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Abstract
A CALL system for oral proficiency is being developed in 
which constrained responses are elicited from L2 learners. In 
the first phase the best matching utterance is selected from a 
predefined list of possible responses. Since errors may occur 
and giving feedback on the basis of incorrectly recognized ut
terances is confusing, we verify the correctness of the utterance 
in the second phase. In the current paper we focus on the ut
terance verification process. Combining duration related fea
tures with a likelihood ratio (LR) yielded an equal error rate 
(EER) of 10.3%, which was significantly better than the EER 
for LR alone, 14.4%, and the EER for the duration-related fea
tures, 25.3%
Index Terms: utterance verification, non-native speech pro
cessing, computer-assisted language learning

1. Introduction
In second language acquisition research it is widely acknowl
edged that naturalistic, implicit learning is not always suffi
cient to achieve high-quality L2 proficiency and that explicit 
instruction helps overcome some of the problems [1] [2]. In 
the case of oral proficiency, providing sufficient instruction and 
feedback is more problematic than in other skills because time
consuming interaction with an individual tutor is usually re
quired. This might explain the increasing interest in applying 
automatic speech recognition to oral proficiency learning [3]. 
The overview by Eskenazi [3] also makes it clear that develop
ing good-quality ASR-based language learning applications is 
fraught with difficulties. One of the problems concerns the rel
atively poor performance of ASR systems on non-native speech 
and the consequent need to develop approaches that restrict the 
search space and make the task easier. A major distinction can 
be drawn between strategies that are essentially aimed at con
straining the output of the learner so that the speech becomes 
more predictable and techniques that are aimed at improving 
the decoding of non-native speech.

Within the first category, a possible strategy consists in 
eliciting constrained output from learners by letting them read 
aloud an utterance from a limited set of answers presented on 
the screen or by allowing a limited amount of freedom in formu
lating responses, as in the Subarashii [4] and and the L e t’s Go 
systems [5]. However, more freedom in user responses is partic
ularly necessary in ASR-based CALL systems that are intended 
for practicing grammar in speaking proficiency. While for prac
ticing pronunciation it may suffice to read sentences aloud, to 
practice grammar learners need to have some freedom in formu
lating answers in order to show whether they are able to produce 
correct forms. This can be achieved by designing exercises that 
allow some freedom to the learners in producing answers, but 
that are predictable enough to be handled by ASR.

In our DISCO project, which is aimed at developing a pro

totype of an ASR-based CALL application that can provide in
telligent feedback on important aspects of L2 speaking such as 
pronunciation, morphology, and syntax [6], this is achieved by 
generating a predefined list of possible (correct and incorrect) 
responses for each exercise.

We intend to use a two-step procedure in which first is de
termined what was said (content), and subsequently how it was 
said (form). In the first (recognition) phase the system should 
tolerate deviations in the way utterances are spoken, while in 
the second (error detection) phase, strictness is required (see 
also [7] and [8]).

In the first phase of the two-step procedure two stages can 
be distinguished, a) utterance selection and b) utterance verifi
cation (UV). When learners are allowed some freedom in for
mulating their responses, there is always the possibility that the 
learners response is not present in the predefined list and is rec
ognized incorrectly in stage (a) as one of the utterances of the 
predefined list. Giving feedback on the basis of an incorrectly 
recognized utterance is confusing and thus should be avoided. 
Therefore, utterance verification (UV) is carried out in stage
(b). An excellent overview of recent work on UV can be found 
in [9].

In the present paper we focus on the process of verifying 
the decoded utterance within the framework of a CALL applica
tion for oral proficiency. In the remainder of this paper we first 
describe the speech material used in our experiments and sub
sequently the speech recognizer and the UV approach adopted 
in these experiments. The results are presented in section 3. 
In section 4 we discuss our findings and speculate on possible 
ways of utilizing our method for UV in the context of a CALL 
application like DISCO. We end with some concluding remarks 
in section 5.

2. Method
2.1. Material

The speech material for the present experiments was taken from 
the non-native component of the JASMIN speech corpus [10], 
which was collected for the aim of facilitating the development 
of ASR-based language learning applications and is particu
larly suited for our purpose. Speakers with different mother 
tongues and relatively low proficiency levels (A1, A2 and B1 of 
the Common European Framework) were recorded because this 
complies with the demand for ASR-based CALL applications. 
The JASMIN corpus contains read speech and human-machine 
dialogues. The latter were used for our experiments because 
they more closely resemble the situation we will encounter in 
the DISCO application. The JASMIN dialogues were designed 
such as to elicit typical phenomena of human-machine interac
tion that are known to be problematic in the development of 
spoken dialogue systems, i.e. restarts, filled pauses and repeti
tions.

The material we used for the present experiments consists



of speech from 45 speakers, 40% male and 60% female, with
25 different L1 backgrounds. Ages range from 19 to 55, with a 
mean of 33. The speakers each respond to 39 questions about 
a journey. We first deleted the utterances that contain crosstalk, 
background noise and whispering from the corpus. After dele
tion of these utterances the material consists of 1325 utterances. 
The mean signal-to-noise-ratio (SNR) of the material is 24.9 
with a standard deviation of 5.1.

To simulate the task in the DISCO application of selecting 
and verifying the utterance that was spoken, we generated lan
guage models from the lists of responses given by each speaker 
to each of the 39 questions. These lists mimic the predicted re
sponses in our CALL application task because they contain a) 
responses to relatively closed questions and b) morphologically 
and syntactically correct and incorrect responses. Note that in 
this set the response that was spoken was always present in the 
language model. To simulate the case in which the spoken ut
terance is not present in the list, we also generated language 
models in which the correct utterance is left out. In this way, 
our dataset consists of 1650 items, because each utterance is 
decoded two times: one time when its representation is present 
in the language model and one time when it is not present.

2.2. Utterance selection

For selecting the spoken utterance from a list, we have used a 
speech recognizer with a constrained language model and small 
vocabulary. The speech recognizer we used in this research is 
SPRAAK [11], an open source HMM ASR package. In the 
following section we will discuss the setup of this speech rec
ognizer.

2.2.1. Acoustic Preprocessing

Acoustic preprocessing was done by dividing the speech, sam
pled at 16kHz, into overlapping 32ms Hamming windows with 
a 10ms shift and pre-emphasis factor of 0.95. 12 Mel-frequency 
cepstral coefficients (MFCC) plus Co, and their first and second 
order derivatives were calculated, and cepstral mean subtraction 
(CMS) was applied.

2.2.2. Language Model and Pronunciation Lexicon

Constrained language models (LM) were generated based on 
the responses to each of the 39 questions. These responses were 
manually transcribed at the orthographic level. Restarts and rep
etitions were also annotated. The LMs are implemented as Fi
nite State Machines (FSM) with parallel paths containing the 
word sequences of the responses. A priori each path is equally 
likely. To be able to decode filled pauses between words, self
loops are added in every node. Filled pauses are represented in 
the pronunciation lexicon. The pronunciation lexicon contains 
canonical phonetic representations extracted from the CGN lex
icon [12].

2.2.3. Acoustic Models

We trained three-state tied Gaussian Mixture Models (GMM). 
47 Baseline triphone models, 46 phoneme and one silence 
model, were trained on 42 hours of native read speech from the 
CGN corpus [12]. In total 11,660 triphones were created, us
ing 32,738 Gaussians. These native models were retrained with 
non-native speech by doing a one-pass Viterbi training with 6 
hours of non-native read speech from the JASMIN corpus. The 
utterances were spoken by the same speakers as those in the test 
material.

Table 1: Equal error rates (EER) for the individual 
features LR, nr sh o rter  J , nr sh o r ter  _5, nr Jonger _95, 
nr Jonger J99 and the combinations duration^comb 
(nr sh o rter  J ,nr sh o r te r  _5, nr Jonger _95, nr Jonger _99) and all 
features, all.

Features EER
LR
n rsh o rte rd  
nrshorter-5  
nr Jonger _95 
nr Jonger  _99

%
%

%
%

%
.4

.3
.4

.8
.5

duration^comb
all

25.3%
10.3%

2.3. Utterance verification

A common approach to utterance verification is to extract con
fidence predictors during decoding and combine these using a 
machine learning model. This model is then trained to pre
dict whether the utterance is correctly or incorrectly recognized. 
Confidence predictors that are often used include N-best list 
counts, hypothesis density, acoustic stability and duration re
lated features [9]. We have also adopted this confidence pre
dictor combination approach and used two types of predictors, 
acoustic likelihood ratio and duration related features, to train a 
logistic regression model. Details on the predictors and model 
are provided below.

2.3.1. Acoustic likelihood ratio

The first confidence predictor, one that has been used in for ex
ample [13], is the likelihood ratio:

P( x \u i)  (1)
p (x \u f p r )

in which u 1 is the 1-Best decoding result given the signal x 
and u f p r  is the optimal phone string found using free phone 
recognition. We call this predictor LR. The rationale behind this 
predictor is that when the input speech is not modelled as a path 
in the search space, the likelihood p (x |u 1) is smaller relative to 
p (x |u FPR) than when it is modelled. This predictor estimates 
the posterior probability of the utterance given the speech signal 
x  where p (x |u FPR) is an estimation of the probability of x.

2.3.2. Duration-related features

When the input speech representation is not modelled as a path 
in the search space and the utterance is recognized as another 
sequence of words, the phone segmentation of this sequence of 
words will generally be characterized by deviations in phone 
durations. A straightforward way to capture this is to count the 
phones in the segmentation with durations that deviate substan
tially from the mean phone duration. We have implemented 
this by using predictors similar to those introduced in [14]. 
Phone duration distributions were derived from manually ver
ified phonemic transcriptions of 42 hours of read native speech 
from the CGN corpus [12]. For each of the 46 phonemes the 
1st, 5th, 95th and 99th percentile duration was calculated from 
these distributions. The predictors that were extracted from 
the segmentation are the number of phonemes in the decoded 
utterance that are shorter than the 1st (nr shorter  _1) and 5th 
(nrsh o r te r_5) percentile and the number of phonemes that are 
longer than the 95th (nrJongerJ95) and 99th (nrJongerJ99) 
percentile durations. These predictors were normalized by the 
total number of phonemes in the recognized utterance.



Table 2: Percentages of correctly and incorrectly classified de
coding results of the two different subsets and the total set using 
the global EER threshold and all predictors. (a) Percentages of 
decoding result classification on the set where the correct tran
scription was in the language model. b) Percentages of decod
ing result classification on the set where the correct transcrip
tion was not present in the language model. (c) Percentages of 
decoding result classification on the whole dataset.

(a)

predicted

Figure 1: ROC curves for the feature LR  and the combinations 
duration_comb and all.

actual teat
correct incorrect R

e
correct 80.8% 3.0% ivat
incorrect 9.2% 7.0% e£

(b) elsal
Factual

correct

predicted

predicted

correct
incorrect

(c)

correct
incorrect

incorrect
8.3%
91.7%

actual
correct incorrect 
40.4% 5.6% 
4.6% 49.4%

2.3.3. Feature combination

To combine the five predictors, i.e. LR, nr sh o rter  _1, 
n rsh o r te rS , nr Jonger _95, nr Jonger _99, into one confidence 
measure we used a logistic regression model. In this model it is 
assumed that the logit of the probability of a binary variable is 
a linear function of a set of explanatory variables:

logit(p(y|p)) p(y |p) 
1 -  p (y  |p)

(2)

where p (y |p ) is the probability of a correctly or incor
rectly decoded utterance y given the confidence predicting vari
ables p. The optimal weights ß  are choosen through Maximum 
Likelihood Estimation (MLE) in the WEKA machine learning 
toolkit [15]. We trained and tested the model by using Leave- 
One-Speaker-Out crossvalidation where the model is trained on 
all speakers except one and then tested on the utterances of the 
speaker that was left out during training. This is repeated until 
all speakers are tested and the results of all speakers are aver
aged.

2.4. Evaluation

We have evaluated the discriminative ability of our utterance 
verifier using Receiver Operator Characteristic (ROC) curves, 
in which the two types of error rates, i.e. the false positive rate 
and false negative rate, are plotted for different thresholds. Us
ing the point of the ROC curve where the two error types are 
equal, the equal error rate (EER), the different confidence indi
cators and their combinations are evaluated. 95% Confidence 
intervals were calculated to investigate whether differences be
tween EERs were significantly different.

3. Results
The utterance error rate (UER) of our speech decoder on the set 
of decoding results where the correct transcription was present 
in the LM was 10.0%. In this case errors consist of substitu
tions with competing language model paths. The UER on the

20 40

False Positive Rate

60 80

set without the correct transcriptions in the LM was of course 
100.0%, so 55.0% of all the cases was incorrectly recognized.

The task for the UV was to discriminate the correctly and 
incorrectly recognized cases. In Table 1 this ability is shown in 
terms of EER for the individual predictors and several predictor 
combinations. ROC curves of the best performing predictor and 
two combinations are shown in Figure 1.

Within the individual predictors LR  performs best (14.4%) 
and all the duration-related predictors perform much worse. 
When we combined all duration-related predictors, dura- 
tion^comb, the EER relative to the best performing duration- 
related predictor dropped significantly from 27.3% (with a con
fidence interval ±1.7) to 25.3%. Finally, by combining the LR 
with duration^comb, the EER relative to LR  decreased signifi
cantly by 4.1% from 14.4% to 10.3%.

In Table 2a and 2b percentages are shown using the EER 
threshold and using all predictors for the two different sets of 
decoding results, with and without the correct transcription in 
the LM, respectively. For example, in the set of results with 
the correct transcription in the LM 80.8% is classified as cor
rect when it indeed was correctly decoded and 9.2% was clas
sified as incorrect (false reject). In the set without the correct 
transcription in the LM 91.7% was classified as incorrect when 
it was incorrectly decoded, and 8.3% was classified as correct 
(false accept). The performance on the whole dataset is shown 
in Table 2c.

4. Discussion
The duration-related predictors have a weak performance indi
vidually, but they still contain additional information relative 
to the acoustic likelihood ratio LR. The duration-related predic
tor distributions of correctly and incorrectly decoded utterances 
overlap severely. This was still the case when we normalized 
these predictors for the speaking rate within the utterance or 
when we used the probability of the phoneme durations in the 
utterance as a predictor. The latter we calculated through a ker
nel density estimation of the duration probability density per 
phoneme trained on the CGN native read speech data. Using 
these more complex predictors the model was not able to make



substantially better predictions.
By introducing an UV procedure and using the EER thresh

old we are able to filter out 91.7% of the utterances that are not 
in the predicted list of responses. This comes with the cost of 
also rejecting utterances that are correctly decoded and accept
ing utterances that are incorrectly decoded. Of course, these 
error rates depend not only on the discriminative performance 
of the UV, but also on the threshold setting.

In our CALL application this threshold setting has con
sequences for the learner, because of the potentially mislead
ing feedback he or she gets. Until now we have evaluated the 
performance of different predictors and combinations using the 
EER threshold, but this might not be the optimal threshold set
ting in the actual application.

In our application the recognized utterance will be proba
bly shown to the user so that he/she knows whether the utter
ance was correctly recognized. If the system makes an error in 
recognizing the utterance, this will then be clear for the user. 
The system can make two types of errors: a) a false rejection, 
in which case a correctly decoded utterance is classified as in
correct by the UV or b) a false acceptance, in which case an 
incorrectly decoded utterance is classified as correct. To de
termine which of these errors is more detrimental at this stage 
of the application, it is necessary to consider how such errors 
can be handled in the application and what their possible con
sequences are. In the case of a rejection, and therefore also of a 
false rejection, it is possible to ask the user to repeat the utter
ance. In concrete terms then, a false rejection implies that the 
user is unnecessarily asked to repeat the utterance. In the case 
of a false acceptance an utterance will be shown to the user that 
(s)he actually did not produce. This type of error would seem to 
be more detrimental because it can affect the credibility of the 
system.

However, the degree of seriousness will depend on the de
gree of discrepancy between the utterance that was actually pro
duced and the one that was recognized and shown by the sys
tem: the larger the deviation the more serious the error. On 
the other hand, large deviations are less likely than small devi
ations. On the basis of such considerations we can indicate the 
seriousness of the two types of errors and therefore the costs 
that should be assigned to false rejections and false acceptances. 
More information on this issue can be found in [16].

There are now three different factors that are important 
in choosing an application-dependent threshold, namely 1) the 
prior probability of a correct decoding p correct, 2) the cost of a 
false rejection C FR and 3) the cost of a false acceptance CFA . 
To formalize the idea of taking into account different error costs 
and different prior distributions in the process of choosing a 
threshold, we can estimate the total cost of a specific threshold 
setting with a cost function:

C total =  PFr C'f RPcorrect +  pFAC FA(1 Pcorrect) (3)

where p FR and p FA are the probabilities of false rejection and 
false acceptance respectively. This kind of cost function is 
also used in the NIST evaluation of speaker recognition sys
tems [17]. Minimizing C total on a development set will pro
vide us with the optimal threshold setting given the application- 
dependent parameters C FR, C FA and p correct. Using the UV 
with this application-dependent threshold calibration procedure 
will make an excellent research vehicle for future experiments 
with different error costs.

5. Conclusion
We have evaluated several procedures for utterance verification. 
The best result obtained for a single duration-related feature is 
an EER of 27.3%. By combining four duration-related features 
the EER could be reduced significantly to 25.3%. Better re
sults, i.e. an EER of 14.4%, were found for the tested acous
tic likelihood ratio, and an extra significant reduction to 10.3% 
was obtained by combining the likelihood ratio with the four 
duration-related features.
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