e of Tomsk Polytechnic University

CORE

NOVEL K₂CO₃-BASED COMPOSITE SORBENT FOR CO₂ CAPTURE FROM AMBIENT AIR

J.V. Veselovskaya

Boreskov Institute of Catalysis SB RAS, Russia, Novosibirsk, Akademika Lavrentieva avenue 5, 630090 E-mail: jvv@catalysis.ru

НОВЫЙ КОМПОЗИТНЫЙ СОРБЕНТ НА ОСНОВЕ К₂СО₃ ДЛЯ ПОГЛОЩЕНИЯ УГЛЕКИСЛОГО ГАЗА ИЗ ВОЗДУХА

Ж.В. Веселовская

Институт катализа им. Г.К. Борескова СО РАН, Россия, г. Новосибирск, пр. Академика Лаврентьева, 5, 630090 E-mail: jvv@catalysis.ru

Аннотация. Сорбционные свойства композитного сорбента K₂CO₃/активированный уголь были изучены в циклическом процессе при чередовании стадий сорбции CO₂ из воздуха и термической регенерации сорбента. Установлено, что значения абсорбционной емкости по диоксиду углерода существенно зависят от относительной влажности воздуха. Показано, что композитный сорбент может быть эффективно регенирован при нагреве до 150°C, а при повышении температуры регенерации до 200°C начинается процесс окисления углеродного материала кислородом воздуха.

Introduction. It is well known that CO_2 is the major anthropogenic greenhouse gas, which contributes to global climate change. Potassium carbonate is a solid inorganic chemisorbent, which reacts with atmospheric CO₂ in the presence of water vapor forming potassium bicarbonate: $K_2CO_3 + H_2O + CO_2 \rightarrow 2KHCO_3$. However, bulk potassium carbonate is not widely used as a material for CO₂ capture due to low reaction rate and insufficient mechanical strength. These problems can be solved by dispersing K_2CO_3 in pores of a support material. Recently, it was shown that K_2CO_3/γ -Al₂O₃ composite is a promising material for absorbing CO₂ directly from ambient air [1]. However, this material needs to be heated up to 300°C in order to be fully regenerated, unlike bulk KHCO₃, which decomposes around 130°C releasing CO₂ and H₂O. K₂CO₃/γ-Al₂O₃ needs higher regeneration temperature due to interaction between the active component and the porous support, which results in formation of potassium dawsonite KAICO₃(OH)₂ [1, 2]. Increase in the regeneration temperature raises energy costs and narrows the range of heat sources that can be used. Therefore, there is a need for developing new sorbents for CO₂ absorption from ambient air, which can be effectively regenerated at T=150-200 °C. To solve this problem, it is necessary to select a porous support that does not interact with potassium carbonate. Other widely used porous oxides, such as SiO₂, MgO, TiO₂, do not fit, because they also react with K₂CO₃, forming either mixed oxides or mixed carbonates [2]. Activated carbons (AC), on the other hand, are considered to be perspective porous supports for K₂CO₃, but the major concern is a possibility of carbon material oxidation/destruction upon heating in air. Thus, this work is focused on performance of K₂CO₃/AC material in temperature-swing absorption cycles with regeneration temperatures of 150 and 200°C. In order to separate KHCO₃ decomposition and carbon oxidation processes, both of which result in CO₂ release upon heating, the composite sorbent regeneration was carried out in both oxidative atmosphere (air) and inert atmosphere (argon).

ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Experimental. Composite sorbent K₂CO₃/AC was prepared by dry impregnation method, described in detail in [1]. Granules of a mesoporous active carbon AG-3 (S_{BET} = 860 m²/g, V_{pore} = 0.5 cm³/g) were filled with 40 wt. % aqueous solution of K₂CO₃, followed by drying at 100°C for 12 h and then at 200°C for 1 h. Estimated K₂CO₃ content in the resulted composite material is 14 wt. %.

Processes of carbon dioxide absorption from ambient air and consecutive thermal desorption was studied in a temperature-swing adsorption cycles using an experimental set-up, schematically presented in Fig. 1. The composite sorbent was placed into a cylindrical fixed bed adsorber with the inner diameter of 19 mm, which was located inside an electrical heater. The mass of the composite sorbent inside the adsorber was 2 g. A single TSA cycle comprised 3 steps: 1) CO₂ absorption from ambient air for 2 h; 2) thermal desorption of CO₂ for 2 h; 3) the adsorber cooling for 2 h. The experimental conditions are summarized in Table 1. During the first step of each TSA cycle the composite sorbent was saturated with CO₂ as indoor air with was pumped through the adsorber using a gas pump. Relative humidity of the inlet air was 7 - 25 %. During the regeneration step the adsorber was rapidly heated up to the preset temperature (150 or 200°C), while he inlet flow rate of air or argon was maintained at 50 mL/min. Outlet concentrations of CO₂ were measured using a NDIR CO₂ sensor.

Fig. 1. The experimental set-up for performing TSA tests

Table 1

N⁰	Description of a step	Parameter	Value
1	CO ₂ absorption from air	Duration	2 h
		Gas flow	Air, 1300 mL/min
		Adsorber temperature	30 °C
2	CO ₂ desorption	Duration	2 h
		Gas flow	Air or Ar, 50 mL/min
		Adsorber temperature	30 °C → 150; 200 °C
3	Cooling	Duration	2 h
		Gas flow	No flow
		Adsorber temperature	150; 200 °C \rightarrow 30 °C

Parameters	of TSA	cvcles
------------	--------	--------

ХV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Results and Discussion. It was shown that amount of CO_2 desorbed at 150°C in either argon or air flow strongly depended on relative humidity (RH) of indoor air during the previous CO_2 absorption step (Fig. 2). The maximal CO_2 uptake was obtained when RH was 12-14 %. Increase of regeneration temperature up to 200°C in argon atmosphere does not lead to any additional desorption of CO_2 . However, when the material was heated up to 200°C in air flow, the amount of released CO_2 was significantly higher than the previous results, which is likely to be a result of carbon support oxidation by oxygen containing in air.

It should be noted that K_2CO_3 utilization extent in the TSA cycles is < 30%. XRD analysis showed that the composite sorbent K_2CO_3/AC after 12 h of CO₂ absorption from ambient air contains crystalline phases of KHCO₃ and $K_2H_4(CO_3)_3$ ·1.5H₂O, which means that even after much longer CO₂ absorption step this material absorbs less than 1 mol of CO₂ per 1 mol of K_2CO_3 .

Conclusions. The obtained results show that the composite material can be effectively regenerated at 150° C in air flow, but the major drawback is that K₂CO₃ does not fully convert to KHCO₃ during the CO₂ absorption step. Further research is needed to improve performance of K₂CO₃/AC materials in the process of CO₂ absorption from ambient air.

Fig. 2. Amount of desorbed CO_2 (in mg per 1 g of the composite sorbent) depending on average relative humidity throughout the CO_2 absorption step and conditions of the CO_2 desorption step (gas-carrier: argon or air; temperature: $150 \,^{\circ}$ or $200 \,^{\circ}$

This work was supported by Russian Science Foundation (project № 17-73-10068).

REFERENCES

- Veselovskaya, J. V., Derevschikov, V. S., Kardash, T. Yu., Stonkus, O. A., Trubitsina, T. A., Okunev, A. G. (2013) Direct CO₂ capture from ambient air using K₂CO₃/Al₂O₃ composite sorbent. International Journal of Greenhouse Gas Control, no. 1, pp. 332–340.
- 2. Lee, S. C., Choi, B. Y., Lee, T. J., Ryu, C. K., Ahn, Y. S., Kim J. C. (2006) CO₂ absorption and regeneration of alkali metal-based solid sorbents. CatalysisToday, no. 111, pp. 385-390.

62