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Abstract
Evidence that listeners use durational cues to help resolve 
temporarily ambiguous speech input has accumulated over the 
past few years. In this paper, we investigate whether durational 
cues are also beneficial for word recognition in a 
computational model of spoken-word recognition. Two sets of 
simulations were carried out using the acoustic signal as input. 
The simulations showed that the computational model, like 
humans, takes benefit from durational cues during word 
recognition, and uses these to disambiguate the speech signal. 
These results thus provide support for the theory that 
durational cues play a role in spoken-word recognition.

Index Terms: duration, spoken-word recognition, 
computational modelling

1. Introduction
Evidence that listeners (at least in a laboratory environment) 
use durational cues to help resolve temporarily ambiguous 
speech input has accumulated over the past few years (e.g., [1
3]). In order for any computational model of spoken-word 
recognition to be able to account for these data, it should be 
able to extract durational cues from the acoustic signal and use 

these during word recognition. In [4], we presented a novel 

computational model of spoken-word recognition designed for 
‘tracking’ subtle phonetic information in the acoustic speech 
signal and using it during word recognition: Fine-Tracker. The 
first modelling results with Fine-Tracker were promising: an 
initial simulation using the acoustic material from the 

behavioural study presented in [2] showed that, like listeners, 

Fine-Tracker can distinguish short words (e.g., ‘ham’) from 
the longer words in which they are embedded (e.g., ‘hamster’).

In this paper, we further investigate whether durational 
information is beneficial for Fine-Tracker in two sets of 
simulations. In the first simulation, Fine-Tracker is tested on 
its ability to distinguish monosyllabic words from the longer 
words in which they are embedded. This simulation is a 

replication and an extension of the work presented in [4]. We 

investigate the effect of duration by testing Fine-Tracker in 
two conditions: with and without the ability to use the 
duration cues in the speech signal. The second simulation 
focuses on the differences in durations of a single segment.

2. Fine-Tracker
Fine-Tracker [4] is based on the theory underlying Shortlist

[5], which holds that the speech recognition process consists 

of two levels. First, listeners map the incoming acoustic signal 
onto so-called prelexical representations at the prelexical level. 
At the lexical level, all representations are stored in the form 
of sequences of prelexical units, and lexical representations 
that (partly) match the prelexical representations are activated. 
Since word hypotheses can start and end at any time, activated 
word hypotheses that overlap in time compete with each other. 
The result of this competition is a sequence of non
overlapping words, usually identical to the sequence of words 
actually produced by the speaker.

Figure 1. Overview of Fine-Tracker: the output of the 

prelexical level, consisting of a set of MLPs, is the input to the 

word ‘Search' module at the lexical level.

Figure 1 shows an overview of Fine-Tracker’s two levels. The 
prelexical level consists of a set of artificial neural networks, 
multi layer perceptrons (MLPs), which convert the continuous 
acoustic signal into feature vectors with a time resolution of 5 
ms. At the lexical level, the feature vectors are used as input to 
the word search module, which is responsible for finding the 
word (sequence) that corresponds to the best path through the 
search space spanned by the prelexical feature vectors and the 
lexical representations. The output of Fine-Tracker is an N- 
best list of most likely lexical paths with word scores for each 
word on each path.

2.1. The prelexical level
The exact form of the prelexical representations is still a topic 
of research. In the absence of a clear answer, Fine-Tracker 
uses ‘articulatory features’ (AFs) as prelexical representations. 
This allows Fine-Tracker to ‘track’ phonetic detail in the 
speech signal and to model this subtle phonetic information. 
AFs describe acoustic correlates of articulatory properties of 
speech sounds (e.g. voice, nasality, roundedness, etc.) and can 
be used to represent the acoustic signal in a compact manner. 
Table 1 shows an overview of the AFs used by Fine-Tracker. 
Note that fr(ont)-back, round, height and dur(ation)- 

diph(thong) only apply to vowels.

Table 1. Specification of the AFs, their AF types, and 

_____ the number of hidden nodes in the MLPs._____

AF AF type #hidden nodes

manner plosive, fricative, nasal, glide, 
liquid, vowel, si(lence)

300

place bilabial, labiodental, alveolar, 
(pre)palatal, velar, glottal, nil, sil

200

voice +voice, -voice 100

fr-back front, central, back, nil 200

round +round, -round, nil 200

height high, mid, low, nil 250

dur-diph long, short, diphthong, nil 200
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For each of the seven AFs, one MLP was trained for all its AF 

types using the NICO Toolkit [6], an artificial neural network 

toolkit designed for speech applications. For training, we used 
3,410 randomly selected utterances from the manually 
transcribed read speech part of the Spoken Dutch Corpus 

(CGN; [7]). Each MLP consisted of three layers: an input, 

hidden, and output layer. The architecture of the MLPs was 
the same for all AFs, with the exception of the number of 
hidden nodes and number of output nodes. The hidden layers 
had hyperbolic tan transfer functions and a different number of 
nodes depending upon the AF. The optimal number of hidden 
units was determined through tuning experiments and is listed 
in the third column of Table 1. The output layer was 
configured to estimate the posterior probability of the AF type 
given the input. The number of output nodes is identical to the 
number of AF types (see Table 1). Speech files that were the 
input to the MLPs were parameterised with 12 Mel frequency 
cepstral coefficients (MFCC) and log energy, and augmented 
with first and second temporal derivatives resulting in a 39
dimensional acoustic feature vector. The features were 
computed on 25 ms analysis windows with 5 ms frame-shift.

The output of the prelexical level serves as the input of the 
lexical level of Fine-Tracker: for each input frame, each MLP 
creates a ‘soft’ decision, i.e., a continuous value between 0 
and 1, for each of its AF types. This numeric value can be 
regarded as a measure of activation of this AF type (over 
time). Per input frame, the ‘soft’ decisions for each of the AF 
types are combined into a feature vector (see Figure 1), whose 
length is equal to the total number of AF types, resulting in a 
sequence of AF feature vectors with a time-spacing of 5 ms.

2.2. The lexical level
The lexical representations of the words are based on the 
prelexical representations, so each word in the lexicon is 
represented in terms of AF feature vectors. Lexical feature 
vectors have the same dimension as the prelexical feature 
vectors (33), and each AF type in the lexical feature vectors 
takes a value between 0 and 1. Figure 1 shows an example of 
the lexical feature representations of the words ‘ham’ and 
‘hamster’ in the lexicon of Fine-Tracker. Note that the 
phoneme labels at the start of each line representing a lexical 
feature vector are not used during the word search. It is 
possible to assign an ‘unspecified’ value to an AF type (this is 
indicated with an asterisk in the lexical representations in 
Figure 1): during the word search this AF type is ignored, 
meaning that the distance between this AF type in the lexical 
representation and its twin in the prelexical feature vector is 
not incorporated in the equation to determine the “goodness of 
fit” or distance (see below) between the two vectors. As the 
lexical AF types can in principle take any value between 0 and
1, speech phenomena such as coarticulation, assimilation, and 
nasalization of vowels can be encoded in a gradual continuous 
way (instead of a binary decision).

The lexicon is internally represented as a tree of feature 
vectors. When a node in the lexical tree is accessed, all words 
in the corresponding word-initial cohort are equally activated. 

Continuous word recognition is implemented through a loop 
over the lexical tree. Essential in Fine-Tracker is the fact that 
the number of feature vectors can be set in the lexicon for each 
lexical item separately, which can be used to accommodate for 
the durational differences between words. Figure 1 shows an 
example: each of the phonemes of ‘ham’ is represented using 
two identical feature vectors, while there is only one feature 
vector per phoneme for the first syllable of ‘hamster’. 
Currently, the number of lexical feature vectors is set by hand.

The word search module of Fine-Tracker is able to deal with 
the resulting subtle differences in lexical representations.

The ‘activation and competition process’ is implemented 
in the word search module (see Figure 1). It compares the 
prelexical feature vectors with the candidate words in the 
lexicon in order to find the most likely (sequence of) words by 
determining the word sequence with the smallest distance 
through the search space spanned by the prelexical and the 
lexical feature vectors. The segmentation of the acoustic signal 
into words is the result of the word search module; there is no 
explicit segmentation algorithm.

Each word hypothesised by the search module is assigned 
a score that corresponds to the degree of match of the word to 
the current input, i.e., the already processed prelexical feature 
vectors. The word score is the score from the beginning of the 
word up to that point and is defined as follows:

word _ score = ^  SV + aDM  (1)

prelex _ featu re _ vectors
where, the step value (SV) is either the step-in-input or the 

step-in-input-and-lexicon parameter:

• Step-in-input (SI): a value associated with making a ‘step’ 
in the input but not in the lexicon.

• Step-in-input-and-lexicon (SIL): a value associated with 
making a ‘step’ in both the input and the lexicon.

• Distance measure (DM): currently, the averaged squared 
distance between the prelexical and lexical feature vector.
The relative weight of the acoustic distance measure DM 

is determined by a distance weight parameter a. Also, the path 
on which each word lies is assigned a score. The path that has 
the lowest score has the best fit with the input. The path score 

then is the (sum of the) word score(s) accumulated with:

• Word entrance penalty (WEP): cost to start a new word, i.e., 
the algorithm goes through the start of the lexical tree.

• Word-not-finished penalty (WNF): at the end of the input, 
i.e., when all prelexical feature vectors have been processed, 
all activated cohorts that do not correspond to words get a 
penalty. This is to penalise incomplete word hypotheses 
alive at the end of the acoustic input.

• History: the cost of the cheapest path from the beginning of 
the utterance up to the current search space node.

The word search algorithm is time-synchronous and 
breadth-first: all search space nodes at a given time are 
expanded before the child search space nodes are created. The 
search algorithm allows a many-to-one mapping, so as to be 
able to map multiple 5 ms feature vectors onto a single lexical 
feature vector. During the search, it is possible to skip lexical 
feature vectors to accommodate for reductions and deletions. 
To restrict the search space, like in automatic speech 

recognition systems (see [8] for an overview), only the most 

likely candidate words and paths are considered. To that end, 
there is a maximum number of search space nodes kept in 
memory during the word search. There are no duplicate paths; 
only the cheapest path of identical word sequences is kept.

At any moment in time, Fine-Tracker can produce a 
ranked N-best list of alternative parses, each with its 
associated path score. Each path (or parse) contains words, 
word-initial cohorts (can only occur as last element), silences, 
and any combination of these, and the word score for each of 
these items. In order to relate the output to behavioural data, 
an important assumption of any model is a measure of how 
easy each word will be for subjects to respond to in a listening 
experiment. This measure is usually referred to as ‘(word) 

activation’. [9] presents a way to directly compute word 

activations from the word scores as output by Fine-Tracker.



Since word activations can be directly computed from the 
word scores, we used the raw word scores in the subsequent 
simulations, as this would give the exact same results as 
having used the word activations.

3. Simulations
3.1. Simulation 1: Lexical embedding
In an eye-tracking study, [2] found that listeners use durational 

information to distinguish between the embedded word and its 
matrix word. In this simulation, we investigate whether 
durational cues help Fine-Tracker to distinguish embedded 
words from their matrix words, using the original acoustic 

stimuli from [2]. The stimuli consist of manipulated Dutch 

sentences, each containing a ‘target word’. The target word is 
a polysyllabic word of which the first syllable also constitutes 
a monosyllabic word (e.g., ‘hamster’ contains the ‘ham’). In 
constructing the target words, the first syllable was either 
cross-spliced from a monosyllabic word (e.g., ‘ham’; MONO 
condition) or from the first syllable from another recording of 
that target word (‘hamster’; CARRIER condition). In total, 28 

target words were used. In their study, [2] found that there 

were significantly more fixations to pictures representing 
monosyllabic words if the first syllable of the target word had 
been replaced by a recording of the monosyllabic word than 
when it came from a different recording of the first syllable of 
that target word.

Eye-tracking studies provide a sensitive measure of the 

time course of lexical activation in continuous speech [10]. If 

we then consider the amount of eye fixations of the 
participants in [2] as a degree of the word activation during 
word recognition, the output of Fine-Tracker can be compared 
with the behavioural data. We expect the embedded word’s 
activation in the MONO condition to be higher than the 
activation of the embedded word in the CARRIER condition.

In Fine-Tracker, durational differences between words are 
coded in the lexicon. In the ‘no duration’ condition, the lexical 
feature representation of the embedded word and the first 
syllable of the matrix word are identical: each phoneme in the 
lexical representation is represented by one feature vector. In 
the ‘duration’ condition, the lexical representation of the 
monosyllabic word and the first syllable of the matrix word are 
different. The syllables were on average 265 ms in the MONO 
and 245 ms in the CARRIER condition [2]. This durational 
difference of 20 ms is equal to four prelexical feature vectors. 
To accommodate for this durational difference, each phoneme 
in the lexical representation of the monosyllabic word is 
represented by two identical feature vectors, while each 
phoneme in the first syllable of the matrix word is represented 
by one feature vector. The lexical representations are obtained 
by substituting all phonemes of a word’s phonemic 
representation with its AF vectors. The lexicon consists of 
27,740 entries. To guide Fine-Tracker’s word search, we 
applied priors to the 61 words that occurred in the stimuli, 
thus limiting the search algorithm to these 61 words.

For the simulations, the speech files are cut manually such 
that the cut-out stimulus consists of the target word. The 
stimuli are parameterised with 12 MFCC coefficients and log 
energy and augmented with first and second temporal 
derivatives resulting in a 39-dimensional feature vector. The 
features were computed on 25 ms windows shifted by 5 ms per 
frame. Fine-Tracker’s parameters were optimised on the 
MONO set, and subsequently tested on the CARRIER set to 
ensure maximum performance on both sets. These parameter 
settings were used in all simulations reported in this paper.

3.1.1. Results and discussion
In all conditions, all 28 target and 28 embedded words were 
found in the 50-best list output by Fine-Tracker. In order to 
investigate the strength of Fine-Tracker’s modelling ability 
and the effect of durational information, we compared the 
word activations over time of the embedded words in the 
MONO and the CARRIER conditions. In the ‘no duration’ 
condition, for 10 out of the 28 stimuli, the embedded word in 
the MONO condition had the highest word activation. This 
number increased substantially when using a lexicon that takes 
durational information into account: for 18 of the 28 stimuli, 
the embedded word in the MONO condition had the highest 
word activation. This improvement, however, was shown not 
to be significant (F(1,27)=3.531, p=0.071, effect size is 0.116) 
according to an ANOVA with two within subject factors with 
two levels each, i.e., condition (MONO and CARRIER) and 
lexicon (with and without duration). The input of the ANOVA 
consisted of the average word scores.

Despite the difference in simulation performance not being 
significant, the duration lexicon is better set-up than the non
duration lexicon. In the latter, the lexical representations of the 
embedded words and the first syllable of the matrix words are 
identical. Consequently, Fine-Tracker is unable to distinguish 
between the embedded words and the first syllable of the 
matrix words as they are in the same word-initial cohort. In the 
duration lexicon, however, the durational differences between 
the embedded and matrix words are coded in the lexicon and 
the embedded and matrix words are necessarily in different 
word-initial cohorts. These differences in lexical 
representations result in different competition effects for the 
two duration conditions.

We expect the best modelling results for Fine-Tracker for 
those stimuli where the durational difference between the 
monosyllabic word (MONO condition) and the first syllable in 
the matrix word (CARRIER condition) is greatest, as the 
durational information is greatest for those stimuli. This 
assumption was tested by statistically comparing the word 

score differences (as calculated for the ANOVA) between 
MONO and CARRIER for the duration lexicon with the 
durational differences between the monosyllabic word and the 
first syllable of the matrix word. A 1-tailed (bivariate) Pearson 
correlation, indeed, showed a significant correlation (p=0.024) 
between the per stimulus difference in syllable duration 
between the MONO and CARRIER conditions and the stimuli 
where Fine-Tracker had the best modelling results. Thus, like 
for listeners, durational information helps Fine-Tracker to 
distinguish the embedded words from their matrix words.

3.2. Simulation 2: Segment durations
We further investigate Fine-Tracker’s ability to detect and use 
durational information during word recognition, this time with 
respect to differences in durations of a single segment. We use 
the acoustic stimuli from the eye-tracking study presented in

[3]. They presented listeners with Dutch ambiguous sentences. 

For instance, two subsequent words could either be interpreted 
as ‘eens pot’ (once jar) or ‘een spot’ (a spotlight). The 
sentences were constructed such that the final [s] of ‘eens’ and 
the target word (in this example) ‘pot’ was constructed either 
through identity-splicing (the IDENT condition), where the [s] 
of ‘eens’ and the target word were spliced from another 
recording of that same target-bearing sentence, or through 
cross-splicing (the CROSS condition), where the ‘eens’ target 
word sequence was spliced from a phonemically identical 
sentence but where the [s] of ‘eens’ was produced as the first 
segment of an [s]-plosive cluster, in our example ‘spot’. The 
stimuli consisted of 20 Dutch sentences each containing one



stop-initial ‘target’ word, the stop being either a [t] or a [p], 

preceded by the word ‘eens’ (once). [3] showed that the 

crucial difference between the two types of sentences was the 
duration of the [s], and that participants used the duration of 
[s] as a cue for placing the word boundary.

In this simulation, we test Fine-Tracker on its ability to 
detect segmental durational cues that distinguish word final 
from word onset [s] realisations, and use these cues to place 
the word boundaries. Fine-Tracker’s task is to reproduce the 
findings that listeners are slower to fixate the picture of the 
target word when the duration of the [s] in the ambiguous 
sequence is longer, and that listeners made fewer fixations to 
the target picture in the CROSS condition than in the IDENT 
condition. Considering the amount of fixations of the 
participants as a degree of the word activation, we expect the 
activation of the target word in the CROSS condition 
generally to be lower than in the IDENT condition.

We follow the set-up of the simulations as used in the 
previous simulation. However, since the duration lexicon is 
inherently better set-up than the non-duration lexicon, we only 
use a lexicon that contains durational information. Like in the 
previous simulations, each phoneme in the canonical lexical 
representation of the words was represented by a single feature 
vector, apart from the word-initial [s]. Praat (www.praat.org) 
measurements showed that the mean [s] duration in the 
IDENT condition was 88 ms and in the CROSS condition 105 
ms. Taking this durational difference into account, word-initial 
[s] was represented by three feature vectors in the lexicon, 
while word-final [s] was represented by one feature vector.

The stimuli were cut manually such that the cut-out 
stimulus consisted of the ‘eens’ followed by the target word 
sequence. Subsequently, the stimuli are parameterised with 12 
MFCC coefficients and log energy and augmented with first 
and second temporal derivatives resulting in a 39-dimensional 
feature vector. The features were computed on 25 ms windows 
shifted by 5 ms per frame. Finally, like in the previous set of 
simulations, we applied priors to the 42 words in our stimuli.

3.2.1. Results and discussion
For both conditions, all 20 target words were found in the 50- 
best list. We then compared the word activation over time of 
the target words in the IDENT and the CROSS condition. For
14 out of 20 stimuli, the target word had the highest word 
activation in the IDENT condition. For an additional two 
stimuli, the word activation of the target word was initially 
lower in the CROSS condition than in the IDENT condition, 
even though eventually the word activation of the target word 
in the CROSS condition grew higher than in the IDENT 
condition. The word activation of the target word thus grew 
slower in the CROSS condition than in the IDENT condition, 

as was found for the listeners in [3]. Like in the previous 

simulation, the difference in average word score between the 
IDENT and the CROSS conditions was compared with the 
difference in duration of the [s] in the IDENT and the CROSS 
condition. A 1-tailed (bivariate) Pearson correlation, showed a 
significant correlation (p=0.034) between the per stimulus 
difference in [s] duration and the stimuli where Fine-Tracker 
had the best modelling results. Fine-Tracker is thus also able 
to capture durational cues at the segment level and use it to its 
benefit during word recognition.

4. General discussion and conclusion
Two simulations were carried out using the acoustic material 
from the original behavioural studies. The results showed that 
durational cues, like for humans, help Fine-Tracker to 
disambiguate temporary ambiguous phoneme sequences.

Durational cues allowed Fine-Tracker to distinguish embedded 
words from their matrix words (first set of simulations), and to 
distinguish word final realisations of [s] from word initial 
realisations (second simulation).

Following the accumulated evidence that durational cues 
seem to play a major role in lexical interpretation, Fine- 
Tracker only used durational information to differentiate 
between words. However, it is possible that listeners, in 
addition to duration, also use other cues, such as formant 
frequency information, assimilation cues, or relative durations 
within the span of the syllable to differentiate between 
possible interpretations of an ambiguous speech signal. More 
research is therefore needed to investigate the exact nature of 
the acoustic cues, besides duration, that play a role in the 
disambiguation process during spoken-word recognition. 
Incorporation of these possible other cues into Fine-Tracker 
might result in an improvement in modelling power.

To conclude, Fine-Tracker is the first computational model 
of spoken-word recognition that, like humans, takes benefit 
from durational cues during word recognition. It is able to use 
durational cues in the acoustic signal to resolve temporarily 
ambiguous speech signals. As durational information is the 
only cue available to Fine-Tracker to make lexical and 
segmental distinctions between ambiguous phoneme 
sequences, it provides support for the theory that durational 
information plays a role in spoken-word recognition.
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