β̌.t/ is hopt 	 .mn/−1=9 =
n−.1+η/=9. It follows that β̌.t/ − β0.t/ = Op{h4

opt + .mnhopt/
−1=2 + n−1=2} = Op{n−1=2

+ n−4.1+η/=9}: The optimal convergence rate of β̌.t/ is then of order n−4.1+η/=9 if η � 1
8 and

of order n−1=2 if η > 1
8 . Thus, η0 = 1

8 is the transition point for the convergence rate of β̌.t/.
When η > η0, β̌.t/ is no longer sensitive to the choice of h and its convergence rate remains at
Op.n−1=2/ as long as h=O.n−1=8/ and h
m−1 =n−η.

The next proposition provides the asymptotic distribution of β̌.t/.

Proposition 2. Suppose that mh→κ0 ∈ [0, ∞]; define

Cn,α0,η =
{

{n=.mh/}1=2, if 0�κ0 <∞,
n1=2, if κ0 =∞ .2:6/

and B.t/ =Γ.t/Ω.t/f.t/[{r̄μ20 +κ0f.t/}I.κ0 < ∞/ + f.t/I.κ0 =∞/]. Under conditions 1–4, we
have

nC−1
n,α0,η{β̌.t/−β0.t/} d→N{0, V.t/}, .2:7/

where V.t/=A−1.t/B.t/A−1.t/ and A.t/ was defined in proposition 1.

Remark 2. Following proposition 1, the bias in nC−1
n,α0,η{β̌.t/−β0.t/} is of order O.nh4 ×

C−1
n,α0,η/. Condition 4, part (b), warrants that this bias is asymptotically negligible. Specifi-

cally, when η �η0 = 1
8 , the condition α0 >.1+η/=9 ensures that mh<∞. Hence nh4=Cn,α0,η =

n1=2m1=2h9=2 	n.1+η−9α0/=2 =o.1/; when η >η0, the condition that 1
8 <α0 <η implies mh→∞

and nh4=Cn,α0,η =n1=2h4 	n1=2−4α0 →0. Being asymptotically unbiased is particularly impor-
tant for constructing a valid unbiased test.

Remark 3. By proposition 2 and the delta method, we can show that, under H0 in expres-
sion (1.2), nC−1

n,α0,ηH{β̌.t/}→d N{0, R−1.t/}, where R.t/ = {C.t/V.t/C.t/T}−1. Note that the
asymptotic variances of H{β̌.t/} are different under sparse and dense cases.

A Wald-type test statistic may be constructed by using remark 3 if an appropriate estima-
tor for the variance of H{β̌.t/} can be obtained. We shall not pursue this direction because
the estimation of the asymptotic variance involves several non-parametric functions, e.g. Γ.t/,
Ω.t/ and f.t/, which requires properly selecting several bandwidths. Instead, we propose a self-
normalizing EL method in the next section which avoids estimating the asymptotic variance
explicitly. Some recent reviews of self-normalizing methods and theories can be found in Peña
et al. (2008), Shao (2010) and Shao and Wang (2013).

3. A unified pointwise test

To test H0 in expression (1.2) at any fixed time t, we propose a test based on the EL ratio statistic.
Following Owen (1990), the EL for β.t/ is given by

L{β.t/}= max
p1,p2,:::,pn

[
n∏

i=1
pi :

n∑
i=1

pi =1, pi �0,
n∑

i=1
pigi{β.t/}=0

]
: .3:1/
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Applying the method of Lagrange multipliers, the log-EL function becomes

l{β.t/} := log[L{β.t/}]=−∑
log[1+γT.t/gi{β.t/}]−n log.n/,

where γ.t/ is a solution to the equation

Q1n{β.t/, γ.t/} := 1
n

n∑
i=1

gi{β.t/}
1+γT.t/gi{β.t/} =0: .3:2/

The maximum log-EL without any constraint is l{β̌.t/}=−n log.n/. It follows that the neg-
ative log-EL ratio for testing H0 : H{β0.t/}=0 is

l.t/ := min
H{β.t/}=0

l0{β.t/}, .3:3/

where l0{β.t/}=Σn
i=1 log[1+γT.t/gi{β.t/}]. To solve equation (3.3), we minimize the following

objective function (Qin and Lawless, 1995):

M{β.t/, ν.t/}= 1
n

l0{β.t/}+νT.t/H{β.t/},

where ν.t/ is a q×1 vector of Lagrange multipliers. Differentiating M.·, ·/ with respect to β and
ν and setting them to 0, we have

Q2n{β.t/, γ.t/, ν.t/} := 1
n

@l0{β.t/}
@βT.t/

+CT{β.t/}ν.t/=0,

H{β.t/}=0:

Combining equation (3.2) for γ.t/, the constrained minimization problem (3.3) is equivalent to
solving the following estimating equation system:

Q1n{β.t/, γ.t/}=0,

Q2n{β.t/, γ.t/, ν.t/}=0,

H{β.t/}=0:

⎫⎪⎬
⎪⎭ .3:4/

The existence of a consistent solution to system (3.4) follows from similar arguments to those
given by Qin and Lawless (1995), the proof of which is omitted but available from the authors
on request. Denote the solution to system (3.4) as {β̃.t/, γ̃.t/, ν̃.t/} and β̃.t/ as the restricted
maximum EL estimator. Then the test statistic (3.3) becomes l.t/ = l0{β̃.t/}: Several existing
non-linear optimization algorithms implemented in the C package ‘NLopt’ are applicable to
obtain the solution. The C package NLopt was developed by S. Johnson (Johnson, 2010) and
is available from http://ab-initio.mit.edu/nlopt.

The following proposition provides an asymptotic expansion of 2l.t/.

Proposition 3. Under H0 at t ∈ [a, b] and conditions 1–4,

2l.t/=Un.t/TUn.t/+Op.nh4=Cn,α0,η/, .3:5/

where Un.t/=nC−1
n,α0,ηG.t/ξ̄n.t/, G.t/=R1=2.t/C.t/A−1.t/ and R.t/ is defined in remark 3.

The asymptotic expansion in equation (3.5) makes a connection between 2l.t/ and the bias-
corrected estimator β̌.t/ that was described in Section 2. Using Taylor series expansion, one can
show that H{β̌.t/}=H{β0.t/}+C.t/{β̌.t/−β0.t/}+op.Cn,α0,η=n+h4/. Then by proposition
1, we have Un.t/=nC−1

n,α0,ηR1=2.t/H{β̌.t/}+op.1/ under H0 where H{β0.t/}=0. Applying re-
sults in remark 3, it can be shown that Un.t/ asymptotically follows a q-dimensional multivariate
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standard normal distribution. Naturally, 2l.t/→d χ2
q under the null hypothesis. The fact that the

asymptotic distribution of 2l.t/ does not depend on m (or η) proves that it is a self-normalized
test statistic. This is a very appealing property because the test procedure is the same for all
types of functional data and solving system (3.4) does not require estimating the variance of
H{β̌.t/}.

The following theorem summarizes the asymptotic distribution of 2l.t/ under both the local
alternative (1.3) and the null hypothesis H0.

Theorem 1. Under conditions 1–4 and under the alternative H1n, H{β0.t/} = bnd.t/ for
t ∈ [a, b], where bn =n−1Cn,α0,η and d.t/ is any fixed real vector of functions, we have 2l.t/→d

χ2
q{dT.t/R.t/d.t/}, where dT.t/R.t/d.t/ is the non-centrality parameter. In particular, under

H0 and d.t/=0, 2l.t/ follows a χ2
q-distribution asymptotically.

Remark 4. An asymptotic α-level test is given by rejecting H0 at a fixed point t if 2l.t/>χ2
q,α

where χ2
q,α is the upper α-quantile of χ2

q. By taking a special function H.β/=βj.t/, we can also
construct a 100.1 −α/% confidence interval for βj.t/ as CIα = {βj.t/ : 2l.t/ <χ2

1,α}, which can
be computed numerically. This provides an alternative self-normalized confidence interval to
those proposed by Kim and Zhao (2013) who considered a mean model rather than the FCL
model (1.1). Another distinction is that Kim and Zhao (2013) used a higher order kernel to
reduce the bias whereas our method is based on bias-corrected estimating equations.

We define the detectable order bÅ
n as the smallest order bn in the alternative (1.3) that can be

detected by the test proposed. For a given level of significance α,

bÅ
n =min

h
bn subject to

(a) type I error�α under H0 and

(b) the power is non-trivial under H1n: .3:6/

Theorem 1 guarantees that the test proposed controls the type I error at the nominal level
asymptotically. For sparse and moderately dense functional data (η � 1

8 ), condition 4 implies
that mh→0 and hence bn = .nmh/−1=2 by theorem 1. In this case,

bÅ
n =min

h
bn =min

h
.nmh/−1=2 subject to condition 4 on h:

The optimal h that solves the minimization problem above is hÅ =n−.1+η+δ/=9 for an arbitrarily
small δ > 0. This implies that the optimal bn is n−4.1+η/=9+δ=18, which results in bÅ

n =n−4.1+η/=9

by letting δ →0. For dense data (η > 1
8 ), condition 4 leads to mh→∞. Theorem 1 implies that

the test proposed has a non-trivial power under a local alternative of size bÅ
n =n−1=2, which is

the detectable order of a parametric test.

4. A unified simultaneous test

We now consider a simultaneous test on H0 in expression (1.2) for all t ∈ [a, b]. Intuitively, 2l.t/

measures the distance between H{β0.t/} and 0 at any t ∈ [a, b]. To test hypothesis (1.2) for all t,
we propose a Cramér–von Mises-type test statistic

Tn =
∫ b

a

2l.t/w.t/dt, .4:1/

where w.·/ is a known probability density function. The construction of Tn enables us to borrow
information across the time domain and yields a more powerful test than the pointwise test.
Similar constructions were used by Härdle and Mammen (1993) and Chen and Zhong (2010).
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4.1. Null distribution and local power
By the asymptotic decomposition of 2l.t/ in proposition 3, we need first to understand the
covariance structure of the process Un.t/ to investigate the distribution of Tn.

Proposition 4. Under conditions 1–4 and the null hypothesis H0, we have cov{Un.s/, Un.t/}=
Σn.s, t/{1+o.1/} where

Σn.s, t/=
⎧⎨
⎩

μ−1
20 K.2/{.s− t/=h}Iq, if m2h→0,

IqI.s= t/+mhΣ0.s, t/I.s �= t/, if m2h→∞ and mh→0,
Σ0.s, t/, if mh→∞,

K.2/.x/=∫
K.y/K.x−y/dy and Σ0.s, t/=G.s/Γ.s, t/GT.t/Ω.s, t/f.s/f.t/.

The leading term in the covariance of Un.t/ is different under different asymptotic scenarios.
In the second case, the IqI.s = t/ term in the expression for Σn.s, t/ seems to dominate but is
only non-zero in an area with Lebesgue measure 0; the mhΣ0.s, t/I.s �= t/ term, in contrast, is
the leading term almost everywhere.

Suppose that the covariance function Σn.s, t/ has the spectral decomposition (Balakrishnan,
1960)

Σn.s, t/=
∞∑

k=1
γnkφnk.s/φT

nk.t/ for any s, t ∈ [a, b],

where γn1 � γn2 � : : : � 0 are the ordered eigenvalues and φn1.t/, φn2.t/, : : : are the associ-
ated eigenfunctions. The eigenfunctions are vector-valued orthonormal functions satisfying∫ b

a φT
nk.t/φnl.t/w.t/dt = δl

k where δl
k = 1 if k = l and δl

k = 0 otherwise. Even though the eigen-
values γnk change under different asymptotic scenarios, it is easy to verify that Σ∞

k=1γnk =
tr{∫

Σn.t, t/w.t/dt}=q for all cases in proposition 4. Also note that, in the third case of propo-
sition 4, Σn =Σ0 does not depend on n and therefore γnk ≡γk and φnk.t/≡φk.t/ for all k.

To establish the asymptotic distribution of Tn, we need to replace condition 4, part (b), with
the following condition.

Condition 4.

.b′/ 2.1+η/=17 <α0 if η ∈ [0, 1
8 ] and 1

8 <α0 <η if η > 1
8 :

Under the null hypothesis, we can show that Un.t/ is an asymptotically q-dimensional Gaus-
sian process with mean 0 and covariance cov{Un.s/, Un.t/}=Σn.s, t/. We shall show that the
limiting distribution of Tn is the same as that of Zn = ∫ b

a UT
n .t/Un.t/w.t/dt, which follows a

χ2-mixture distribution. This result is described in the following theorem, the proof of which is
provided in the on-line supplemental material.

Theorem 2. Under H0 in hypothesis (1.2) and conditions 1–3, 4, parts (a) and (b′), Tn =d Zn{1+
op.1/}, where Zn =d Σ∞

k=1γnkχ
2
1,k and χ2

1,k, k =1, 2, : : : , are independent χ2 random variables
with 1 degree of freedom.

Remark 5. The asymptotic χ2-mixture distribution in theorem 2 is quite different from the
asymptotic normal distribution for classic EL ratio tests for independent data, time series or
sparse longitudinal data (Chen et al., 2003; Chen and Zhong, 2010). In fact, for dense functional
data, our calculation shows that E[{Tn − E.Tn/}4] �= 3var2.Tn/, and hence Tn can behave quite
differently from a Gaussian variable. However, for sparse or moderately dense functional data
with η � 1

16 , the χ2-mixture is also asymptotically normal. This result is given in the following
corollary.
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Corollary 1. Under the same conditions as those in theorem 2, if η � 1
16 , we have h−1=2.Tn −

q/→d N.0, qσ2
0/, where σ2

0 =2μ−2
20

∫ b
a w2.t/dt

∫ 2
−2 K.2/.u/2du.

Corollary 1 makes a connection between the general results in theorem 2 and the classic
results. The null distribution of Tn is different under different asymptotic scenarios and may
depend on some unknown quantities such as γnk, which makes it difficult to use in practice. In
the next subsection, we shall propose a bootstrap method that is unanimously applicable to all
types of functional data to estimate this null distribution.

Next, we study the power of the simultaneous test under the local alternatives.

Theorem 3. Suppose that the local alternative hypothesis (1.3) holds and conditions 1–3, 4,
part (a), and 4, part (b′), are satisfied.

(a) If η � 1
16 and bn =n−1=2.m2h/−1=4, then h−1=2.Tn −q/→d N.μ0, qσ2

0/, where

μ0 =
∫ b

a

dT.t/R.t/d.t/w.t/dt

and σ2
0 is defined in corollary 1.

(b) If 1
16 <η � 1

8 , α0 < 2η and bn =n−1=2+ε for an arbitrarily small ε> 0, then σ−1
1 .Tn −q−

nb2
nmhμ0/→d N.0, 1/ where σ2

1 =4nb2
n.mh/2μ1 and

μ1 =
∫ b

a

∫ b

a

dT.t/R1=2.t/Σ0.t, s/R1=2.s/d.s/w.t/w.s/dtds:

(c) Let uk = ∫ b
a .R1=2.t/d.t//Tφk.t/w.t/dt. If η > 1

8 and bn = n−1=2, then Tn →d Σ∞
k=1{γk ×

χ2
1,k.u2

k=γk/}:

We can use theorem 3 to examine the power and size of detectable signals of the simultaneous
test under various scenarios. We use the principle (3.6) to determine the optimal detectable
order bÅ

n . When η � 1
16 , following part (a) in theorem 3, the asymptotic power of the test is

�.d/=Φ.−zα +μ0=σ0
√

q/ where μ0 and σ0 are defined in theorem 3 and Φ.·/ is the cumulative
distribution function of the standard normal distribution. The test has non-trivial powers for
signals of size bn =n−1=2.m2h/−1=4. Under constraints 4, part (a), and 4, part (b′), on h, bn attains
its minimum at hÅ =n−2.1+η+δ/=17 for any arbitrary small δ > 0 such that bn =n−8.1+η/=17+δ=34.
By letting δ →0, the optimal detectable order is bÅ

n =n−8.1+η/=17.
When 1

16 <η� 1
8 , by our calculations in proposition 4 and theorem 2 the null distribution of Tn

is a χ2-mixture with mean .Σ∞
k=1γnk/{1+o.1/}=q{1+o.1/} and variance .2Σkγ

2
nk/{1+o.1/}=

tr{∫ ∫
Σ2

n.s, t/w.s/w.t/dsdt}{1+o.1/}=O.mh/. Therefore, the threshold for an α-level test is
of the form q + cn,α, where cn,α � .2Σkγ

2
nk=α/1=2 = O.mh/ by Chebyshev’s inequality. By part

(b) of theorem 3, the asymptotic power is

�.d/=Φ
(

− cn,α

2
√

nbnmh
√

μ1
+ μ0

2
√

μ1

√
nbn

)
→1,

for bn = n−1=2+ε with an arbitrarily small ε > 0. This also means that the test has non-trivial
powers for signals of size bÅ

n =n−1=2.
Similarly, the power of the test under case (c) is �.d/=P{Σ∞

k=1γkχ
2
1,k.u2

k=γk/>q+cα}, where
q+ cα is the αth quantile of Σ∞

k=1γkχ
2
1,k. In this case, �.d/ is a constant as long as d.t/ is a fixed

non-zero function, which implies that the test has a non-trivial power if bn =n−1=2. Combining
parts (b) and (c), the optimal detectable order of the simultaneous test is bÅ

n =n−1=2 when η > 1
16 .

Note that the optimal detectable order for the simultaneous test is smaller than that of
the pointwise test when η � 1

8 . This is understandable because the simultaneous test borrows
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information over the entire time domain and is more powerful. Both the pointwise and the
simultaneous tests can detect signals of

√
n-order for dense functional data with η > 1

8 .
An interesting question that was raised by one referee is about the possibility of selecting the

bandwidth and the weight function w.t/ through maximizing the power function of the test.
Following the discussion above, we find that the asymptotic power depends not only on h and
w.t/, but also on an unknown function d.t/, which is the deviation of the truth from the null
hypothesis. Moreover, the expression of the power depends on the asymptotic regime. As we
discussed earlier, sparse and dense functional data are asymptotic concepts, and are difficult to
distinguish in practice. Therefore, choosing the optimal bandwidth and weight function through
maximizing the power remains a challenging open question. For now, we leave w.t/ as a subjective
choice of the practitioner. The most commonly used weight function is a uniform density to
put equal weights on all points. Another natural choice of w.t/ is the density function of tij,
which puts higher weights on the interval with more data information. In addition, if there is
prior knowledge on the importance of a particular subinterval, one can change w.t/ to put more
weights on the important subinterval. Bandwidth selection is further addressed in Section 5.

4.2. Wild bootstrap procedure
For the simultaneous test, the asymptotic distributions of Tn are different for sparse and dense
functional data. But the boundary between different scenarios is defined only in the asymptotic
sense, making different asymptotic scenarios difficult to distinguish in practice. To unify the
inference procedure, we propose a wild bootstrap procedure (Mammen, 1993). Some residual-
based bootstrap procedures have also been proposed in Faraway (1997) and Zhang and Chen
(2007) for dense functional data, but the consistency of such procedures was not investigated.

The bootstrap procedure proposed consists of the following steps.

Step 1: generate bootstrapped samples .YÅ
ij , tij, Xij/ according to the model YÅ

ij = β̃
T

.tij/Xij +
εÅij, where β̃.tij/ is the solution of the estimating equations (3.4). The residual vector εÅ

i =
.εÅi1, : : : , εÅimi

/T is generated from an mi-dimensional multivariate normal distribution with
mean 0 and covariance Ω̂i ={Ω̂.tij, tik/}mi

j, k=1 where Ω̂.t, s/ is a consistent estimator of Ω.t, s/

described in Section 5.2.
Step 2: on the basis of the bth bootstrapped sample, compute a bootstrapped version of Tn,
denoted as T Å.b/

n .
Step 3: repeat steps 1 and 2 B times to obtain bootstrap values {T Å.b/

n }B
b=1 and let t̂α be the

100.1−α/% quantile of {T Å.b/
n }B

b=1. Reject the null hypothesis if Tn > t̂α.

The following theorem justifies the above bootstrap procedure.

Theorem 4. Let Xn = {.Yij, Xij, tij/, j = 1, : : : , mi, i = 1, : : : , n} denote the original data
and � .Tn/ be the asymptotic distribution of Tn under the null hypothesis. Under the same
conditions as theorem 2 and supposing that Ω̂.s, t/ is a consistent covariance estimator, the
conditional distribution of T Å

n given Xn, � .T Å
n |Xn/, converges to � .Tn/ almost surely.

5. Implementation issues

5.1. Bandwidth selection
The performance of the estimation and test procedures depends on the choice of the band-
width h. Our asymptotic theory relies on h falling in the range defined in condition 4. For
longitudinal data (sparse functional data) where subjects are assumed to be independent, one
may apply a ‘leave-one-out’ cross-validation strategy (Rice and Silverman, 1991) to choose the
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bandwidth. However, cross-validation is time consuming and, in general, its performance for
dense functional data is unknown.

We propose to select the bandwidth through minimizing the conditional integrated asymptotic
mean-squared error (IAMSE) of the local polynomial estimator β̂.t/. By expression (2.2), the
bandwidth h that minimizes the IAMSE of β̂.t/ is of the order of n−.1+η/=5, which satisfies
condition 4 for both sparse and dense cases. Let D={.tij, Xij/, j =1, 2, : : : , mi, i=1, 2, : : : , n}.
It is not difficult to show that, for any fixed t, AMSE{β̂.t/|D} = bT.t/b.t/ + tr[cov{β̂.t/|D}],
where b.t/=bias{β̂.t/|D}. The IAMSE is defined as

IAMSE{β̂.·/|D}=
∫ b

a

AMSE{β̂.t/|D}.t/f.t/dt,

where .t/ is a known weight function and f.t/ is the probability density function of tij. The
conditional bias is b.t/= .I, 0/{DT.t/W.t/D.t/}−1DT.t/W.t/l.t/, where l.t/= .l11.t/, : : : , l1m1.t/,
l21.t/, : : : , lnmn.t//T with lij.t/≈XT

ijβ
.2/.t/.tij − t/2=2, and β.s/.t/={β

.s/
1 .t/, : : : , β.s/

p .t/}T, s=1, 2,
is the sth derivative of β0.t/. The conditional covariance is

cov{β̂.t/|D}= .I, 0/{DT.t/W.t/D.t/}−1DT.t/W.t/ΩW.t/D.t/{DT.t/W.t/D.t/}−1

where Ω= cov.Y|D/=diag.Ω1,Ω2, : : : ,Ωn/ and Ωi ={Ω.tij, tik/}mi

j,k=1.
An estimator of the covariance Ω.s, t/ is described in Section 5.2. To estimate β.2/.t/, we

use a higher order local polynomial estimator of β0.t/ with a pilot bandwidth hÅ. The pilot
bandwidth is obtained by minimizing the residual squares criterion in Zhang and Lee (2000).
Additional details are given in the on-line supplemental material. By replacing β.2/.t/ andΩwith
their estimators β̂.2/.t/ and Ω̂, we obtain estimators of the conditional mean and covariance,
b̂.t/ and ĉov{β̂.t/|D}. Then the bandwidth h is chosen by minimizing the empirical IAMSE

ĥ=arg min
h

1
N

n∑
i=1

mi∑
j=1

̂AMSE{β̂.tij/|D}.tij/,

where N =Σn
i=1mi and ̂AMSE{β̂.t/|D}= b̂

T
.t/b̂.t/+ tr[ĉov{β̂.t/|D}]. Note that we only guar-

antee that the order of ĥ falls in the right range and selecting the optimal bandwidth for testing
remains an unsolved problem. Our extensive simulation study showed that multiplying ĥ by a
constant can significantly improve the numerical performance, and any constant between 0.25
and 0.75 produced similar results. We used 0:25ĥ as the bandwidth in our numerical studies.

5.2. Covariance estimation
The covariance function Ω.·, ·/ can be estimated by the non-parametric kernel estimator of
Yao et al. (2005a), which is uniformly consistent (Li and Hsing, 2010). However, the non-
parametric covariance estimator is not necessarily positive semidefinite. Instead, we adopt the
semiparametric covariance estimator of Fan et al. (2007). Suppose that the covariance func-
tion can be decomposed as Ω.s, t/=σ.s/ρ.s, t/σ.t/. We model the variance function σ2.t/ non-
parametrically and the correlation function ρ.s, t/ parametrically. For estimation, we first apply
the non-parametric kernel estimators of ρ.s, t/ and σ2.t/ (Yao et al., 2005a) to obtain informa-
tion about the parametric structure of ρ.s, t/. Then we can fit a parametric model to ρ.s, t/ by
using least squares or the quasi-maximum-likelihood estimator of Fan et al. (2007). The para-
metric structure guarantees the positive semidefiniteness of the estimated correlation function.
For more details of the implementation, see Section 6 and section B in the on-line supplemental
material.



356 H. Wang, P.-S. Zhong, Y. Cui and Y. Li

6. Simulation studies

Simulation studies were conducted to evaluate the performance of the proposed unified inference
procedures. We generated data from the model

Yi.tij/=β1.tij/X
.1/
i .tij/+β2.tij/X

.2/
i .tij/+ εi.tij/, .6:1/

for i = 1, 2, : : : , n and j = 1, 2, : : : , m where the tijs are independent and identically distributed
Unif(0,1), X

.1/
i .tij/ = 1 + 2 exp.tij/ + vij and X

.2/
i .tij/ = 3 − 4t2

ij + uij. Here, uij and vij are in-
dependent and identically distributed N.0, 1/ random variables, which are independent of tij
and εi.tij/. The random error εi.tij/ was generated from a zero-mean auto-regressive AR(1)
process such that var{ε.t/}=1 and cov{ε.t/, ε.t − s/}=ρ10s for some ρ∈ .0, 1/. To evaluate the
proposed methods for both sparse and dense data, we set m= 5, 10, 50. The sample sizes were
chosen to be 100 and 200. The Epanechnikov kernel K.x/= 3

4 .1−x2/+ was used for estimation
and hypotheses testing, where .a/+ = max.a, 0/. Bandwidth selection was conducted for every
simulated data set by using the method that was described in Section 5. In our numeric studies,
we used the uniform density function on (0,1) as the weight function w.t/ if not particularly
specified, which assumes no preference for any particular intervals.

We first set β1.t/= 1
2 sin.t/ and β2.t/=2 sin.t +0:5/ in model (6.1) and applied the procedure

in Section 3 to construct pointwise confidence intervals for β1.t/. Table 1 summarizes the em-
pirical coverage probability as percentages and the average length of the confidence intervals (in
parentheses) for β1.t/ at t =0:3, 0:5, 0:7 based on 1000 simulation replicates. As we can see from
Table 1, the coverage probabilities are close to the nominal level 95% in both sparse and dense
cases and the average lengths are shorter under a larger sample size. In addition, the average
lengths improve as m increases from 5 to 50.

Next, we considered unified simultaneous inference. We considered three scenarios A, B and C,
corresponding to three hypotheses on β.t/. In scenario A, we used H{.z1, z2/T}=z1 −z2 to test
H0A :β1.·/=β2.·/ versus H1A :β1.·/ �=β2.·/, where we set β1.t/= 1

2 sin.t/ and β2.t/= . 1
2 +a/ sin.t/

for a=0, 0:1, 0:2, 0:3, 0:4 in model (6.1) to evaluate the empirical size (when a=0) and powers
(when a> 0). In scenario B, we set H{.z1, z2/T}=z2 to test H0B :β2.·/=0 versus H1B :β2.·/ �=0,
where we chose β1.t/ = 1

2 sin.t/ and β2.t/ = c for c = 0, 0:02, 0:04, : : : , 0:14. In scenario C, we
considered a non-linear functional constraint H{.z1, z2/T}= z1z2 − 1 to test H0C : β1.·/β2.·/=
1 versus H1C :β1.·/β2.·/ �=1, where β1.t/=1+ t and β2.t/= .1+d/=.1+ t/ for d =0, 0:05, 0:1, 0:5.
A similar non-linear hypothesis to that in scenario C was considered by Dufour (1989). In the
construction of the test statistic Tn, we chose the weight function w.t/ = 1 for t ∈ .0, 1/ and
w.t/ = 0 otherwise. The covariance function was estimated by the quasi-maximum-likelihood
method of Fan et al. (2007). All simulation results below were based on 500 simulation replicates
and the critical value of the test was estimated by 500 bootstrap samples in each simulation run.
We performed the same bandwidth selection procedure in each bootstrap sample to take into
account the extra variation in the test caused by bandwidth selection.

Table 2 summarizes the empirical sizes and powers for hypothesis H0A at the 5% nominal level.
It can be seen that the empirical sizes are reasonably controlled around the nominal level. As we
expected, the empirical power increases as the increase in the sample size n and the number of
repeated measurements m, which confirms our theoretical results in Section 4. In addition, the
correlation ρ does not have a clear effect on the power, indicating that the procedure proposed
is robust with respect to the covariance structure of the random error.

For comparison, we also implemented the method that was proposed by Zhang and Chen
(2007), which was proposed to test linear hypotheses for dense functional data. We applied the
bootstrap test procedure of Zhang and Chen (2007) to scenario A with m=50 and summarized
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Table 1. Empirical coverage probability and average length of pointwise confidence in-
tervals (in parentheses) for β1.t/ at t D0.3, 0.5, 0.7

t n Results (%) for m=5 Results (%) for m=10 Results (%) for m=50

ρ=0.2 ρ=0.5 ρ=0.2 ρ=0.5 ρ=0.2 ρ=0.5

0.3 100 92.3 (0.531) 92.4 (0.537) 94.2 (0.393) 92.8 (0.394) 95.4 (0.205) 95.0 (0.206)
200 94.0 (0.395) 95.3 (0.391) 94.8 (0.301) 96.5 (0.298) 95.6 (0.157) 95.2 (0.160)

0.5 100 94.0 (0.524) 93.0 (0.524) 93.9 (0.394) 95.0 (0.404) 95.6 (0.212) 94.2 (0.217)
200 95.4 (0.399) 94.4 (0.397) 94.8 (0.299) 94.7 (0.297) 95.7 (0.159) 95.4 (0.162)

0.7 100 93.6 (0.528) 93.3 (0.525) 94.8 (0.394) 94.0 (0.397) 95.0 (0.222) 95.0 (0.219)
200 94.2 (0.401) 94.7 (0.409) 94.2 (0.302) 94.6 (0.307) 94.1 (0.160) 95.3 (0.160)

Table 2. Empirical size and power for testing H0A : β1.�/ D β2.�/ under scenario A using the
proposed method†

a n Results for the method Results for the method of
proposed Zhang and Chen (2007)

m=5 m=10 m=50 m=50

ρ= 0.2 ρ= 0.5 ρ= 0.2 ρ= 0.5 ρ= 0.2 ρ= 0.5 ρ= 0.2 ρ= 0.5

0.0 100 0.052 0.062 0.048 0.050 0.040 0.052 0.062 0.042
200 0.052 0.050 0.056 0.040 0.038 0.038 0.066 0.046

0.1 100 0.168 0.152 0.290 0.248 0.828 0.800 0.348 0.316
200 0.222 0.264 0.444 0.450 0.982 0.980 0.654 0.684

0.2 100 0.490 0.444 0.762 0.740 1.000 1.000 0.982 0.968
200 0.710 0.738 0.956 0.976 1.000 1.000 1.000 1.000

0.3 100 0.810 0.804 0.984 0.978 1.000 1.000 1.000 1.000
200 0.980 0.980 1.000 1.000 1.000 1.000 1.000 1.000

0.4 100 0.964 0.954 0.998 1.000 1.000 1.000 1.000 1.000
200 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000

†For the dense case with m=50, we also compared it with the method proposed by Zhang and Chen
(2007).

the empirical sizes and powers in the last two columns of Table 2. As we observe from Table 2,
Zhang and Chen’s method controlled the empirical sizes to the nominal level but had slightly
lower power than our method.

The simulation results for scenario B are illustrated in Figs 2(a) and 2(b). The results under
n = 100 and n = 200 are represented by full and broken lines respectively. We observed a very
similar pattern to that under scenario A. The size is well controlled at the 5% nominal level and
the power increases as the value of c increases. At each value of c, the power increases as we
increase n or m. For the non-linear hypothesis testing that was considered in scenario C, the
results are shown in Figs 2(c) and 2(d). We observe very similar results in scenario C to those
for linear hypotheses in scenarios A and B.

To demonstrate further the performance of the proposed bandwidth selection method in
Section 5, we show in Fig. 3 the boxplots of ĥ selected for model (6.1) with β1.t/ = 1

2 sin.πt/

and β2.t/=2 sin.πt +0:5/ based on 500 replicates. Both the median and the spread of ĥ decrea-
sed as n and m increased and the correlation ρ had little effect on the bandwidth selection result.
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Fig. 3. Boxplots for bandwidths selected for model (6.1) with β1.t/ D 1
2 sin.πt/ and β2.t/ D 2 sin.πt C 0.5/

by using the bandwidth selection method proposed: (a) nD100I (b) nD200

These plots also show that our bandwidth selection procedure is very stable as there are very
few outliers in each case.

7. Real data analysis

We applied our proposed methods to the two data sets that were described in Section 1, which
contain dense and sparse functional data.

7.1. Google flu data
Google flu trend is a realtime Web service providing aggregated search-queries-based estimates of
flu activity for a number of countries and regions. Google flu trend reports weekly the estimated
numbers of influenza-like illness (ILI) cases per 100000 doctor visits. Most of these estimates
were found to be consistent with the estimates that are provided by the Centers for Disease
Control and Prevention. We were interested in studying the relationship between flu activity
and temperature fluctuation in the USA. For this, we collected state level flu activity data in the
2013–2014 flu season (July 2013–June 2014) from the Google flu trend Web site and the state
level temperature data from the US historical climatology network. The US historical climate
network provides daily maximum and minimum temperature averaged over weather stations
within each continental state of the USA. The daily temperature variation is the difference
between the daily maximum and daily minimum. We aggregated the temperature fluctuation
data to the same resolution as the flu activity data by taking the MDTV within each week.
Because part of the temperature records are missing for some states in the US historical climate
network, the data set that we used contains ILI percentages and MDTV for 42 states, which are
illustrated in Fig. 1. These 42 states can be classified into four regions (‘north-east’, ‘midwest’,
‘south’ and ‘west’) according to the US Census Bureau. For illustration, the 42 states and their
regions are plotted in Fig. 4(a).

In our analysis, we standardized ILI percentage and MDTV at each time point t by dividing
the variables by their root mean squares. The original dates from July 1st, 2013, to June 30th,
2014, were numbered by integers from 1 to 365. We then rescaled the time t to the [0,1] interval by
dividing the numbers by 365. Let Y.t/ and U.t/ be respectively the standardized ILI percentage
and MDTV at time t ∈ [0, 1]. To incorporate the regional effects, we use midwest as the baseline
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Fig. 4. (a) The 42 states with complete temperature records in the US historical climate network and their
corresponding regions ( , north-east states; , midwest states; , south states; , west states; , states
with missing values) and (b) pointwise confidence bands for β4.t/ in the reduced model (7.2) ( , upper;

, β̂4.t/; , lower)

level and let dummy variables Z1, Z2 and Z3 be indicators for north-east, south and west
respectively. We considered the following functional concurrent linear model:

Yi.t/=β0.t/+
3∑

k=1
βk.t/Zki +β4.t/Ui.t/+

7∑
k=5

βk.t/Z.k−4/iUi.t/+ εi.t/, .7:1/

where i is the index for state, β4.t/ represents the main effect of MDTV, βj.t/ .j = 1, 2,
3/ represent the regional main effects and βj.t/ .j = 5, 6, 7/ are the interactions between
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MDTV and the regional indicators. This FCL model helps us to assess the dynamic effect
of MDTV on flu activities and to take timely action to prevent and control flu outbreaks.
In a matrix form, model (7.1) can be represented as Y.t/= X.t/β.t/+ ε.t/ where Y.t/= .Y1.t/,
: : : , Yn.t//T, Xi.t/ = .1, Z1i, Z2i, Z3i, Ui.t/, Z1iUi.t/, Z2iUi.t/, Z3iUi.t//

T, ε.t/ = .ε1.t/, : : : , εn.t//T,
X.t/= .X1.t/, : : : , Xn.t//T and β.t/= .β0.t/, : : : , β7.t//T.

Since the ILI percentages were collected spatially, the random errors {εi.t/}n
i=1 in model (7.1)

might be spatially correlated. To apply our test procedure, we first preprocessed the data to
remove spatial correlations. For each time point t0, we model the spatial dependence in ε.t0/ by
a conditionally auto-regressive (CAR) model (Wall, 2004; Banerjee et al., 2014). Specifically, we
assume that the conditional distribution of εi.t0/ given the rest of the states ε.−i/.t0/ has mean
Σj �=icijεj.t0/ and variance σ2

ε .t0/. Then the joint distribution of ε.t0/ has mean 0 and covariance
{I − C.t0/}−1σ2

ε .t0/. Following the standard CAR model, we assume that C.t0/ = λ.t0/W.t0/

where λ.t0/ is a spatial auto-correlation parameter and W.t0/= .wij.t0// is an adjacency matrix,
i.e. wij.t0/ = 1 if states i and j share a boundary; otherwise wij.t0/ = 0. We fitted the CAR
model to the residuals of the FCL model to obtain estimates σ̂2

ε .t0/ and Ĉ.t0/ at every t0. We
used the function spautolm in the R package spdep (Bivand, 2017) to fit the CAR model.
Define the transformed response as Ỹ.t0/ = {I − Ĉ.t0/}1=2Y.t0/=σ̂ε.t0/, and the transformed
covariate and error as X̃.t0/={I − Ĉ.t0/}1=2X.t0/=σ̂ε.t0/ and ε̃.t0/={I − Ĉ.t0/}1=2ε.t0/=σ̂ε.t0/.
The transformed model becomes Ỹ.t0/= X̃.t0/β.t0/+ ε̃.t0/, where the coefficient functions β.t/

remain unchanged but the errors ε̃.t0/ are spatially uncorrelated. We applied the proposed
method to the transformed model to make inference about β.t/.

We first tested the significance of interactions with H0 :β5.t/=β6.t/=β7.t/=0 and then tested
the regional main effects with H0 : β1.t/ = β2.t/ = β3.t/ = 0. The EL test p-values for the two
hypotheses were 0.354 and 0.272 respectively, based on 1000 bootstrap samples. Since neither
hypothesis was significant at the nominal level 0.05, we considered the following reduced model:

Yi.t/=β0.t/+β4.t/Ui.t/+ εi.t/: .7:2/

After removing the spatial correlations as described above, we applied the proposed EL method
to construct the 95% pointwise confidence bands for β4.t/ under model (7.2), which is presented
in Fig. 4(b). On the basis of estimation of β4.t/, we observe that the effect of temperature
fluctuation on flu activity changes over time and reaches its peak value in the winter season
around January. We further considered the hypothesis H0 :β4.·/=0 versus H1 :β4.·/ �=0, and the
p-value of the EL test was 0.052, which was moderately significant.

7.2. Alzheimer’s disease neuroimaging initiative data
AD is an irreversible, progressive brain disorder and one of the most common forms of dementia.
According to the 2010 world Alzheimer’s report, the disease affects about 35.6 million people
around the world (Weiner et al., 2012). There are four stages for the disease: cognitively normal
(CN), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and
AD. The AD neuroimaging initiative is an on-going, multicentre longitudinal project designed
to identify biomarkers for early detection and tracking of the disease, particularly focused on
the use of brain imaging methods. The hippocampus is the brain region that is damaged first by
AD and it is the functional region associated with memory loss and disorientation. Thus, we
used the volume of hippocampus as the covariate in our analysis.

The data set in our analysis consists of 628 subjects at the four stages of the disease: 215 CN,
99 EMCI, 254 LMCI and 60 AD. The earliest examination date for this cohort was September
7th, 2005, and the latest date was April 23rd, 2015. Interested readers can download the data
set from http://adni.loni.usc.edu. The study followed up most patients up to 1 year
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Table 3. p-values for pairwise comparisons in the AD neuroimaging initiative study

Hypothesis p-value Hypothesis p-value

CN versus EMCI : β1.·/=0 0.001 EMCI versus LMCI : β1.·/=β2.·/ 0.000
CN versus LMCI : β2.·/=0 0.000 EMCI versus AD : β1.·/=β3.·/ 0.000
CN versus AD : β3.·/=0 0.000 LMCI versus AD : β2.·/=β3.·/ 0.994

and the numbers of repeated measurements ranged from 3 to 10. One of the major symptoms of
AD is cognitive impairment. In the AD neuroimaging iniative studies, cognitive performance
was measured by MMSE, which is a questionnaire test. The maximum MMSE score is 30 and
typically the MMSE score declines as the disease progresses.

The interest of our study was to understand the relationship between the volume of hip-
pocampus and the MMSE score at different stages. We used the real age of a patient as time,
and let Yi.t/ and Xi.t/ be the MMSE score and the volume of hippocampus region for the ith
individual measured at time t. To include the effects of different stages of the disease, let Z1i,
Z2i and Z3i be indicators of EMCI, LMCI and AD respectively. We considered the model

Yi.tij/=β0.tij/+
3∑

k=1
βk.tij/Zki +Xi.tij/β4.tij/+

7∑
k=5

βk.tij/Z.k−4/iXi.tij/+ εi.tij/:

The advantage of this model is that we can evaluate the time varying and stage-dependent
effects of X.t/ on the MMSE score. To avoid overfitting, we conducted hypothesis tests to
select the appropriate model. We first tested the interactions between the hippocampus volume
and the stages indicators, where the hypothesis was H0 : β5.t/ =β6.t/ =β7.t/ = 0 for all t. The
simultaneous EL test yielded a p-value of 0.167 based on 1000 bootstrap replicates. Since there
was no significant interaction, we considered the reduced model

Yi.tij/=β0.tij/+
3∑

k=1
βk.tij/Zki +Xi.tij/β4.tij/+ εi.tij/: .7:3/

Under such a model, we tested the main effect of hippocampus volume, H0 :β4.t/=0, and the
mean effects of the stage indicators, H0 :β1.t/=β2.t/=β3.t/=0. The simultaneous EL test for
both hypotheses yielded p-values less than 0:001.

We further conducted pairwise comparisons between the different groups of patients, namely
testing H0j :βj.·/=0 for j =1, 2, 3 and H0,jk :βj.·/=βk.·/, j �=k =1, 2, 3: The p-values are sum-
marized in Table 3. All p-values for the pairwise comparisons are less than or equal to 0.001
except that with 0:994 when comparing LMCI with AD. This indicates that there is no signif-
icant difference between the LMCI and AD groups. These findings also stress the importance
of early treatment for the disease.

8. Discussion

Non-parametric hypothesis testing has been a very active research area for the past 25 years
(González-Manteiga and Crujeiras, 2013). We made a new contribution in this area by proposing
EL-based procedures to make pointwise and simultaneous inferences on functional concurrent
linear models, treating sparse and dense functional data in a unified framework. We showed
that EL is an effective tool for unifying the inference due to the self-normalization property.
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We studied the asymptotic distributions of the EL-based test statistics under the null and local
alternative hypotheses for both sparse and dense functional data.

Another important contribution of this paper is on establishing the transition phase in η, the
order of repeated measurements, for pointwise and simultaneous tests. The transition point η0
was shown to be 1

8 for the pointwise test and 1
16 for the simultaneous test. If η �η0, we showed

that the method proposed can detect alternatives of order bÅ
n = n−4.1+η/=9 for the pointwise

test and of order bÅ
n = n−8.1+η/=17 for the simultaneous test. For dense functional data such

that η > η0, we found that the tests proposed can detect alternatives of magnitude n−1=2 both
pointwise and simultaneously, which is the same order of alternative that a parametric test
can detect. The transition points that we established for the hypothesis testing problems are
different from those in estimation (Li and Hsing, 2010) and pointwise confidence interval (Kim
and Zhao, 2013).

Moreover, we proposed a practical bandwidth selection method for functional data. Many
bandwidth selection methods were proposed for independent or weakly dependent data, but
bandwidth selection for functional data is still a challenging problem; see Zhang et al. (2013)
for a recent study. Numerical experiments in this paper showed that the bandwidth selection
method proposed worked well in practice.
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