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SUMMARY 

Pattern recognition techniques are applied in order to investigate the relevance of a 
large set of physical and chemical parameters for the description of the formation of 
binary alloys. Only alloys with a well-established sign of the heat of formation are con- 
sidered. The electronic work function and the electron density at the boundary of the 
Wigner-Seitz cell, as given by Miedema et al., appear to be the most relevant parameters. 
A difference between the Miedema scale and the Pauling electronegativity scale is noted. 
The parameters suggested by Miedema et al. are evaluated. 

The possible prediction of the alloying behaviour of two metals has 
intrigued many people. Several empirical rules have been proposed in order 
to predict such behaviour. The Hume-Rothery rule is well known [l] ; this 
“15% rule” states that two metals do not form a solid solution if their atomic 
radii differ by over 15%. Further, the stability of intermetallic compounds 
increases with increasing difference in electronegativity between the consti- 
tuent elements, and the concept of “valence” must also be taken into account 
[l] . Waber et al. [ 21 showed that the 15% rule, in combination with a second 
rule stating that the difference in electronegativity must not exceed 0.4 
Pauling electronegativity units [3], predicts the mutual solubility of two 
metals with an accuracy of 77%. It should be noted that alloying refers both 
to the mutual solubility of two metals (i.e., random distribution of atoms 
over the crystal lattice in the solid phase) and to the formation of intermetallic 
compounds (i.e., regular distribution on the crystal lattice). A slightly 
different approach was given by Mott [4] ; combining the Pauling [3] term 
for ionic bonds with Hildebrandt’s solubility parameter, Mott predicted 
the mutual solubility of two liquid metals with an accuracy of 80%. 
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By far the most successful approach is that given by Miedema et al. [ 51. 
Their empirical model, which appears to be related to Mott’s model, is based 
on a “macroscopic atom picture”. Its range of validity covers liquid as well 
as solid alloys of a transition metal with another transition metal, or a noble 
metal, or an alkali or alkaline-earth metal; the model also covers liquid alloys 
consisting of two non-transition metals. An exceptional situation arises for 
alloys of a transition metal with “p-type” metals [ 51 (see Table 2), where 
additional energy effects occur; such alloys could also be covered by adding 
an extra term to the model. This type of alloy, however, will not be con- 
sidered in this paper. 

The model of Miedema et al. considers an alloy to consist of atomic 
(WignerSeitz) cells of the individual elements. The basic idea is that contact 
between WignerSeitz cells of two different elements has two effects: first, 
charge transfer towards the most electronegative cell results in a negative 
contribution to the energy; second, elimination of the accompanying dis- 
continuity in the electron density at the boundary of the cells contributes 
positively to the energy. 

Sophisticated theories based on quantum mechanics have been presented 
in order to explain alloying behaviour [6-g]. These theories, however, can- 
not account for the impressive overall applicability of the semi-empirical 
model [5]. Even the physical picture proposed by Miedema et al. has been 
criticized by Williams et al. [lo]. Undoubtedly, a fundamental theory 
should provide a physical understanding of the parameters introduced by 
Miedema et al. Before such a theory is formulated, it is clearly of interest 
to know which physical and chemical parameters play a prominent part in 
alloying, and to assess if the parameters of Miedema et al. are the only rele- 
vant ones. 

The purpose of this paper is to discuss alloying behaviour from the point 
of view of pattern recognition [ 11-131. This technique selects the relevant 
parameters from a set of parameters under investigation; the ARTHUR com- 
puter program [ 141 is commonly used. A concise description of the techniques 
relevant to this paper is given below. This is followed by an argument assum- 
ing that the description of the generally accepted electronegativity difference 
given by Miedema et al. is correct. Replacement of the less well understood 
term describing the difference in electron density by a more satisfactory 
physical or chemical parameter is then discussed and the Miedema work 
function scale and the Pauling electronegativity scale [3] are compared. 
Miedema et al. [5] describe the charge transfer in an alloy by means of a 
work function scale for pure metals, specially designed for the purpose. 
Generally, however, the Pauling electronegativity scale is used for describing 
the electrochemical effect in an alloy. Finally, it is shown that the Miedema 
parameters should be used together in order to add up to the best set. 
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THE PATTERN RECOGNITION TECHNIQUES USED 

In pattern recognition, some item, an alloy in the present case, is positioned 
in a multidimensional feature space, spanned by all physical and chemical 
data, called features, of that particular item (the parameters given in Table 1). 
When several items in that feature space cluster together, it is obvious that 
their chemical and physical behaviour is similar. In pattern recognition, it is 
assumed that such behaviour not only holds for the known physical and 
chemical data, but also reflects similar behaviour of properties that have not 
been measured or cannot be measured without considerable effort. 

When a large number of parameters is involved, it is important to obtain 
an indication about their mutual dependence, This is reflected by the corre- 
lation coefficient Cjj : 

Cij = I2 (Xi,k -zi) * tXl,k -zj) 
I[ 

5 (Xi,k -Zl)2 i (Xj,k -Zj)’ 1 l/2 

(1) 

k=l k=l k=l 

where Xi,k denotes parameter i of item Fz, and Zi the mean value of parameter 
i over the n items. This can be used to reduce the dimensionality of the 
feature space by removal of those parameters that are highly correlated to 
others. Such reduction is advantageous because it simplifies the description 
of the property investigated for the items (here, the sign of the heat of for- 
mation of alloys). 

The alloys are divided into two categories on the basis of their known chem- 
ical and physical behaviour (positive or negative heat of formation). Then the 
procedure WEIGHT can be applied in order to investigate which parameters 
are mainly responsible for the discrimination of the categories. The variance 
weight (WV) is the ratio of the interclass variance (a measure of the spread of 
a certain parameter over both categories) to the intraclass variance (a measure 
of the spread of that parameter within one category): 

“1 “2 

2 xk,l,, ’ 1 xk,S,J 
k=l 

nlnz II 
g (xk,l.Jn~zI.j)2 + 5 (xk,2,k;x2,i)' 

k=l k=l 
1 (2) 

where WVj.,,, denotes the weight of a parameter j for separating category 1 
from category 2, xk, 1, j is parameter j of the kth item in category 1, and 3t1, J 
is the mean value of parameter j over the n 1 items in category 1. 

The procedure SELECT chooses the parameter with the largest variance 
weight and consecutively decorrelates all remaining parameters from the 
selected one by means of some kind of Gram-Schmidt procedure. These 
decor-related parameters are then reweighted and so on. A final test for the 
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separability of the categories is offered by LEAST, that aims to predict the 
category number by means of a linear combination of the chosen parameters: 

P, = bo + ; bixi,k (3) 
i=l 

where Pk denotes the predicted category number of item h, Xi,k is the ith 
parameter of item le, and n’ is the number of parameters; bi are the coeffi- 
cients of the least-squares multilinear regression. Then the P value is calculated 
which separates the two categories optimally. The percentage of correctly 
classified elements is called the predictive ability. 

SELECTION OF PARAMETERS 

Miedema et al. [ 51 described the heat of formation of a binary alloy, AH, 
in terms of the expression 

AH = f(c)[-P(A$*)’ + &o(An;3,)2] (4) 

where f(c) is a function of the concentration of the metals, $* and nws denote 
the electronic work function of a pure metal and the electron density at 
the boundary of the Wigner-Seitz cell, respectively, A represents the differ- 
ence between the considered quantities of both models, and P and Q. are 
constants. It follows directly that, in a graphical representation of A$* 
versus An:/:, the alloys with a positive heat of formation, AH > 0, are sepa- 
rated from the alloys with a negative heat of formation, AH < 0, by the line 

An&f = (P/Q,)“’ A#* (5) 

Plots of A$* versus An&‘: are shown in Fig. 1 and 2A. 

Fig. 1. An;: (Y) versus A@* (X) for 257 alloys of transition and noble metals. The alloys 
with positive heat of formation (category 1) are well separated from those with a negative 
heat of formation (category 2). 
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Fig. 2. A, An;: (y) versus A$* (X) for all 390 alloys to which Eqn. (4) is applicable; 
the separation between category 1 (AH > 0) and category 2 (AH < 0) is convincing. B, 
AnzS (Y) versus Axp (X), the difference in Pauling electronegativity; the categories 
overlap. 

The I$* values are based on the work function 4 of the pure metals. They 
are obtained by slightly changing the original $ values in order to enhance 
the applicability of Eqn. (4). These adjustments are such that they fall 
within the experimental error of the 4 values, which themselves represent an 
average of the measured orientation-dependent work functions. 

The numerical value of nWs is less easily obtained. For alkali metals, the 
value of nWS can be assumed to be equal to the number of valence electrons 
per atomic volume. For some other elements, its value can be calculated by 
means of self-consistent calculations of band structure. These nWS values 
appear to be highly correlated with (K/V,,J1’2 [ 151, where K and V, denote 
the compressibility and the molar volume, respectively. Because of this high 
correlation, Miedema et al. [ 151 assumed (K/V,J1’2 to be the measure for 
n ws but they allowed small shifts in the resulting value of nWS in order to 
optimize their model. From a physical point of view, the meaning of a para- 
meter obtained in such a way is rather obscure. Therefore a variety of para- 
meters (Table 1) was tested for 49 pure metals (Table 2) with regard to their 
relevance to the alloying behaviour of two metals. The same set of parameters 
was recently tested for its relevance to superconducting behaviour [ 161. The 
parameters describing the alloy are the differences between the corresponding 
parameters of the two constituting elements. 

Information about the sign of AH was available for 390 alloys, where 
Eqn. (4) can be applied. This information was obtained from phase diagrams 
and from Hultgren et al. [ 171; the phase-diagram information was kindly 
provided by Miedema and Niessen. In the first instance, only alloys consist- 
ing of metals in columns 3-11 of Table 2 are considered. The AH data of 
257 phase diagrams out of the 378 possible combinations in this set were 
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TABLE 1 

Parameters investigated for their predictive ability with respect to alloying behaviour 

Parameter Symbol 

1 Electronic work function as given by Miedema et al. a* 
2 Electron density at the boundary of the WignerSeitz cell as given by l/a *,s 

Miedema et al. 
3 Electron density at the boundary of the WignerSeitz cell, calculated n#ia 

from compressibility and molar volume 
4 Number of relevant valence electrons as given by Miedema et al. 

rounded off to integer values 
5 Specific heat at 25°C 
6 Melting point (“C) 
7 Boiling point (“C) 
8 Ionic radius in the commonest oxidation state 
9 Bond length in the solid state of the element at 25” C 

10 Heat of melting 
11 Heat of sublimation at 25°C 

N 

C, 

:p!* 
IR 
BL 
AH, 
AH, 

12 Period number in the periodic system of elements PER 
13 Young modulus Y 
14 Compressibility K 
15 Debye temperature as obtained from electrical resistivity measurements Td 
16 Linear term in the specific heat -l 
17 Density at 25°C 
19 Electrical resistivity at 20°C (ohm cm) iH0 

available. In pattern recognition, the data are organized in categories. Two 
categories are distinguished here, The first category contains all phase 
diagrams with a positive heat of formation; this means that there are no 
compounds, and the mutual solubility of the constituting metals is less than 
10%. The second category contains the phase diagrams relating to compounds 

TABLE 2 

Metals which are investigated with respect to alloying 
(The elements in the last 4 columns are “p-type” metals [ 51. The underlined elements are 
assigned lower electronegativity values by Miedema et al. as is to be expected from the 
Pauling scale) 

12 3 4 56 7 8 9 10 11 12 13 14 15 

2 Li Be 
3 Na Mg Al 
4 K Ca SC Ti V Cr Mn Fe Co Ni Cu Zn Ga 
5 Rb Sr Y Zr Nb MO - Ru Rh Pd &Cd!!!--- Sn Sb 
6 Cs Ba La Hf Ta W Re OS Ir Pt Au &j Tl Pb Bi ----- 
7 

Th Ir 
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or ordered phases that are stable at low temperatures. These phase diagrams 
relate to alloys that are assumed to have a negative heat of formation. 

The data were processed with the pattern recognition program ARTHUR 
[ 141. Each alloy was represented as a data vector in a multidimensional 
space spanned by all given parameters. The aim was to look for the minimal 
set of parameters, which separated both categories. A suitable method of 
establishing the separability of two categories is offered by the LEAST 
program [12], This procedure applies a multilinear least-squares regression 
to the category number. First, a two-parameter LEAST procedure was con- 
sidered for the above-mentioned set of 257 alloys. The first parameter was 
always chosen to be the Miedema A$* value, whereas the second parameter 
was taken from the set mentioned in Table 1. Moreover, a prediction was 
given on the basis of A$* only. The results of this evaluation are presented in 
Table 3. 

The parameters of Miedema et al. appear to be superior to all other combi- 
nations. Particularly striking is the information that is obtained when only 
A$* is used. This demonstrates clearly the importance of the electrochemical 
effect in an alloy. The remaining parameters do not offer significant infor- 
mation concerning the alloying behaviour except for the number of valence 
electrons (IV’), the bond length (BL) and the compressibility (K), which con- 
tribute somewhat. This is not surprising because of their high correlation 
with rz$ (0.80, -0.80 and -0.84, respectively). The correlation itself follows 
directly from the definition of nws as “the electron density at the boundary 
of the WignerSeitz cell” [ 51. The predictive ability of the parameter set 
A$* and An:“, (97.5%) differs considerably from that of the parameter set 
A$* and An$y3 (88.5%). The parameter nfs was calculated from compressi- 
bility and molar volume data, as given by Gschneidner [ 181. This parameter 
is the starting value for nws. Clearly, small alterations of nws (see Fig. 4) 
strongly influence the effectiveness of the model. This point is further con- 
sidered below. 

TABLE 3 

Predictions of a two-parameter LEAST procedure for 257 alloys of metals from columns 
3-11 of Table 2. The first parameter was always A@* 

2nd parameter Predictive ability (%) 2nd parameter Predictive ability (%) 

- 

A nzi 
Ana’,’ 
AN 

ACP 
Am.p. 
A b.p. 
AIR 
ABL 

80.5 
97.5 
88.5 
83.0 
80.5 
80.0 
80.0 
81.5 
83.5 

A( A%) 81.0 
A(‘-,) 78.5 
APER 80.0 
AY 81.0 
AK 85.5 
AY 81.5 
AP 81.5 
A RHO 80.5 



The possibility of removing IZ,, and replacing it by two other parameters 
was then studied. This appeared to be unfruitful. The best result was obtained 
with the parameters AN and ABL together with AG*, of course (88.0%). It 
should be remarked here that when the value of N was increased by one unit 
for vanadium and chromium and decreased by one unit for uranium the pre- 
dictive ability could be enhanced to 90.5%. However, this was valid only for 
the set of 257 alloys. When these changes were extended to the entire data 
set of 390 alloys, the predictive ability dropped to 82.5%, whereas the para- 
meters of Miedema et al. still gave 96.0% predictive ability. 

COMPARISON OF THE MIEDEMA AND PAULING SCALES 

It is generally accepted that the stability of an alloy is highly correlated 
with the difference in electronegativity of the constituent metals. This electro- 
negativity concept, originally introduced by Pauling [ 31, is well understood 
in principle, but hard to calculate. Electronegativity is used to estimate the 
ionic contribution to the heat of formation of a compound. Hodges and Stott 
[6] developed a theory which bears some resemblance to the model. In this 
theory, the electrochemical effect in an alloy is ascribed to the difference in 
Fermi level, p, of the constituent atomic cells. This Fermi level appears to 
be correlated with the Pauling electronegativity, x,,. The concept of electro- 
negativity for the description of alloys is also important for the interpreta- 
tion of isomer shifts in MSssbauer spectroscopy (Miedema and van der Woude 
[W 1. 

Miedema et al. preferred a physically well-defined parameter to describe 
charge transfer in alloys. For that purpose, an average of the orientation- 
dependent work functions was chosen as the starting value 4 for their electro- 
negativity scale. The work function I#J is strongly correlated with the Pauling 
electronegativity xp [ 201. Likewise, Q and the Fermi level are correlated 
[I51 * 

The correlation coefficient for the @I* scale of Miedema et al. with the 
Pauling xp scale is 0.94. In Fig. 3 the relationship between 4* and xp is 
shown, Some elements spoil the linear relationship between the two scales; 
without these, the correlation coefficient increases to 0.98. In order to verify 
this observation, the AH information was divided into several groups, and 
the predictive ability for these groups was evaluated by the LEAST procedure 
using A~I * and Axp with and without An&$. The results are given in Table 4. 

When the predictive abilities of A$* and Ax* alone are compared a differ- 
ence of 4% is noted for the set of 257 alloys consisting of metals from columns 
3-11 of Table 2. When the 75 phase diagrams with Cu, Ag, Au and U are 
removed from this data set, both predictive abilities become equal. Clearly, 
the scale of Miedema et al. assigns better values to these four elements. 
Another striking difference concerns the predictive ability for liquid alloys 
consisting of “p-type” metals with “p-type”, alkali, or alkaline-earth metals. 
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Fig. 3. The electronic work function @* (Y) for the pure elements versus electronegativity 
xp (X). The encircled elements have a significantly lower value in Miedema’s scale compared 
to Pauling’s scale. For the other elements, the least-squares line is represented by +* = 
2.5 xp + 0.3. 

Fig. 4. n$L3 (Y) calculated from compressibility data and molar volume versus Miedema’s 
adjusted ngs (X). The latter hardly differ from their starting values. 

Here the charge-transfer term appears to be the only relevant parameter, 
because A n$ is quite small. This is clearly demonstrated by the LEAST 
procedure. The inclusion of AnWs I” does not enhance the predictive ability. 
The prediction based on A$* is superior to that based on Axp. 

It is concluded that Miedema et al. assigned lower values to the work 
functions of the elements Cu, Ag, Au, U, Cd, Hg, In, Tl, Sn, Pb, Sb and Bi 
than one would expect on the basis of the Pauling scale. These lower values 
allow a better description of the charge transfer in the underlying alloys. 
In contrast, alloys of alkali or alkaline-earth metals with metals of columns 
3-10 of Table 2 are better described with the aid of the Pauling scale (i.e., 
on the basis of charge transfer only) so that r$* might be improved. However, 
in combination with An::, A@* is distinctly superior to Axr,. This indicates 
that $J* and nWs are best used in combination, 

The influence of replacing $* by r$ in Eqn. (4) was also studied. For several 
$J scales, the predictive ability based on A@ and An&!“, was lower than 8075, 
which is obviously inferior to the $* scale. Moreover, it was not clear which 
$ values should be taken. 

THE PARAMETERS @* AND nw8 

The decrease in predictive ability when It,,, as given by Miedema et al., 
was replaced by n$, (i.e., the electron density calculated from the compres- 
sibility and the molar volume) was shown above. The plot of n$‘” versus 
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TABLE 4 

LEAST predictions for one and two parameters applied to different data sets 

Data set Predictive ability (%) for the parameters 

A@*, An:: Axp, A& A+* AXP 

Alloys of metals of columns 97.5 85.0 80.5 76.5 
3-lla (257) 

As above with alloys of Cu, Ag, 
Au and U removed (182) 

99.5 89.5 82.5 82.0 

Alloys of alkali and alkaline- 97.0 92.0 81.5 89.0 
earth metals with a metal of 
columns 3-l O* (64) 

Liquid alloys of L’p-type”a 95.0 80.5 95.0 80.5 
metals with a “p-type”, 
alkali, or alkaline-earth metal 
(62) 

All alloys for which Eqn. (4) 
is valid (390) 

96.0 83.0 72.5 71.5 

*See Table 2. 

ng”, given in Fig. 4 demonstrates that these parameters hardly differ, yet 
small changes have a significant influence as is shown in Table 5. The influence 
of replacing An&‘: by ATZ$‘,/~ in predictions based on Axp instead of A#* is 
smaller. 

Table 4 shows that, although Axp alone gives predictions equal to or better 
than A@* alone for some data sets, the combination of Ac#J* with An:‘“, is 
always superior for these data sets. This is also demonstrated in Fig. 2. 

It must be concluded that the work function $* and the electron density 
n WSP as given by Miedema et al., form an optimal set for the description of 

TABLE 5 

LEAST predictions indicating the influence of replacing A ngs by An?;.” 

Data set Predictive ability ($6) for the parameters 

A@*, An$* A@*,An&:' Axp,AnZs Axp, A@!: 

Alloys of metals of columns 97.5 88.5 85.0 82.0 
3-lla (257) 

All alloys for which Eqn. (4) 
is valid (390) 

96.0 87.0 83.0 78.0 

‘See Table 2. 
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alloying behaviour. It remains to be seen if this set is unique. In this context, 
the high correlation (0.91) between $* and ng”, is surprising. As shown in 
Fig. 5, the n&‘“, values are distributed around the line y = (P/Q,,)1’2 A$*. The 
significant information concerning alloying behaviour is contained in the 
deviation from this line as noted previously [6, 71. The relevance of this 
deviation was demonstrated by application of the parameter selection pro- 
cedures WEIGHT and SELECT [12]. 

WEIGHT selects parameters on the basis of their individual importance for 
the separation of two categories; this is expressed in the so-called variance 
weight, which is the ratio of the interclass and intraclass variance of the two 
categories. SELECT chooses the parameter with the highest variance weight 
as the most important one. The remaining parameters are then decorrelated 
from the chosen one and reweighted; the decor-related parameter with the 
highest variance weight is selected as the second parameter and so on. 

According to the WEIGHT procedure, the only important parameter of 
those investigated (Table 1) is A$*. Apart from A$*, SELECT assigned a 
significant weight to the An:“, parameter, after decorrelation from A@*. This 
means that the deviation mentioned above contains the significant informa- 
tion with respect to alloying behaviour. 

Conclusions 
1’3 Evidently the parameters $* and nws o f Miedema et al. are the most relevant 

macroscopic parameters for giving a correct description of the alloying 
behaviour of two metals. These parameters are optimal as a set, but it remains 
to be seen if their values are uniquely determined for a given metal. Despite 
the high correlation between the two parameters, nws still contains additional 
information. 

A comparison between the Pauling and Miedema scales shows that Miedema 
et al. assign a lo_wer value to several elements than Pauling does. The Pauling 

RB 
h 

1 

Fig. 5. ‘I’he nki value (Y) of Miedema et al. versus their electronic work function @ * (X). 
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scale appears to be less well suited for situations where metallic (rather than 
covalent) bonds compete with ionic bonds. 

Pattern recognition itself does not provide theories but merely indicates 
the relevance of certain parameters and can be useful for developing theories. 
Pattern recognition is advantageous in handling large amounts of information. 
The influence of certain parameters can be easily studied and the correlation 
between parameters can be seen at first glance. 

The authors thank A. R. Miedema and A. K. Niessen for stimulating and 
helpful discussions, for generously supplying them with the necessary data, 
and for critically reading the manuscript. They also thank P. F. A. van der Wiel 
for his valuable assistance with computer programming and B. R. Kowalski 
for making the ARTHUR program available. 
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