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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is currently the third leading cause of cancer 

mortality in the United States, with a 5-year survival of ~8%. PDAC is characterized by a 

dense and hypo-vascularized stroma consisting of proliferating cancer cells, cancer-

associated fibroblasts, macrophages and immune cells, as well as excess matrices 

including collagens, fibronectin, and hyaluronic acid. In addition, PDAC has increased 

interstitial pressures and a hypoxic/acidic tumor microenvironment (TME) that impedes 

drug delivery and blocks cancer-directed immune mechanisms. In spite of increasing 

options in targeted therapy, PDAC has mostly remained treatment recalcitrant. Owing to 

its critical roles on governing PDAC progression and treatment outcome, TME and its 

interplay with the cancer cells are increasingly studied. In particular, three-dimensional 

(3D) hydrogels derived from or inspired by components in the TME are progressively 

developed. When properly designed, these hydrogels (e.g., Matrigel, collagen gel, 

hyaluronic acid-based, and semi-synthetic hydrogels) can provide pathophysiologically 

relevant compositions, conditions, and contexts for supporting PDAC cell fate processes. 

This review summarizes recent efforts in using 3D hydrogels for fundamental studies on 

cell-matrix or cell-cell interactions in PDAC.  

Keywords: Pancreatic ductal adenocarcinoma, hydrogels, epithelial-mesenchymal 
transition, 3D culture, tumor microenvironment 
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Tumor microenvironment in PDAC 

Many solid cancers have cancer cells that exhibit self-sufficiency in growth signals, 

unlimited cell growth, sustained ability to obtain nutrients, apoptosis resistance, insensitivity to 

growth inhibitory pathways, and the capacity to invade and metastasize [1]. Pancreatic ductal 

adenocarcinoma (PDAC) has similar characteristics. PDAC is currently the third leading cause 

of cancer mortality in the United States, with a 5-year survival of ~8% [2]. These slight increases 

in survival statistics in patients with PDAC are the consequence of improved imaging strategies 

and advances in chemotherapy but minimal improvement in cancer-directed immune activation 

strategies [3-5]. Thus, therapies with gemcitabine in combination with nab-paclitaxel or the 

combination of leucovorin (folinic acid), fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX) 

have led to improvements in overall survival rates [6, 7]. However, in spite of expanding options 

in targeted therapy [8], PDAC has mostly remained-treatment recalcitrant. Moreover, the 

incidence of PDAC continues to increase slightly due to the aging of the United States 

population and the high prevalence of obesity and type 2 diabetes [9]. Moreover, it is anticipated 

that PDAC will become the second leading cause of cancer death in the United States during 

the 2020’s [10]. 

PDAC is generally resistant to chemotherapy or radiotherapy, and only 15% to 20% of 

patients with PDAC have resectable disease at the time of diagnosis [11]. PDAC’s biological 

aggressiveness is caused, in part, by the high frequency of major driver mutations that include 

KRAS, TP53, SMAD4, and CDKN2A, co-existing with numerous low-frequency driver mutations 

and enhanced cancer cell survival pathways including STAT3, and NFkB, and epigenetic 

alterations [12-15]. This aberrant genomic landscape leads to multiple dysfunctions that are 

compounded by the overexpression of tyrosine kinase receptors (TKRs) such as epidermal 

growth factor (EGF) receptor (EGFR), human EGFR 2 (HER2) and HER3, fibroblast growth 

factor (FGF) receptors (FGFRs), hepatocyte growth factor (HGF) receptor (MET), the AXL 

receptor, and insulin-like growth factor 1 (IGF-1) receptor [16]. In addition, serine-threonine 
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kinases, such as the type 1 transforming growth factor beta (TβRI) and bone morphogenetic 

protein receptors (BMPR) can be overexpressed [17]. Often, the corresponding ligands such as 

transforming growth factor alpha (TGF-α), fibroblast growth factors (FGFs), insulin-like growth 

factor 1 (IGF-1), and hepatocyte growth factor (HGF), are also abundant, leading to multiple 

cross-talk pathways that promote mitogenic signaling and chemoresistance [18].  

PDAC is characterized by a dense stroma with limited vascularization. PDAC stroma 

also contains proliferating cancer associated fibroblasts (CAFs), collagens, fibronectin and 

hyaluronic acid, leading to increased interstitial pressures, compression of scant vascular beds, 

impaired drug delivery, and a hypoxic and acidic tumor microenvironment (TME) [19-21]. The 

TME is also infiltrated with inflammatory cells and macrophages that produce immune 

suppressive cytokines to suppress cancer directed immune mechanisms [22]. Moreover, CAFs 

release large quantities of HGF that acts in a paracrine manner on the adjacent pancreatic 

cancer cells (PCCs) [23]. These cells then produce CXCL12 to attenuate cytotoxic T cell 

penetration into the tumor mass [22]. 

Given the above environmental alterations, PCC gain a growth advantage through the 

utilization of aberrant metabolic pathways, glutamine, alanine and lipids, and acquisition of 

additional nutrients through macropinocytosis and autophagy [24, 25]. It has therefore been 

suggested that it is important to reprogram the TME in a manner that decreases the high 

interstitial pressures, enhances drug delivery into the tumor mass, and interferes with the 

metabolic advantages created by that above pro-survival processes [26-29]. To achieve these 

goals, conventional two dimensional (2D) cell culture devices are insufficient, while animal 

studies may impose additional challenges regarding mechanistic understanding of the complex 

cell-matrix and cell-cell interactions, as well as the physical alterations that occur in the PDAC 

TME (Figure 1). As such, extracellular matrix (ECM)-derived and synthetic polymer-based 

three-dimensional (3D) hydrogels (Table 1) are increasingly developed and used for 

understanding the influences of microenvironment cues on cancer progression [30-35]. While 
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the use of 3D matrices for PDAC research is in early stage, great strides have been made in 

recent years (Table 2). The remaining sections highlight recent advances in the use of 3D 

matrices for studying PDAC cell-matrix and cell-cell interactions. 

3D culture of PDAC cells with ECM-derived hydrogels 

Matrigel® 

Matrigel is derived from basement membrane of Engelbreth-Holm-Swarm (EHS) mouse 

sarcoma and is rich in collagen IV, laminin, heparin sulfate proteoglycans (HSPG), as well as a 

variety of growth factors. Matrigel solidified/gelled when the temperature is above 10°C. 

Because of its tumor origin, Matrigel has been used for culturing a variety of cancer cells in 3D 

[36, 37], including PCCs [38]. For example, Reddy and colleagues showed that pancreatic 

ductal epithelial cells organized into spheroids with apical-basal polarity in Matrigel, whereas 

PCCs (e.g., MIA Paca-2, PANC-1) exhibited irregular cell shapes [38]. Using Matrigel overlaid 

on top of noble agar, Korc and colleagues examined morphological changes and cellular 

response of PCCs in 3D monocultures (ASPC1, BxPC3, COLO-357, T3M4, PK-1, PK-2, Rlnk-2) 

to EGF/TGF-β1, pharmacological inhibitors, and chemotherapeutics [39]. The authors 

concluded that 3D culture and co-incubation with SB431542 and erlotinib enhanced the efficacy 

of gemcitabine and cisplatin in PCCs and in primary cells derived from genetically-engineered 

mouse models of PDAC. The same group later developed a 3D co-culture system to show that 

growth of murine PCCs was enhanced in the presence of murine SVEC4 endothelial cells (ECs) 

and the enhanced growth was suppressed by ruxolitinib [40]. Interestingly, ruxolitinib failed to 

inhibit growth of these PCCs or ECs in monoculture, which was attributed to an angiocrine 

mechanism whereby ECs produce factors that promote PCC proliferation that could be 

suppressed by targeting JAK1–2 with ruxolitinib [30]. By contrast, when human PCCs were co-

cultured with human vascular endothelial cells (HUVECs) growth suppression was only obtained 

through concomitant targeting of TβRI kinase with SB505124 and JAK1 with ruxolitinib [41]. 
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Matrigel-based matrices have also been used to study the influence of physical cues on 

PDAC cell fate. Rowat and colleagues used a modified scratch wound invasion assay where 

PCCs were overlaid with Matrigel [42]. PCCs exhibited significantly lower wound confluence and 

invasion through the Matrigel layer than a non-transformed control cell line. The study also 

found that cells with higher vimentin levels are more compliant (i.e., softer) but less invasive, 

which was in contrast to the established phenomenon that cells often express higher levels of 

vimentin and are more motile/invasive during epithelial-to-mesenchymal transition (EMT). Fisher 

and colleagues examined the effect of hypoxia on enhanced aggressive phenotype, metastatic 

potential, and impaired therapeutic efficacy of PCCs [43]. In addition to studying the effect of 

hypoxia on APE1/Ref-1 redox signaling activity, the authors performed 3D co-culture of PCCs 

with CAFs in reduced growth factor Matrigel. Results showed that APE1/Ref-1 signaling was 

dramatically enhanced in ex vivo 3D CAF/PCC co-culture. Dual blockade of APE1/Ref-1 and 

CA9 (carbonic anhydrase IX) using APX3330 and SLC-0111 induced effective tumor cell killing. 

del Rio Hernandez and colleagues showed that culturing pancreatic stellate cells (PSCs) on top 

of Matrigel for 6 days reverted activated PSCs to a quiescent-like phenotype as cells lost their 

spindle morphology and regain cytoplasmic lipid droplets [44]. The authors also cultured cells on 

top of fibronectin-coated polyacrylamide hydrogels with different stiffness (1 to 25 kPa). It 

appeared that increased matrix stiffness alone was sufficient to induce activation of PSCs. 

Furthermore, matrix with a stiffness gradient caused durotaxis of PSCs. Although these studies 

were conducted on 2D surface, the combination of Matrigel and synthetic hydrogels provide 

important insights into PSC activation and quiescence. 

Collagen gels 

Collagen 1 is one of the most highly secreted ECM proteins in PDAC stroma, or 

desmoplastic reaction. Depending on the source, the properties of collagen gels vary 

significantly [45]. For example, bovine collagen exhibits slow gelation and hence can be 
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processed at room temperature. Bovine collagen also forms more regular fibrils that does not 

resemble collagen structure in vivo. On the other hand, rat tail-derived collagen gels faster and 

must be placed on ice to prevent pre-mature gelation. Rat tail collagen forms irregular fibril 

structure that may be more in vivo-like. Regardless of the source, all collagen fibrils are soluble 

and stable in acidic solutions at low temperatures. At above room temperature (20-25°C), 

collagen fibrils self-assemble into bundled fibers with diameters ranging from 12 to 120 nm [45]. 

The fibers further crosslink into 3D microporous matrix through physical association. Notably, 

the pH value of the gel solution must be adjusted to neutral for cell culture. Collagen regulates 

many aspects of cell fate processes and has been widely used in 3D culture of cancer cells. For 

example, Munshi and colleagues studied the effect of 3D PCC cultures in collagen gels on 

tumor suppression, expression of matrix metalloproteinase (MMP), invasion, and chemo-

resistance [46-48]. In particular, PCCs grew in 3D collagen gels repressed tumor-suppressive 

let-7 family of microRNAs, partly via up-regulation of membrane type-1 MMP (e.g., MT1-MMP, 

also named MMP-14) expression and ERK1/2 activation [47]. These cells also demonstrated 

enhanced TGF-β1 signaling in collagen gel, whereas blocking TGF-β1 signaling attenuated 

collagen-induced signaling (e.g., MT1-MMP expression, ERK1/2 activation, and let-7 

repression) [47]. Collagen 1 also induced Snail expression and MT1-MMP-dependent invasion 

[48]. PCCs were more resistant to gemcitabine treatment when culturing in collagen gels via 

HMGA2-dependent histone acetyltransferase expression [46]. However, the stiffness of these 

collagen gels was not reported. 

Schneider and co-workers correlated the activity of MMP14 with stiffness of collagen 

gels. Specifically, MMP14 blocking antibodies were used to reveal its role on activating other 

soluble MMPs (e.g., MMP-2 and 9) under various matrix stiffness conditions [49]. Furthermore, 

inhibition of MMP-14 diminished invasion of PANC-1 cells into 3D collagen gels. However, this 

study did not characterize the exact stiffness of collagen gels formed at different concentrations 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 7

(1 and 5 mg/mL), nor did it decouple the effect of matrix stiffness and collagen content on MMP 

expression. To address these issues, the authors used glutaraldehyde and transglutaminase to 

increase chemical crosslinking and stiffness of collagen gels without changing collagen 

concentration [50]. As such, ECM density and stiffness was decoupled. It was demonstrated 

that MMP activity was modulated by substrate stiffness (50-2,000 Pa). 

Voytik-Harbin and colleagues examined EMT in PCCs using 3D collagen oligomer gels 

mixed with different ratios of Matrigel while maintaining constant matrix stiffness [51]. PCCs 

exhibited more spindle-shaped and single-celled morphology when cultured in soft (100 Pa) 

collagen oligomer gels, as opposed to round clusters when grew in Matrigel. Furthermore, 

exposure of PCCs to fibrillar collagen oligomer gels was sufficient to induce EMT. As fibril 

collagen oligomer density (0.9, 1.5, 2.1 mg/mL) and gel stiffness increased (100, 500, and 1,000 

Pa), all PDAC lines (BxPC3 and MIA PaCa-2) growing as tight clusters owing to increased 

spatial constraints and matrix stiffness. It is worth noting that the stiff hydrogels produced from 

2.1mg/mL collagen oligomer had shear modulus (G’) of 1 kPa (equivalent to Young’s modulus 

(E) of about 3 kPa), which is suboptimal, as recent work has shown that PDAC stroma has a 

much higher stiffness (i.e., E ~ 12kPa). 

Hyaluronic acid (HA) hydrogels 

Hyaluronic acid (HA) is a major glycosaminoglycan (GAG) excessively expressed and 

accumulated in PDAC stroma. HA binds to and activates CD44 and receptor for hyaluronan-

mediated motility (RHAMM), leading to cancer cell proliferation, invasion, and drug resistance. 

Accumulation of HA also causes elevated fluid stress that not only induces abnormal 

mechanosensing in the cancer cells but also limits penetration of anti-cancer drugs to tumor 

cells. Chemically crosslinked HA hydrogels have been used to provide stable network for long-

term cell study. Scaife and colleagues used thiolated HA, thiolated gelatin, and PEG-diacrylate 

(PEGDA) to form chemically crosslinked ‘HA-G’ hydrogels via Michael-type addition reaction 
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[52]. MiaPaCa-2 cells were homogeneously encapsulated in the injectable HA-G hydrogels for 

orthotopic implantation in nude mouse model of PDAC. HA-G gels with PCCs appeared to 

exhibit more consistent tumor growth and higher rate of metastasis at 8 weeks of tumor growth. 

While this study showed HA as an effective 3D cell carrier for orthotopic implantation of PCCs, 

the influence of HA on PDAC cell fate processes was not explored. The use of HA hydrogels as 

scaffold for 3D culture of PCCs did not receive significant attention until recently. We have 

developed HA-gelatin hydrogels via visible light based thiol-norbornene photopolymerization 

[53]. Specifically, thiolated HA (THA) and norbornene-modified gelatin (GelNB) were modularly 

crosslinked into hydrogels within minutes by means of visible light irradiation. The orthogonal 

reactivity between thiol and norbornene permits modular control over biochemical and 

biophysical properties without affecting other critical parameters capable of guiding PDAC cell 

fate. In particular, THA/GelNB hydrogels were formed at identical chemical compositions but 

varied matrix stiffness (G’ = 1, 2, and 5 kPa), which was achieved via supplementing PEG-tetra-

thiol (PEG4SH). These modular hydrogels were used to examine the effect of stiffness on 

growth and expression in COLO-357 cells, a PCC line with wild type KRAS. Results showed 

that gels formed with higher crosslinking density and stiffness (G’ ~ 5 kPa) led to cell cultures 

with smaller diameters. High stiffness downregulated CTGF mRNA levels, suggesting potential 

inactivation of the HIPPO pathway that may contribute to tumor progression and metastasis. On 

the other hand, the expression of sonic hedgehog (SHH) and MMP14 mRNA were significantly 

upregulated in cells growing in stiffer gels. SHH has been implicated in enhanced drug 

resistance, whereas upregulation of MMP14 is indicative of higher matrix cleavage and 

metastatic potential in the encapsulated cells.   

3D culture of pancreatic cancer cells with semi-synthetic hydrogels 

Semi-synthetic matrices 
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Hydrogels prepared from synthetic polymers, such as derivatives of poly(ethylene glycol) 

(PEG), have been used to support the survival of PCCs in 3D [54-56] and to deliver 

apoptotic/anti-cancer agents to treat PDAC [57-59]. To mimic a cancer cell niche using synthetic 

hydrogels, it is common to include biomimetic peptides for gel crosslinking and for receptor 

activation [56, 60]. In one example, multi-arm PEG-based macromers (e.g., PEG-norbornene, 

PEG-maleimide, PEG-vinylsulfone, etc.) are crosslinked by MMP cleavable peptides flanked 

with bis-cysteines via step-growth photopolymerizations [60]. The resulting ‘thiol-ene’ networks 

are more homogeneous and have superior cyto-compatibility when comparing with similar 

hydrogels formed by random chain-growth polymerization [61]. 

PEG-peptide hydrogels formed by thiol-norbornene click reaction has been used to 

evaluate the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D 

[56]. Specifically, PANC-1 cells formed small multicellular clusters in thiol-ene hydrogels within 4 

days of in vitro culture. After 10-day, the growth and structures of these clusters were 

significantly impacted by gel matrix properties, including gel degradability, stiffness, and 

immobilized peptide ligands. The use of matrix metalloproteinase (MMP) sensitive linker or the 

immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth 

and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated 

cells formed smaller and more compact aggregates in non-MMP responsive gels. The 

incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the 

cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of 

epithelial cell markers including β-catenin and E-cadherin. Our group used a similar PEG-based 

thiol-norbornene hydrogel to show that the presence of collagen 1 enhanced cell proliferation 

and Yes-associated protein (YAP) translocation to nuclei of COLO-357 cells [54]. Furthermore, 

cytokines and collagen 1 synergistically up-regulated MT1-MMP (i.e., MMP-14) expression and 

induced cell spreading, which could be attributed to EMT. COLO-357 cells grew in 3D 
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developed chemo-resistance even in the absence of collagen 1 and cytokines, as well as 

expressed high levels of CD24, SHH, and VEGF. In another example, we studied the influence 

of matrix properties and EGF receptor inhibition on the growth of PANC-1 cells [55]. 

Unsurprisingly, cells retained high viability and formed clusters in softer hydrogels (G’ ∼ 2 kPa). 

On the other hand, more cell death and smaller cell clusters were observed whereas cells 

encapsulated in stiff hydrogels (G’ ∼ 12 kPa). Furthermore, the immobilization of an EGFR 

peptide inhibitor (Asn-Tyr-Gln-Gln-Asn or NYQQN) only caused Akt-dependent cell apoptosis in 

stiff hydrogels but not in soft hydrogels, highlighting the importance of matrix physical properties 

on drug sensitivity in PCCs.  

Dynamic hydrogels to probe PDAC cell fate 

The biochemical compositions and biophysical properties in TME vary greatly depending 

on the stages of tumor development. The dynamic evolution of stromal tissue stiffness could 

lead to mechanosensing to both cancer cells and stromal cells. As such, hydrogels capable of 

recapitulating the dynamic landscape of extracellular microenvironment are of great importance 

for fundamental understanding of matrix-induced aberrant cell-matrix interactions [62, 63]. 

Recent work has shown that the stiffness of malignant PDAC tissues ranges from 2-6 kPa in 

shear modulus (equivalent to ~6-18 kPa in Young’s Modulus), whereas that of the healthy tissue 

is around 1 kPa [64]. Synthetic approaches commonly used to mimic a stiffening tissue often 

rely on performing secondary crosslinking within the primary cell-laden hydrogels [62]. For 

example, we have reported a cytocompatible enzyme-responsive matrix stiffening strategy [65, 

66]. The initial gelation and cell encapsulation were achieved by thiol-norbornene crosslinking of 

8-arm PEG-norbornene (PEG8NB) and bis-cysteine peptides (i.e., KCYGPQGIWGQYCK or 

YGKCYGPQGIWGQYCKGY). This simple peptide linker contains sequence sensitive to matrix 

metalloproteinase (MMP) induced cleavage, as well as additional tyrosine residues for 

tyrosinase-triggered di-tyrosine crosslinking [65]. Following thiol-norbornene gelation, the 
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tyrosine residues in the primary network served as substrates for exogenously added tyrosinase 

(TYR). As TYR diffused in hydrogels, it catalyzed dimerization of tyrosines and led to higher gel 

crosslinking density and stiffness. We demonstrated that enzyme-triggered and on-demand 

stiffened hydrogels altered morphology of PSCs cultured in 3D. PSCs also expressed higher 

level of α-smooth muscle actin (αSMA), a signature marker of myofibroblastic activation.  

 Although the TYR-stiffened PEG-peptide hydrogels have been useful in studying the 

effect of dynamic matrix stiffening on cancer stromal cell fate, these gels represented minimal 

tumor-related matrix components. In a separate study, we designed a pathophysiologically 

relevant dynamic biomimetic hydrogel system where the gels were crosslinked by thiolated HA 

(THA) and norbornene/hydroxyphenylacetic acid dually-functionalized gelatin (i.e., GelNB-HPA) 

[66]. The initial gel network was formed by orthogonal thiol-norbornene photopolymerization of 

GelNB, GelNB-HPA, THA, and inert macromer PEG-tetra-thiol (PEG4SH) [53]. With this hybrid 

dynamic hydrogel system, the effects of matrix biochemical and biophysical cues were easily 

decoupled for gaining new insights into the effects of matrix compositions on PDAC cell fate 

processes. 

Conclusion and Outlook  

Cell-laden hydrogels are increasingly used in cancer cell studies. Overall, animal derived 

matrices are advantageous owing to their inherent biological motifs for cell attachment and 

invasion. However, the batch-dependent material compositions and properties, as well as 

residual growth factors could confound the interpretation of the experimental results (Table 1). 

While gelation of Matrigel is easily achieved through controlling temperature, pre-cooled pipet 

tips, microtubes, and cell culture vessels are needed to prevent pre-mature gelation. On the 

other hand, significant acidic solution is required for preparing collagen gels. Compared with 

Matrigel and collagen gels, hydrogels crosslinked by derivatives of HA have not been widely 

used for PDAC cell research. Although HA alone does not provide necessary ligands for integrin 
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signaling, it does activate cell surface receptors such as CD44 and Receptor for hyaluronan-

mediated motility (RHAMM). Our work has shown that HA and matrix stiffness synergistically 

induce EMT in PCCs [66]. Hence, future work should explore the effects of HA and its 

synergistic signaling with integrin ligands or with other physical cues on PDAC cells fate in 3D.  

Conventional hydrogels are often composed of polymers crosslinked by covalent bonds 

that exhibit purely elastic properties. These elastic hydrogels are excellent artificial tissue 

mimics for recapitulating aspects of native ECM, including elasticity, permeability, and 

presentations of bioactive motifs. However, purely elastic hydrogels do not capture the 

viscoelastic and stress-relaxation properties of native tissues, which may play a significant role 

in cell fate processes and tissue development. Recent efforts have addressed this through 

developing advanced hydrogels with reversible crosslinks that can be reformed after breaking 

up by local cellular processes [67-69]. This new class of reversible/adaptable hydrogels is highly 

desirable for studies concerning the influence of matrix viscoelastic properties on cell behavior 

and gene expression. In addition to immobilizing pendant ligand in the presence of cells, one 

may wish to introduce different integrin ligands at different state of tumor development. In this 

regard, an addition-fragmentation-chain transfer reaction was developed to allow controlled and 

reversible exchange of biochemical ligands within an allyl sulfide functionalized PEG hydrogel 

[70]. Ligand ‘exchange’ could also be achieved via Sortase A mediated peptide ligation or 

protein labeling [71]. These approaches allows user-defined introduction of immobilized ligands 

during cell culture, which may be highly useful in understanding the influence of temporal 

presentation of selective ligands on cancer cell fate. Moreover, bioengineered hydrogels 

capable of inducing hypoxia could be used to study the synergistic influence of low oxygen 

tension and other matrix properties on PDAC cell fate [72, 73]. Finally, HA-based hydrogels can 

be designed/fabricated to enable in vitro evaluation of hydrostatic pressures on drug delivery to 
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PCCs. Collectively, these approaches will not only increase our understanding of the complex 

PDAC TME, but may lead to the discovery of novel therapeutic options for this deadly cancer.  
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Figure caption 

Figure 1. Schematic of PDAC tumor microenvironment. Major matrix factors regulating PDAC 

cell fate include, but not limited to, matrix mechanics, matrix ligand (e.g., collagen) and cytokine 

(e.g., TGFβ1 and EGF) signaling, and matrix metalloproteinase (e.g., MT1-MMP) activation. Src 

is downstream of many signaling cascades, including integrins and non-canonical TGF-β 

signaling, whereas Smad3/4 mediated canonical TGF-β signaling. 
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Table 1. Advantages and disadvantages of commonly used cell-laden 3D hydrogels 
Materials Advantages Disadvantages 
Matrigel • Derived from basement 

membrane of animal tissue 
• Contains bioactive motifs for 

cell recognition   

• Difficult to tune matrix mechanics 
• Contains undefined compositions 

and residual growth factors 
• Pre-chilled tips/vessels are 

required as gelation occurs when 
temperature is above 10ºC 

Collagen gel • Forms fibrous gel to closely 
mimic collagen-rich tumor 
ECM 

• Contains bioactive motifs for 
cell recognition   

• Acidic solution is required for 
dissolving collagen  

Hyaluronic acid • Provide HA ligands for 
receptor recognition 

• Mimic HA-rich tumor 
microenvironment 

• Purely HA gel does not provide 
integrin signaling   

Purely synthetic 
polymers 

• Well defined and tunable 
physical properties 

• Lack bioactive motifs for cell 
recognition and degradation  
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Table 2. 3D hydrogels for PDAC cell culture  
Materials Focus Stiffness Cell types 

used 
Reference 

Matrigel Cell polarity & organization N/A Panc-1, MIA 

PaCa-2, 

Su.86.86, 

BxPC-3  

 

[38] 

Response to cytokines and 

inhibitors, and 

chemotherapeutics 

N/A AsPC-1, 

BxPC3, COLO-

357, T3M4, PK-

1, PK-2, Rlnk-2 

[39] 

Effect of ruxolitinib on co-culture 

of PCCs and endothelial cells 

N/A Endothelial 

cells, Panc-1, 

IUSCC-PC1 

[41] 

Invasion assay N/A MIA PaCa-2, 

Panc-1, 

Hs766T, HPDE  

[42] 

Effect of hypoxia on enhanced 

aggressive phenotype 

N/A Pa03C, Pa02C, 
Panc10.05, 
CAF19, MIA 
PaCa2, 
UH1303-02  

[43] 

Quiescence/activation of 

pancreatic stellate cells 

N/A PSC [44] 

Collagen  Gemcitabine resistance N/A Panc-1, 
CD18/HPAF-II  

 

[46] 

let-7 regulation & TGF-β1-
mediated MT1-MMP expression  

N/A Panc-1 [47] 

MMP expression, EMT  N/A HPDE, Panc-1, 
CD18, AsPC-1  

[48] 

MMP14 activation & invasion N/A Panc-1 [49] 

Cellular contractility & matrix 
stiffness  

0.05-2 kPa Panc-1, BxPC-
3, and AsPC-1, 
HaCat 
(keratinocyte), 
MDA-MB-231 
(breast cancer) 

[50] 
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Collagen fibrillar microstructure 

& EMT 

0.1-1 kPa Panc-1, 

BxPC3, MIA 

PaCa-2 

[51] 

Hyaluronic acid 3D cell carrier for orthotopic 

implantation of PCCs 

N/A MIA PaCa-2 [52] 

Effect of 3D matrix stiffness on 

PCC growth 

1, 2, 5 kPa COLO-357 [53] 

Effect of dynamic matrix 

stiffening on EMT 

1 to 5 kPa COLO-357, 

Panc-1 

[66] 

Fibronectin-

coated 

polyacrylamide 

hydrogels (2D) 

Substrate rigidity on activation & 

durotaxis of pancreatic stellate 

cells 

1 to 25 kPa PSC [44] 

PEG-peptide 

hydrogels 

Effect of integrin ligands & matrix 

stiffness on cell morphogenesis 

& EMT 

3 to 6 kPa Panc-1 [56] 

Matrix properties and EGF 

receptor inhibition on the growth 

of PANC-1 cells 

2 to 12 kPa Panc-1 [55] 

Effect of matrix stiffness and 

collagen 1 on MT1-MMP 

expression & EMT 

2 kPa COLO-357 [54] 

Effect of dynamic matrix 

stiffening on PSC 

1 to 5 kPa PSC [65] 
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Highlights 

• Tumor microenvironment (TME) governs progression and treatment outcome of 

pancreatic ductal adenocarcinoma (PDAC).  

• Three-dimensional (3D) hydrogels derived from or inspired by components in the 

TME are progressively developed to recapitulate PDAC tumor matrix. 

• Cell-laden hydrogels (e.g., Matrigel, collagen gel, hyaluronic acid-based, and 

semi-synthetic hydrogels) can provide pathophysiologically relevant 

compositions, conditions, and contexts for supporting PDAC cell fate processes. 

• This review summarizes recent efforts in using 3D hydrogels for fundamental 

studies on cell-matrix or cell-cell interactions in PDAC.  

 


