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The decays of excited bosonic and excited fermionic modes in the external field of the domain wall are
studied. The wave functions of the excited fermionic modes are found analytically in the external field
approximation. Some properties of the fermionic modes are investigated. The reflection and transmission
coefficients are calculated for fermion scattering from the domain wall. Properties of the reflection and
transmission coefficients are studied. The decays of the first excited fermionic mode are investigated to the
first order in the Yukawa coupling constant. The amplitudes, angular distributions, and widths of these
decays are found by analytical and numerical methods. Decays of the excited bosonic mode are also
investigated to the first order in the Yukawa and self-interaction coupling constants. The amplitudes,
angular distributions, and widths of these decays are obtained analytically and by numerical methods.
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I. INTRODUCTION

Field models with spontaneous symmetry breaking
possess topologically nontrivial vacuum structures. The
field equations of such models may have topologically
stabile soliton solutions known as monopoles, strings, and
domain walls. It is known [1] that these objects may play an
important role in the evolution of the Universe. In particu-
lar, domain walls may be a natural and nonexotic alter-
native to the most popular candidates of dark energy [2].
Domain walls play a key role in mechanisms of the
electroweak baryogenesis [3—7]. Moreover, domain walls
of (4 + 1)-dimensional field models are the thick branes in
the thick-brane world scenarios based on gravity coupled to
scalars in higher-dimensional space-time [8—12].

Topological solitons interact with elementary bosons
and fermions of the corresponding field models. In par-
ticular, the interaction of scalar mesons, Dirac fermions,
and Majorana fermions with domain walls has been the
object of various studies (see Ref. [1] and references
therein; see also Refs. [13-23]). The characteristic feature
of fermion-soliton interactions is the existence of
fermionic zero modes [15,24]. The presence of fermionic
zero modes in background fields of topological solitons
leads to important physical phenomena such as fractional
fermionic numbers of fermion-soliton systems [15] and
superconducting cosmic strings [25]. The fermionic zero
modes also have an important effect on the stability of
the electroweak strings [26-28] and on properties of the
domain walls [29-31].

The domain wall considered here is the (3 4+ 1)-
dimensional generalization of the classical (1 + 1)-
dimensional kink of the ¢* model [13,32]. There are
bosonic and fermionic modes in the background field of
the domain wall. These modes can be either massless or
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massive. The massless bosonic and massless fermionic
modes of the domain wall correspond to the zero bosonic
and zero fermionic modes of the kink, respectively. The
massless modes are localized on the domain wall and
propagate along the wall’s surface at the speed of light.
The massive modes of the domain wall correspond to the
excited modes of the kink. The massive modes can be either
localized or nonlocalized on the domain wall.

The bosonic and fermionic modes of the domain wall
correspond to states of mesons and fermions in the second
quantization formalism. The mesons and the fermions
living on the domain wall can interact with each other.
In particular, there is meson-meson, meson-fermion, and
fermion-fermion scattering on the domain wall. The fer-
mions can also scatter on the antifermions or annihilate
them, producing the final mesons. Finally, massive mesons
and massive fermions can decay into particles having lower
masses.

In the present paper, we study the decays of the excited
fermionic and excited bosonic modes that are localized on
the domain wall. Along the way, we obtain the exact
analytical expressions of the fermionic wave functions and
those of the reflection and transmissions coefficients. The
paper is structured as follows: In Sec. II, we briefly describe
the Lagrangian, the symmetries, the field equations, and the
domain-wall solution of the model. Section III is divided
into two subsections. In Sec. III A, the well-known proper-
ties of the bosonic modes living on the domain wall are
summarized. In Sec. III B, the Dirac equation in the
external field of the domain wall is considered. The wave
functions of the localized and nonlocalized fermions are
found analytically, as well as the expressions of the
transmission and reflection coefficients. In Sec. IV, we
consider the Lagrangian of the interacting bosonic and
fermionic modes in the domain wall’s background. In
particular, the properties of the Lagrangian under the parity
transformation are investigated. Then, in Sec. IVA, we
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study the decays of the first excited fermionic mode to the
first order in the Yukawa coupling constant. The decays of
the excited bosonic mode are investigated in Sec. IV B.
Finally, in Sec. V, we summarize the results and compare
properties of the domain wall’s massless modes to those
of the kink’s zero modes.

Throughout the paper, the natural units ¢ =1, A =1
are used.

II. LAGRANGIAN AND FIELD EQUATIONS
OF THE MODEL

The model we are interested in is described by the
Lagrangian density

1 A . _
L=3000¢ =7 (9* =n*) + ipr" O — gy, (1)

where ¢ is the real scalar field, y is the Dirac fermion field,
and y* are the Dirac matrices that satisfy the anticommutation
relations {y#,y"} = 2¢*, with ¢* = diag(1,-1,-1,-1)
being the space-time metric. The explicit representation
[33] of the Dirac matrices that we adopt is chiral:

"“\1 o) T\ o)

-1 0
5 2
= 1) 2)

where y° = iy%'y?y? and &' are the Pauli spin matrices.
The Lagrangian density (1) depends on the three parameters
A, 11, and g, where A is the coupling constant of the scalar
quartic self-interaction, +# are the two classical vacuum
values of the real scalar field ¢, and g is the Yukawa coupling
constant that is assumed to be positive.

The Lagrangian density is invariant under the global
phase rotations of the fermion field: w — exp(a)y.
The corresponding Noether current is

J=wrw, 9,0 =0, (3)

The Lagrangian density (1) is also invariant under the
discrete Z, transformation:
b——b, w71y (4)

By varying the action § = | Ld*x in ¢ and 7, we obtain
the field equations of the model:

0,0 + MPp* —n*)p + gy = 0, (5)

Vo — gy = 0. (6)

Let us consider the static solutions in the bosonic sector
(y = 0) of model (1). It is clear that Eq. (5) has two trivial
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vacuum solutions ¢(z, x) = £», which are related to each
other by Z, transformation (4). However, it is well known
[33,34] that the (1 4 1)-dimensional version of model (1)
has two nontrivial static soliton solutions:
X
¢(x) = tntanh <;> , (7)
where w = /2471/27! is the effective width of the soliton.
The solution with the upper (lower) sign is called the kink
(antikink). The kink and antikink are also related to each
other by Z, transformation (4). These solutions interpolate
between the classical vacua +# and are absolutely stable.
In 3+ 1 dimensions, the kink (antikink) solution (7)
corresponds to the domain wall (antiwall). The domain wall
(antiwall) is extended in two spatial dimensions and has

infinite energy. The surface energy density ¢ of the domain
wall (antiwall) is

_4r

€—3W.

(8)

III. BOSONIC AND FERMIONIC MODES
ON THE DOMAIN WALL

It is well known [33,34] that the (1 + 1)-dimensional
kink possesses the bosonic and fermionic modes. These
modes can be localized or nonlocalized on the kink. In the
case of the (3 + 1)-dimensional domain wall, these modes
can propagate over the domain wall’s plane. In the second
quantization formalism, the modes correspond to mesons
and fermions propagating on the domain wall. The mesons
and fermions living on the domain wall can interact with
each other. In particular, excited bosonic and fermionic
modes can decay to other modes. Now we consider the
bosonic and fermionic modes on the domain wall.

A. Bosonic modes

There are three types of bosonic modes in the external
field of the domain wall (7). Let us denote the wave
functions of these modes by yq, yi, and yy. The wave
functions y, y1, and y; are well known [33,34]; we now
summarize the results:

Xo(t, X, Ky) = Noexp [—i(wot — kyy — k.z)Jsech®(§),  (9)

xi(t.x.Ky) = Nyexp [=i(wt = k,y — k.2)]

x sinh(&)sech?(¢), (10)
)(k(t’ X, k) = Ny exp [_i(a)kt - kxx - kyy - kzz)}
x (3 tanh?(&) — 1 — w?k2
— 3iwk, tanh(¢)), (11)
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where & = x/w is the dimensionless x-coordinate and N,
N;, and N are the normalization constants of the wave
functions. In Eqgs. (9)—(11), the energies @, @, and w, are
related to the momenta k|| = (k,, k;) and k = (k.. k. k;)
by the dispersion relations:

w§ = ky + k2,

W =M R R
wy = my + ki + ky + k2, (12)
where m, = 2/w is the meson mass. From Egs. (9) and
(10), it follows that the wave functions y, and y; corre-
spond to scalar mesons propagating on the domain wall.
In particular, the wave function y, describes the massless
scalar mesons propagating on the domain wall at the speed
of light. In what follows, we normalize the wave functions
xo and y; so that the number of corresponding scalar
mesons per unit area of the wall is equal to unity. In this
case, the normalization constants N, and N, are

V3 o1 V3 o1
Moo= hvia VT aevaar (Y

In contrast to y, and y;, the wave function y; is not
localized on the domain wall. Instead, the wave function
i corresponds to the scalar mesons propagating over all
three-dimensional space. We normalize the wave function
i so that the number of corresponding scalar mesons per
unit volume equals unity as |x| - co. Then we have the
following expression for the normalization constant:

1 1
M= VI F+ 2w (4 + 2w?) V20 (14)

Having the normalization constants Ny, N, and Ny, we
obtain the following orthonormality relations:

27)?
/}(6(1‘, X, k1|))(0(t’ X, k”)d3x = (Zw) 5(2)(1(” - kh)’
0
. (27)?
/}(1 (l, X, kh))(] (t, X, k”)d3x = 2a)) 5(2)(1(” - kh)’
1
3
/;(*(t,x,k’);((z,x,k)d% = (§”> 5O (k —K'). (15)
Wy

Needless to say, the wave functions y,, y;, and yy are
mutually orthogonal.

B. Fermionic modes

Fermionic modes living on the domain wall satisfy the
Dirac equation (6). First, let us consider the solutions of the
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Dirac equation that do not depend on the coordinates y and
z. Acting on the Dirac equation by the matrix differential
operator iy*d, + g¢,(x), we obtain the system of second-
order differential equations

(0% —igy(x)r' = i (x) + )y =0, (16)

where ¢, (x) is the domain-wall solution and € is the energy
of a fermionic mode. Note that in Eq. (16), the Hermitian
matrix iy' has the two doubly degenerate eigenvalues: 1
and —1. The corresponding eigenvectors ¢!, &)1, ¢7',
and &;! are

+i 0

C;—Ll = L 0 zil = L +i (17)
V2| o | V2|1
1 0

Let us denote by w4 (x) = ay(x)¢E! the bispinors that
are proportional to the eigenvectors of the matrix iy!. Then,
substituting the explicit form of the domain-wall solution
¢ (x) in Eq. (16) and changing x to the dimensionless
variable £ = x/w, we obtain the decoupled differential
equations for the coefficient functions aq:

(0 + v(F 1+ v)sech?(§) +w?(e* —my))ay, =0, (18)

where v = gwy is the dimensionless positive combination
of the model’s parameters and m,, = gn is the mass of the
fermion in the background vacuum field ¢p = 5. Differential
equation (18) coincides in the form with the one-
dimensional Schrodinger equation with the Poschl-Teller
potential V = —v(v F 1)sech?(&). The eigenfunctions and
the eigenvalues of this equation are well known [35], so
we conclude that Eq. (18) may have both discrete and
continuous eigenvalues e. The former correspond to the
fermionic modes that are localized on the domain wall,
while the latter correspond to the nonlocalized fermionic
modes. Let us consider these two cases separately.

1. Nonlocalized fermionic modes
It is clear that the continuous eigenvalues e satisfy the
condition € > m;; therefore, we can define the dimen-
sionless positive parameter u =wp = w(e> —m3)"/%
Then, the general solution of Eq. (16) can be written as
W =w_; +y., where

wo = (P () +df () (19)
j=1.2

vor =3 (' PI(s) + d7 QT (9))ET . (20)

j=12
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and s = tanh(&). In Egs. (19) and (20), P% is the associated
Legendre function of the first kind of type 2, Q% is the
associated Legendre function of the second kind of type 2,
and cjil , djil are arbitrary constants. We see that the general
solution of the second-order system (16) depends on eight
arbitrary constants ¢, d;'.

Here, we use the associated Legendre functions P2 and
Q% determined according to Ref. [36]. A comprehensive
list of properties of the associated Legendre functions is
provided in Ref. [37]. We only note here that P2 and Q% can
be expressed in terms of the regularized hypergeometric
functions and that P2 and Q) are expressed in terms of
elementary functions if a € Z.

The Dirac equation (6) can be written in the Hamiltonian
form

0w = Hy, (21)
where
H=—iy"'0; + gr°p(x) (22)

is the Dirac Hamiltonian. On fermionic field configurations
that do not depend on y and z, the Hamiltonian (22) reduces
to the form

H, = —iy°7' 0, + g%y (x). (23)

It can easily be checked that the one-dimensional
Hamiltonian H, commutes with the x-component of the
spin operator s:

[Hy.5.] =0, (24)

where

1 1/6 0
SZEE:§<O 6) (25)

for y-matrix representation (2). Clearly, Eq. (24) arises from
the fact that domain-wall solution (7) is invariant under a
rotation relative to the x-axis. The Hermitian operator s,
has the two doubly degenerate eigenvalues: 1/2 and —1/2.

I—

1 1 1 _
The corresponding eigenvectors {7, {3, {,°, and {,

are
+1 0
+_ 1 4 _ S 0 26
Cl \/E 0 ’ Z:Z \/z +1 . ( )
0 1

From Eq. (24), it follows that x-dependent solutions of the
Dirac equation (6) can be classified by the eigenvalues
of s,.
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The second-order differential operator of Eq. (16) also
commutes with s,. Hence, the general solution of Eq. (16)
can be written as the sum of the particular solutions w1 and

w1 that are the eigenvectors of s, with the eigenvalues 1,/2
and —1/2, respectively. The solutions wi and y_; can be

2
written as

Y= i(ai%P;’; (s) —ﬁi%P;iﬂ(S)
—i —ip +
+ 7i%Qy_”1(S) =610, “($))¢)”
+ (a P (5) + By (s)

a0t () + 50T (G (27)

In Eq. (27), the constants o, ﬂi% s Vs and 5i% are linear

combinations of the constants ¢i!, di!, ¢3!, and d5' of
Egs. (19) and (20). Note that not every solution of the
system of second-order differential equations (16) is the
solution of the Dirac equation (6), which is the system of
first-order differential equations. Substituting Eq. (27) into
the Dirac equation (6) and using recurrence relations for the
associated Legendre functions [37], we find that wiandy

are the solutions of the Dirac equation (6) if the following
conditions hold:

_ utw  utw
a% = - e ﬂ%, 7/% = - e 5% for l//% (28)
and
a, =P P s fery. (29)
2 we 2 2 we 2 2

We see that the solutions of the Dirac equation (6) for a
given s, are determined by the two parameters: ﬂ% » 71 for
sy =1/2, and p_y, y_y for s, = —1/2. For |E] > 1, these
solutions are the superpositions of the plane waves propa-
gating along the x-axis in the opposite directions. However,
it can be shown that if the condition

2t
041 = - () P (30)
2 w 2

holds, then the solution corresponds to incoming and
reflected waves to the right of the wall and to a transmitted
wave to the left. On the other hand, if the other condition

2itanh (zu)

01 =
+
2 b2

B (31)

holds, then the solution corresponds to incoming and
reflected waves to the left of the wall and to a transmitted
wave to the right. Let us denote by wli% (z//;%) the solution

of the Dirac equation with s, = +1/2 that corresponds to
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the transmitted wave moving to the left (right) from the
domain wall. Then, these solutions can be written as
follows:

vl = d, & LG (32)
where
= INL(~P7¥(5) F xPTH ()
+ wgﬁft%w) (@ (s) £ Q1 (s),  (33)
b, = NLCEPT () P (5))
AL 2B (o o s) 0 (s)): (34
Wy =a LG (35)
where
L, = N (-PTH(s) F 1P (5)
L 2 (g7n() 0 (s)). (36)
b, = N7 (P (5) = <P ()
N, 2O (4 oo ) - T (s)). (37)

In Egs. (32)-(37), the phase factor x is equal to
(n + iv)/(we) = exp (i arctan (v/u)). The normalization
constants A", and A", will be determined later.

2 2

The bispinor wave functions (32) and (35) describe the
Dirac fermions propagating perpendicular to the domain
wall; i.e., along the x-axis. Note that domain wall (7) is
invariant under Lorentz boosts along the y- and z-axes. This
implies that the wave functions of the fermions moving
with the two-dimensional momentum p;, = (py, p.) on the
domain wall can be obtained by multiplying wave func-
tions (32) and (35) by the spin-1/2 boost matrix S(e, pj):

WU (X, p.py) = exp [=i(yyer = pyy = p:2)]

x S(e.ppwl(p.x). (38)
where yy = (1= vf)~"2, vy = [py(e? + [py[*)7"/%, and
e=(m2 +p*)'2. The boost matrix S(e,py) is

Hermitian; for y-matrix representation (2) it has the form

ste.y) =exp (Joom ) = (7). @)
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where

ny = LS
Py

Al o (X
AL = cosh <7> + ¢-n; sinh <?>

We normalize bispinor wave functions (38) so that the
number of incident fermions per unit volume is equal to
unity at large distances from the domain wall. Then we
have the following expressions for the normalization
constants in Egs. (32)—(37):

x| = arctanh(v)), o=,

T usinh (zp)

I = , 40
Nii 2y | cos (mv) cosh (2zzu) — cos (2zv) (40)
7 usinh (zu)
", = ,/=—cosh . 41
+H 2y o8 (ﬂﬂ)\/cosh (27u) — cos (2zv) (41)

At large distances from the domain wall, wave functions
(38) correspond to incident and reflected plane waves on
one side of the wall and to a transmitted plane wave on the
other side. Using the asymptotic expressions of the asso-
ciated Legendre functions [37] and calculating the incident,
reflected, and transmitted fermionic currents, we obtain the
expressions of the reflection and transmission coefficients:

B 2 sin? ()
~ cosh (2zzu) — cos (2av)’ (42)
T 2 sinh? (zu) (43)

~ cosh (2zu) — cos (2zv)

It can easily be checked that these coefficients satisfy the
unitarity relation
R+7T=1. (44)

Note that expressions (42) and (43) for the reflection and
transmission coefficients are similar to those obtained in
Ref. [16], and coincide with those obtained in Ref. [21]
for the zero gauge coupling constant. Note also that these
expressions are valid for all four types of fermionic wave
functions ‘Plirl, as it should be.

Let us investigate some properties of the coefficients R
and 7. For any finite v and u — oo, we have the following
asymptotic expressions for R and 7:

R ~ 4sin® (zv) exp (—27u),

T ~ 1 —4sin? (zv) exp (—27u). (45)

From Eq. (45), it follows that for any value of the parameter
v, the coefficients R and 7 tend to zero and unity,
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respectively, as the parameter x4 tends to infinity. We see
that almost all the fermionic wave passes through the
domain wall when the x-component of the momentum
of the incident wave becomes large enough. When the
parameter u tends to zero, the expressions for the coef-
ficients R and 7 take the form

R =1—nr?csc? (mv)p® + O(u*),
T = n?cesc? (nv)p? + O(u*). (46)

From Eq. (46), it follows that |[R| > 1 and 7 — 0 as u
tends to zero. In this case, almost all the fermionic wave is
reflected from the domain wall. Note that Eq. (46) is not
valid if the parameter v is a positive integer. Indeed, from
Egs. (42) and (43), it follows that

R =0, T=1 (47)
for a positive integer v and arbitrary y. Thus, the domain
wall becomes reflectionless for the fermions as v =
1,2,3,... Note in this connection that the domain wall
is reflectionless for mesons for any value of the model’s
parameters.

Let us investigate the behavior of coefficients R and 7
as v tends to some positive integer and y tends to zero. For
this, we use the following representation of the parameters
v and u:

v=n+ksin(a), = kcos(a), (48)
where n is a positive integer and the parameter x tends to
zero. Then it can be shown that the coefficients R and 7
tend to the limits

limR = sin?(a), lTlT = cos’(a). (49)
From Eq. (49), it follows that coefficients R and 7 have
nonregular behavior as v — n, u — 0, because their limit-
ing values depend on the direction angle a.

Now we investigate coefficients R and 7 in the thin-wall
limit w — 0. In that connection, we recall the definition of
the dimensionless parameters: v = gwy and u = pw, where
p is the modulus of the x-component of the fermion’s
momentum. Substituting these definitions in Egs. (42) and
(43) and taking the limit w — 0, we obtain the expressions
for R and 7 in the thin-wall limit:

2 2
R T—»l:—z. (50)

w—0 62 w—0

Note that Eq. (50) for the reflection and transmission
coefficients coincides with those of Refs. [1,22] obtained
within the framework of the thin-wall approximation.
Wave functions (38) describe the fermionic states in
the domain-wall background. Now we consider the
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antifermionic states. In this connection, we should note
that the Lagrangian (1) is invariant under the charge-
conjugation transformation

Y- ¥ = U Y, (51)
where the charge- conjugation matrix U can be chosen as
Uc =7 = a,. (52)

This implies that the antifermionic states in the domain-
wall background are described by the wave functions that
are charge conjugate to wave functions (38). It can be
shown that the charge-conjugate wave functions can be
expressed in terms of the original ones with the change of
sign of the parameters ¢, p, p, and s,:

‘Pi’;(t,x,e,p,p”) = Uc‘i‘ir%(t, X,€,p.p)

= lpi":r%(t’x’_e’ _pﬂ_p”) (53)

From Eq. (53), it follows that the twice-repeated charge
conjugation leads us to the initial wave function.

2. Localized fermionic modes

Research of the fermionic modes localized on the
domain wall is similar to that of the nonlocalized fermionic
modes. For this reason, we do not repeat the intermediate
steps, and go directly to the final results. First, we consider
the localized fermionic modes that do not propagate along
the domain wall. The energy levels of such modes are
quantized and can be written as

n2v—n
g _nv—n

" n=0,1,..,[v, (54)

where [v] is the integer part of the parameter v = gwrn. Note
that Eq. (54) coincides with those obtained in Refs. [13,23]
for the energy levels of the fermionic modes in the external
field of the (1 + 1)-dimensional kink. From Eq. (54), it
follows that the fermionic mode having zero energy (the
fermionic zero mode) always exists in the external field of
the domain wall. We see that at each integer value of v, a
supplementary bound state emerges from the continuum’s
lower bound € = gn = m,, and continues to exist for large
values of v. We also see that the number of the massive
localized fermionic modes at rest is 2[v] (the factor 2 arises
because there are two spin states for each massive fermion).

First, we consider the localized fermionic modes with
€, > 0. As well as nonlocalized fermionic modes, localized
fermionic modes can be chosen to be the eigenstates of
the operator s,. Let us denote the wave functions of
the localized fermionic modes with s, = £1/2 by Wil

Then we have the following expressions for these wave
functions:

065003-6
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+1 +1
Viln = a:i:%,né’l t+ bj:%,ncz % (55)
where
= N (—P(s) F 0 P(s), (56)

s = Ny (P (5) = 6, PTH(S)), (57)
and s = tanh(¢). In Egs. (56) and (57), the factor x,, and the
parameter y,, are

x, = in2(2v —n)73,

Uy =V —n, n=1,..[. (58)

By analogy with Eq. (38), we can determine the wave
functions of the localized fermionic modes moving with
the two-dimensional momentum p = (p,, p,) along the
domain wall:

\Pj:%,n(t’ X, pll) = eXp [_i(}/llent —Pyy— PZZ)]

X S(€n, P)W1a(%), (59)
where y; = (1 - v”) /2 and v = |PII|(€%L + |P|||2)_1/2-
The boost matrix S(e,.p;) in Eq. (59) is given by
Eq. (39). Wave functions (59) describe the x-localized
fermionic states in the domain-wall background. The corre-
sponding antifermionic states are described by the wave
functions that are charge conjugate to wave functions (59):

\Pi%’n(t’ X, €, pll) = UC\iIi%,n(t’ X, €, pll)

— lP:F%,l’l(t’ X €ns p”) (60)

Now we consider the fermionic modes that correspond to
n =20 in Eq. (54). In (1 4+ 1) dimensions, such a mode
corresponds to a particle having zero energy. In (3 + 1)
dimensions, these modes correspond to massless particles
moving along the domain wall at the speed of light. It can
be shown [33] that the wave function of the massless
fermion moving with the two-dimensional momentum
p; = (p,. p.) along the domain wall can be written as

exp [—i(|py|t — p,y — p:2)]

Y, (1, X, , =
O(Z X |p||| p||) \/W[COSh (X/W)]y
(|P||| —Pz)l/2
—ip,(Ipy| = p.)™"2
61
Py(|P|||—Pz)_1/2 (61)
i(lpyl = p2)'?

The wave functions of massless antifermions are charge
conjugate to those of massless fermions:
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) = Uc¥ol(t.x, )
= P(1, )- (62)

The wave functions of massless fermions and antifermions
satisfy the following algebraic relations:

P (r, x,

iy Po(t, %, py) = —Po (£, X, py),
i}/lTB(I,X,p”) = —‘I‘ﬁ(l,x,p”). (63)

Using Eq. (63), we can easily obtain the following
relations:
Wo (2, x, py)O¥ (2, %, pj) =0,
(t X, p”)O‘I‘g(t,x,pil) =0,
Wo (1, x, py) O (1, x, pj) = 0,
P (1, x, p”)O‘I‘O(t,x,p]l) =0, (64)

where the matrix operator O may be any of the matrices [,
51, 778y, 7%s., and y7°. Note that the momenta p; and p|; in
Eq. (64) can be different; therefore the relations in Eq. (64)
are purely algebraic.

Wave functions (61) and (62) also satisfy the relations:

Wi (e, x, py)s Wo(2, X, py) =0,
0.

W' (%, py) s, W5 (1, %, py) = (65)
From Eq. (64) (with O =%, y°s. and p; = p{) and
Eq. (65), it follows that the massless fermions (antifer-
mions) are completely unpolarized in the domain-wall
background. In particular, massless fermions (antifermions)
have a zero mean value of the helicity operator s - n.

The wave functions of massless fermions (antifermions)
are not eigenvectors of the (3 + 1)-dimensional chirality
matrix y°, and so they have no definite chirality. Thus, the
massless fermions living on the (24 1)-dimensional
domain wall continue to be (3 + 1)-dimensional Dirac
fermions. It should be recalled that the free Dirac fermions
living in (3 4+ 1) dimensions become Weyl fermions in
the massless limit. Unlike the massless fermions living on
the domain wall, these Weyl fermions possess definite
helicities and chiralities.

The generators o** = (y"y* — y*y*)/2, where u, v is
equal to 0,2,3 and y-matrices are defined in Eq. (2), realize
a four-dimensional reducible representation of the (2 4 1)-
dimensional Lorentz group acting on the domain wall.
Therefore, the wave functions of the massless fermions
(antifermions) transform according to this reducible rep-
resentation. Indeed, it can easily be shown that the first two
entries of bispinors (61) and (62) transform independently
of the last two entries. The two-dimensional irreducible
representation of the (2 + 1)-dimensional Lorentz group

can be realized by the following 2 x 2 matrices: y* = ¢!,
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y' = —ic’, y*> = ic*. Note that there is no analog of the
chiral matrix y> for this two-dimensional irreducible
representation. However, for the four-dimensional reduc-
ible representation, the matrix iy! is the analog of the chiral
matrix y°. Indeed, the matrix iy' is Hermitian and anti-
commutates with the matrices y°, y2, and y>. Therefore,
Eq. (63) is the analog of the chirality condition for the
four-dimensional reducible representation of the (2 + 1)-
dimensional Lorentz group.

The wave functions of the massless fermions and of the
massless antifermions have the smooth limit as p; — 0:

pl;gl‘l’o(t X,p|) = hm‘P 6(1.x,py) =Y (x, )
sin(¢/2)
B x\ ]| icos(p/2)
~alon ()]
isin(g/2)

(66)

where ¢ is the azimuthal angle of pj that is counted from
the z-axis in the counterclockwise direction. Thus, the
massless modes ¥y (7, x,p;) and ¥{(z,x,p;) become the
mode with zero energy (i.e., the zero mode) Wy (x,¢) as
p; — 0. The zero mode ¥y (x,¢) is invariant under the
charge conjugation:

¥i(x.9) = UcWo(x.p) = ¥o(x. ). (67)
The zero mode Wy (x, ¢) is parametrized by the azimuthal
angle ¢, so we can define the following two linear
combinations:

¥ (x.9) = = (%o(r.p) F Ho(r.p + )
Fi
- % [cosh (%)} Cexp <ii%) _il
+1

(68)

The modes ¥; (x, ) and ¥ (x, @) are related to each other
by the charge conjugation

Y5 (x.0) = Uc¥g (x.0) = ¥§ (x.9)  (69)
and are orthogonal and normalized. From Eq. (68), it
follows that the modes Wi (x, ) are proportional to the
phase factors exp (+¢/2). Hence, the wave functions
W (x, @) and W (x, ¢, ), corresponding to two azimuthal
angles ¢; and ¢,, differ in the phase factor
exp (£i(¢, — @1)/2), and so are physically equivalent.
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Thus, Wg (x, @) is the class of physically equivalent states
as well as ¥j (x, ¢).

Now, let us consider the normalization constants N +ln
and NV, in Egs. (56), (57), (61), and (62). Wave functions
(59) and (61) describe the x-localized fermions moving
along the domain wall. Therefore, we normalize these wave
functions so that the number of corresponding fermions per
unit area of the wall is equal to unity. As a result, we can
obtain expressions for the normalization constants. These
expressions become rather complicated as n increases, so
we only give the expressions for Vo, Ny, and Ny 5:

1 1 -
P Y] R
N, =)
2 \/}/”_W
2u(v — 1) 3
{22”' B, v) =, F1 (1, w05 =1) + J
(71)
ST+ ) [ v-2 T
Nuja = N [U(sz - 1)]
x [227WB(v,v) —,Fi (1, —v;u;—1) 4 1]72
(72)
where I'(«) is the gamma function, B(a, f) = T'(a)T'(5)/

['(a + p) is the beta function, and ,F;(a, f;7;6) is the
Gauss hypergeometric function [37].

Having the normalization constants Ny, N L L N
and N" "

for the wave functions of the fermionic modes:

j:l >
we obtain the following orthonormality “relation's

/‘I’S(t,X,Pﬂ)‘l‘o(l,x,Pn)d%
= (27)**(p) — p)).
/IPI;,nf(ﬂXvPﬂ)\Psnn(t’X’pll)d3x
= (27)*6,8,,5,8* (P} — P})-
/‘Pl, (1%, p', p)) Wi (1, %, p,py)d’x

= (27)%6,1,,6440(p — P)&* () —P)).  (73)

where the indices d and d' are [ or r. Note that the wave
functions ¥,, ¥, ,, and \P‘f are mutually orthogonal,
because they are the eigenfunctions of a self-adjoint
operator (16) and correspond to different eigenvalues of
this operator.
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3. Implication of Levinson’s theorem for fermionic modes

In the process of scattering, the transmitted fermionic
wave acquires a phase shift & with respect to the incident
fermionic wave. This phase shift depends on the modulus
of the x-component of the fermion’s momentum, so we can
write § = &(p). The difference of the phase shifts 5(0) —
5(o0) plays an important role in the theory of scattering
[38]. In particular, Levinson’s theorem [39] establishes a
relation between this difference and the number of bound
states for a given scattering channel. When the two-
dimensional momentum p; vanishes, the scattering of
fermions from the domain wall is effectively one dimen-
sional. For a one-dimensional case, Levinson’s theorem has
the form [40]

5(0) = 8(c0) = 7 <n,, - %) , (74)

where (0) — §(o0) and n,, are the difference of the phase
shifts and the number of bound states in a given scattering
channel, respectively.

Using the asymptotic expressions of the associated
Legendre functions [37], we obtain the following expres-
sion for the difference of the phase shifts:

5(0) = 8(co0) = ﬂ([u] —%A(u)), (75)

where [v] is the integer part of the parameter v, and the

function A(v) is equal to 1 if v is any positive integer, and

is equal to O otherwise. Note that Eq. (74) is valid for all

four fermionic wave functions !, ' v, and y" : which
2 2

describe the one-dimensional fermionic scattering from the
domain wall.

We wish to show that Eq. (75) is the consequence of
Levinson’s theorem (74). It follows from the results of this
section that there are 2[v]+ 1 bound (i.e. x-localized)
fermionic states for a given value of v: the [v] states having
s, = 1/2, the [v] states having s, = —1/2, and the one
completely unpolarized fermionic zero mode. The case
where v is a positive integer should be considered sepa-
rately. It can be shown that in this case, bispinor compo-
nents of the wave functions y/,1 , tend to constant values as

x — *£o0o. The corresponding “half-bound” threshold states
with € = m,, contribute with a weight of 1/2 [41,42] to
the number of bound states in Levinson’s theorem. The
fermionic zero mode is completely unpolarized, so the
zero-energy fermion has s, = 1/2 (or —1/2) with proba-
bility 1/2. Therefore, the fermionic zero mode also con-
tributes with a weight of 1/2 in the count of bound states
having s, = 1/2 (or —1/2). Note that a similar situation
also holds for the (1 + 1)-dimensional cases [41,42], where
the fermionic zero mode in the kink’s background also
counts as 1/2 in Levinson’s theorem. Thus, the effective
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number of bound fermionic states having s, = 1/2
(or —1/2) is

mo = 2t ] -2 AQ),

3 5 (76)

where the first term is the contribution of the zero mode,
and the last term takes into account a weight of 1/2 of the
“half-bound” threshold state. Substituting Eq. (76) into
the right-hand side of Eq. (74), we obtain Eq. (75) for the
difference 5(0) — 6(o0). Thus, Eq. (75) is the consequence
of Levinson’s theorem as it should be. Note that Eq. (75),
with the extra overall minus sign on its right-hand side, is
valid for the scattering of antifermions from the domain
wall. This is the consequence of the C-invariance of
Lagrangian (1).

IV. DECAYS OF FERMIONIC AND BOSONIC
MODES IN THE EXTERNAL FIELD
OF THE DOMAIN WALL

Now, let us consider decays of the excited bosonic mode
and of the first excited fermionic mode in the external field
of the domain wall. From Eq. (1) and from the representa-
tion ¢ (1, X) = ¢y, (x) + x(7, x) of the scalar field, it follows
that the Lagrangian of the interacting bosonic and fer-
mionic modes has the form

1 p
L =500 =5 Bbw =m)x* =2y (x)x

- %x“ + WO — gy (77)
We consider the decay of bosonic and fermionic modes to
the first order in the coupling constants A and g, while the
interaction of the bosonic and fermionic modes with the
domain wall’s background is taken into account exactly.
We use the wave functions of Sec. III as the coefficient
wave functions in the expansions of the second quantized
operators 7(z,x) and (¢, x). Then it can be shown that the
second quantized operators 7(#,x) and y(z,x) obey the
canonical commutation (anticommutation) relations:

[(1.%), 0,2 (1.y)] = i6) (x —y),

(i (1, %), 0 (1, y)} = 6,6 (x —y).

(78)
(79)

Thus, the wave functions of Sec. III are properly normal-
ized and can be used for the calculation of decay
amplitudes.

The Lagrangian (77) is invariant under the discrete
transformation

w(x) = i’y w(-x).
(80)

X - —X, 7(x) = —x(—x),
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This transformation is the generalization of the usual parity
transformation, which takes into account the x-antisymmetry
of the domain wall. Later on, we shall need the properties of
the x-localized massive modes under transformation (80),
which we denote symbolically by P:

PY, . (1.x,py) = iy’ "%, ,(t,—x,py)
= (=)= (1%, =)
PYS ,(1.x.py) = (1) "W (1. x,—py),
Pyo(t,x, k) = —xo(t, X, =k,
Py (t,x.ky) = xi(t.x, k). (81)

Note that the massive modes at rest are the eigenfunctions of
transformation (80).

The Lagrangian (77) depends explicitly on the
x-coordinate, so the x-component of the total momentum
is not conserved in decays in the external field of the
domain wall. In this case, the S-matrix of a decay i — f is
written as [43]

Sy = i(2n)*8(E; — E;)6(Pp, = Piy)
x 8(Pp, = Pi.)T i, (82)

where Tj; is the corresponding decay amplitude. The
domain wall is invariant under the rotation about the
x-axis; therefore, the x-component J, of the total angular
momentum J is conserved for decays in the external field of
the domain wall.

A. Decays of the first excited fermionic mode

The existence of the first excited fermionic mode implies
that the parameter v is greater than 1. In this case, the
following decay channels are kinematically allowable:

f]—)fo+)(0 fOI’IJ>1,
fi—=>fot+y1 forv>2,
fi—=>fot+x forv>5/2, (83)

where f, and f; are fermions of the massless and first
excited modes, respectively, while y,, y;, and y, are
mesons of the massless, excited, and nonlocalized modes,
respectively. From Eq. (77) we obtain the general expres-
sion for the first-order S-matrix elements of a decay

fi—= frtxs
S = —ig / (X5 (1w X)dPxdr, (84)

where y; and y; are the wave functions of the initial and
final fermion, respectively, and y, is the wave function
of the final meson. From Egs. (82) and (84), we obtain the

expression for the first-order decay amplitude T;li)
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I . _
T(fi) — _g/;(f(t,x)y/f(t,x)u/i(t,x)dx. (85)

Note that in Eq. (85), the integration is performed over
the x-coordinate only, while the coordinates y, z, and time ¢
are set equal to zero. Now, let us consider three decay
channels (83) separately.

1. Decay channel f; — fo + x,

This decay channel corresponds to the transition of the
fermion from the first excited state to the massless state
with the emission of the massless meson. Let us denote the
four-momenta of the initial fermion, final fermion, and final
meson by p, p’, and K, respectively. Then we have in the
rest frame of the initial fermion
pP= (€ 1 0),

p'=(p)) K =(o=p)), (86)

where the particle energies are

. 7\/21/—1 €/fw/f\/2’/_1 (87)
= T 2w

and the absolute values of the final-state momenta p]l and
k| = —p) are equal to €. Note that the decay f, — fo + xo
is kinematically two dimensional, because all particles are
localized on the domain wall. Substituting Egs. (9), (59),
and (61) for the wave functions in Eq. (85), we obtain the
analytical expression of the decay amplitude

T, =(T.) = g\/%R(U) exp (i%), (88)

where ¢ is the azimuthal angle of the massless fermion, and
the factor R(v) is expressed in terms of beta functions:

R =2 (22) PRt )

8 \w-1 B(l.v)

(89)

The superscripts +1/2 in Eq. (88) indicate the polarization
states s, = +1/2 of the initial fermion that is in the first
excited state. From Egs. (88) and (89), we obtain the
analytical expressions for the differential and total decay
probabilities per unit time:

ar ¢ 5
dp 2w R(v)|%, (90)
F:g—;|R(y)|2. (91

From Eq. (90), it follows that the angular distribution of the
products of the decay f; — fo + xo is isotropic in the rest
frame of the initial fermion. From Egs. (89) and (91), it is
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possible to obtain the series expansions of the decay width
I" for the limiting regimes v — 1 and v — oo. Forv — 1, we
have

F=av=1)+mr-12+0(rv-1)3), (92)
where the series coefficients a; and a, are
a = iJrzgzw_l, (93)
512
3 5o 3
=— -1 N BE 4
I = e mGW (7 +w<2>> (94)

In Eq. (94), y = 0.577216 is the Euler-Mascheroni constant,
and y(3/2) = 0.03649 is the value of the digamma function
at 3/2. For v — oo, we obtain the following asymptotic
expression for the decay width I':

2
A3 31 31 1
r ( tg2tol5)) ©)

w\64 64v
2. Decay channel f{ — fo + x1
It can be shown that in this case, the first-order decay

amplitude T<1i) is equal to zero. Indeed, the first-order
amplitude for the decay f| — fo + y; is

Tl = —g / 21 e )W (. )W, (xpy ), (96)

where only the dependence on x is shown, while the y- and
z-coordinates are assumed to be equal to zero. Let the initial
massive fermion be at rest (p; = 0, pil = _kh); then, from
Eq. (81), it follows that the initial fermionic state with the
spin x-projection s, has the P-parity equal to (—1)%+1/2,
From Eq. (81), it also follows that Py, (x, k| ) = x1(x, k});
i.e., the wave function of the excited bosonic mode at
y =0, z =0 is the eigenfunction of transformation (80)
with the eigenvalue equal to 1. The wave function
Wo(x.pj) at y=0, z=0 is not an eigenfunction of
transformation (80), but it can be shown that

o (x, Py = w5 (x, ph) + Py (x, ph)? (97)
where
P! (x,p)) = £¥5" (x. p)).
1
5.5 (x,p)) = ii‘l‘%' (x. py)- (98)

Furthermore, the structure of the Yukawa interaction in
Eq. (96) is such that spin flip transitions are forbidden,
because ¥;!(x, p})¥y;(x.p}) and ‘I‘(')(x,ph)‘l‘_%,l(x, )
vanish identically. Putting all this together, we see that
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the first-order decay amplitude (96) changes the sign
under transformation (80), and so it must be equal to
zero. Mathematically, this means that the integrand of
Eq. (96) is an odd function of x; hence, the integral in
Eq. (96) vanishes.

3. Decay channel 1 — f + xx

The characteristic feature of the decay channel f; —
Sfo + xx is that the final meson is not localized on the
domain wall. Correspondingly, the three-momentum k’ of
the final meson has a component k) that is perpendicular
to the domain wall’s plane. Let us choose the angle 6
between the meson momentum k’ and the normal to the
domain wall’s plane as the independent kinematic variable.
We denote the four-momenta of the initial fermion, final
fermion, and final meson by p, p’, and k', respectively.
Then we have in the rest frame of the initial fermion

p=(en0). = (k)K= (@K,

(99)

where

Ky =w! <\/21/ — 1 —4cos?(0) sec()

-V - 1tan(0)>, (100)
2w —5—k?w?
€ =kl="—>= 101
| ”‘ 2wv2r — 1 (101)
2 k/2 2
,:3+ v+ W (102)

2wv2u — 1

Note that the x-projection of the total three-momentum is
not conserved in the decay f| — f, + yx Substituting
Egs. (11), (59), and (61) for the wave functions in
Eq. (85), we obtain the analytical expression for the
amplitude of the decay f; — fo + yi

1 + k?w?
4 4 k2w?

— iV3gexp <i9> : R(w k), (103)

2) 2

where ¢ is the azimuthal angle of the final meson in the
domain wall’s plane, and the factor R(v, k) can be written
compactly in terms of beta functions:
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R(v, k) =220 (3 + 4u(v - 2))

v—1_/3 1
2y—1B<§’V_§>
1 Kw 1 Kw
Blv—=—i— ——|. (104
X (1/ SISV =s 12> (104)

From Egs. (103) and (104), we obtain expressions for the
differential probabilities of the decay f| — f, + yi per unit
time:

dr 92 1+ k2w (2v — 5 — K2w?)
dk'.dg T8 4+ K2wH)(2v = 1)
x |R(v, k)|, (105)
k/
_dr. — _dr | dk; , (106)
dide  dk.de| do
where
dk/ €1k’
== — = . 107
do L+ (@'/2) sin (26) (107)
From Egs. (104)—(107), it follows that dI'/dk.dp is

invariant under the change k), — —k/ and that dI'/dOd¢
is invariant under the change @ — x — 6. Thus, the angular
distribution of the final meson y, is invariant under the
reflection about the domain wall’s plane. This is because
the Lagrangian (77) is invariant under parity transformation
(80) and under a rotation about the x-axis.

Figure 1 shows the dependence of the dimensionless
combination wg=2dI"/dfdg on the polar angle 6 of the
final meson y, for several values of the parameter v. The
dependence is presented in the polar coordinates p =
wg~2dl’/dfdgp and 6. The right (left) parts of the curves
in Fig. 1 correspond to the azimuthal angle ¢ (¢ + 7),
where the value of ¢ can be chosen arbitrarily because of
the azimuthal isotropy of dI'/dOd¢. From Fig. 1, it follows
that dI"/d@dg increases rapidly for all values of € as the
parameter v increases, with the exception of § =0, 7 at
which dI'/dOdg vanishes. This is because dI'/dOdy
contains the factor |kj| that vanishes at 6 =0, 7. Note
that in line with the above dl'/d@dg is even under the
reflection about the domain wall’s plane.

Unfortunately, the decay width I' = [ (dI'/d@dg)dody
cannot be calculated analytically for an arbitrary u.
Instead, it is possible to obtain the series expansions of
I'(v) with respect to v for two asymptotic regimes. For
6 =v-5/2 — 0, we have the following series expansion:

P 16f
w2025 3

( +(115+(1252+ 0(53)> (108)

where the series coefficients a; and a, are
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1.5x107*

FIG. 1. combination

Dependence of the dimensionless
wg~2dT"/dfdgp on the polar angle @ of the final meson y,. The
dependence is presented in polar coordinates p = wg™>dI"/d@dgp
and 6. The dotted, dash-dot-dotted, dash-dotted, dashed, and
solid curves correspond to the parameter v = 3, 3.5, 4, 4.5, and 5,
respectively.

43 7?
=——— " +1n(256) ~ 0.916191 1
a 0 3O+n( 56) ~0.916191,  (109)
20(3) 30683 — 110972
= 81n%(4
©="5 55 8@
2
T (129 + %) In(4) ~ —0.414373. (110)

For v — oo, the asymptotic expansion of the decay width I
has the form

I~ %2 (Bt + o+ P+ +0(),  (111)
where the expansion coefficients are
By = % ~0.0158091,
fo=—P_ = _63_4 —0.046875,
By :%zo.omzm (112)

Figure 2 presents the dependence of the dimensionless
combination wI'/g> on the parameter v. The dependence
was obtained numerically. From Fig. 2, it follows that I'(v)
is the monotonically increasing function of v. Note that the

065003-12



DECAYS OF BOSONIC AND FERMIONIC MODES ON A ...
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FIG. 2. Dependence of the dimensionless combination wI'/g?
on the parameter v for the decay f| — fy + 1«

behavior of I'(v) near the left boundary point v =15/2
and when v > 1 corresponds to Eqs. (108) and (111),
respectively.

B. Decays of the excited bosonic mode

From Eq. (77), it follows that a decay of the excited
bosonic mode can be either bosonic or fermionic. The
bosonic decays are

X1 = Xo+ Xo

X1 = Xo+Xo+ Xo (113)
where y, and y; are mesons of the massless and excited
modes, respectively. The bosonic decays are kinematically
allowable for any values of the model parameters. The
fermionic decays are of the annihilation type y; — f,+
f», where f, and f, are some fermion and antifermion,
respectively, in a final state. It is easily shown that the
kinematically allowable fermionic decays of the excited
bosonic mode are only

){1—>f()+]_c() for v > 0,
x1 = fo+ f1. xi = fot+f1 forve(1,2),
)(1_)f0+.]_[pv )(1_)J_E0+fp fOI‘l/E(O,\/g),

= fot+f, forve(0,v3/2), (114)
where f, (]_‘p) denotes the nonlocalized fermion (antifer-
mion). All other fermionic channels of the decay are
forbidden kinematically. Now, let us consider decay chan-
nels (113) and (114). Since the Lagrangian (77) is invariant
under the charge conjugation, we consider only one decay
for each of the two charge-conjugate pairs of decays
in Eq. (114).
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1. Decay channel y1 — x¢ + xo

We denote the four-momenta of the initial meson and the
final mesons by &, k', and k”, respectively. Then we have in
the center-of-mass frame

k= (0.0, K=(.k), K="k,

(115)

where the energies of the particles are

, (116)

and the absolute values of the final-state momenta k| and
k| = —k| are equal to @'. The expression of the first-order
amplitude for the decay is

' = —62 / o ()78 06, K (=K )71 (3, 0)

3747 1
32wy’

(117)

where we use Egs. (7), (9), and (10) for the wall solution
¢, the wave function of the massless bosonic mode y, and
the wave function of the excited bosonic mode yi,
respectively. From Eq. (117), we obtain expressions for
the differential and total decay probabilities per unit time:

dal 8lz 1

== 118

dp 8192w3y? (118)
1817% 1

= 24096 Wiy (119)

where ¢ is the azimuth angle of the massless meson.
The factor 1/2 in Eq. (119) takes into account the identity
of the two final mesons.

2. Decay channel y1 — xo +x0 + Xo
It is easily shown that the amplitude of this decay

vanishes to the first order in the coupling constant A.
Indeed, the expression of the first-order amplitude is

T;ll.) = —6/1/)((’3(x,k’))(8(x, K" )y (x, K" )y (x,0)dx.

(120)

From Egs. (9), (10), and (81), it follows that the first-order
decay amplitude (120) changes the sign under transforma-
tion (80); hence, it must be equal to zero. Indeed, the
integrand of Eq. (120) is an odd function of x, so integral
(120) vanishes.
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3. Decay channel y; — fo +fo

The first-order amplitude of the decay y; — f, + fo is
written as

1 N7 c
) = =g [ Bl p¥5x-pia(0)dx, (121)

where p; and pj = —p| are the momenta of the final
fermion and antifermion in the center-of-mass frame.
However, it follows from Eq. (64) that the product
Py (x, p)¥5(x, —p|) vanishes identically, and so the
first-order amplitude (121) does as well.

4. Decay channel y, — fo +f1

This channel is connected to the channel f; — f, + x;
by the crossing transformation. It was shown in Sec. [VA 2
that the first-order amplitude of the decay f; — fo + 13
vanishes, because the amplitude changes the sign under
parity transformation (80). Similarly, it can be shown that
the first-order amplitude of the decay y; — fo + fi
changes the sign under parity transformation (80); hence,
it must be equal to zero. Indeed, the corresponding
integrand is an odd function of x again, and the first-order
amplitude of the decay y; — f, + f, vanishes.

5. Decay channel x; — fo + [,

In this channel, the final massive fermion is not localized
on the domain wall, and its three-momentum has a
component that is perpendicular to the domain wall’s
plane. We denote the four-momenta of the initial meson,
the final fermion, and the final antifermion by %, p’, and p”,
respectively, and choose the angle @ between the fermion
three-momentum p’ and the normal to the domain wall’s
plane as the independent kinematic variable. Then, we have
in the rest frame of the initial meson

k= (V3/w,0),  p' = (. pL.p))
p" = (¢".—p)) (122)
where
p=w! ( 3 — v2cos?(0) sec(8) — ﬁtan(@)),
3 2 2 3 — 2 _ 2
ST TR e =22 ()
2\/§w 2\/§w

and u = w|p’|. From Eq. (123), it follows that the kinemat-
ically allowable domain of the parameter v is (0, v/3).

Let us discuss the question about the wave functions of
the final nonlocalized fermion f,, which must be used for
the calculation of the decay amplitudes. In this connection,
we must remember the bremsstrahlung and the pair creation
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in a Coulomb field of a heavy nucleus. It is known [43] that
at large distances from the nucleus, wave functions of final
fermions (electrons) must be the superposition of a plane
wave and an ingoing spherical wave, where the amplitude
of the plane wave must be normalized so that the number of
electrons per unit volume is equal to unity. At the same
time, the wave functions of the nonlocalized fermionic
modes (Sec. IIIB 1) are the superposition of the one
(incident) plane wave moving to the domain wall and
the two (transmitted and reflected) plane waves moving
from the domain wall. Therefore, in our case, the wave
function of the final fermion f, must be the superposition
of the two plane waves (reversed transmitted and reversed
reflected) moving o the domain wall and the one plane
wave (reversed incident) moving from the domain wall. It
can be shown that these reversed wave functions are
obtained from those of Sec. Il B 1 by changing y — —pu
(which is equivalent to changing |py| — —|p’|, because
u = w|p’]). From Egs. (40) and (41), it follows that these
reversed wave functions are normalized so that the number
of the fermions moving from the domain wall per unit
volume is equal to unity at large distances, just as it
should be.

The first-order amplitude of the decay y; — fo + f,, is
written as

m:w/%mﬁuw%mwwmmm

(124)

where the index d is [ or r, and s, = £1/2 defines the spin
state of the final fermion f,. Substituting Egs. (10), (38),
and (62) for the wave functions in Eq. (124), we obtain
expressions for the decay amplitudes:

T, =T; = N(v.p)F(v.u)exp (—is.p), (125)

where ¢ is the azimuthal angle of the momentum pil lying
in the domain wall’s plane. Note that the index [/ (r) in
Eq. (125) now corresponds to the outgoing plane wave that
moved to the right (left) from the domain wall. The factor
N(v,u) in Eq. (125) can be written analytically as

g 3z uT(uv) :
Nwk) = =4 [oB(1/2,2) sinb () - T 71

x exp [i(v, 1)),

(126)

where 7 (u,v) is the transmission coefficient (43), vy =
[p|/¢€’ is the component of the velocity of the final fermion

lying in the domain wall’s plane, and the phase x(v, u) is
k(v,u) = arctan (v/u) — 2arg [['(v + ip)]. (127)

The form factor F(v,u) is expressed by the following
integral:
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Flv ) = w /_ : sech?*% (&) sinh(&) P, (tanh(£))dé.
(128)

This integral cannot be evaluated analytically for arbitrary
values of v and p, but using properties of the associated
Legendre functions [37], we can determine some general
properties of the form factor F:

F(v,—pu) = F(v,u)" = Im[F(v,0)] =0,

F(0,0) = F(1,0) = 0. (129)
When the parameter v tends to the limiting value /3, the
form factor F also tends to the real limiting value:

F(v, u) —> const ~ 0.416833w.

v>V3

(130)

Using Egs. (125), (126), and (128), we obtain expres-
sions for the differential probabilities of the decay per unit
time:

dr 2 we'e”
= N(v, p) || F(v, ) |? , 131
= e NP (13
/
AU _ _dU\dpy| (132)
dody dplde| do

The factor of 2 in Eq. (131) arises because the two
amplitudes 7', /» contribute to decays for which pe >0,
while the two other amplitudes 77, P contribute to decays
for which p < 0. The kinematic factors of Egs. (131)
and (132) can be expressed compactly in terms of the
parameters v and pu:

e = 9- (Vz +M2)
2w?
dpy _ pt+ (@2 =3 +24°( +3)
—_ YT (133)
do 2V3w(3 + p? = 1?)

From Egs. (126)-(129), it follows that dU'/dpde is
invariant under the change p, — —p’, and that dI"/dOd¢
is invariant under the change @ — 7 — 6. Thus, the angular
distribution of the final fermion f, is invariant under the
reflection about the domain wall. This fact is the conse-
quence of the invariance of Lagrangian (77) under parity
transformation (80) and under a rotation about the x-axis.

In Fig. 3, we can see the dependence of the dimension-
less combination wg~2dI'/dfdp on the fermion polar
angle 0. The dependence is presented in polar coordinates
p =wg2dl'/dOdgp and 0, as it is in Fig. 1. The curves in
Fig. 3 are symmetric under the reflection about the domain
wall’s plane, as with those in Fig. 1. Yet unlike the curves
in Fig. 1, the curves in Fig. 3 pass through the origin of
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FIG. 3. Dependence of the dimensionless combination
wg~2dl’/dfdgp on the polar angle @ of the final fermion fp
The dependence is presented in polar coordinates p =
wg~2dl'/dfdp and 6. The solid, dashed, dash-dotted, dash-
dot-dotted, and dotted curves correspond to the parameter
v =0.075, 0.15, 0.4, 0.7, and 1, respectively.

the coordinates not only at € = 0, z but also at § = z/2.
Thus, the three-momentum of the final fermion f, cannot
lie in the domain wall’s plane. Note in this connection that
Eq. (131) for dI'/dp.dg contains the factors €’ = [pj|,
T (u,v), and |F(v,pu)|*. The reason for the vanishing of
dl'/dp'dep at0 = 0, z is that the factor [pj| also vanishes at
0 = 0, x. Further, when the polar angle 6 is equal to z/2,
the parameter u = w|p}| is equal to zero. If g =0 and
v # 1, then the transition coefficient 7 (0,v) vanishes. If
u =0 and v = 1, then from Eq. (129) it follows that the
form factor F(1,0) vanishes. Thus, we conclude that
dU/dp'.de must vanish at 0 = 7 /2.

The decay width T' = [ (dI'/dOd¢)dfd¢ cannot be
calculated analytically for any v, but it can be obtained
numerically. Figure 4 shows the dependence of the dimen-
sionless combination wI'/¢g?> on the parameter v in the
kinematically allowable domain (0, \/§) From Fig. 4, it
follows that I'(v) vanishes as v tends to the boundary points
0 or v/3. In particular, it is found numerically that

wgT(v) ~0.046v as v —0 (134)
and
wg T (v) ~ 0.043(v — \/§)% as v— V3. (135)

Note that I'(v) vanishes as v — 0, in spite of the fact that the
phase volume of the decay y, — f,+ fp reaches a

065003-15



A. YU. LOGINOV
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FIG. 4. Dependence of the dimensionless combination wI'/g?
on the parameter v for the decay y; — fo + S

maximum value at this point. This is because the factor
|N(v, u)|* in Eq. (131) contains the factor B(1/2,2)~! that
vanishes as v tends to zero. The factor B(1/2,v)~! arises
from the massless mode’s normalization constant A,
[Eq. (70)] that also vanishes as v tends to zero. This is
because the massless fermionic and antifermionic modes
(61) and (62) spread over the x-axis as the parameter v
tends to zero. Another characteristic feature of the depend-
ence in Fig. 4 is the presence of the cusp at v = 1. This is
because the transmission coefficient 7 (u,v) in Eq. (126)
has nonregular behavior [Eqs. (46)-(49)] asv — 1, u — 0.

6. Decay channel y, - f,, +f p

In this channel, both final particles are not localized on
the domain wall. We denote the four-momenta of the initial
meson, the final fermion, and the final antifermion by k, p’,
and p”, respectively, and choose the perpendicular com-
ponents p’ and p’ as the independent kinematic variables.
Then, we have in the rest frame of the initial meson

k= (V3w 0). = (. plp)).
p" = (", pk,—p)) (136)
where
1 i
9 6 2 + 2 + ” _ //2 121/ 3
|P|| | = \/§ [ (u H2) + (u? = ") = I,
(137)

w = w|pl|, and u” = w|p!|. From Eq. (137), it follows that
the kinematically allowable domain of the parameter v
is (0,4/3/2).

The first-order amplitude of the decay y; — f,, + ]_”p is
written as

PHYSICAL REVIEW D 95, 065003 (2017)

g/‘i’i(x,—lp;, ’

X W (x, —| pl], —p )1 (x, 0)dx.

T d' d’

///—

(138)

Substituting Egs. (10), (38), and (53) for the wave functions
in Eq. (138), we obtain expressions for the decay
amplitudes:

\A/ +A” 1]
2

Tﬁfsi, =T, = (-1)~ exp (—
7 (=1)%Hs

V(I+2)(1+77)

x [exp (iarctan (v/u'))F (v, y", pt')

i(s + s¥)¢")

N(.p'.u")

+ (=) o ], (139)
T, = T4, = (=1)"7 exp (=i(s} + 51
7" + (_l)s;-q-s;’
X ) ) N’ u")
VI +2) (1 +77)
x [exp (i arctan (v/u'))H (v, ", i)
+ (1) < ] (140)

where ¢’ is the azimuthal angle of the momentum pj, the
factor N (v, ', p4") is

KT (W E'T (" v)
sinh (zy') sinh (")

N i u") = 3in? { T, (141)

and the parameters 7 and 7" are defined in terms of the
velocities v = |py|/¢’ and v = [p}|/€":

1+ v”

\/ 1 - vil

The form factors F (v, u”,u') and H(v, 4", ') in Egs. (139)
and (140) can be written as

1+v

e (142)

Flu, i @) = w /_ ” sinh(&)sech? (&)

[Se]

X[ p O fv=1.u",8)ds,  (143)
H(, /' y") = w/oo sinh(&)sech?(¢)
X fup E)h(v—1.u".5)dE, (144)

where the functions f(a, b, &) and h(a, b, &) are
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fla,b,&) = cos (na) [P;”’(tanh(f))

—%tan(na)Q l”(tanh(tf))} (145)

h(a, b, &) = cosh (zb) [P;””(tanh(f))
+ iitanh(ﬂb)Q;”’(tanh(f))] . (146)

Some general properties of the form factors F and H are

F(I/, —ﬂ/, _ﬂ//) — F(I/,/l/,ll”)*,
H(l/, —,u/, _M//) — H(l/, Ml,/«t”)*,
F(0,0,0) = H(0,0,0) = 0. (147)

When the parameter v tends to the limiting value v/3/2,
the form factors F' and H also tend to their real limiting
values:

F(v, i/, u") — const ~ 2.18859w,

v—/3/2

H(v,u',u") —> const = 2.08196w. (148)

v—/3/2

From Egs. (139) and (140), it follows that the decay
amplitudes satisfy the following symmetry relations:

T4 ' ) = (=1 TEE W ) g + 7], (149)
Td,d,,b/ o' szg_S;,[—ﬂ’,—,u”,go’—l—ﬂ], (150)

where the indices ¢’ and d" are [ or r, [ = r, 7 = [, and the
dependence of the amplitudes on the kinematic variables is
explicitly shown. Note that Eqs. (149) and (150) are the
consequences of the P-invariance and the T-invariance of
Lagrangian (77), respectively.

We now have all the necessary ingredients to obtain the
expression for the differential probability of the decay per
unit time:

dar 1 wee”

T2, 151
dp.dpldy ~— (2x)] \/§| | (151

where

(152)

=Tt P =T P

S, s% S, S

for pi.p! > 0, and
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TP =N = S, (1Y)

S, s% St

for p\.p’ < 0. Using Eq. (151), we obtain the angular
distribution of the final fermion f:

dr‘ ;C/m'])( dI_‘ d/
/,, [P ap, (154)

do'dg’ ~ J_,  dpldpldy' o’

where p .« =w (3 - 2\51/)%, and the kinematic factor
dp'./d@' can be written as

dp| |
L E—C
do sin?(@') + 371/2we” cos? (')

Of course, the angular distribution of the final antifermion
J_‘p coincides with that of the final fermion f7, because of the
C-invariance of Lagrangian (77). From Egs. (139)—(155), it
follows that dT'/dp’.d p "dg¢’ is invariant under the changes
p = —=p., pl— —pl!, and that dU'/d0'd¢" is invariant
under the change 8 - 7 — 6. We see that as in the
previous cases, the angular distribution of the final fermion
Jfp (antifermion fp) is invariant under the reflection about
the domain wall’s plane.

Figure 5 shows the dependence of the dimensionless
combination wg=2dI"/d@ d¢' on the fermion polar angle €'
We see that the curves in Fig. 5 are similar to those in Fig. 3.

FIG. 5. Dependence of the dimensionless combination
wg~2dl’/df'dy’ on the polar angle & of the final fermion f,,.
The dependence is presented in polar coordinates p =
wg~2dl'/d@'dg’ and €. The solid, dashed, dash-dotted, dash-
dot-dotted, and dotted curves correspond to the parameter
v=20.1, 0.2, 0.3, 0.4, and 0.5, respectively.
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FIG. 6. Dependence of the dimensionless combination wI'/g?
on the parameter v for the decay y; — f, + ]_”p.

The vanishing of dI'/d@'d¢’ at & = z/2 (i.e., at 4’ = 0)
is due to the vanishing of the transition coefficient 7 (v, u’)
at 4/ = 0. The reason for the vanishing of dI'/df'd¢’ at
¢ =0, = (ie., at [py| =0) is that the kinematic factor
dp,/d¢' vanishes at |p|| = 0.

The decay width I' = [(d'/d0'dg')d0'dy’ can be
obtained from Eq. (154) by numerical methods. Figure 6
presents the dependence of the dimensionless combination
wI'/g? on the parameter v in the kinematically allowable
domain (0,1/3/2). We see that the decay width I'(v)
vanishes as v tends to the right boundary point /3/2.
But unlike the decay width I'(v) in Fig. 4, the decay width
I'(v) in Fig. 6 does not vanish as v tends to zero, because
the massless mode’s suppression is absent in this case.
It was found numerically that

wg T (v) # 0.025-0.09v as v—0, (156)
and
333 3
wg T(v) ~ 1.335 (z/ - g) as v— % (157)

V. CONCLUSIONS

In the present paper, the decays of excited bosonic and
fermionic modes on the domain wall have been inves-
tigated. Certain analytical and numerical results were
obtained. In particular, the analytical expressions of the
wave functions of the excited localized fermionic modes
were obtained, as well as those of the nonlocalized
fermionic modes. The analytical expressions of the reflec-
tion and transmission coefficients were obtained for fer-
mion scattering from the domain wall. For certain decay
channels, analytical expressions of the amplitudes, angular
distributions, and decay widths were found. The widths of
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the decays f = fo +xx1 = fo+ fp.andy; = fy + /)
were obtained numerically.

To obtain these results, a number of approximations were
used. The bosonic wave functions of Sec. III A were obtained
in the weak coupling approximation 4 < 1. The fermionic
wave functions of Sec. III B were obtained within the external
field approximation in which we neglect the backreaction of
the fermions on the domain wall. The condition for the
validity of this approximation is the smallness of the Yukawa
coupling constant: g < 1. Finally, the decay amplitudes were
calculated at the first order in the coupling constant g and 4;
this fact also requires the fulfillment of the conditions g < 1
and A < 1. Note thatas 1 < 1 and g < 1, the dimensionless
combination v = gwy = v/2¢/+/A can, in principle, have an
arbitrary value.

Two-body scattering of mesons and fermions on the
domain wall can also be studied, as well as fermion-
antifermion annihilation. This requires the analytical
expressions for the mesonic and fermionic propagators
in the external field of the domain wall. The analytical
expression can be obtained for the mesonic propagator,
while we were unable to obtain the analytical expression for
the fermionic propagator.

The domain wall (antiwall) is the (3 4 1)-dimensional
analog of the (1 + 1)-dimensional kink (antikink). It is well
known [13,15] that the kink possesses bosonic and fer-
mionic zero modes. The massless bosonic and massless
fermionic modes living on the domain wall are the (3 + 1)-
dimensional analogs of the kink’s zero modes.

The bosonic zero mode of the (1 + 1)-dimensional kink
is an isolated normalizable eigenfunction with a zero
eigenvalue. Unlike other bosonic modes of the kink that
are vibrational modes, the bosonic zero mode is a trans-
lational mode. This is because the kink breaks the trans-
lational symmetry of the model’s Lagrangian. The
excitation of this mode does not lead to an increase of
the kink’s mass, but rather to a relativistic increase of the
kink’s kinetic energy [34,44]. The presence of the isolated
normalizable zero mode in the spectrum of bosonic
fluctuations leads to technical difficulties in the calculation
of high-order quantum corrections to the kink’s mass
[44,45]. Unlike the kink, the domain wall has no normal-
ized bosonic modes that are isolated in the functional space.
Instead, the massless bosonic modes living on the domain
wall are the family of the eigenfunctions that are contin-
uously parametrized by the two-dimensional momentum
k. These modes are not normalized in the ordinary sense,
but instead are normalized to (27)?(2w)~'6 (k) — ki).
Unlike the kink’s zero mode, the domain wall’s massless
modes are vibrational; i.e., the excitation of these modes
leads to an increase of the energy in the rest frame of the
domain wall. The domain wall’s massless modes become
the zero mode in the limit k;; — 0. Note that the domain
wall’s zero mode is the lower limit of the continuum of
eigenvalues, while the kink’s zero mode is the term of the
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discrete spectrum of eigenvalues. Unlike the kink’s zero
mode, the domain wall’s zero mode cannot be excited
physically, because the (3 + 1)-dimensional domain wall
has infinite mass.

It was shown in Refs. [13,15] that the (14 1)-
dimensional kink has exactly one fermionic zero mode
that can be normalized to unity. This mode is invariant
under the charge conjugation. These properties of the
kink’s fermionic zero mode lead to the fractionalization
of the fermionic charge of the kink-fermion system [15].
In contrast to the kink, the domain wall has no normal-
ized fermionic modes that are isolated in the functional
space from other fermionic modes. Instead, there are two
families (i.e., the massless fermionic and massless anti-
fermionic modes) that are continuously parametrized by
the two-dimensional momentum p;. These modes are
not normalized to unity, but instead are normalized to
(27)?6*(p; — pj). Of course, the massless fermionic
and massless antifermionic modes are not invariant under
the charge conjugation, but instead the two families of
the massless modes are related to each other by charge
conjugation (62). These massless modes become zero
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modes [Eq. (68)] in the limit py — 0. The two linear
combinations 27V/2(¥] +¥;) and 27V/2(¥§ — ¥;) can
be formed from these zero modes. One of them is
invariant under the charge conjugation, while the other
changes the sign. However, the presence of the zero
modes does not lead to a degeneracy of the ground state
of the domain wall. This is because these zero modes
are part of the continuous spectrum of the Dirac
Hamiltonian. Therefore, the fermion cannot have an
energy that is exactly equal to zero. Instead, the fer-
mion’s energy is in the range (0,¢), where ¢ can be
arbitrarily small, but not equal to zero. Hence, interaction
with the fermions does not lead to degeneracy of the
domain wall’s ground state.
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