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Abstract. The article reviews the development of radial-piston pump with phase control and 
alternating-flow mode for seismic-testing platforms and other test machines. The prospects for 
use of the developed device are proved. It is noted that the method of frequency modulation 
with the detection of the natural frequencies is easily realized by using the radial-piston pump. 
The prospects of further research are given proof. 

1.  Introduction 
The destructive effect of vibration on various technical systems is due to the occurrence of resonance 
phenomena in the devices elements as well as dynamic loads which lead to mechanical failure and 
faults of the objects [1–4] during a standard operation. As a rule, several elements of the system 
simultaneously resonate resulting a synergetic effect. There are many methods and means of testing 
for vibration and vibration resistance, for example [5, 6]. Hydrostatic vibro-exciters are referred as a 
special type of test facilities which are capable to excite spectrally saturated vibrations at very high 
carrying capacity. Also they are distinguished by the ability to control the vibration mode in a wide 
range [7–10]. During the seismic resistance tests the large-scale mock-ups were performed by loading 
the fragments of buildings and structures which give the adequate to real seismic effects [3, 4]. In the 
result there were worked out several approaches to seismic resistance. This requires the installation of 
test platforms of much higher carrying capacity. These tests platforms must be capable to simulate the 
true conditions for the test of dynamic load occurring during earthquakes. Test platforms equipped 
with a hydrostatic vibratory drive are the most suitable for such purposes as they feature a high 
specific power and control capability inherent in volumetric hydraulic drives [1, 2]. 

Due to the impact of seismic vibrations on construction objects the irreversible deformations of 
elements and components of their structures occur in the result of resonance phenomena. It is 
experimentally proven that any structure is characterized by a spectrum of natural frequencies, which, 
as a rule, is in the range of 0.5...15 Hz [3]. As seismic oscillations have a continuous spectrum with the 
largest harmonic levels in the interval of 0.1...10 Hz, there is always a correspondence between the 
excitation frequencies and the natural frequencies, which leads to the appearance of resonances. 

Another factor of seismic resistance is the duration of such an impact. Short-term load of 4...5 even at 
a 10-point of earth shock is not dangerous, as the resonances do not have time to develop, and a small-
amplitude earthquake which is lasting for several tens of seconds leads to serious destruction [3, 11–16]. 
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The method of a time sweep frequencies is based on those factors which include the preliminary 
scanning and follow-up tests at resonance frequencies. As the oscillation spectrum is simulated 
sequentially, the test conditions are inadequate to real seismic impacts when the resonances of the 
elements and their construction parts do not occur simultaneously. 

If we select the amplitude levels from the spectrum of random ground vibrations and average them to 
the third-octave ranges, then the spectrum can be represented as an imitating line spectrum which ratio of 
the harmonic levels is close to the spectrum of amplitude-modulated (AM) oscillations. This result is not 
accidental, as the actual ground vibrations during an earthquake are the natural modulation process [3] 
(Figure 1), although it is not described by mathematic harmony. Thus, the process of amplitude or 
amplitude-frequency modulation is the most adequate oscillation process simulating seismic oscillations 
during test. The envelopes of AM oscillations can be defined by different functions, that allows to 
simulate the oscillation processes which are different in harmonic composition. 

 
Figure 1. The ground vibrations during an earthquake. 

2.  Design and operation of a radial piston pump 
Figures 2 and 3 show a radial piston pump comprising a stator 1, a rotor 2 and a phase regulator 3 with 
an eccentric 4 and an eccentric ring 5 mounted coaxially in the body. The shafts of the phase regulator 
and the rotor are located in the bearings 6, 8 and 9. The pistons 11 are located in the rotor cylinders 10, 
which are linked by the ends with the eccentric 4, and the transverse slits а with the eccentric ring 5. 
The channels 12 and 13 (Figure 3) with a width smaller than the width of the rotor are built in the 
pump body. There are pressure clamps 15 with springs 16 located in the ducts 14. The cavities above 
the clamps are communicated through valves 23 and 24 with hydraulic lines A and B (Figure 3), which 
make tight contact of the jumpers with the rotor and provide high tightness of the channels 12 and 13.  

There are bypass valves 17 with springs 18 (Figure 4) in the pressure clamps. Holes 19 link them 
with the cylinders 10, when the latter are under the jumpers. The above-valves spaces are connected to 
the channels 13 and 12 through the holes 20 and 21. The fixed sealing discs 25 and 26 with seals 27 
are installed on both sides of the rotor (Figure 2). Due to annular ducts 28 which are in the body and 
connected to the hydraulic lines A and B through the return valves 29 and 30, the discs 25 and 26 are 
pressed to the ends of the rotor providing high hermeticity of the channels 12 and 13 (Figure 3). 

One of the drawbacks of radial piston pumps and rotary hydro-pulsators [1, 5] is the precision of a 
complex sequence of couplings that closes on the spool valve. The sequence includes the rotor bore, 
its mounting surfaces for bearings, their base mounting bushings and the collector The gaps in the 
hydro-mechanical couplings sequence such as the «spool – rotor» and «spool-collector» are designed 
within 0.02...0.03 mm in order to ensure the sufficient tightness. Therefore the other couplings must be 
within the tolerances of 0.005...0.05 mm [1]. 

The flow distribution system in the pump eliminates gaps and provides a higher hermeticity due to 
the float position of the jumpers and end disks. When the fixed phase regulator (phase angle φ=0) is at 
the position of the eccentric 4 (Figure 3), then the hydraulic unit operates as a radial-piston pump with 
a constant and maximum flow (m3/s): 

p r
p r2 ,

еzs
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where e – the eccentricity of the phase regulator, m, z – the number of pistons, sp – the area of the 
piston, m2, fr – the rotor speed, Rev/s, and ωr – the angular velocity of rotor rotation, rad/s. 

 
Figure 2. The radial piston unit. 

 
Figure 3. The radial piston unit (the zero phase the regulator φ=0). 

When the rotor rotates clockwise, the pistons are retracted by the eccentric ring 5 (Figure 2). Then 
pistons pass from position a through stages b, c and d to position e, sucking liquid through channel 12 
from hydroline B. The remaining pistons contact with channel 13, go over their positions e, through 
stages f, g and h, to position a and push the liquid into hydroline A. When the cylinder passes under 
the jumper 15 (Figure 4), the piston moves from position I (indicated by dash) into the position II of 
the «dead point» and completes the displacement of the liquid into channel 13 until the point i on the 
edge of the cylinder is aligned with point j on the edge of the jumper. When the cylinder is cut off 
from the channel 13, a liquid compression arises in the over-piston cavity and if it exceeds the working 
pressure of the pump, the valve 17 will transfer the trapped liquid into the channel 13 through the 
apertures 20 and 21. In the first phase the regulator (φ=π/2) is positioned anti-clockwise (Figure 5), the 
pistons return from position c through the stage d to position e, and suck liquid from channel 12. The 
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other pistons pass from position e through stage f to position g and force liquid into channel 12. The 
volumes of the sucked and displaced liquid are compensated, there is no supply. The mutual 
compensation of the volume occurs the same way: when the pistons move from position a, through 
stage b to position c and then move from the position g through stage h to position a. Thus, the first 
phase position corresponds to the time of reversed flow in the hydrolines A and B. 

 
Figure 4. The design of jumper and bypass valve. 

When the cylinders pass under the lower jumper 15 (Figure 4) the piston (Figure 5) moves from 
position I to position II at maximum speed. And when point i is aligned with point j, the piston will 
displace the larger volume of the trapped liquid through valve 17 and its compression will also be 
eliminated. 

 
Figure 5. The radial piston unit (the first phase the regulator φ=π/2). 

When the regulator is transferred to the second phase position (φ=π), the feed reaches maximum 
again, but the liquid is displaced into channel 12 and the hydroline B, and is sucked from channel 13 
and hydroline A. The third phase position (φ=3π/2) fully corresponds to the first – there is no feed. 

Oscillation mode of the phase regulator can be used for hydraulic drives of the machines which are 
used to test structures for alternating loads. Oscillation mode is to be set between zero and the second 
phase positions in the range of φ=0...180°. The angular oscillations frequency determines the 
frequency of load of the test structure. The level of structure deformation determines the holding time t 
of the regulator in the extreme phase positions and, accordingly, the stroke of the hydraulic cylinder, (m): 

p r · ,
еzs th

F
ω

p
=  

where F – the effective area of the piston of the two-rod hydraulic cylinder, m2, which is connected to 
the pump. 
When the phase regulator rotates with a constant angular velocity ωph, for example, towards the rotor 
rotation (Figure 3) its phase position changes continuously: 
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φ=ωph·t, 
and reversed feed occurs in one revolution. The pump goes into rotary pulsator mode, when a cyclic, 
sign-variable fluid motion is created in the hydrolines A and B. 

3.  Test platform operation 
Figure 6 shows the schematic diagram of the platform hydraulic drive for seismic testing of the objects 
based on the radial piston hydraulic unit 1. The unit creates oscillatory fluid flows in pipelines 2 and 3 
with an angular frequency ωph given by the phase regulator. The hydraulic cylinder 4 excites the 
oscillations x of the platform 10 at a frequency of Hz: 

fph=ωph/2π. 

 
Figure 6. The platform hydraulic drive based on the radial piston hydraulic unit. 

The drive operates at the initial pressure Р0 in the system supported by make-up pump 7, the 
accumulator 8 together with the throttle 6. Valve 9 provides adjustment Р0, and valves 5 eliminate 
overload of the hydraulic system. In this case, the rotor shafts and the phase regulator are equipped with 
flywheels with inertia moments Jr and Jph, which smooth out the pulsation of their torque moments. 

One of the seismic test methods is a smooth sweep frequency of the excitation and the preliminary 
scanning of the test object in the 0.5 to 15 Hz range (sometimes more). The method also allows to 
detect natural frequencies and subsequent tests in the local resonance mode. When scanning the test 
object, the rotor preset the constant angular speed ωr, and the phase regulator drive – variable ωph(t), 
with constant acceleration dωph/dt=сonst, and provides a slow sweep frequency of the excitation fph in 
the interval of ωph(min)–ωph(max) (Figure 7).  

In contrast to rotary hydro-pulsators with a controlled valve [1], here the liquid supply to pipelines 
2 and 3 (Figure 6) is determined taking into account the angular velocity of phase regulator rotation: 

amp ph·сo ,s ·Q Q tω=  
where Qamp – feed amplitude, m3/s: 

( )p
amp r ph ,·

еzs
Q ω ω

p
= −    (1) 

the vibration law and vibration velocity for the test platform are described by the follow equations: 
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The spectral characteristic of the test stand, deployed in a two-decadal range ωph(min)…ωph(max) 
(Figure 7). The lower graph corresponds to the unidirectional rotation of the regulator and the rotor  
ωph–ωr, the upper one to multy-directed rotation ωph+ωr. Frequency-modulated oscillations form a 
continuous spectrum. The «lifetime» of the continuous spectrum harmonics depends on the change 
rate of the modulating function ωph(t). The oscillation spectrum is sequential and the mobility of the 
process does not create the right conditions for the object excitation, as the corresponding reactions 
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cannot be established in it. Therefore, the frequency sweep speed should be low. However, the 
intensity of the related levels, for example, of the vibration velocities taken in the third-octave ranges 
of the frequency axis in the interval Δω=ω2–ω1, will have a final value and a real physical result will 
be sufficient to excite the resonances of the structural elements of the object. The spectral 
characteristic (Figure 7) is applied within working range which corresponds to local resonances 
(0.8…16 Hz) of the most building structures. We aim to exclude the influence of the resonance of the 
platform-object system. Therefore the stiffness с of the oscillatory system is determined mainly by the 
liquid volumes enclosed in the hydraulic cylinder chambers and determined by the expression: 

0

0

2 ,2 Ес
W

F=  

where Е0 – the modulus of fluid elasticity, n/m2, W0 – the fluid volume in the hydraulic cylinder 
chambers, m3. 

 
Figure 7. The spectral characteristic of the seismic-testing platforms. 

The stiffness should be maximum. The operating volume of the hydraulic unit 1 and other elements 
of the hydraulic drive circuit in Figure 6 are small, compared to W0, however, the length of the 
pipelines should be minimized, and all hydraulic equipment is assembled into a single hydroblock. 
Taking into account attached mass of test object the natural oscillation frequency of the platform f0, 
must not be less than an order of magnitude higher than the upper limit of the frequency range fph(max) 
(16 Hz): 

0
0 eq ph(max)

pl to 0

22· 10 ,1 1
2 ( )

F Еf с f
m кm W

   
= +    +   

>
p

 

where mpl – the platform mass, kg; mto – the mass of the test object, kg; k – the coefficient that takes into 
account the fraction of the attached object mass; сeq – the equivalent stiffness of the «hydraulic springs» 
of the hydrolysines and hydraulic devices, reduced to the piston of the loading hydraulic cylinder. 

4. Results 
The angular velocity of the phase regulator ωph is successively set to the corresponding resonances and 
maintained for a regulated time in the seismic test mode at the detected natural frequencies of the object. 
The angular velocity of the rotor ωr is changed by means of an adjustable drive if it is necessary to adjust 
the platform-object system, for example, to the required vibration amplitudenor vibration speed (2, 3). 

5. Summary 
The method of frequency modulation with the detection of the natural frequencies of the test object is 
the simplest and easily realized by means of the considered pump. But the potential of the method is 
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limited, as there is no simultaneous occurrence of resonances and the synergetic effect mentioned 
above is absent. To expand the functionality of the radial piston hydraulic machine and implement 
amplitude-frequency modulation during testing, in addition to the phase adjustment, it is necessary to 
provide volumetric regulation, which requires further improvement of the hydrounit. 

The development of hydrostatic random oscillations generators which are capable of exciting 
narrow-band vibration with a high level of spectral density of vibration acceleration [1, 5] is the 
further development of the concept of volumetric hydraulic machines for the initiation of test dynamic 
systems. Such hydraulic units have already been created, they can be used not only in the seismic 
testing technique, but also in the testing of various instruments and equipment for vibration and 
vibration resistance and will be considered in future publications of the authors. 
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