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Abstract

Background—Diabetic retinopathy (DR) is a microvascular disease that results from retinal 

vascular degeneration and defective repair due to diabetes induced endothelial progenitor 

dysfunction.

Objective—Understanding key molecular factors involved in vascular degeneration and repair is 

paramount for developing effective DR treatment strategies. We propose that diabetes-induced 

activation of acid sphingomyelinase (ASM) plays essential role in retinal endothelial and CD34+ 

circulating angiogenic cell (CAC) dysfunction in diabetes.

Methods—Human retinal endothelial cells (HRECs) isolated from control and diabetic donor 

tissue and human CD34+ CACs from control and diabetic patients were used in this study. ASM 
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mRNA and protein expression was assessed by quantitative PCR and ELISA, respectively. To 

evaluate the effect of diabetes-induced ASM on HRECs and CD34+ CACs function, tube 

formation, CAC incorporation into endothelial tubes, and diurnal release of CD34+ CACs in 

diabetic individuals was determined.

Results—ASM expression level was significantly increased in HRECs isolated from diabetic 

compared to control donor tissue, as well as CD34+CACs and plasma of diabetic patients. A 

significant decrease in tube area was observed in HRECs from diabetic donors as compared to 

control HRECs. The tube formation deficiency was associated with increased expression of ASM 

in diabetic HRECs. Moreover, diabetic CD34+ CACs with high ASM showed defective 

incorporation into endothelial tubes. Diurnal release of CD34+ CACs was disrupted with the 

rhythmicity lost in diabetic patients.

Conclusion—Collectively, these findings support that diabetes-induced ASM upregulation has a 

marked detrimental effect on both retinal endothelial cells and CACs.
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1. Introduction

Diabetic retinopathy (DR) is a microvascular disease that results from diabetes-induced 

retinal damage that is further exacerbated by bone marrow dysfunction. Bone marrow 

dysfunction leads to decreased release of cells into the circulation and changes in 

hematopoiesis resulting in increased circulating pro-inflammatory monocytes and 

diminished repair due to defective progenitor cells. Although DR influence all retinal cells, 

clinical manifestations of DR are mainly due to changes in retinal vessels, where early 

histological alterations include pericyte loss, thickening of basement membrane, capillary 

occlusion and endothelial cell degeneration (1,2). These are followed by break down of 

blood retinal barrier (BRB) and leaky vasculature leading to hemorrhages, hard exudates, 

and retinal edema; structural changes involving the vascular wall leading to 

microaneurysms; and finally neovascularization, vitreous hemorrhage and fibrous tissue 

formation (3). Impaired vision due to macular edema, or vision loss due to 

neovascularization-induced vitreous hemorrhage or tractional retinal detachment usually 

takes place in the later stages of the disease.

Circulating angiogenic cells (CACs), a population of vascular progenitors originated from 

HSC (4), are considered as key regulators for healthy maintenance of retinal vasculature. 

Diabetic metabolic abnormalities lead to defective vascular maintenance due, in part, to 

failed attempts by dysfunctional CACs to repair damaged endothelium.

HSCs isolated from bone marrow or CACs from peripheral blood of control (healthy) 

animals have been shown to repair ischemic damage and aid in reperfusion of ischemic 

tissues (4–6). Several studies have shown an association between DR risk and both reduced 

number (7–10) and function of CACs (11–16).

Kady et al. Page 2

J Clin Lipidol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Several key hyperglycemia- and dyslipidemia-activated pathways leading to retinal 

endothelial cell and CAC dysfunction have been identified. Prominent among these are 

pathways that promote an increase of pro-inflammatory cytokines, pro-inflammatory lipids 

and pro-angiogenic factors (17–26). We have previously demonstrated activation of the 

central enzyme of sphingolipid metabolism, acid sphingomyelinase (ASM), as a key 

metabolic abnormality in diabetic retinal vasculature and CACs. ASM hydrolyzes 

sphingomyelin (SM) into pro-inflammatory and pro-apoptotic ceramide. Activation of ASM 

plays an important role in signal transduction in response to various stimuli including IL-1β 
(27,28) and TNF-α (29). Endothelial cells represent a major source of ASM (30–33). 

Inhibition of ASM exhibits protective effect in diabetes preventing diabetes-induced retinal 

inflammation and vascular degeneration (15,33,34).

Previously, we have identified key defects in circadian regulation of CACs. We showed that 

bone marrow denervation results in loss of circadian release of vascular reparative cells from 

the bone marrow and generation of increased numbers of proinflammatory cells. Using a rat 

model of T2D, we showed that the decrease in CACs release from diabetic bone marrow is 

caused by bone marrow neuropathy and that these changes precede the development of 

diabetic retinopathy. We observed a marked reduction in clock gene expression in the retina 

and in CACs. Denervation of the bone marrow resulted in progenitors being “trapped” 

within the bone marrow and in loss of the circadian release of these cells into the circulation. 

This reduction in the circadian peak of CAC release into the circulation led to diminished 

reparative capacity and resulted in development of acellular retinal capillaries (7). We also 

showed that Per2 mutant mice recapitulate key aspects of diabetes without the associated 

metabolic abnormalities. In Per2 mutant mice, we observed a threefold decrease in 

proliferation and 50% reduction in nitric oxide levels in CACs. Tyrosine hydroxylase-

positive nerve processes and neurofilament-200 staining were reduced in Per2 mutant mice 

(suggestive of diabetic neuropathy) and increased acellular capillaries were identified (35). 

We also showed that as CD34+CACs acquired differentiation markers (towards the 

endothelial lineage), robust oscillations of clock genes are observed (36).

It is well accepted in diabetic complications field that cells isolated from diabetic tissue keep 

diabetic phenotype for several passages even when cultured in normal glucose. This is due to 

“metabolic memory”, or “legacy effect” for vascular disease in diabetes - the prolonged 

benefits of good glycemic control, as well as the prolonged harm poor control in diabetic 

patients(11,37–39). In this study we used HREC cells isolated from control and diabetic 

donor tissue as a model.

In the current study, we have focused exclusively on human CACs. We asked if the defect in 

circadian release observed in rodents with diabetes occurred in humans. We examined the 

effect of diabetes-induced ASM activity on the function of human CACs and retinal 

endothelial cells comparing the angiogenic ability of control (low ASM) and diabetic (high 

ASM) HRECs to form tube—like structures in vitro and determining the capacity of control 

(with low ASM) and diabetic (with high ASM) CACs to support endothelial tube formation.
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2. Methods

Circadian study of human CD34+ CACs

The study was approved by the University of Florida IRB #411-2010. All study subjects 

provided informed consent. Individuals were brought into the Clinical Research Center at 

the University of Florida for 48 h During the first 24 h, individuals were evaluated and on 

the evening of the first day, a heparin lock was inserted into their forearm. During the second 

24-h period, the individuals had 1 mL of blood removed every 2 h for a total of 24 h and 

analyzed for the number of CD34+ cells by flow cytometry. Clinical characteristics of the 

patients are presented in Table 1.

Postmortem imaging of human retina and cell culture

Primary cultures of HRECs were prepared from postmortem tissue obtained from National 

Disease Research Interchange, Philadelphia, PA and Midwest Eye-Banks, Ann Arbor, MI. 

The tissue was received within 36 h after death. The donor characteristics are provided in 

Table 2. Primary HRECs were isolated as previously described (40). As previously 

demonstrated the cells isolated from control and diabetic donors keep their phenotypes for 

4–6 passages due to metabolic memory phenomenon (11, 37–39). On arriving in the 

laboratory, the eyes were placed on sterile gauze, and they were washed with povidone- 

iodine solution (Purdue Pharma L.P. Stamford, CT). After 10 minutes, the globe was 

punctured approximately 2 mm from the limbus, a circumferential incision was made and 

the anterior chamber was removed. A vitreous spatula was used to loosen the vitreous 

adherent to the anterior retina. When all the vitreous was removed, the retina was gently 

removed from the layer of retinal pigment epithelium and cut at the optic nerve. Before 

proceeding into the isolation of HRECs, retinas were rinsed, flatmounted and retinal 

imaging was taken using a Nikon SMZ-800 Stereo Microscope with Prior Proscan 3 

Motorized XY System with Z Drive and MetaMorph Modules to perform image stitching, to 

properly determine the stage of retinopathy of the donors used for isolation of HRECs. 

Retinas included in this study have at least three signs of non-proliferative diabetic 

retinopathy (NPDR) such as microaneurysms, intraretinal haemorrhages and intraretinal 

microvascular abnormalities (IRMA). Retina was then placed on a 53-μm Nylon mesh filter 

(Sefar America, Buffalo, NY.), washed with a solution containing Glucose (5.5 mM), L-

Glutamine (2 mM) and 1x MEM Non-Essential Amino Acids Solution (GIBCO, Life 

Technologies, Carlsbad, CA). The retinas were then placed into a 25-ml flask containing 100 

U/ml of collagenase, Type 1 (Worthington Biochemical Co., Lakewood, NJ) in the above-

mentioned solution containing 22% Bovine serum albumin (Sigma) and 0.01% Soybean 

Trypsin Inhibitor (Sigma). Retinas were then mechanically agitated using a shaker and 

allowed to digest at 37°C for approximately 60 minutes or until no tissue fragments could be 

seen. After digestion, cells were centrifuged at 1000 rpm for 5 minutes. The supernatant was 

removed and pellet was suspended in fresh media; 1:1 mix of low glucose Dulbecco’s 

modified Eagle’s medium (DMEM 1g/L)/F-12 nutrient mix (GIBCO, Life Technologies, 

Carlsbad, CA) supplemented with 10 % fetal calf serum (Hyclone, Logan, UT), 1% 

endothelial cell growth supplement (Millipore, MA), 1% insulin-transferrin- sodium selenite 

media supplement (Sigma) and 1% penicillin-streptomycin antimycotic (GIBCO, 

Invitrogen-Life Technologies, Carlsbad, CA). Glucose concentration in the final media was 
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adjusted to 5.5 mM. The cells were maintained at 37°C in 95% air and 5% CO2 in a 

humidified cell culture incubator. Passages 3 to 5 were used in the experiments.

Human CD34+ CACs isolation

Human peripheral blood samples (150 ml) were collected into Sodium Citrate-containing 

CPTTM glass vacuum tubes (BD, Franklin Lakes, NJ). Written informed consent was 

obtained from each patient, and all procedures were approved by the Institutional Review 

Board at the University of Florida (IRB # 408-2010). Peripheral blood mononuclear cells 

(MNCs) were isolated from the blood by density gradient centrifugation using Lympholyte 

(Cedarlane Laboratories Ltd., Ontario, Canada). The CD34+ cell fraction was then isolated 

from the MNCs using the EasySepTM CD34+ positive selection system according to the 

manufacturer’s instructions (Stem Cell Technologies, Vancouver, BC, Canada). Clinical 

characteristics of the patients are presented in Table 2.

Tube formation assay

Tube formation assay was performed using BD BioCoat Angiogenesis System-Endothelial 

Cells Tube Formation Matrigel Matrix 96-well plate (BD Biosciences Discovery Labware, 

Bedford, MA) according to the manufacturer’s instructions. Briefly, isolated CD34+ CACs 

and HRECs were labeled with Qtracker 655 and Qtracker 525 (Invitrogen); respectively. 

Control or diabetic HRECs were mixed in a 4:1 ratio with either control or diabetic CD34+ 

cells, seeded into Matrigel Matrix 96-well plate) and incubated for 16 to 18 h at 37°C (5% 

CO2). After incubation, wells were assessed for the presence of tube-like structures and 

images were taken in 10× magnifications using a Nikon TE2000 fluorescence microscope 

equipped with Photometrics CoolSNAP HQ2 camera. At least three different fields were 

randomly selected and captured to collect images for each well. Tube area and percentage of 

CD34+ incorporated into tubules were calculated using MetaMorph software system 

(Molecular Devices, Downingtown, PA). Statistics were performed on 3 independent wells 

per condition with minimum three images taken from each well.

Quantitative real-time PCR

Total RNA was extracted from HRECs, human CD34+ cells using QuickGene RNA 

(Fujifilm, Minato-Ku, Tokyo, Japan) or Qiagen RNeasy (Qiagen Inc., Valencia, CA, USA) 

according to the manufacturer’s instructions. NanoDrop 2000 (Thermo Scientific, IL, USA) 

was used to determine total RNA concentration. Total RNA was reverse transcribed into 

cDNA using superscript III first-strand synthesis system (Invitrogen, Carlsbad, CA). Human 

gene-specific primers for ASM were used. Expression levels were normalized to human 

cyclophilin. Sequence of specific primers used is given below:

Human ASM: caacctcgcgctgaagaa and tccaccatgtcatcctcaaa

Human Cyclophilin: aaggtcccaaagacagcaga and cttgccaccagtgccattat

ELISA assay

Blood samples were collected, centrifuged and plasma was stored at −80 °C. Samples were 

assayed for human ASM concentration using ELISA kit (Cloud–Clone Corp., Houston, TX, 

USA) according to the manufacturer’s protocol.
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Statistical analyses—Data are presented as mean ± S.E.M. Results were analyzed for 

statistical significance by the Student’s t-test (GraphPad Prism 7, GraphPad Software, San 

Diego, CA). Significance was established at P < 0.05.

3. Results

ASM expression level is increased in HREC, CD34+ CACs and blood plasma of diabetic 
donors

To determine whether human diabetic tissues exhibited the same increase in ASM as we 

observed in animal models (15,33), we measured ASM expression level in human RECs, 

CD34+ CACs and plasma samples in both diabetic and control donors. ASM expression 

level was significantly increased in all three tissue types in diabetic compared to control 

donors (Fig. 1A, B and C).

Diabetes induces decrease in HREC tube formation

As shown above and previously demonstrated, HRECs isolated from diabetic donors have 

high ASM activity and expression level. To evaluate the effect of diabetes-induced increase 

in ASM on HRECs function, we performed tube formation assay to measure the ability of 

retinal endothelial cells to form blood-vessel-like tubular structure. Tube formation by 

HRECs isolated from healthy control retinas was compared to cells isolated from retinas 

with signs of NPDR as determined by post-mortem retinal imaging (Fig. 2A). A significant 

decrease in tube area was observed in HRECs from retinas with signs of NPDR as compared 

to control HRECs (Fig. 2B).

Diabetes induced increase in ASM is associated with CD34+ CACs dysfunction

To determine the role of ASM expression in diabetes-induced defect in CD34+ CACs 

function, we seeded CD34+ CACs isolated from both control (low ASM) and diabetic (high 

ASM) subjects with HRECs and examined whether the level of ASM expression in CACs 

affects their ability to incorporate into the endothelial tubes formed by the HRECs. 

Interestingly, CD34+ CACs seeded alone did not form tube-like structures, but they did 

incorporate into tubes formed by HRECs when co-cultured with retinal endothelial cells 

(Fig. 3C). Increased incorporation into tubes formed by diabetic HRECs was observed for 

the control CD34+ CACs (low ASM) compared to diabetic CACs (high ASM) (Fig. 3B). As 

expected, control HRECs exhibited robust tube formation. Incorporation of CACs into 

control HREC tubes was not affected by the levels of ASM in CAC (Fig. 3A). These data 

demonstrate that high ASM expression levels in CD34+ CACs correlate with impaired 

incorporation ability, while CACs expressing lower levels of ASM display enhanced in vitro 
incorporation.

Diabetes induced increase in ASM is associated with loss of circadian release of CD34+ 
CACs

We have previously demonstrated that normal diurnal pattern of CACs release from the bone 

marrow is critical for efficient repair of retinal vasculature in rodents (7). Increase in ASM 

activity in CACs in diabetic animal models was associated with decreased membrane 

fluidity and impaired migration leading to increased CAC retention and loss of circadian 
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release from the bone marrow (34). We next determined the effect of diabetes on circadian 

release of CD34+ CACs in diabetic patients. Peripheral blood of type 2 diabetic individuals 

was collected every 2 h for 24 h and analyzed for the number of CD34+ CACs by flow 

cytometry and compared with control subjects. The dash line is the model fitted curve for 

individual subjects and bold curve is the fitted curve for population (Fig. 4 A and B). In 

agreement with previous studies, healthy individuals had a peak of circulating CD34+ cells 

in the middle of the night, representing the rest phase for humans (Fig. 4A), however this 

peak of CD34+ release was lost in T2D subjects (Fig. 4B).

4. Discussion

Diabetic retinopathy is a sight threatening complication of diabetes with limited treatment 

strategies. Understanding the key molecular factors involved in the disease is important for 

developing therapeutic targets to prevent progression into ocular neovascularization and 

blindness. ASM is shown to be a key element in inflammatory signaling through ceramide-

mediated signal transduction (41,42). Diabetes-induced increase in ASM activity has been 

shown to modulate inflammatory response in mature retinal endothelial cells (43), however, 

there is no direct experimental evidence showing ASM effect on endothelial function. Here 

we demonstrated that HRECs isolated from type 2 diabetic subjects with signs of NPDR had 

altered retinal endothelial cell function with impaired capacity to form tube-like structures 

when compared with control HRECs. The deficiency in tube formation was associated with 

increased expression of ASM in diabetic HRECs. This is consistent with previous studies 

showing ASM–mediated endothelial cell apoptosis in various tissues including retina, lungs 

and gastrointestinal tract (30,31,33,44), and ASM antiangiogenic effect in tumor treatment 

(45). Endothelium is the major source of ASM production in the body with endothelial cells 

synthesizing 20 times as much ASM as any other cell type (32); thus, it is not surprising that 

ASM plays a major role in endothelial cells function. In agreement with previous studies 

(32), endothelial cells had very high ASM expression level, which was further increased in 

diabetes. Moreover, increased ASM level in plasma further reflects the increased production 

and secretion of ASM by activated endothelial cells.

Retinal vascular repair and revascularization is aided by CACs (4,13,16,46–49). We 

examined the effect of diabetes-induced increase in ASM on the ability of CD34+ CACs to 

incorporate and thus help in repair of defective vascular-like tube structures formed by 

diabetic HRECs. We demonstrated that diabetic CD34+ CACs, with high ASM, showed 

minimal incorporation into the defective tubes formed by diabetic HRECs. Non-diabetic 

CD34+ CACs with low ASM showed robust incorporation. These results are in line with 

other studies showing that diabetic CACs are defective in proliferation, migration, adhesion, 

differentiation, and participation in vascular regeneration process (13,14,16,46,50,51). 

Interestingly, no significant difference was observed between non-diabetic and diabetic 

CD34+ CACs incorporation into control HRECs. This is consistent with our previous studies 

demonstrating lack of incorporation of control CACs into healthy vasculature that does not 

require repair in non-diabetic (13). We have previously demonstrated that high level of ASM 

inversely correlates with migration and reparative capacity of CACs, with the inhibition of 

diabetes-induced ASM resulting in improved migration and retinal vascular regeneration in 

diabetic mouse model (15,34).
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In this study, we compared effect of ASM on functional capacity of healthy and diabetic 

CACs in human on control and diabetic HRECs. We revealed that the defective 

incorporation of diabetic CD34+ CACs was associated with high ASM. As previously 

shown, high ASM activity leads to accumulation of membrane ceramides. Accumulation of 

ceramide results in decreased membrane fluidity, cell rigidity and defective migration which 

can explain defective incorporation of diabetic CACs (15,34,52) and likely supports their 

defective release from the bone marrow into the systemic circulation.

Although several lines of evidence demonstrate that ASM expression is an important factor 

for progenitor cell release from the marrow, migration, proliferation and homing to the 

injured vasculature; other factors beyond ASM activation are also known to be involved in 

diabetes-induced CAC dysfunction. These include bone marrow neuropathy and low level of 

neurotransmitters production; increase in TGF beta leading to decreased NO bioavailability 

and diminished expression of CXCR4 (7,53). These factors affect chemoattraction to SDF1 

and lead to increase in stem cell quiescence in the bone marrow niche. In health ASM works 

in concert with other factors to maintain optimal bone marrow stem cell production and 

release, however activation of ASM along with other factors disrupts this balance in diabetes 

(7,34,54,55).

The physiological release of bone marrow progenitor cells including CD34+ CACs into the 

circulation is not constant, but follows circadian oscillations. These oscillations are regulated 

by sympathetic signaling to bone marrow stromal cells, which results in CXCL12 (SDF-1) 

down regulation and progenitor egress from the bone marrow; all of these processes occur in 

circadian pattern under control of clock genes (56). Diabetic bone marrow neuropathy with 

disruption of circadian rhythm may contribute to endothelial progenitor cell dysfunction. 

Wang et al. have demonstrated that mutation in circadian gene Per2 leads to reduced 

endothelial cell progenitor mobilization and revascularization (57). We investigated whether 

circadian release of CD34+ CACs is altered in diabetic subjects. Peripheral blood was 

collected every 2 h for 24 h from both control and diabetic subjects. In agreement with 

previous studies (58–60), normal rhythmic oscillations were observed in control subjects 

with a clear peak of circulating CD34+ CACs cells in the middle of the night (resting phase), 

optimal time of regeneration in humans. Similar to our observations in diabetic rat model 

(7). This study revealed that circadian fluctuation of CD34+ CACs was disrupted with 

rhythmicity lost in diabetic individuals. Importantly, we have previously demonstrated that, 

similar to endothelial cells, the increase in ASM activity in CACs in diabetic animal models 

was associated with increased ceramide levels, decreased membrane fluidity and impaired 

migration. This impairment in migration, combined with diminished sympathetic signaling 

to BM may lead to increased CAC retention in the bone marrow and loss of circadian release 

of the progenitor cells as demonstrated in this study.

5. Conclusion

This study underscores the deleterious effect of high ASM levels on the vascular repair 

potential of both mature retinal endothelial cells and circulating angiogenic cells in diabetes. 

Correcting this defect could treat vasodegeneration, enhancing vessel repair and thus 

preventing progression into PDR stage.
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Highlights

• Increase of acid sphingomyelinase (ASM) in diabetes damages retinal 

vasculature.

• CD34+CACs from diabetic patients with high ASM have dysfunctional 

vascular repair.

• Diabetic individuals showed disrupted diurnal release pattern of CD34+CACs.
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FIG. 1. Diabetes induced increase in ASM expression
Total RNA was isolated and the transcript level of ASM was analyzed by qRT-PCR in (A) 

HRECs, (B) CD34+ cells and (C) plasma from diabetic donors (n=4–7) compared with 

control donors (n=3−4). Data are means ± SEM. *P < 0.05, significantly different as 

determined by Student’s t-test. Abbreviations: ASM, acid sphingomyelinase; HRECs, 

human retinal endothelial cells.
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FIG. 2. Diabetes impairs tube formation capacity of HRECs
(A) Postmortem imaging of human retina. Control retina with well-organized blood vessels 

(left), Diabetic retina with signs of NPDR; intraretinal hemorrhages and microaneurysms 

(right). (B) An in vitro tube formation assay was performed in control (n=4) and diabetic 

(n=7) HRECs using Matrigel Matrix 96-well plate. Representative images of tube-like 

structures are shown. The cells were stained with Qtracker 525 (green), images were taken 

in 10× magnification and total tube areas were calculated using MetaMorph software 

system. Quantification of tube area is shown on far right. Data are means ± SEM. *P < 0.05, 

significantly different as determined by Student’s t -test. Scale bar = 50 μm.
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FIG. 3. Reduced incorporation of diabetic CD34+ CACs into diabetic HRECs tubes
Tube formation by HRECs (Qtracker 525, green) isolated from control (A) or diabetic (B) 

donors either without CACs (left panel), or co-incubated with control (middle panel) or 

diabetic (right panel) CACs (Qtracker 655, red) is shown. Quantification of % of CD34+ 

CACs incorporation into HRECs tubes is shown on far right. Data are means ± SEM (n= 

4−7). *** P < 0.0001, significantly different from control as determined by Student’s t -test; 

not significant at P > 0.05. Scale bar = 50 μm. (C) CD34+ CACs alone were not able to form 

tube-like structures (left panel), but incorporated into HREC tubes, forming tube-like 

structures, when co-cultured with HRECs (right three panels). Abbreviations: CACs, 

circulating angiogenic cells.
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FIG. 4. Loss of circadian release of diabetic CD34+ CACs
Peripheral blood was collected every 2 h for a total of 24 h from (A) control (n=4) and (B) 

diabetic (n=8) subjects and was analyzed for the number of CD34+ CACs by flow 

cytomtery. (A) In control subjects, there is a clear peak of circulating CD34+ CACs that 

occurred in the middle of the night. (B) Rhythmic CD34+ CACs release pattern was blunted 

in Type 2 diabetic patients. The dash line is the model fitted curve for individual patients and 

bold curve is the fitted curve for population.
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