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Abstract 

Using the methods of statistical optics the formation of delayed X-ray pulses in the diffraction reflection of an incident pulse with 
an arbitrary degree of temporal coherence from a system of parallel crystals with different lattice periods is considered. The results 
are of interest for constructing delay lines in experiments with a time resolution of the pump-and-probe type and realizing of the 
self-seeding mode to increase the degree of temporal coherence of the X-ray free-electron laser radiation.  
A rigorous theory of dynamic diffraction in Bragg geometry is applied to the diffraction reflection of short X-ray pulses from a 
system of two parallel crystals with arbitrary thicknesses, and also, for a system of two pairs of parallel crystals. The dependence 
of the delay time and the intensity of the delayed pulses on the thickness of the crystals and the distances between them are 
analyzed. Since the pulses from the X-ray free electron laser have high spatial coherence, i. e. a small angular divergence, but very 
poor temporal coherence, special attention is paid to the effect of the degree of temporal coherence on the width of the energy 
spectrum of the incident pulses and on the influence of this width on the intensity of the delayed pulses.  
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1. Introduction  

For X-ray studies of fast processes in atomic physics, condensed matter physics, physics of high 
molecular compounds, etc., it is necessary to carry out experiments in the "pump and probe" mode in which 
one pulse is exciting pulse and the second pulse that incident on the object under investigation with some 
time delay, is a probing pulse. Lines of delay are also necessary for implementing the self-seeding mode, in 
order to increase the temporal coherence and monochromaticity of X-ray Free Electron Laser (XFEL) 
radiation.  

With recent launch of European X-ray Free Electron Laser and construction of other free-electron lasers, 
there’s a growing need for effective delay lines which can provide a series of coherent stable femtosecond 
hard X-ray pulses. At the moment for time-resolved studies with XFEL pulses generated in undulator are 
going to be sent on samples which will take snapshots of the changes in atomic structure of the sample [1]. 
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These 10–100-fs pulses have a highly non-coherent temporal structure and travel with time difference of 
200 ns arranged into bunch trains of 3000 pulses arriving with a repetition rate of 10 Hz [2]. The latter limits 
the temporal resolution at which processes at sub-atomic level can be studied.  

To control the delay time, delay lines were proposed in [3–6] consisting of a sufficiently large number 
(from 3 [6] to 8 [3–5]) of separately located crystals in the reflection and transmission geometries, which 
imposes stringent conditions on the constant wave-length of radiation, Bragg angles (45° in [3–5], ≈90° in 
[6]) and the stability of the crystal position. In addition, in [3–6] there are no calculations of the shape and 
intensity of delayed pulses.  

Earlier, in our works [7–9], a dynamical theory of the diffraction of coherent [7] and random [8, 9] X-ray 
pulses in crystals and multilayer structures was constructed. In [10] we showed that, due to the large spectral 
width of the incident pulse of the XFEL, its reflection from the multilayer crystal structure and systems of 
separated parallel crystals leads to the formation of a series of delayed reflected pulses.  

In the present paper we consider a more general case, namely, diffraction reflection of pulses with an 
arbitrary degree of temporal coherence from a plane-layered crystal structure and, in the simplest case, from 
a bicrystal. Bicrystal is a crystalline film with a thickness l  and interplanar distances d d+ Δ  lying on a 
substrate with interplanar distances equal to d. The need for such an analysis is due to the fact that XFEL 
pulses have very mediocre temporal coherence which is characterized by the ratio 0τΔΩ ∼102–103 where 

ΔΩ  is the width of the XFEL pulse spectrum, 0τ  is the pulse duration. It is shown how the duration of the 

incident pulse, the time of its coherence, the thickness and atomic periods of the crystal layers affect the 
intervals between the delayed pulses, their temporal structure and the relative intensities of the delayed 
pulses.  

The results of this study may be of interest in constructing delay lines for carrying out experiments with a 
time resolution of the pump-and-probe type and realizing the self-seeding regime.  

In this paper two methods for generation of delayed pulses are studied. The first one is diffraction in 
crystal multilayer structure (MS). Reflection from each layer results in a separate delayed pulses (Fig.1). For 
the second way we propose a simple and effective delay line design, which consists of two plane-parallel 
single crystals separated by some air gap L  (Fig. 2).  

 

 
Fig. 1. a – formation of delayed pulses in crystal multilayer structure; 

b – orientation of crystals required to maintain the same direction of pulse propagation after all reflections 
At experiment it is important to keep the direction in which the pulses travel after reflection. Fig. 1b 

shows that if the pulse is reflected from two same parallel multilayer crystals the direction remains the same 
and the second reflection results in an additional delayed pulse. It is clear that reflection from a crystal with a 
bigger number of layers will result in more delayed pulses. Also, variation of thickness allows for different 
delays.  

Another design of the delay line is presented in Fig. 2. Here, an incident pulse is reflected from two 
distant parallel crystals. The key feature of this design is that various distance between crystals L  results in a 
different delay time. Also, if one takes thin crystals, it is possible to acquire delayed transmitted pulses.  

The crystal thicknesses range from fractions to tens of the extinction depths, i. e. 10052,1 −∝l µm. 

Crystals with a larger thickness are not advisable, since this will lead to an increase in the thermal load on 
the crystal under the action of high-power XFEL pulses. Their interplanar distances differ by a certain small 
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value dΔ  such that the distance between the peaks of the spectral Bragg reflection is several times greater 
than the diffraction widths of these peaks. Since the pulses of XFEL are characterized by very comparatively 
low temporal coherence, the energy spectrum of the incident pulse overlaps both diffraction peaks. As a 
result, each crystal is reflective in its spectral region in the vicinity of Bragg wavelengths 1 2 sindλ θ= , and 

2 2( )sind dλ θ= + Δ , where θ  is an angle of incidence of the pulse with respect to the crystal surface, and is 

practically transparent in other spectral regions (Fig. 2). The delay time cLlt B /sin)(2 2 θ+=Δ  can be 

smoothly controlled by simply changing the width of the air gap L , where Bθ  is the Bragg angle for the 

crystal 1 and for radiation with a wavelength 1λ .  
 

 
Fig. 2. Schematic operation of delay line based on two distant crystals 

2. Theory  

Consider the incidence of a spatially limited pulse with an electric field 0( , )E tr  on the crystal or any 

multilayer or multicrystal system. We will take into account that the XFEL pulses are characterized by a high 
degree of spatial coherence (~0.71–0.95 [11]) and a very small angular divergence of pθΔ ≈ 0.2–0.4 arc.sec 

[11]. This divergence is much less than the angular width of Bragg reflections of BθΔ ∼1–3 arc.sec (for 
reflections (400), (220) and (111) from diamond crystals of radiation with a wavelength of λ = 0.1 nm [12]). 
Therefore, one can use the wave packet model with an electric field 0 0 0( ) ( )exp( )E t A t i tω= − , where 0( )A t  

is the slowly varying field amplitude and 0ω  is the central frequency.  

Statistical optics approach was used to describe the intrinsic random structure of the pulse. According to 
[2, 11] a ~10–100 fs SASE1 pulse consists of a set of spikes with estimated coherence time of ~0.2 fs. 
In [8, 9] it is shown that this random field amplitude can be approximated as (Fig. 3): 

 
( ) ( ) ( )0 0 ,A t F t a t=           (1) 

 
where 0( )F t  is the incident-pulse envelope, ( )a t  is a random stationary process which average amplitude 

( ) 0a t< >= , average intensity (dispersion) ( ) ( ) 1a t a t∗< >= and the temporal-coherence function 

( ) ( ) ( )a t a tγ τ τ∗=< + >  are independent of time t.  

Let us write the random amplitude of a pulse incident on a crystal, 0( )A t  in Eq. (1) as an expansion in a 

Fourier integral:  
 

0 0( ) ( )exp( )A t A i t d
∞

−∞
= Ω − Ω Ω ,                                                          (2) 
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Fig. 3. Schematic representation of random XFEL pulse 

0 0( ) (1/ 2 ) ( ) exp( ) .A A t i t dπ
∞

−∞
Ω = Ω Ω      (3) 

 
Since the pulse amplitude 0( )A t  is random, 0( )A Ω  in Eqs. (2) and (3) is also a random function. Since 

each plane wave with an spectral amplitude 0( )A Ω  which is incident on a crystal and makes an angle 

Bθ θ θ= + Δ  with the crystal surface, is reflected from the crystal (or systems of crystals) with the complex 
amplitude coefficient ( )R Ω , the reflected pulse amplitude is determined by the integral [7]:  

 

( ) ( ) ( ) ( )0 exp .RA t A R i t d
+∞

−∞
= Ω Ω − Ω Ω       (4) 

 
Furthermore, we will assume for definiteness that the incident-pulse envelope 0( )F t  in Eq. (1) and the 

temporal-coherence function ( )γ τ  of a random process ( )a t  are Gaussians: ( ) 2 2
0 0exp( / )F t t τ= − , where 

0τ  is pulse duration, and ( ) 2 2exp( / )cγ τ τ τ= − , where cτ  is the coherence time. The envelop spectrum 

amplitude 0( )F Ω  and the spectral density ( )G Ω  of random signal ( )ta  are  

 

( ) ( )2 20
0 0exp 4

2
F

τ τ
π

Ω = −Ω ,    ( ) ( )2 2exp 4 ,
2

c
cG

τ τ
π

Ω = − Ω      (5)  

where spectral density according to the Wiener–Khinchin theorem is  
 

( ) (1/ 2 ) ( ) exp( ) .G i dπ γ τ τ τ
∞

−∞
Ω = − Ω       (6) 

 
For expression (1), one cannot use Eq. (4) in simple analytical form for calculation of reflected intensity

2( ) ( )R RI t A t= as the signal cannot be calculated due to its random structure. However, intensity of the 

pulse can be derived with the use of statistical optics [9]:  
 

( ) ( ) ( ) ( ) ( ) ( ) ( )2
0 0 ' ' exp ' 'R RI t A t A A R R i t d d

∞ ∞
∗ ∗

−∞ −∞
= = Ω Ω Ω Ω − Ω − Ω Ω Ω    ,       (7) 
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is the spectral correlation function [9], ( )2 2
02cξ τ τ= .  

 
3. Results and discussion  

One of the ways to generate coherent delayed pulses is reflection in multilayer crystals (Fig. 1). During 
growth of diamond crystals, addition of boron dopant atoms increases interplanar spacing in a layer, which 
leads to the difference of Bragg angles for thin layers grown on thick crystals. In [13], it was demonstrated 
that such method results in separate Bragg peaks after doping of diamond crystal. For definiteness we 
consider the case of X-ray radiation with the wavelength 0.1λ =  nm for all presented results. The 
wavelength is chosen to be close to photons energy 12.4 KeV – first-harmonic signal of SASE1 channel at 
European XFEL [2].  

Fig. 4 shows spectral reflection curves for a semi-infinite crystal with a 10 µm doped layer for two 
different interplanar spacing dΔ  in the layer. It is clear that a larger interplanar spacing difference yields 
larger Bragg angle and, accordingly, Bragg spectral frequency difference for layer and substrate. This means 
that different spectral components reflect from different layers and gives two delayed pulses. Fig. 5 shows 
temporal structure of a pulse reflected from a double-layer crystal (bicrystal).  

Reflected pulses have roughly the same intensity because spectral density of random signal ( )ΩG  is 

much wider than wave-packet spectrum ( )0F Ω . That way each peak intensity is defined by the area under 

each reflection peak, which is similar for both peaks, even though their peak values are different. As can be 
seen from Fig. 5, for thicker layers dynamical effects are more significant, and it results in a more complex 
temporal structure.  

 

 
Fig. 4. 1 – incident wave-packet spectrum F0 of envelop with width, 0 02 τΔΩ = ; 2, 3 – reflection curves for 

52 10d d −Δ = ⋅  and 55 10d d −Δ = ⋅ , respectively, d  is interplanar spacing for undoped C(400),  
dΔ  is interplanar spacing difference for the layer and substrate 

Here 0 5τ = fs is duration of the pulse, i. e. the width of the wave-packet, thickness of the layer is  

l = 10 µm, green and red curves represent different spectral components that will form separate delayed 
pulses, 4 – spectral density of random signal ( )ΩG , coherence time 0.2cτ = fs  

Growth techniques of multilayer crystals are still to be developed, as the interface smoothness is crucial 
for the presented design, as well as absence of structural defects which are likely to be caused by dopants. 
One should keep it in mind that delay pulses reflected at the same angles only in the case of symmetrical 
Bragg reflection (see also [7]).  

Above we considered the delay lines for XFEL pulses with a low degree of coherence, for which the 

condition BΔΩ >> ΔΩ  is satisfied, where 2
0 / sinB h Bω χ θΔΩ =  is the spectral width of the Bragg 
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reflection, and hχ  is the Fourier component of the crystal polarizability. It is also of interest to consider the 

possibility of creating a delay line for high-coherence pulses obtained using the self-seeding scheme and for 
which the coherence time is 0cτ τ≤ .  

 

 
Fig. 5. 1 – wave-packet of an incident 0τ = 5 fs pulse with cτ = 0.2 fs coherence time; 2, 3 – temporal structure of the pulse after reflection from a double-layer crystal with layers’ thicknesses 1 2 10l l= = µm and 1 2 15l l= =  µm, deformation is 

52 10d d −Δ = ⋅  for both layers, C(400). Colored waists of the pulses depict delayed pulses generated by different spectral components of the pulse for different thickness of the layer (Fig. 4, peaks 1 and 2)  
In this case, the spectrum of the incident pulses sharply narrows. Therefore the bicrystal must be rotated 

at such an angle θΔ  with respect to the Bragg angle Bθ , so that the maximum of the pulse spectrum lies 
approximately in the middle between the reflection peaks from the film and from the substrate (Fig. 6). In 
this case, the delayed pulses are formed as a result of the diffraction of radiation concentrated on the "tails" 
of the incident pulse spectrum, which fall in the region of the Bragg reflection peaks from the film and from 
the substrate. This situation is presented in Fig. 6. It can be seen, as in Fig. 5, as with the increase in the 
thickness of the film, the delayed pulse shifts to the region of larger times.  

 

 
Fig. 6. Panel a: 1 – spectral reflection curve with reflection peaks from the layer (l) and from the substrate (s);  2 – incident pulse spectrum; parameters: 0 10τ = fs, 5/ 3 10d d −Δ = ⋅ , 1.5θΔ = − arc. sec, 50l =  μm, C(400).  Panel b: 1 – incident pulse, curves 2 and 3 – delayed pulses at layer thicknesses 20l = μm (2) and 50l = μm (3) 
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It is easy to see that the delay time in the case of diffraction reflection of a pulse from a bicrystal, as it is 
shown in Fig. 1 and Fig. 3–6, is determined mainly by the thickness of the upper layer: clt B /sin2 θ≈Δ . 
From a practical point of view, this is not very convenient, since for a smooth adjustment of the delay time, a 
large set of bicrystals with different thicknesses l  is required.  

However, the situation is greatly simplified if instead of bicrystal we use a system of two parallel crystals 
separated by a certain interval L , the value of which can be smoothly changed (Fig. 2). Moreover, instead of 
such a very complicated procedure as ion implantation, one can use simple heating of one of the crystals to 
change the interplanar distances in crystals. In this case, the relative change (deformation) is equal of 

/ Td d TαΔ = Δ , where Tα  is the coefficient of linear thermal expansion, and TΔ  is the change of a 
temperature. At a temperature of 300 K, the coefficient of thermal expansion of crystal of synthetic diamond 

is 61 10Tα −= ⋅  [14]. Hence it follows that to ensure, for example, the magnitude of the crystal deformation 
5/ 2 10d d −Δ = ⋅ , as in Fig. 5, one of the two crystals needs to be heated only by 020 CTΔ = .  

 
Fig. 7. 1 – incident pulse, 2, 3 – reflected pulses temporal structure for 10== La µm and 20a L= = µm, respectively. Crystals have the same thickness of 1 2l l= = 3 µm, diamond (400).  Reflected pulse intensity is presented on the right-side axis 
Fig. 7 shows that different distance between crystals leads to different delays. However, at the moment it 

appears to be impossible to grow crystals as thin as 3 µm, so generation of desired smooth separate peaks is 
not feasible.  

Fig. 8 shows the delayed pulse curves for different values of the width of the gap L  between the crystals. 
It can be seen that the delay time tΔ  increases linearly with increasing of the distance L . The pulses 
intensities do not depend on this distance. It follows from Fig. 8 that there is some “dead” time delay 

130fstΔ ≈  under the width of the gap 0L = . This time is determined by the thickness of the upper crystal 2 
(with deformation) in Fig. 2. To reduce the delay time, this thickness should be reduced. However, in this 
case the intensity of the delayed pulse also decrease and the pulse shape change.  

This problem can be solved in a simpler way. For this it is necessary in the second system of crystals to 
interchange the crystals with deformation and without deformation. In this case, the “fast” pulse reflected 
from the upper crystal with deformation in the first system of crystals at first falls on the ideal crystal in the 
second system of crystals, passes through it and is reflected from the crystal with deformation. The delay 
time of this pulse increases as a result of passing through an ideal first crystal. On the other hand, the 
delayed pulse which is formed by reflection from the lower ideal crystal in the first system of crystals is 
immediately reflected practically without delay from the ideal crystal in the second system. Thus, the delay 
time can be reduced almost to zero.  
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Fig. 8. Demonstration of the time structure of delayed pulses depending on the thickness L of the gap between the crystals. Parameters: 1 20μm,l =  2 50μm,l =  5/ 3 10 ,d d −Δ = ×  duration of the incident pulse 0 20fs,τ =  coherence time 2fscτ =   

To create an effective delay line, it is very important to be able to control the intensities of delayed pulses. 
Let us consider this question in more details. As was shown in Section 2, the amplitude of the reflected pulse 
is determined by the following integral relation  

 

( ) ( ) ( ) ( )0 expRA t A R i t d
+∞

−∞
= Ω Ω − Ω Ω   

 
where under the integral sign is the product 0( ) ( )A RΩ Ω  of the amplitude of the incident pulse spectrum 

0( )A Ω  on the spectral amplitude of the reflection coefficient ( )R Ω  of our crystal structure. Therefore, to 

change the amplitude ( )RA t  of the reflected pulse, one can use the fact that the reflection coefficient ( )R Ω  
depends on the crystal thickness, on the degree of deformation, on the reflection order, and the pulse 
spectrum 0( )A Ω  depends on the pulse duration and the coherence time. In addition, the position of the 

spectrum relative to the diffraction reflection curve depends on the angular deviation of the crystals with 
respect to the Bragg angle.  

Below we consider two possibilities for controlling the intensity of delayed pulses. Fig. 9 shows how the 
relative arrangement of the diffraction reflection curves with respect to the spectrum of the incident pulse 
changes with a change of the degree of deformation /d dΔ . It is clear that the product of the curve of the 
spectrum 4 by the diffraction reflection curve 1, which corresponds to the value of the crystal deformation 

5/ 3 10 ,d d −Δ = ×  is several times larger than the product of the weak “tail” of the spectrum (curve 4) by 

curve 3 which corresponds to an increased degree of deformation 5/ 9 10d d −Δ = × .  
The second possibility of controlling the amplitude of the reflected pulses is due to the fact that the 

amplitude reflection coefficient depends on the crystal thickness, and specifically its magnitude increases 
with increasing crystal thickness. Fig. 10 shows the spectral reflection curves for a fixed degree of 

deformation 5/ 4 10 ,d d −Δ = ×  but for three different thicknesses 2l  of the second crystal. It is clear that the 

above product 0( ) ( )A RΩ Ω  in the region of the spectrum corresponding to the reflection from the second 

crystal will increase with increasing thickness 2l  while the same product does not depend on this thickness 
in the central region of the reflection spectrum 0Ω ≈  from the undeformed first crystal.  
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Fig. 9. Spectral curves of diffraction reflection 1–3 depending on the degree of deformation /d dΔ , 4 – spectrum of the incident pulse, 5 – spectrum of the pulse envelope; curve 1 – 5/ 3 10 ,d d −Δ = × angle deviation 4.2arc.secθΔ = − ;  curve 2 – 5/ 6 10 ,d d −Δ = ×  8.4arc.secθΔ = − ; curve 3 – 5/ 9 10 ,d d −Δ = ×  12.6arc.secθΔ = − .  Parameters: 1 40μm,l =  2 10μml = , 0 20fs,τ =  2fscτ = , synthetic diamond crystals, reflections (400)  

 
Fig. 10. The spectral reflection coefficient (curves I–III) for different thicknesses of the second crystal  (the thicknesses are indicated in the figure), the spectrum of the incident pulse (curve IV) and the spectrum  of its envelope (curve V). Parameters: deformation of the second crystal diamond crystals, reflections (400) 

In Fig. 11 reflected pulse temporal structure is shown for three 20 µm-thick crystals. Here, stronger 
dynamical effects compared to the case with thin crystals take place resulting in irregular temporal structure 
and secondary peaks.  

 

 
Fig. 11. 1 – incident pulse (left axis), 2 – reflected pulse (right axis) in case of three 20 µm-thick crystals positioned  at a distance of 10L =  µm from each other 
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The presented designs have a potential to generate delayed XFEL pulses at sub-100 fs level with regular 
temporal structure. Also small number of optical elements required makes the introduced delay line easy to 
operate. Unlike previously introduced delay lines [3–6], diffraction in only two crystals produces delayed 
pulses. Moreover, the presented delay line allows for operation at any energy by simultaneous rotation of the 
crystals, adjusting incidence angle to an arbitrary central energy of the incident pulse.  

 
4. Conclusion  

Thus, in this paper we analyze a simple X-ray delay line which consists of one and (or) two blocks. Each 
block represents two fairly perfect crystals with thicknesses 1l  and 2l  and parallel to each other. The 

interplanar distances in one of the crystals (for example, in the first crystal with thickness 1l ) differ by some 
amount dΔ  from the other crystal. The distances between the crystals in the 1st and 2nd blocks are equal to 

1L  and 2L , respectively. The delay time for diffraction at the first block is approximately equal to 

cLlt B /sin)(2 111 θ+=Δ . The minimum delay time is realized when 01 =L . In other words, there is a so-

called "dead time" delay, the magnitude of which clt B /sin2 11 θ=Δ  is determined by the thickness 1l  and 
cannot be made very small since the intensity of the diffraction reflection simultaneously decreases sharply.  

The second block is necessary in order to preserve the direction of propagation of the delayed pulses with 
respect to the incident pulses. If in the second block the first crystal is also a crystal with a thickness 1l , then 

the delay time is equal to 12 tt Δ=Δ , i. e. it increases. However, if the first crystal is the crystal with 0=Δd  

and whose thickness is 2l , then the delay time becomes equal to the difference 

cLlLlt B /sin)]()[(2 2211 θ+−+=Δ . It is easy to see that a simple change in the distances between the 
crystals leads to the fact that the delay time can be positive, equal to zero (delayed pulses coincide) and even 
negative (delayed pulses are interchanged).  

Unlike previous schemes [3–6], this delay line can operate in a wide range of wavelengths which is 
achieved by a simple rotation of all the crystals. In addition, calculations of the intensities of delayed pulses 
in relation to the duration of the incident pulses, the coherence time, and the crystal thicknesses were 
performed in this paper.  

It is quite clear that in real situations there will be a number of problems associated with ensuring the 
parallelism of the crystals, specifying the required deformation and also the quite possible non-stationary 
heating of all crystals under the action of a powerful thermal load due to the partial absorption of the energy 
of the incident pulses. These and similar questions require further investigation.  
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