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Abstract

Background—Peri-coronary epicardial adipose tissue (cEAT) serves as a metabolic and 

paracrine organ that contributes to inflammation and is associated with macrovascular coronary 

artery disease (CAD) development. While there is a strong correlation in humans between cEAT 

volume and CAD severity, there remains a paucity of experimental data demonstrating a causal 

link of cEAT to CAD. The current study tested the hypothesis that surgical resection of cEAT 

attenuates inflammation and CAD progression.

Methods—Female Ossabaw miniature swine (n=12) were fed an atherogenic diet for 8 months 

and randomized into sham (n=5) or adipectomy (n=7) groups. Both groups underwent a 

thoracotomy, opening of the pericardial sac, and placement of radio-opaque clips to mark the 

proximal left anterior descending artery. Adipectomy swine underwent removal of 1–1.5 cm2 of 
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cEAT from the proximal artery. Following sham or adipectomy, CAD severity was assessed with 

intravascular ultrasound. Swine recovered for an additional 3 months on atherogenic diet and CAD 

was assessed immediately prior to euthanasia. Artery sections were processed for histological and 

immunohistochemical analysis.

Results—CAD severity, as assessed by percent stenosis, was reduced in the adipectomy cohort 

compared to shams; however, plaque size remained unaltered, while sham-operated swine 

developed greater plaque sizes. Adipectomy resulted in an expanded arterial diameter, similar to 

the Glagov phenomenon of positive outward remodeling. No differences in inflammatory marker 

expression were observed.

Conclusions—These data indicate that cEAT resection did not alter inflammatory marker 

expression, but arrested CAD progression through increased positive outward remodeling and 

arrest of atherogenesis.

Classifications

Atherosclerosis; Coronary Artery Disease; Coronary Artery Imaging; Inflammatory Mediators; 
Obesity

Coronary epicardial adipose tissue (cEAT) is an adipose tissue depot located on the surface 

of the heart, encasing and interacting with the epicardial coronary arteries. Mounting 

evidence that cEAT serves as a metabolic and paracrine organ (1) provides an impetus for 

growing interest in cEAT as a causal factor in coronary artery disease (CAD) etiology. cEAT 

thickness and volume directly correlate with CAD severity in humans (1–10).

Metabolic syndrome (MetS), defined as the clustering of three of the following five risk 

factors: central obesity, hypertension, dyslipidemia, glucose intolerance, and insulin 

resistance, doubles the risk of developing CAD (11, 12). cEAT volume is increased in MetS 

(13–16), and the inflammatory adipokine profile is altered in cEAT during MetS and CAD 

(16–18). Thus, one of the mechanisms whereby MetS exacerbates CAD may be through 

effects of cEAT on the coronary vasculature.

Many human studies conducted on the link between cEAT and CAD development have been 

observational, showing a positive correlation between cEAT volume and CAD severity (2–

7). There remains a need for experimental animal studies to determine a causal role of cEAT 

in CAD progression (16). To this end, we have developed an animal model, the Ossabaw 

miniature swine, which naturally recapitulates human components of MetS and CAD (19, 

20). We previously examined the effect of cEAT removal from the middle segment of the left 

anterior descending coronary artery (LAD) in Ossabaw swine using an intra-artery control, 

demonstrating that CAD progression was attenuated in the surgical region, compared to 

adjacent regions (21). However, in the absence of sham-operated controls, questions 

remained regarding the control of surgery-induced inflammation, the robustness of the 

observations, and the nature of CAD attenuation. Reductions in coronary luminal 

encroachment may be explained by one of two vascular remodeling scenarios: 1) reductions 

in or curtailment of plaque size, or 2) enhancement of compensatory expansion of the 

coronary arterial wall, such as that classically described by Glagov, et al (22). Accordingly, 
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we performed a sham-controlled study to test the hypothesis that cEAT removal attenuates 

CAD and is associated with outward vascular remodeling.

Material and Methods

Animal care and use

This protocol was approved by the Indiana University School of Medicine Animal Care and 

Use Committee and conducted in accordance with the Guide for the Care and Use of 
Laboratory Animals (23). Female Ossabaw miniature swine (n=12) were fed an excess-

calorie, atherogenic diet for a total of 11 months (KT-324, Purina Test Diet, Richmond, IN; 

16.3% kcal from protein, 40.8% kcal from complex carbohydrates, 19% kcal from fructose, 

and 42.9% kcal from fat; 1 kg once daily) supplemented with cholesterol (2.0%), 

hydrogenated coconut oil (4.70%), hydrogenated soybean oil (8.40%), cholate (0.70%), and 

high fructose corn syrup (5.0%) by weight, and consequently developed MetS and CAD, as 

previously described (20, 24, 25). All pigs were individually housed with a 12 hour light/

dark cycle and free access to drinking water. Metabolic data were collected to confirm MetS 

and to identify any potential variables between the experimental and control groups (Table 

1). After 8 months on diet, pigs were randomized to either an adipectomy (cEATx; n=7) or 

sham (n=5) group.

Anesthesia

After an overnight fast, anesthesia was induced with intramuscular administration of telazol 

(4.5–5.5 mg/kg) and xylazine (2.2 mg/kg). Following intubation, anesthesia was maintained 

with 2–4% isoflurane and 100% O2. Isoflurane levels were adjusted to maintain appropriate 

heart rate, blood pressure, respiratory rate, and cardiac electrical activity throughout the 

procedure.

Adipectomy

Following local anesthesia with lidocaine, a left-sided thoracotomy was performed and the 

lung was retracted to expose the heart. An incision was made in the pericardial sac above the 

region of the proximal LAD. Approximately 1–1.5 cm2 of cEAT was excised from the 

proximal LAD and radio-opaque ligation clips were placed around the surgical site. These 

clips confirmed the interrogated tissue upon euthanasia and tissue collection (Figure 1). 

Sham pigs also underwent a thoracotomy, opening of the pericardial sac, and placement of 

the ligation clips in efforts to control variables between groups.

Intravascular Ultrasound imaging

Following the adipectomy or sham procedure, intravascular ultrasound (IVUS) imaging was 

conducted in the left anterior descending (LAD) as previously described (20, 21, 25), using a 

45 MHz IVUS catheter (Volcano Corp., Rancho Cordova, CA). IVUS was repeated 3 

months post-adipectomy prior to euthanasia.

IVUS analysis was performed by a single observer blinded to experimental group and time 

point. Location within each artery was determined by identification of the left main coronary 

artery bifurcation and IVUS still-frames were analyzed in the proximal 15 mm of the LAD 
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utilizing ImageJ (NIH) software as previously described (19, 26, 27). External elastic lamina 

(EEL) cross-sectional area is indicated with a red dashed line in Figure 2A. Lumen cross-

sectional area is indicated with the yellow dotted line in Figure 2A. Percent stenosis 

quantifies the percentage of the area within the EEL that is occupied by atherosclerotic 

plaque, using the formula (EEL area – lumen area)/EEL area*100%. We assessed percent 

stenosis progression with the equation Percent StenosisSacrifice – Percent StenosisSurvivaL 

Outward remodeling was assessed by examining the change in EEL area from survival to 

sacrifice. Unadjusted plaque area at survival surgery and at sacrifice was assessed with the 

following formula: EEL area – lumen area.

Histology and immunohistochemistry

Specimens were collected from the healed surgical site of adipectomy pigs and from the 

corresponding region of the LAD of sham pigs, identified with clips placed in cEAT during 

survival surgery. The surrounding myocardium, adventitia, and adipose tissue were left 

intact, the specimen was fixed in 10% phosphate-buffered formalin for 24–48 hours, 

transferred to 70% ethanol, and embedded in paraffin. The Verhoeff-Van Gieson stain 

positively identified the elastic laminae (Figure 2A: far right images), allowing us to 

quantify percent stenosis. The results were compared between experimental and sham 

groups as well as with the IVUS percent stenosis data to confirm our in vivo technique. 

Immunohistochemistry was performed by the pathology core at Indiana University School of 

Medicine. Cell proliferation was quantified by positive Ki-67 staining of cells within the 

intima and expressed as a percentage of total cell count. Inflammation was assessed with 

macrophage scavenger receptor-A (1:100 dilution, Cosmo Bio USA, Inc. #KAL-KT022) and 

T-cadherin (1:1000 dilution, Abgent #CDH13, AP14346) as previously described (21) and 

expressed as a percentage of total area.

Statistics

Data are described as mean ± standard error. Statistical significance was set at p<0.05. 

Paired, one-tailed Student’s t-tests and unpaired one-tailed Student’s t-tests were conducted 

where appropriate using PRISM software (GraphPad Software Inc., La Jolla, CA).

Results

Metabolic data

All pigs continuously gained weight throughout the study and upon sacrifice there was no 

difference in body weights across groups. Assessment of total cholesterol, triglycerides, 

fasting blood glucose, and blood pressures revealed no metabolic differences between sham 

and cEATx pigs at euthanasia (Table 1).

Percent stenosis

Change in percent stenosis over the 3 month recovery period was significantly higher in the 

proximal LAD of sham pigs compared to cEATx (Figure 2B). Sham pigs displayed a 

positive change in percent stenosis, while a negative change in percent stenosis was seen in 

cEATx pigs.
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The validity of our in vivo IVUS assessment of percent stenosis was confirmed by its 

significant correlation (r = 0.85) with histological measure of percent stenosis (Figure 2C).

Cell proliferation and plaque area

To investigate the apparent plaque regression of cEATx pigs, intimai Ki-67 positive cells 

were quantified. LAD segments from sham pigs demonstrated significantly more 

proliferating cells compared to cEATx pigs; however, both groups revealed evidence of cell 

proliferation (Figure 3 A–C).

To directly assess changes in plaque size independent of vessel diameter, the unadjusted area 

of the plaque was examined. Plaque area in sham pigs significantly increased in size over the 

3 month recovery period, while size of plaque in the analogous LAD segment of cEATx pigs 

was unchanged (Figure 3D).

Inflammatory marker expression

Expression of macrophage scavenger receptor A and T-cadherin were examined within 

atherosclerotic plaques and in surrounding adipose tissue. Removal of cEAT did not alter 

inflammatory marker expression in either region (Figure 4).

Outward remodeling

At euthanasia, cEATx pigs demonstrated a greater EEL area as assessed with IVUS, 

compared to shams (Figure 5A). To determine whether this increase in EEL area was 

compensatory outward remodeling, we examined the correlation between EEL and plaque 

size at both survival and sacrifice. At survival, there was no difference between this 

correlation across groups (Figure 5B). However, at the time of sacrifice (3 months after the 

procedure), cEATx pigs demonstrated a significantly more positive correlation compared to 

sham pigs (Figure 5C). The slopes of the regression lines are graphically represented in 

Figure 5D. In sham-operated controls, correlation of arterial expansion (change in EEL area) 

with plaque growth is reduced at sacrifice, compared to survival surgery. However, in 

cEATx-operated swine, arterial expansion during plaque growth was maintained from 

survival to sacrifice.

As a final measure of the effect of compensatory outward remodeling, the lumen area was 

compared across groups and time points. At the site of surgical intervention, the lumen area 

in cEATx pigs significantly increased from survival to sacrifice, but was unaltered in sham 

pigs (Figure 6).

Comment

We examined the effect of surgical removal of cEAT on CAD progression in vivo. We 

confirm that selective segmental cEAT resection in Ossabaw swine with MetS arrests 

atherogenesis, measured by percent stenosis (Fig 2). The measure of percent stenosis 

assesses plaque size as a function of external elastic lamina area. Thus, to determine whether 

the decreased percent stenosis associated with the cEATx cohort was due to reduction in 

plaque size or to other factors, we examined plaque cell proliferation and plaque size. 
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Plaques in the cEATx group displayed less plaque cell proliferation, compared to sham-

operated controls (Fig 3C). Plaque size increased in sham animals, but remained unchanged 

in cEATx animals (Fig 3D). Thus, we concluded that the reduced percent stenosis observed 

in the cEATx cohort was not due to plaque regression.

The arrest of atherogenesis is associated with expansion of the coronary segment lacking 

overlying cEAT (Fig 4C). This enlargement of coronary arterial lumen is reminiscent of the 

Glagov phenomenon (22). Fig 6B–C summarizes our findings, demonstrating that a Glagov-

like phenomenon without plaque regression, is responsible for the luminal expansion 

observed in the cEATx cohort.

Hypothetically, cEAT might act as a scaffold, tethering the coronary artery to the epicardial 

surface and limiting movement during the cardiac cycle. The contiguity of cEAT with 

coronary arterial adventitia without an intervening fibrous layer (2, 8, 17, 28) might also 

restrict outward dilation of the proximal conduit coronary artery during diastole. 

Alternatively, cEAT from obese Ossabaw pigs expresses and secretes vasoconstrictors (29–

31) which when removed might result in tonic vasodilation. It cannot be determined from 

our work whether the expansion of the EEL is due to outward medial enlargement or to 

enhanced vasodilation.

Molecular mechanisms for the arrest of atherogenesis have not been elucidated in our study. 

It is established that cEAT overlying atheromatous plaques contains dense numbers of 

inflammatory macrophages and lymphocytes and secretes pro-atherogenic cytokines (18, 

32–37). Adipectomy might remove inflammatory cells and cytokines (21), thereby halting 

migration from outside the adventitia into the intima-media and reducing plaque expansion. 

However, we did not find any difference in some markers of atherogenesis in both the intima 

and cEAT layers of the adipectomised versus sham LAD segment. This suggests the removal 

of outside-to-inside paracrine factors less likely accounted for the beneficial anti-

atherosclerotic effect; however, because of the limited number of inflammatory factors 

interrogated, it does not rule out a paracrine/vasocrine effect of cEAT on atherogenesis. 

Future studies should undertake a comprehensive examination of inflammatory gene 

expression to further elucidate an underlying mechanism for the role of cEAT in promoting 

atherogenesis. These paracrine/vasocrine factors should be distinguished from the role of 

cEAT vs. myocardium in mechanically compressing the coronary artery and restricting 

outward remodeling (38). Wall shear stress is important in enhancing endothelial function 

and halting atherogenesis (39, 40). Although we have no direct evidence, there is the 

possibility that in the cEATx vessel, shear stress was modified by luminal expansion. In our 

previous study (21), the manipulated LAD segment showed immunohistochemical evidence 

of less inflammation compared to the distal and proximal sections of the same LAD. The 

reasons for this lack of concordance between our prior and this current study are unclear, but 

a likely explanation is that the level of overall inflammatory marker expression was higher in 

the current study because the surgical sham group was included. Another possibility is a 

different effect of gender on the inflammatory response, since our previous study was on 

castrated males vs. females in this study.
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Our current findings address the consideration raised in our earlier study (21) that cEAT 

adipectomy at the time of coronary artery bypass grafting might be used as adjunctive 

treatment to reduce the progression of atheroma post-grafting. Clearly, our results only apply 

to an early phase in the natural history of CAD without clinically significant luminal 

stenoses. In contrast, patients undergoing bypass grafting present with late stages of CAD 

who have substantial, flow-limiting stenoses (41). It will be of interest to investigate whether 

lifestyle modifications such as weight loss will result in similar cEAT mass/volume 

reduction, as this would be a safer and more appropriate strategy than invasive adipectomy.
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Figure 1. Protocol for removal of coronary epicardial adipose tissue
A) Diagram of coronary arteries depicting region of cEAT removal. B) Following removal of 

cEAT, radio-opaque ligation clips (black arrows) were placed near the surgery site. C) 

Representative coronary angiogram obtained following the adipectomy procedure. Radio-

opaque ligation clips are visible markers of the adipectomy / sham site (black arrows). D) 

Following euthanasia, adipectomy site was identified by location of ligation clips (black 

arrow). CFX = Circumflex artery; LAD = Left anterior descending coronary artery; RCA = 

Right coronary artery; LM = left main coronary artery; LV = Left ventricle.
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Figure 2. Removal of coronary epicardial adipose tissue attenuates coronary artery disease 
progression
A) Representative IVUS still frames at survival surgery (8 mos) and euthanasia (11 mos). 

IVUS was verified with Verhoeff-Van Gieson histology. Red dashed line = external elastic 

lamina; Yellow dotted line = lumen; white dots are placed 1 mm apart. B) Removal of cEAT 

significantly attenuates CAD progression, as assessed by percent stenosis (p < 0.05). C) 

IVUS measurement of percent stenosis correlates with histological measurement of percent 

stenosis, verifying IVUS assessment of CAD severity.
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Figure 3. Coronary epicardial adipose tissue removal does not alter plaque size, but attenuates 
intimal cell proliferation
A) Representative sham-operated intimal section stained with Ki-67. Black arrows indicate 

positive staining. B) Representative cEATx intimal section stained with Ki-67. Black arrows 

indicate positive staining. C) Intimal cell proliferation reduced in cEATx arteries, compared 

to shams (p < 0.05). D) Plaque area significantly increased following survival procedure in 

sham-operated animals (p < 0.05), but was unchanged in cEATx swine (p = 0.2).
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Figure 4. Expression of inflammatory markers is unaltered by removal of epicardial adipose 
tissue
A–H) Representative images of macrophage scavenger receptor-A (MSR-A) and t-cadherin 

stained arterial (A,C,E,G) and adipose (B,D,F,H) sections from sham-operated (A–D) and 

cEATx-operated (E–H) swine. I) MSR-A expression within atherosclerotic plaques is 

unchanged by cEATx operation J) MSR-A expression within adipose tissue is unchanged by 

cEATx operation. K) T-cadherin expression within atherosclerotic plaques is unchanged by 

cEATx operation. L) T-cadherin expression within adipose tissue is unchanged by cEATx 

operation.
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Figure 5. The Glagov phenomenon is potentiated with coronary epicardial adipose tissue 
resection
A – B) Removal of cEAT shifts the relationship between external elastic lamina (EEL) area 

and plaque area, thus potentiating outward remodeling during plaque growth. C) Outward 

remodeling, as assessed by the change in EEL area from survival to sacrifice, was increased 

in cEATx swine, compared to shams (p < 0.05). D) Graphical representation of the EEL/

Plaque area slope. Outward remodeling is reduced with CAD progression in sham-operated 

swine (p < 0.05), but is preserved following cEATx (p = 0.4).
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Figure 6. Removal of coronary epicardial adipose tissue results in significant outward 
remodeling and increases lumen diameter
A) cEATx animals experienced an expansion in lumen size following surgery (p < 0.05). 

This expansion was not observed in sham-operated animals (p = 0.4). B) During normal 

(sham) CAD progression, plaque area increased with little change in EEL area, resulting in 

increased coronary stenosis. C) Following cEAT removal, significant outward remodeling is 

observed as an increase in EEL area. This, combined with inhibition of increases in plaque 

size, results in an increased lumen area, thus reducing percent stenosis.
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Table 1

Metabolic Characteristics of Ossabaw Swine

Sham (n=5) cEATx (n=7) P-value

Body Weight (kg)

Survival Surgery 93.12 ± 1.36 88.09 ± 2.12 0.10

Sacrifice 110.14 ± 1.94 105.07 ± 3.30 0.26

Progression 17.02* 16.99* 0.99

Total Cholesterol (mg/dL)

Survival 471.80 ± 65.97 526.00 ± 56.71 0.55

Sacrifice 371.80 ± 79.41 533.00 ± 94.78 0.25

Progression −100.00* 7.00 0.10

Triglycerides (mg/dL) Survival 36.20 ± 7.21 38.57 ± 6.83 0.82

Sacrifice 55.20 ± 5.52 58.14 ± 7.35 0.77

Progression 19.00 19.57 0.96

Fasting Glucose (mg/dL) Survival 79.74 ± 2.28 82.82 ± 2.66 0.42

Systolic Blood Pressure (mmHg) Survival 155.94 ± 5.18 157.70 ± 3.49 0.77

Diastolic Blood Pressure (mmHg) Survival 86.89 ± 4.27 82.74 ± 2.62 0.40

*
Indicates significant progression from survival to sacrifice, p < 0.05.
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