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In this paper, we propose DeCoST (Drug Repurposing from Control System Theory)

framework to apply control system paradigm for drug repurposing purpose. Drug

repurposing has become one of the most active areas in pharmacology since the last

decade. Compared to traditional drug development, drug repurposing may provide more

systematic and significantly less expensive approaches in discovering new treatments

for complex diseases. Although drug repurposing techniques rapidly evolve from

“one: disease-gene-drug” to “multi: gene, dru” and from “lazy guilt-by-association” to

“systematic model-based patternmatching,” mathematical system and control paradigm

has not been widely applied to model the system biology connectivity among drugs,

genes, and diseases. In this paradigm, our DeCoST framework, which is among

the earliest approaches in drug repurposing with control theory paradigm, applies

biological and pharmaceutical knowledge to quantify rich connective data sources

among drugs, genes, and diseases to construct disease-specific mathematical model.

We use linear–quadratic regulator control technique to assess the therapeutic effect

of a drug in disease-specific treatment. DeCoST framework could classify between

FDA-approved drugs and rejected/withdrawn drug, which is the foundation to apply

DeCoST in recommending potentially new treatment. Applying DeCoST in Breast Cancer

and Bladder Cancer, we reprofiled 8 promising candidate drugs for Breast Cancer ER+

(Erbitux, Flutamide, etc.), 2 drugs for Breast Cancer ER- (Daunorubicin and Donepezil)

and 10 drugs for Bladder Cancer repurposing (Zafirlukast, Tenofovir, etc.).

Keywords: drug repurposing, system control, breast cancer, bladder cancer, pathway, expression profile

INTRODUCTION

Drug repurposing (also called drug repositioning) has become one of the most active areas in
pharmacology since last decade (Oprea et al., 2011) because this approach could significantly reduce
the cost and time to invent a new treatment. Before drug repurposing research became active,
it was expected to take about 15 years and $0.8–$1 billion to bring a new drug into the market
(Dimasi, 2001) due to many tests and clinical trials in order to be commercially approved by Food
and Drug Administration (FDA) (USFDA, 2016). It is expected that the failure probability during
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clinical trials is about 91.4% (Thomas et al., 2016). One of the
key reasons for low productivity in traditional drug development
is the lack of systematic evaluation of additional indications
(Dudley et al., 2011), which may lead to unexpected side
effects and low efficacy. Briefly, drug repurposing finds new
indications for known drugs and compounds (Gupta et al., 2013)
to reduce the risk of failure and shorten time of discovery.
Drug repurposing applies modern computational techniques to
digitalize genomic (Power et al., 2014), bioinformatics, chemical
informatics (Bisson, 2012) and patients’ individual health records
(Xu et al., 2014) to offer more systematic evaluation of the
chemical compound before entering the laboratory testing and
clinical trial steps. In addition, drug repurposing could explore
the large set of chemical compounds, which is estimated to
be more than 90 million by PubChem statistics (Wang et al.,
2014), to reduce the cost of synthesizing new compounds.
Prominent successful examples for drug repurposing include
Viagra, Avastin, and Rituxan (Dudley et al., 2011).

System biology (Pujol et al., 2010) plays an important role
to in the evolvement of drug repurposing evolved from “one:
disease-gene-drug” (Durrant et al., 2010) to “multi: gene, drug”
(Chou, 2010; Medina-Franco et al., 2013) and from “lazy guilt-
by-association” (Campillos et al., 2008; Keiser et al., 2009; Iorio
et al., 2010; Gottlieb et al., 2011) to “systematic model-based
pattern matching,” such as the Broad Institute’s Connectivity
Maps (CMAP), C2MAP, etc. (Lamb et al., 2006; Hu and Agarwal,
2009; Huang et al., 2012; Jensen et al., 2012; Li and Lu, 2013;
Subramanian et al., 2017). System biology reveals connectivity
among drug, gene, and diseases (Figure 1). In this Figure, the
green connectivity shows the types of connectivity for which
drug repurposing could utilize to answer the key question:
could drug A be re-indicated to treat disease B. The literature
and public data sources for these types of connectivity have
been thoroughly developed in the recent two decades, such as
DrugBank (Law et al., 2013) and SFINX (Andersson et al., 2015)
for drug-drug interaction; DrugBank (Law et al., 2013) and
STITCH (Kuhn et al., 2012) for drug-gene/protein interaction;
BioGRID (Chatr-Aryamontri et al., 2013), STRING (Szklarczyk
et al., 2015), HAPPI (Chen et al., 2017), KEGG (Kanehisa et al.,

FIGURE 1 | Connectivity among drugs, genes, and diseases. The red line and text show the key connectivity in drug repurposing.

2017) and Reactome (Croft et al., 2011) for protein-protein
interaction and human pathway; OMIM (Baxevanis, 2012) and
GEO (Barrett et al., 2013) for disease-specific gene curation
and analysis; the human disease network (Goh et al., 2007) for
disease-disease connectivity; and SIDER for diseases’ drug-side-
effect (Kuhn et al., 2016). The integration of rich data sources
enable mathematical system modeling and analysis in system
biology to deepen our understanding and predictive capability
for biological processes, disease ontology (Hannon and Ruth,
2014; Goel and Richter-Dyn, 2016; Woodhead et al., 2016) and
personalized medicine (Weston and Hood, 2004).

From the mathematical system-model-control-based point of
view, there exist a mechanism regulating the gene expression
profile. In the healthy condition, the gene expression stays in
the stable equilibrium region such that x(t) = f (x(t−1)) ≈

x(t−1), where f indicates the expression-regulating mechanism
computed from data integration, x stands for expression and t
stands for time. In the disease state, the critical gene expression
strays outside the stable region. In this case, without a control
(treatment), the expression will be unbounded. The system
control algorithms aim to find the sequence of control-treatment
that optimally stabilize the expression back to the original
equilibrium point, such as linear control (Willems, 1971; Chen
et al., 2016), nonlinear control (Bardi and Capuzzo-Dolcetta,
2008; Falcone and Ferretti, 2013), adaptive neural network
(Rovithakis and Christodoulou, 1994; Tong et al., 2014). By
comparing the real drug treatments with the optimal control-
treatment (also called hypo-treatment), we can evaluate the
potential efficacy of the drug before being repurposed.

However, applying mathematical system modeling and
control in drug repurposing is still in very early steps. There
are three key challenges in applying system control approach.
First, it is difficult to quantify the gene expression and real
drug treatment, as there is very little literature discussing the
“normal range” of each gene’s expression. Second, constructing
a comprehensive and accurate mathematical model to simulate
the gene expression change is complicated due to the diversity
of gene-gene interaction mechanisms, mutation, and under-
discovered data. Third, the biological systems are known for

Frontiers in Pharmacology | www.frontiersin.org 2 June 2018 | Volume 9 | Article 583

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Nguyen et al. DeCoST: Drug Repurposing Control System

large scale for system control: there may be from hundreds to
thousands of genes of interest in a specific disease or biological
process.

In this paper, we propose DeCoST (Drug Repurposing from
Control System Theory) to apply control system paradigm
for drug repurposing purpose, with source code available at
https://github.com/thamnguy/DeCoST. The DeCoST framework
tackles these challenges above as follow. First, although we
could not completely solve the “normal range” challenge, we
discretized the gene expression and the connectivity data so
that the control-system algorithm could be executed logically
without the “normal range” impact. Second, to overcome
the comprehensiveness challenge, we utilized the biological
and pharmaceutical knowledge and public data sources to
quantify the drug-protein interaction and disease-specific gene
expression profile. We used the comprehensive public protein-
protein databases to setup the mathematical model for the
repurposing problem. Third, to reduce the complexity and
high-dimensionality of the repurposing problem, we applied
the linear-quadratic-regulator method, which is practical in
large-scale system control, to compute the hypo-treatment and
evaluate the drug therapy. We apply DeCoST in Breast Cancer
and Bladder Cancer case studies. Among cancer diseases, Breast
Cancer causes the most number of mortality women (Centers for
Disease Control Prevention, 2013). Breast Cancer is also the most
comprehensively studied disease among cancers, with nearly 20
approved drugs by Food and Drug Administration (FDA). In

addition, Breast Cancer has many subtypes, which is ideal for
personalized drug repurposing. In contrast, FDA only approves
4 drugs for Bladder Cancer treatment although Bladder Cancer is
the fourth most commonly diagnosed cancer in the United States
(American Cancer Society, 2017). Therefore, drug development
in Bladder Cancer is still an opened and attractive research area.
From good performance when classifying between approved
drugs and withdrawn drugs, we find 7 compounds that may be
promising in Breast Cancer ER-positive subtype, 3 compounds in
Breast Cancer ER-negative subtype and 10 compounds in Bladder
Cancer for further drug repurposing in-vivo study.

METHODS

We developed our drug repurposing framework from the
system modeling and control points (Figure 2). The framework
integrates three types of data. First, from the Disease-specific
expression profile, we quantified the expression as the system
initial condition vector, where each vector elements specified
whether the corresponding gene was overexpressed (red),
underexpressed (green) or normally expressed (white). Second,
from the protein-protein interaction database, we built the
mathematical system model in order to apply the system-control
algorithm. The red arrows implies activative; and the green arrow
implies inhibitive interactions. Third, from the chemical-protein
interaction data, we quantified the treatment vector for each

FIGURE 2 | Overview of our drug repurposing framework and mathematical representation of drug, protein and interactome data. Red squares: overexpressed

genes/drug’s activation. Green squares: under expressed genes/drug’s inhibition. Red arrow: activated protein-protein interaction. Green arrows: inhibited

protein-protein interaction.
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drug for later ranking. Using the initial condition vector and the
mathematical model, we computed the optimal hypo-treatment.
By mapping the pattern of the optimal hypo-treatment and the
drugs’ treatment vectors, we could rank the drugs and suggest
repurposed drugs.

Retrieve the Expression Profile as the
Initial Condition Vector
We used GEO2R service (https://www.ncbi.nlm.nih.gov/geo/
geo2r/) to analyze GEO dataset for the initial condition vector.
The GEO2R service runs on R 3.2.3 platform and utilizes the
well-known bioinformatics packages Biobase 2.30.0 (Huber et al.,
2015), GEOquery 2.40.0 (Davis and Meltzer, 2007), and limma
3.26.8 (Ritchie et al., 2015). In GEO2R’s result, we filtered out
genes whose adjusted p-values exceed 0.05. The filtered-out genes
were marked with 0 in the initial condition vector. For genes,
whose adjusted p-values are less than 0.05, we used the sign of
base-10 logarithm fold-change (logFC) in the initial condition
vector. In the other words, genes with logFC > 0, which implied
that the genes were overexpressed in the disease condition, were
marked by 1. Genes with logFC < 0, which implied that the gene
were under expressed in the disease condition, were marked by
−1.

We chose GSE10886 dataset for expression profile in Breast
Cancer case study. GSE10886 is among the largest and most
comprehensive Breast Cancer microarray in GEO at the tissue
level. After the latest update in January 2013, GSE10886 has 226
samples and including 97 ER-positive-subtype samples, 69 ER-
negative-subtype samples, and 32 control samples. We chose
GSE31189 dataset for Bladder Cancer expression profile. This
dataset contains 52 cancer samples and 40 control samples.

Build Disease-Specific Mathematical
System Model From Interactome Data
Due to the availability of public data sources for disease-specific
pathway models, we built the disease-specific system model for
Breast and Bladder Cancer differently. To avoid potential false-
positive, which is a well-known issue in predictive data source, we
preferred using the pathway data to construct the mathematical
model. For Breast Cancer, we conducted literature search on
public curated pathway databases Reactome (Croft et al., 2011)
andWikipathway (Pico et al., 2008) for human disease pathways.
In these databases, we only select pathways where the disease
name appears in the pathways’ titles or description. As the
result, we found the Integrated Breast Cancer Pathway (Ibrahim
et al., 2015) on Wikipathway. This pathway is among the most
comprehensive Breast Cancer human pathway in the literature,
which covers 239 genes and 467 interactions. The pathway
also integrates 24 Breast Cancer-related pathways, including
several signaling network. The entire detail about this pathway
could be found in Supplemental Table 2. However, we could
not find any pathways having more than 50 genes for Bladder
Cancer, which implied low coverage. Therefore, for the Bladder
Cancer model, we queried Bladder-Cancer-associated genes from
PubMed Gene (https://www.ncbi.nlm.nih.gov/gene), one of the
most comprehensive literature collection in biomedical and life

sciences. To filter the possible noise during the retrieval process,
we used specific query in format:<Disease Name>AND “Homo
sapiens”[porgn: __txid9606]. After retrieving the Bladder-
Cancer-associated genes, we converted the gene identification
to UniProt Knowledge Base Reviewed identification (UniProt,
2013) to filter possible alias. We queried the STRING database
v10 (Szklarczyk et al., 2015), one of the most comprehensive
interactome databases to retrieve the interactions information
among the candidate disease-specific proteins, especially the
directionality and mechanism of interactions. To filter out
possible noisy information, we limited the search results only
on interaction with minimum of 500 confidence score. STRING
database covers 7 types of mechanism: activation, expression,
inhibition, catalysis, ptmod, binding, reaction.

After retrieving the disease-associated genes and interactions
from these models above, we quantified the interactome to
finalize the mathematical systems for these diseases. Among the
interactions, activation and inhibitions are the mechanisms with
the clearest and the most unambiguous impact/directionality.
Thus, we quantified the activation mechanisms by +1 and the
inhibition mechanisms by −1. For the other mechanisms, we
quantified them by the default value of 0. The results of this
step could be represented by adjacency matrices, as showed in
Supplemental Figure 1.

Retrieve Chemical-Protein Interaction for
Treatment Vector
For each disease, we curated literature for two set of drugs.
The positive set, denoted by D1, includes all drugs which
are approved for treatment by Food and Drug Administration
(FDA). The negative set, denoted by D2, includes drugs which
are withdrawn from disease treatment, or withdrawn/terminated
from disease-specific clinical trials due to toxic or inefficient
issues. We query https://clinicaltrials.gov/ for clinical trials
information. To avoid the complexity of multi-drug and multi-
disease treatment, we ignored literature mentioning more than
one drug/disease during curation. We also ignored the biotech
drugs since this type of drug does not target the molecular
level, therefore it is difficult to setup the treatment vector for
biotech drugs. Table 1 summarizes the list of D1 and D2 drugs
we curated for Breast Cancer and Bladder Cancer. For Breast
Cancer, we found 16 D1 drugs and 7 D2 drugs. In addition,
to examine the possible newly therapeutic drugs for Breast
Cancer, we referred to 24 drug proposed by Huang et al. (2011)
as D3, in which these drugs have been approved for some
other diseases by never in trial for Breast Cancer. For Bladder
Cancer, we found 3 D1 drugs and 2 D2 drugs. Since we could
not find any repurposed drug list for Bladder Cancer in the
literature, we selected all of the 421 FDA-approved drugs for
non-Bladder-Cancer diseases, which have at least one drug-
gene interaction with genes in Bladder Cancer model, as D3
for Bladder Cancer. The entire D3 drug lists for both Breast
Cancer and Bladder Cancer could be found in Supplemental
Table 1.

We queried the DrugBank (Law et al., 2013) and DMAP
(Huang et al., 2015) database for the list of drug-protein
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TABLE 1 | Drug lists (D1 and D2) curated for Breast and Bladder cancer.

Disease Drugs Drug sets Disease Drugs Drug sets

Breast cancer Anastrozole D1 Breast cancer Trastuzumab D1

Breast cancer Cycloheximide D1 Breast cancer Vinblastine D1

Breast cancer Exemestane D1 Breast cancer Diethylstilbestrol D2

Breast cancer Fluorouracil D1 Breast cancer Dromostanolone D2

Breast cancer Fluoxymesterone D1 Breast cancer Formestane D2

Breast cancer Fulvestrant D1 Breast cancer Ixabepilone D2

Breast cancer Lapatinib D1 Breast cancer Avastin D2

Breast cancer Letrozole D1 Breast cancer Ethyl Carbamate D2

Breast cancer Miltefosine D1 Breast cancer Imetelstat D2

Breast cancer Paclitaxel D1 Breast cancer Tivozanib D2

Breast cancer Pamidronate D1 Bladder cancer Cisplatin D1

Breast cancer Raloxifene D1 Bladder cancer Doxorubicin HCl D1

Breast cancer Tamoxifen D1 Bladder cancer Thiotepa D1

Breast cancer Thiotepa D1 Bladder cancer Mitomycin C D2

Bladder cancer Gemcitabine D2

D1, FDA-approved drugs (positive/good drug set); D2, FDA-rejected/withdrawn drugs (negative/bad drug set).

interaction mechanism. DMAP and DrugBank covers 38
mechanisms of drug action. InDMAP, we filtered out interactions
with confidence score less than 800 (over 1,000) to avoid noisy
information. From biological knowledge, we quantified these
mechanisms as showed in Table 2. Similar to quantification of
protein-protein mechanism of action, an inhibited or similar
action is map to −1; and an activated or similar action is map
to+1.

Construct Disease-Specific Drugs’
Therapeutic Scoring for Drug Repurposing
Purpose
The key principle in applying system control to evaluate drugs’
therapy relies in the following assumption: in disease condition,
the gene expressions are derived away from the balanced level
of 0. Therefore, a good treatment should reverse the gene
expressions in disease condition and stabilize the expressions to
the balance level. In Figure 2, we illustrate this principle and
explain several mathematical notation in a toy example. Based
on system biology literature (Alberghina, 2007), we assume that
there exists a model governing the gene expressions, which allows
us to model the expression using time-series perspective

x(t) = f (x(t − 1), u(t − 1)) (1)

where x ǫ ℜN stands for the quantified gene expression of N
genes, u ǫ ℜN stands for the quantified treatment and t is the
iteration and f is the arbitrary function controlling the expression
change. The initial x(0) is the quantified gene expression in
disease condition. In this paper, we choose a linear model for f.

x(t) = Ax(t − 1)+ u(t − 1) (2)

We chose the linear model because not only it is simple but also
it has equilibrium point at the origin: if x(t−1) = u(t−1) = 0

TABLE 2 | Quantification of drug-protein mechanism of action in drug-protein

interaction databases.

Mechanism of

action

Quantification Mechanism of

action

Quantification

Activator 1 Ligand 0

Adduct 0.5 Metabolizer 0

Agonist 1 Modulator 0

Allosteric modulator 0 Multitarget 0

Antagonist −1 Negative

modulator

−1

Antibody 0 Neutralizer 0

Binder 0 Other 0

Chaperone 1 Other/unknown 0

Chelator 0 Partial agonist 1

Cleavage −1 Partial antagonist −1

Cofactor 1 Positive allosteric

modulator

1

Component of 0 Potentiator 1

Cross-linking/alkylation 0 Product of 0

Incorporation into and

destabilization

−1 Reducer −1

Inducer 1 Stimulator 1

Inhibitor −1 Suppressor −1

Inhibitor, competitive −1 Unknown 0

Inhibitory allosteric

modulator

−1 Other terms 0

Intercalation 0 – –

The Mechanism of Action terminologies are retrieved from drug-target annotation in

DrugBank database. Quantification stands for the numerical representation of the

Mechanism of Action in the modeling and computing steps.

then x(t) = 0. This fact implies that when the gene expressions
are already at the balance level, treatment is no longer needed.
In addition, it is easier to setup a linear system with stability
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(Chui and Chen, 2012)

If ||x(0)|| < ε and u = 0 then || x(t) || < ε∀t (3)

where ||x|| stands for the second norm of x and ε is an arbitrary
small number. This fact implies the self-adjustment of the
gene expression at the control level. We setup matrix A from
quantification of protein-protein mechanism of interactions
(section Methods). With temporal matrix A∗ as the result of
section Methods

A∗(i, j) =







−1 if protein i inhibits protein j
1 if protein i activates protein j

0 otherwise
(4)

Let λ be the eigenvalue of A∗ with the largest magnitude. By
setting up A as

A = (1/λ) A∗ (5)

We can guarantee the stability of system (2) (Chui and Chen,
2012).

The objective of the linear control is to find a sequence of u(t)
such that

x(t) → 0 as t → ∞ (6)

Optimal control considers not only how to stabilize x quickly but
also consider the cost-effective of the treatment u. Regarding this
point, the optimal linear control aims to minimize

J(x (0)) =
∑∞

t = 0

(

x (t)Tx (t) + u(t)Tu (t)
)

(7)

To solve the optimization problem (2–7) we solved the
corresponding Riccati equation (Arnold and Laub, 1984)

ATPA− P− ATP (P+ I)−1 PA+ I = 0 (8)

using DARE algorithm (Arnold and Laub, 1984) in Matlab
(https://www.mathworks.com/help/control/ref/dare.html). In
(8), P is just an intermediate result containing no biological
representation. We compute the treatment vector u(t) as follow

u (t) = − (I+ P)−1 PAx(t) (9)

In system control practice, since u(t) often converges to 0
quickly (Bemporad et al., 2002), the first treatment vector
u(0)=− (I+ P)−1 PAx(0) often plays themost important role in
optimally stabilizing the system (2). Therefore, we can consider
u(0) as the optimal hypo-treatment. We compare the similarity
between the real drug treatment (ud) and the hypo-treatment as
the therapeutic score T(d) for each drug d as follow

Td = |uTd sign(u (0))|/|abs(ud)
Tabs(sign(u (0)))| (10)

where abs stand for the absolute value function. Here, Td ranges
between−1 and 1. The numerator

∣

∣uT
d
sign(u (0))

∣

∣ is thematching
function between drug d and the optimal hypo-treatment, which
is incremented when ud(i) and u(0)(i) are non-zero analog, and
decremented when ud(i) and u(0)(i) are opposite. We measured
the impact of Td score by the receiver operating characteristic
when we use Td to classify D1 drugs vs. D2 drugs.

RESULTS

Therapeutic Scores for Breast Cancer
Drugs
From the Integrated Breast Cancer Pathway (Ibrahim et al.,
2015) on Wikipathway (section Methods) and the Breast Cancer
drug list in Supplemental Table 3, we queried 222 drug-protein
interactions for the drugs’ treatment vectors (Supplemental Table
4). Supplemental Table 5 contains the initial condition vector
from GEO2R expression analysis.

Figure 3 shows that the Td score is able to give appropriate
ranking for most of the well-known therapeutic drugs and
suggest candidate drugs for repurposing in Breast Cancer ER-
positive case. Td score reflexes the difference between the D1
and D2 drugs with receiver operator characteristic (Hanley
and McNeil, 1982) area under the curve (AUC) of 0.76.
This result is comparable to the overall result queried from
Broad Institute CMAP (Subramanian et al., 2017) on MCF-
7, the Breast Cancer ER+ cell line, using the Touchstone tool
(https://clue.io/touchstone). Especially on the drugs covered in
CMAP, DeCoST achieves AUC of 0.91, which is much higher
than the AUC achieved by CMAP (0.79), as showed in the
Supplemental Text 1. We did not setup training set and test
set for classification because the model construction and Td

calculation does not need the drug categories. The Td scores for
D1 drugs in Breast Cancer ER-negative case are relatively lower
than the scores for ER-positive case (Figure 4). Comparison
detail has been shown in Supplemental Table 5. Using Td

for classifying D1 and D2 drugs yields AUC of 0.68. In fact,
clinical trials and literature have showed several drugs which
are effective in ER-positive treatment but show little or no
impact in ER-negative treatment. For example, Tamoxifen (Td

ER-positive: 0.294, Td ER-negative: 0.176), which is a selective
estrogen receptor modulator, does not prevent ER-negative
Breast Cancer, when the estrogen receptor genes do not express
(Fabian, 2007; Uray and Brown, 2011).

Therapeutic Scores for Bladder Cancer
Drugs
Since we could not find any human pathway with sufficient
coverage for Bladder Cancer, our Bladder Cancer system model
retrieved the Bladder-Cancer-specific genes from PubMed Gene
server. The model contains 738 proteins and 1,241 protein-
protein interactions. From 6 drugs in the Bladder Cancer case-
study, we retrieved 48 drug-protein interactions for drugs’
treatment vector. From GSE31189 gene expression dataset, we
found 221 genes whose expression differs from the balance level.
Details about the Bladder Cancer system could be found in
Supplemental Tables 6–8.

We observed AUC of 1.0 (Figure 5) when we used Td score to
classify between D1 and D2 drugs in Bladder Cancer. Here, all of
the D1 drugs receive non-negative Td scores: Cisplatin receives
the score of 0.2, Doxorubicin Hydrochloride receives the score of
0.0 and Thiotepa receives the score of 1.0. All of the D2 drugs
receive negative Td scores: Mitomycin C receives the score of
−0.2 and Gemcitabine receives the score of−0.09.
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FIGURE 3 | Left: Td score in Breast Cancer, ER-positive subtype; the horizontal bars in each group stand for median value of Td . Right: ROC of Td in classifying

between D1 drugs and D2 drugs.

FIGURE 4 | Left: Td score in Breast Cancer, ER-negative subtype; the horizontal bars in each group stand for median value of Td. Right: ROC of Td in classifying

between D1 drugs and D2 drugs.

FIGURE 5 | Left: Td score in Bladder Cancer; the horizontal bars in each group stand for median value of Td . Right: ROC of Td in classifying between D1 drugs and

D2 drugs.
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Potential Drugs for Breast Cancer Studies
and Biological Insights
From the Td scores for D3 drugs, our framework suggests
8 drugs (Erbitux, Flutamide, Medrysone, Methylprednisolone,
Norethindrone, Prednisolone, Prednisonea, and Vandetanib)
with high potential efficacy in Breast Cancer ER+ drug
repurposing. Significantly, these drugs do not directly target
Estrogen receptor, which is the most well-known approach in
Breast Cancer ER+ drug design. Tamoxifen is a typical example
of Breast Cancer drugs which slows cancer process by blocking
estrogen hormone receptors, preventing hormones from binding
to them. About 80% of all breast cancers are ER+: the cancer
cells grow in response to the hormone estrogen (Bulut and
Altundag, 2015). About 65% of the ER+ cases grow in response
to another hormone, progesterone (Hefti et al., 2013). Tumors
in ER/PR-positive cases are much more likely to respond to
hormone therapy than tumors that are ER/PR-negative. ER+
breast cancer entirely depends on the estrogen for growth and
propagation involving genomic and non-genomic pathways.
Epidermal growth factor receptor (EGFR) is a receptor found
on both normal and tumor cells that is important for cell
growth (Herbst, 2004; Khoo et al., 2015). ER-positive (ER+)
drugs recommended for repurposing in this framework block the
activities and growth of EGFR (Figure 6A). These drugs show
different mechanism of action with the common objective of
the inhibition of the growth of cancerous cells. By adjusting and
modifying the known biases of the interactomic networks, our
procedure would help to reveal the therapeutic effect of drugs
along with effective treatments.

For Breast Cancer ER- case, our framework suggests
Daunorubicin and Donepezil as the repurposing candidates.
These drugs are independent of estrogen and usually inhibit the

cell growth by either interacting with DNA or inhibiting
Cholinesterases. Daunorubicin interacts with DNA by
intercalation and inhibition of macromolecular biosynthesis
(Momparler et al., 1976). This inhibits the progression of the
enzyme topoisomerase II, and thereby stopping the process of
replication. Donepezil is in a class of cholinesterase inhibitor
that improves mental function and fatigue in cancer. The current
research focused on recent large-scale efforts to systematically
find repositioning candidates and elucidate individual disease
mechanisms in cancer (Bruera et al., 2007). Personalized
medicine and repositioning both aim to improve the productivity
of current drug discovery pipelines. Standard drug discovery
strategies can also lead to repositioning opportunities. D1, D2,
and D3 drugs (Table 1) found to potently modulate the desired
activity are repositioning candidates.

Potential Drugs for Bladder Cancer Studies
and Biological Insights
From the list of 143 FDA-approved drug with high Td score, we
found 10 candidates drugs (with Td = 1) whose mechanisms
are promising for Bladder Cancer repurposing. The Td scores
for all Bladder Cancer drugs could be found in Supplemental
Table 9. The prevalence of drug-repositioning studies has resulted
in a variety of innovative computational methods for the
identification of new opportunities for the use of old drugs.
We sorted the potential list of drugs against bladder cancer.
The reprofiling of these drugs followed the same biological
mechanisms. For example, Zafirlukast antagonizes ATP-binding
cassette and may improve the efficacy of anticancer effects
(Sun et al., 2012). Similarly, Tenofovir may reduce the risk of
bladder or others cancers while dopamine receptor antagonist
Thioridazine inhibits tumor growth (Yin et al., 2015). Losartan

FIGURE 6 | Illustration of biological mechanism of few FDA approved drugs (A) for breast cancer (B) for bladder cancer.
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is an angiotensin II receptor (AT-II-R) blocker that is widely
used by human for blood pressure regulation but it also
shows antitumor property (Barreras and Gurk-Turner, 2003).
Ciclopirox was first marketed in 1982 as an antifungal agent
found in several topical drug products. However, further research
demonstrated that it was able to kill bladder cancer cells
(Weir et al., 2011). The Atezolizumab, Cisplatin, Doxorubicin,
Nivolumab, Opdivo, Thiotepa, and others (Figure 6B) are FDA
approved drugs which are recommended for bladder cancer.

DISCUSSION

The applications of drug-repositioning studies have brought
a variety of new in silico approaches in drug designing and
development. In most of the studies, the anticancer effect of
newly designed drugs usually has been presented in vitro as
clinical trials are very expensive and time consuming, but remain
the only way to validate drug efficiency in vivo. Therefore, to
establish accurate and effective drug-repositioning framework
needs development of new computational techniques. In this
work, we discuss and demonstrate the application of control
system theory as a computational method to evaluate drug
efficacy and repurposing from integrated system biology data.
The capability in classification between approved and withdrawn
drugs is the fundamental foundation for our framework in drug
repurposing. It is important to note that although our AUC
of 0.76 and 0.68 in Breast Cancer is inferior compared to the
state-of-the-art methods (Cheng et al., 2012; Zheng et al., 2015),
our validation is conducted from the pharmaceutical knowledge
of drug’s efficacy on treatment at the system-pathway level;
meanwhile, the other methods often validate at the targeted
molecular level. In addition, we set strict criteria in choosing
the negative set by only choosing drugs that are rejected or
withdrawn from disease-specific clinical trials and treatments.
The state-of-the-art methods tend to be more relaxed on the
negative set by choosing drug not being used in disease-specific
drugs, which may have limitation on repurposing options.
In addition, the appropriate assessment of tamoxifen efficacy
between Breast Cancer ER+ and Breast Cancer ER- highlights
the potential advantages of our framework in personalized drug
repurposing. Compare to the approved drugs, the candidate
drugs suggested in this work show different promising drug
mechanisms which may be useful in future drug design.

In our work, although the number of target may be among
the key difference between the D1 drugs and the D2 drugs,
our analysis shows that the number of drugs’ targeted genes
and the targeted genes are not the only factors affecting the
clinical outcome and predictive results in drug repurposing.
As showed in Suppemental Table 3, D1 drugs, on the average,
has more targets than D2 drugs. However, D1 drugs for Breast
Cancer (average number of targets: 4.8) include both single-
target (such as Anastrozole, Exemestane, and Fluorouracil) and
multi-target (such as Tamoxifen, Paclitaxel, and Cycloheximide)
ones. D2 (average number of targets: 3.3) drugs also contains
the single-target (such as Ixabepilone and Avastin) and the
multi-target (such as Imetelstat and Diethylstilbestrol). In the
result section, DeCoST’s evaluation for these drugs showed above
is appropriate for their clinical outcome. In addition, drugs

targeting the same marker genes do not necessary have the same
outcome. For example, both Tamoxifen and Diethylstilbestrol
target the estrogen receptors ESR1 and ESR2, which are the
marker in Breast Cancer ER+ (Yip and Rhodes, 2014). However,
their clinical outcomes and DeCoST’s evaluation are opposite,
primarily because they have opposite mechanisms on the same
targets of estrogen receptors: Tamoxifen is the estrogen inhibitor
while Diethylstilbestrol is the estrogen activator. Since Breast
Cancer ER+ is strongly associated with the overexpression of
estrogen receptors (Yip and Rhodes, 2014), Tamoxifen could have
therapeutic outcome because it reverses the disease signature.
Meanwhile, Diethylstilbestrol should have poor outcome because
it shows the analog to the disease signature.

In this work, we have showed the results between DeCoST and
the Broad Institute CMAP, which is among the most well-known
and comprehensive platforms for drug repurposing. In addition,
our strategy of repurposing is similar to CMAP. Although
Supplemental Text 1 shows that our DeCoST has higher AUC
than CMAP does, it is inappropriate to conclude that DeCoST
is better than the CMAP. There are fundamental differences
in conducting experiment making comparison not totally solid.
First, the expression profiles acquired by CMAP are at the cell line
level; meanwhile, in this work DeCoST acquires the expression
profile at the tissue level, which is closer to in-vivo studies.
Second, due to several factors in experimental design, CMAP
does not contains cell line for Breast Cancer ER- and Bladder
Cancer. CMAP also covered less number of drugs, compared to
the drug list evaluated in this work. Therefore, the key point in
comparative evaluation should be on the repurposing hypotheses
suggested by these platforms in future in-vivo studies and the
biological insights of these hypotheses. In our results, we have
offered several biological explanations why drugs recommended
by DeCoST could be repurposed. Unfortunately, we could not
compare between CMAP and DeCoST at this point. DeCoST
focuses primarily on recommending drugs that have never been
in disease-specific clinical trials; meanwhile, CMAP (https://clue.
io/repurposing-app) primarily reports on drugs that has been
under early phases of clinical trials. Therefore, we believe that
DeCoST could provide complimentary advantages, in addition
to CMAP.

The advantages of our framework are established not only
by advanced computational method but also by two layers of
personalized system (Li and Jones, 2012). In the first layer, the
disease-specific gene expression could differ among different
patients and subtypes, which results in different initial state
condition. In the second layer, different types of disturbance
among molecular-molecular interactions could be discovered
and represented differently in the system modeling step. In our
results, we show that Tamoxifen, which is approved to treat
Breast Cancer, may not be effective in treating Breast Cancer
ER-. The strong support from literature to this evaluation is
a good example of the personalized medicine characteristics.
In addition, our framework could easily integrate the results
from many other state-of-the-art repurposing approaches such
as molecular docking and gene-set enrichment analysis to refine
the efficacy prediction. The main idea in this framework, which
is based on control system theory, could be applied in many
other bioinformatics problem, such as target prioritization and
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discovering new combination of treatments. In addition, our
framework could easily be extended to evaluate combination of
treatment, with careful preprocessing the drug-drug interaction
data (Ayvaz et al., 2015; Wang et al., 2017).

In addition, our framework shows repurposing capacity at
both target level and pathway level. At the target level, we
show typical examples for EGFR-targeted and ACHE-targeted
drugs. Patients being considered for anti-epidermal EGFR
therapy are often screened for mutations in the oncogene
KRAS (Hoorens et al., 2010) because a constitutively active
KRAS gene downstream of EGFR would not be affected by
EGFR inhibition. Many diseases have approved combination
regimens, such as metastatic colorectal and bladder cancer and
its four-drug FOLFIRI (folinic acid, 5-fluorouracil, irinotecan)
with cetuximab regimen (Raoul et al., 2009). Losartan is an
angiotensin II receptor (AT-II-R) blocker and this angiotensin-
converting enzyme inhibitors (ACE) may have a protective role
in bladder and other cancers (Yazdannejat et al., 2016). In the
other hand, a typical example at the pathway level is Thioridazine.
Thioridazine-induced effects are associated with inhibition of the
canonical NFκB pathway.

The limitations in this work are the method to quantify the
categorical data from public genomic/proteomic databases and
the simplicity of linear system control. First, all of the data are
discretized into only three values: −1, 0, and 1, which could
lower the resolution of the final drug therapeutic score. Second,
the linear system control approach needs to assume that the
gene expression transition could be approximate closely by a
linear equation, which is still unverified due to the scarcity of
time-series gene expression data. Therefore, when applying into
another repurposing problem, biologists and pharmacologists
should apply deeper domain knowledge to increase the resolution
of discrete quantification. Furthermore, mathematical nonlinear
system identification and reinforcement learning, which are
popular approach in unknown system control, could be used to
increase the accuracy of system modeling and make the system
more personalized. Integration of other resources, such as drugs,
genes, and systems associated with side-effects (Kuhn et al., 2016;
Maier et al., 2018) and high-throughput screening (Deftereos
et al., 2011; Macarron et al., 2011) would also be valuable
expansions of this work in the future. Also, the computational
complexity of DeCoST is generally high (expected O(n8), where
n is the number of genes in the model). This complexity is
manageable with most of the existing biological pathway model
(expect about 400 genes). However, this could be a bottleneck if
the number of genes raises to several thousands.

In addition, the advantages of our framework in personalized
medicine may associate with the reproducibility issues (Draghici
et al., 2006; Frye et al., 2015). As mentioned, the disease-
specific gene expression could differ among different patients

and subtypes. Therefore, we could not completely guarantee
that applying our framework on different gene expression data
and on different interactome data sources (Chatr-Aryamontri
et al., 2013; Szklarczyk et al., 2015) would return the same result.
Therefore, by reproducibility, we can only guarantee that given a
specific gene expression profile and an interactome data source,
we can always produce the same result. In this work, we have
tried to tackle the reproducibility issue by using tight criteria to
select the positive/negative drug set, bymaintaining the relevance
and coverage of the disease-specific model, and by choosing the
expression data set with high number of samples.

CONCLUSION

In this work, we have developed DeCoST, one of the
first techniques from system control paradigm, to tackle
the drug repurposing challenges. We showed that DeCoST
could appropriately retrieve the clinical outcomes of drugs
treating personalized Breast Cancer and Bladder Cancer. From
the good retrieval result, DeCoST suggests repurposing 8-
candidate drugs for Breast and 10 drugs for Bladder Cancer
with biological insights. This framework would be promising
to discover new therapeutic strategies to treat other cancer
diseases.
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