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Preface

The FOPARA1 workshop serves as a forum for presenting original research re-
sults that are relevant to the analysis of resource (time, space) consumption by
computer programs. FOPARA aims to bring together the researchers that work
on foundational issues with the researchers that focus more on practical results.
Therefore, both theoretical and practical contributions have been encouraged.
The contributions cover the following topics: resource analysis for embedded sys-
tems, logical and machine-independent characterisations of complexity classes,
logics closely related to complexity classes, type systems for controlling complex-
ity, semantic methods to analyse resources, incl. quasi- and sup-interpretations,
practical applications of resource analysis, etc. After the workshop the program
committee will select papers for final proceedings. These final proceedings will
be published by Springer in a volume of the Lecture Notes in Computer Science
series.

Up to now, a few similar events have taken place. In 2006 and 2008 application-
oriented resource analysis workshops (an EmBounded Open Workshop in Bu-
dapest, 2006, and a Resource Analysis Workshop in Hertfordshire, 2008) were
held as affiliated events of International Symposium on the Implementation and
Application of Functional Languages (IFL) . Participators of these workshops
were the University of St. Andrew (UK), Heriot-Watt University of Edinburgh
(UK), Ludwig-Maximilians University of Munich (Germany), University Com-
plutense of Madrid (Spain) and the Polytechnical University of Madrid (Spain).
Another group of researchers were active in the series of workshops on Im-
plicit Computational Complexity, see, for instance, WICC’08 in Paris. That
series gathers researchers working in theoretical foundations of resource anal-
ysis, mainly from in France (Universities of Paris Diderot and Paris Nord, LO-
RIA Nancy), Italy (Universities of Bologna and Turin), Norway, Germany and
Portugal.

FOPARA aims to bring together these various directions in resource analy-
sis addressing a larger resource analysis community. FOPARA wants to enable
fruitful exchange of ideas between more practical and more theoretical groups.
We are happy that FOPARA has indeed a program with a significant number of
contributions from both the more practically oriented and the more theoretically
oriented research groups. We wish everyone a very inspiring workshop. We say
to all of you: ”Have a nice FOPARA!”.

October 2009 Marko van Eekelen, Program Chair
Olha Shkaravska, Program Co-Chair

FOPARA’09

1 The FOPARA workshop is partly funded by the AHA project which is sponsored
by the Netherlands Organisation for Scientific Research (NWO) under grant nr.
612.063.511 and the EU Artemis funded CHARTER project (nr. 100039).
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The Reachability-Bound Problem

Sumit Gulwani, Microsoft Research. Invited talk.

The ”reachability-bound problem” is the problem of finding a symbolic worst-
case bound on the number of times a given control location inside a procedure is
visited in terms of the inputs to that procedure. This has applications in bound-
ing resources consumed by a program such as time, memory, network-traffic,
power, as well as estimating quantitative properties (as opposed to boolean prop-
erties) of data in programs, such as amount of information leakage or uncertainty
propagation.

Our approach to solving the reachability-bound problem brings together two
very different techniques for reasoning about loops in an effective manner. One
of these techniques is an abstract-interpretation based iterative technique for
computing precise disjunctive invariants (to summarize nested loops). The other
technique is a non-iterative proof-rules based technique (for loop bound compu-
tation) that takes over the role of doing inductive reasoning, while deriving its
power from use of SMT solvers to reason about abstract loop-free fragments.

We have implemented our solution to the reachability-bound problem in a
tool called SPEED, which computes symbolic computational complexity bounds
for procedures in .Net code-bases.



A Space Consumption Analysis By Abstract
Interpretation ?

Manuel Montenegro, Ricardo Peña and Clara Segura
montenegro@fdi.ucm.es {ricardo,csegura}@sip.ucm.es

Universidad Complutense de Madrid, Spain

Abstract. Safe is a first-order functional language with an implicit
region-based memory system and explicit destruction of heap cells. Its
static analysis for inferring regions, and a type system guaranteeing the
absence of dangling pointers have been presented elsewhere.
In this paper we present a new analysis aimed at inferring upper bounds
for heap and stack consumption. It is based on abstract interpretation,
being the abstract domain the set of all n-ary monotonic functions from
real non-negative numbers to a real non-negative result. This domain
turns out to be a complete lattice under the usualv relation on functions.
Our interpretation is monotonic in this domain and the solution we seek
is the least fixpoint of the interpretation.
We first explain the abstract domain and some correctness properties
of the interpretation rules with respect to the language semantics, then
present the inference algorithms for recursive functions, and finally illus-
trate the approach with the upper bounds obtained by our implementa-
tion for some case studies.

1 Introduction

The first-order functional language Safe has been developed in the last few years
as a research platform for analysing and formally certifying two properties of pro-
grams related to memory management: absence of dangling pointers and having
an upper bound to memory consumption. Two features make Safe different from
conventional functional languages: (a) a region based memory management sys-
tem which does not need a garbage collector; and (b) a programmer may ask for
explicit destruction of memory cells, so that they could be reused by the program.
These characteristics, together with the above certified properties, make Safe
useful for programming small devices where memory requirements are rather
strict and where garbage collectors are a burden in service availability.

The Safe compiler is equipped with a battery of static analyses which infer
such properties [12, 13, 10]. These analyses are carried out on an intermediate
language called Core-Safe explained below. We have developed a resource-aware
operational semantics of Core-Safe [11] producing not only values but also exact
figures on the heap and stack consumption of a particular running. The code
generation phases have been certified in a proof assistant [5, 4], so that there is
? Work partially funded by the projects TIN2008-06622-C03-01/TIN (STAMP), S-

0505/ TIC/ 0407 (PROMESAS) and the MEC FPU grant AP2006-02154.
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a formal guarantee that the object code actually executed in the target machine
(the JVM [9]) will exactly consume the figures predicted by the semantics.

Regions are dynamically allocated and deallocated. The compiler ‘knows’
which data lives in each region. Thanks to that, it can compute an upper bound
to the space consumption of every region and so and upper bound to the total
heap consumption. Adding to this a stack consumption analysis would result in
having an upper bound to the total memory needs of a program.

In this work we present a static analysis aimed at inferring upper bounds
for individual Safe functions, for expressions, and for the whole program. These
have the form of n-ary mathematical functions relating the input argument sizes
to the heap and stack consumption made by a Safe function, and include as
particular cases multivariate polynomials of any degree. Given the complexity
of the inference problem, even for a first-order language like Safe, we have iden-
tified three separate aspects which can be independently studied and solved:
(1) Having an upper bound on the size of the call-tree deployed at runtime by
each recursive Safe function; (2) Having upper bounds on the sizes of all the
expressions of a recursive Safe function. These are defined as the number of cells
needed by the normal form of the expression; and (3) Given the above, having
an inference algorithm to get upper bounds for the stack and heap consumption
of a recursive Safe function.

Several approaches to solve (1) and (2) have been proposed in the literature
(see the Related Work section). We have obtained promising results for them by
using rewriting systems termination proofs [10]. In case of success, these tools
return multivariate polynomials of any degree as solutions. This work presents a
possible solution to (3) by using abstract interpretation. It should be considered
as a proof-of-concept paper: we investigate how good the upper bounds obtained
by the approach are, provided we have the best possible solutions for problems
(1) and (2). In the case studies presented below, we have introduced by hand
the bounds to the call-tree and to the expression sizes.

The abstract domain is the set of all monotonic, non-negative, n-ary functions
having real number arguments and real number result. This infinite domain is a
complete lattice, and the interpretation is monotonic in the domain. So, fixpoints
are the solutions we seek for the memory needs of a recursive Safe function. An
interesting feature of our interpretation is that we usually start with an over-
approximation of the fixpoint, but we can obtain tighter and tighter safe upper
bounds just by iterating the interpretation any desired number of times.

The plan of the paper is as follows: Section 2 gives a brief description of our
language; Section 3 introduces the abstract domain; Sections 4 and 5 give the
abstract interpretation rules and some proof sketches about their correctness,
while Section 6 is devoted to our inference algorithms for recursive functions; in
Section 7 we apply them to some case studies, and finally in Section 8 we give
some account on related and future work.

2 Safe in a Nutshell

Safe is polymorphic and has a syntax similar to that of (first-order) Haskell. In
Full-Safe in which programs are written, regions are implicit. These are inferred

2
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when Full-Safe is desugared into Core-Safe [13]. The allocation and deallocation
of regions is bound to function calls: a working region called self is allocated
when entering the call and deallocated when exiting it. So, at any execution
point only a small number of regions, kept in an invocation stack, are alive. The
data structures built at self will die at function termination, as the following
treesort algorithm shows:

treesort xs = inorder (mkTree xs)

First, the original list xs is used to build a search tree by applying function
mkTree (not shown). The tree is traversed in inorder to produce the sorted list.
The tree is not part of the result of the function, so it will be built in the working
region and will die when the treesort function returns. The Core-Safe version
of treesort showing the inferred type and regions is the following:

treesort :: [a] @ rho1 -> rho2 -> [a] @ rho2

treesort xs @ r = let t = mkTree xs @ self

in inorder t @ r

Variable r of type rho2 is an additional argument in which treesort receives
the region where the output list should be built. This is passed to the inorder

function. However self is passed to mkTree to instruct it that the intermediate
tree should be built in treesort’s self region.

Data structures can also be destroyed by using a destructive pattern match-
ing, denoted by !, or by a case! expression, which deallocates the cell correspond-
ing to the outermost constructor. Using recursion, the recursive portions of the
whole data structure may be deallocated. As an example, we show a Full-Safe
insertion function in an ordered list, which reuses the argument list’s spine:

insertD x []! = x : []

insertD x (y:ys)! | x <= y = x : y : ys!

| x > y = y : insertD x ys!

Expression ys! means that the substructure pointed to by ys in the heap is
reused. The following is the (abbreviated) Core-Safe typed version:

insertD :: Int -> [Int]! @ rho -> rho -> [Int] @ rho
insertD x ys @ r = case! ys of

[] -> let zs = [] @ r in let us = (x:zs) @ r in us
y:yy -> let b = x <= y in case b of

True -> let ys1 = (let yy1 = yy! in let as = (y:yy1) @ r in as) in
let rs1 = (x:ys1) @ r in rs1

False -> let ys2 = (let yy2 = yy! in insertD x yy2 @ r) in
let rs2 = (y:ys2) @ r in rs2

This function will run in constant heap space since, at each call, a cell is destroyed
while a new one is allocated at region r by the (:) constructor. Only when the
new element finds its place a new cell is allocated in the heap.

In Fig. 1 we show two Core-Safe big-step semantic rules in which a resource
vector is obtained as a side effect of evaluating an expression. A judgement has
the form E ` h, k, td , e ⇓ h′, k, v, (δ,m, s) meaning that expression e is evaluated
in an environment E using the td topmost positions in the stack, and in a heap
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E ` h, k, 0, e1 ⇓ h′, k, v1, (δ1,m1, s1)
E ] [x1 7→ v1] ` h′, k, td + 1, e2 ⇓ h′′, k, v, (δ2,m2, s2)

E ` h, k, td , let x1 = e1 in e2 ⇓ h′′, k, v, (δ1 + δ2,max{m1, |δ1|+m2},max{2 + s1, 1 + s2})
[Let1 ]

E x = p C = Cr E ] [xri 7→ vi
nr ] ` h, k, td+ nr, er ⇓ h′, k, v, (δ,m, s)

E ` h ] [p 7→ (j, C vi
n)], k, td , case! x of Ci xijni → ei

n ⇓ h′, k, v, (δ + [j 7→ −1],max{0,m− 1}, s+ nr)
[Case!]

Fig. 1. Two rules of the resource-aware operational semantics of Safe

(h, k) with 0..k active regions. As a result, a heap (h′, k) and a value v are
obtained, and a resource vector (δ,m, s) is consumed. A heap h is a mapping
between pointers and constructor cells (j, C vi

n), where j is the cell region. The
first component of the resource vector is a partial function δ : N→ Z giving for
each active region i the signed difference between the cells in the final and initial
heaps. A positive difference means that new cells have been created in this region.
A negative one, means that some cells have been destroyed. By dom(δ) we denote
the subset of N in which δ is defined. By |δ| we mean the sum

∑
n∈dom(δ) δ(n)

giving the total balance of cells. The remaining components m and s respectively
give the minimum number of fresh cells in the heap and of words in the stack
needed to successfully evaluate e. When e is the main expression, these figures
give us the total memory needs of a particular run of the Safe program. For a
full description of the semantics and the abstract machine see [11].

3 Function Signatures

A Core-Safe function is defined as a n+m argument expression:

f :: t1 → . . . tn → ρ1 → . . . ρm → t
f x1 · · ·xn @ r1 · · · rm = ef

A function may charge space costs to heap regions and to the stack. In general,
these costs depend on the sizes of the function arguments, where the size of a
term of an algebraic type is the number of cells of its recursive spine, the size of a
natural number is its value, and the size of a boolean value is zero. For example,

copy xs @ r = case xs of [] -> [] @ r

y:ys -> let zs = copy ys @ r in

let rs = (x:zs) @ r in rs

charges as many cells to region r as the length of its input list.
As a consequence, all the space costs and needs of f can be expressed as n-

ary functions η : (R+∪{+∞})n → R∪{+∞,−∞}. Infinite costs will be used to
represent that we are not able to infer a bound (either because it does not exist
or because the analysis is not capable). Costs can be negative if the function
destroys more cells than it builds. Currently we are restricting ourselves to func-
tions where for each destructed cell at least a new cell is built in the same region.
This covers many interesting functions where the aim of cell destruction is space
reuse instead of pure destruction, e.g. function insertD shown in the previous
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section. This restriction means that the domain of the space cost functions is
the following:

F = {η : (R+ ∪ {+∞})n → R+ ∪ {+∞} | η is monotonic}
The domain (F,v,⊥,>,t,u) is a complete lattice, where v is the usual order

between functions, and the rest of components are standard. Notice that it is
closed by the operations {+,t, ∗}. By abuse of notation we abbreviate λxin.c
by just c, where c ∈ R+.

Function f above may charge space costs to a maximum of n+m+1 regions: It
may destroy cells in the regions where x1 . . . xn live; it may create/destroy cells in
any output region r1 . . . rm, and additionally in its self region. Each region r has
a region type ρ. We denote by Rfin the set of input region types, and by Rfout the
set of output region types. For example, Rtreesort

in = {ρ1} and Rtreesort
out = {ρ2}.

Looked from outside, the charges to the self region are not visible, as this region
disappears when the function returns.

Summarising, let Rf = Rfin ∪Rfout. Then D = {∆ : Rf → F} is the complete
lattice of functions that describe the space costs charged by f to every visible
region. In the following we will call abstract heaps to the functions ∆ ∈ D.

Definition 1. A function signature for f is a triple (∆f , µf , σf ), where ∆f

belongs to D, and µf , σf belong to F.

The aim is that ∆f describes (an upper bound to) the space costs charged
by f to every visible region, and µf , σf respectively describe (an upper bound
to) the heap and stack needs of f in order to execute it without running out of
space. By [ ]f we denote the empty function λρ.λxin.0, where we assume ρ ∈ Rf .
By |∆| we mean

∑
ρ∈dom(∆)∆ ρ.

4 Abstract Interpretation

In Figure 2 we show the abstract interpretation rules for the most relevant Core-
Safe expressions. There, an atom a represents either a variable x or a constant
c, and |e| denotes the function obtained by the size analysis for expression e. We
can assume that the abstract syntax tree is decorated with such information.

When inferring an expression e, we assume it belongs to the body of a func-
tion definition f xin @ rj

m = ef , that we will call the context function, and that
only already inferred functions g yil @ rj

q = eg are called. Let Σ be a global
environment giving, for each Safe function g in scope, its signature (∆g, µg, σg),
let Γ be a typing environment containing the types of all the variables appearing
in ef , and let td be a natural number. The abstract interpretation [[e]] Σ Γ td
gives a triple (∆,µ, σ) representing the space costs and needs of expression e.
The statically determined value td occurring as an argument of the interpreta-
tion and used in rule App is the size of the top part of the environment used
when compiling the expression g ai

l @ rj
q. This size is also an argument of the

operational semantics. See [11] for more details.
Rules [Atom] and [Primop] exactly reflect the corresponding resource-aware

semantic rules [11]. When a function application g ail @ rj
q is found, its signature
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[[a]] Σ Γ td = ([ ]f , 0, 1) [Atom]

[[a1 ⊕ a2]] Σ Γ td = ([ ]f , 0, 2) [Primop]

Σ g = (∆g, µg, σg) θ = unify Γ g ai
l rj

q

µ = λxn.µg (|ai| xnl) σ = λxn.σg (|ai| xnl) ∆ = θ ↓|ai| xnl ∆g

[[g ai
l @ rj

q]] Σ Γ td = (∆,µ,t{l + q, σ − td + l + q}) [App]

[[e1]] Σ Γ 0 = (∆1, µ1, σ1) [[e2]] Σ Γ (td + 1) = (∆2, µ2, σ2)

[[let x1 = e1 in e2]] Σ Γ td = (∆1 +∆2,t{µ1, |∆1|+ µ2},t{2 + σ1, 1 + σ2}) [Let1 ]

Γ r = ρ [[e2]] Σ Γ (td + 1) = (∆,µ, σ)

[[let x1 = C ai
n @ r in e2]] Σ Γ td = (∆+ [ρ 7→ 1], µ+ 1, σ + 1)

[Let2 ]

(∀i) [[ei]] Σ Γ (td + ni) = (∆i, µi, σi)

[[case x of Ci xijni → ei
n
]] Σ Γ td = (

Fn
i=1∆i,

Fn
i=1 µi,

Fn
i=1(σi + ni))

[Case]

Γ x = Ttk
l
@ρ (∀i) [[ei]] Σ Γ (td + ni) = (∆i, µi, σi)

[[case! x of Ci xijni → ei
n
]] Σ Γ td = ([ρ 7→ −1] +

Fn
i=1∆i,t(0,

Fn
i=1 µi − 1),

Fn
i=1(σi + ni))

[Case!]

Fig. 2. Space inference rules for expressions with non-recursive applications

Σ g is applied to the sizes of the actual arguments, |ai| xjnl which have the
xn as free variables. Due to the application, some different region types of g
may instantiate to the same actual region type of f . That means that we must
accumulate the memory consumed in some formal regions of g in order to get
the charge to an actual region of f . In Figure 2, unify Γ g ai

l rj
q computes

a substitution θ from g’s region types to f ’s region types. If θ ρg = ρf , this
means that the generic g’s region type ρg is instantiated to the f ’s actual region
type ρf . Formally, if Rg = Rgin ∪ Rgout then θ :: Rg → Rf ∪ {ρself } is total. The
extension of region substitutions to types is straightforward.

Definition 2. Given a type environment Γ , a function g and the sequences ail

and rjq, we say that θ = unify Γ g ai
l rj

q iff

Γ g = ∀α.til → ρj
q → t and ∀i ∈ {1 . . . l}.θ ti = Γ ai and ∀j ∈ {1 . . . q}.θ ρj = Γ rj

As an example, let us assume g :: ([a]@ρg1, [[b]@ρ
g
2]@ρg1)@ρg3 → ρg2 → ρg4 → ρg5 → t

and consider the application g p @ r2 r1 r1 where p :: ([a]@ρf1 , [[b]@ρ
f
2 ]@ρf1 )@ρf1 ,

r1 :: ρf1 and r2 :: ρf2 . The resulting substitution would be:

θ = [ρg1 7→ ρf1 , ρ
g
2 7→ ρf2 , ρ

g
3 7→ ρf1 , ρ

g
4 7→ ρf1 , ρ

g
5 7→ ρf1 ]

The function θ ↓
ηi xnl ∆g converts an abstract heap for g into an abstract

heap for f . It is defined as follows:

θ ↓
ηi xj

nl ∆g = λρ . λxj
n.
∑
ρ′∈Rg

θ ρ′=ρ

∆g ρ
′ ηi xjn

l
(ρ ∈ Rf ∪ {ρself }, ηi ∈ F)

In the example, we have:

∆ ρf2 = λxn.∆g ρ
g
2 (|ai| xn)

l

∆ ρf1 = λxn.∆g ρ
g
1 (|ai| xn)

l
+∆g ρ

g
3 (|ai| xn)

l
+∆g ρ

g
4 (|ai| xn)

l
+∆g ρ

g
5 (|ai| xn)

l

6
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Rules [Let1 ] and [Let2 ] reflect the corresponding resource-aware semantic
rules in [11]. Rules [Case] and [Case!] use the least upper bound operators

⊔
in

order to obtain an upper bound to the charge costs and needs of the alternatives.

5 Correctness of the Abstract Interpretation

Let f xi
n @ rj

m = ef , be the context function, which we assume well-typed
according to the type system in [12]. Let us assume an execution of ef under
some E0, h0, k0 and td0:

E0 ` h0, k0, td0, ef ⇓ hf , k0, vf , (δ0,m0, s0) (1)

In the following, all ⇓–judgements corresponding to a given sub-expression of ef
will be assumed to belong to the derivation of (1).

The correctness argument is split into three parts. First, we shall define a
notion of correct signature which formalises the intuition of the inferred (∆,µ, σ)
being an upper bound of the actual (δ,m, s). Then we prove that the inference
rules of Figure 2 are correct, assuming that all function applications are done to
previously inferred functions, that the signatures given by Σ for these functions
are correct, and that the size analysis is correct. Finally, the correctness of the
signature inference algorithm is proved, in particular when the function being
inferred is recursive.

In order to define the notion of correct signature we have to give some pre-
vious definitions. We consider region instantiations, denoted by Reg , Reg ′, . . .,
which are partial mappings from region types ρ to natural numbers i. Region
instantiations are needed to specify the actual region i to which every ρ is in-
stantiated at a given execution point. A instantiation Reg is consistent with a
heap h, an environment E and a type environment Γ if Reg does not contradict
the region instantiation obtained at runtime from h, E and Γ , i.e. common type
region variables are bound to the same actual region. Formal definition of consis-
tency can be found in [12], where we also proved that if a function is well-typed,
consistency of region instantiations is preserved along its execution.

Definition 3. Given a pointer p belonging to a heap h, the function size returns
the number of cells in h of the data structure starting at p:

size(h[p 7→ (j, C vi
n)], p) = 1 +

∑
i∈RecPos(C )

size(h, vi)

where RecPos(C) denotes the recursive positions of constructor C.

We assume that size(h, c) = 0 for every heap h and constant c.

Definition 4. Given a sequence of sizes sin for the input parameters, a number
k of regions and a region instantiation Reg, we say that

• ∆ is an upper bound for δ in the context of sin, k and Reg, denoted by
∆ �si

n,k,Reg δ iff ∀j ∈ {0 . . . k} :
∑

Reg ρ=j ∆ ρ si
n ≥ δ j;

• µ is an upper bound for m, denoted µ �si
n m, iff µ si

n ≥ m; and

7
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• σ is an upper bound for s, denoted σ �si
n s, iff σ si

n ≥ s.
Definition 5 (Correct signature). Let (∆g, µg, σg) the signature of a func-
tion definition g yi

l @ r′j
q

= eg. This signature is said to be correct iff for all h,
h′, k, vil, ij

q
, v, δ, m, s, Γ , t such that:

1. Eg = [yi 7→ vi
l, r′j 7→ ij

q
, self 7→ k+1] ` h, k+1, l+q, eg ⇓ h′, k+1, v, (δ,m, s).

2. Γg ` eg : t
3. ∀i ∈ {1 . . . l} : si = size(h, vi)

then ∆g �si
l,k,Reg δ|k ∧ µg �si

l m ∧ σg �si
l s for every region instantiation

Reg consistent with h, Eg and Γg.

The following theorem establishes the correctness of the abstract interpreta-
tion for non-recursive functions.

Theorem 1. Let f a non-recursive context function. For each subexpression e
of ef and E, Σ, Γ , td, ∆, µ, σ, h, ,h′, v, ,t, δ, m and s such that:

1. Every function call g ail @ r′j
q

in e satisfies g ∈ dom Σ and Σ(g) is correct
2. [[e]] Σ Γ td = (∆,µ, σ)
3. E ` h, k0, td , e ⇓ h′, k0, v, (δ,m, s), belonging to (1)
4. Γ ` e : t

then ∆ �si
n,k0,Reg δ, µ �si

n m and σ �si
n s, where si = size(h,E0 xi) for each

i ∈ {1 . . . n}, and each region instantiation Reg consistent with h, E and Γ such
that dom Reg = dom ∆.

Proof. By structural induction on e. The proof uses the fact that the size func-
tions are monotonic, and relies on the correctness of the size analysis. ut

In order to prove the correctness of the algorithms shown in the following sec-
tion for recursive functions we need the abstract interpretation to be monotonic
with respect to function signatures.

Lemma 1. Let f be a context function. Given Σ1, Σ2, Γ , and td such that
Σ1 v Σ2, then [[e]] Σ1 Γ td v [[e]] Σ2 Γ td.

Proof. By structural induction on e, because + and t are monotonic. ut

6 Space Inference Algorithms

Given a recursive function f with n+m arguments, the algorithms for inferring
∆f and σf do not depend on each other, while the algorithm for inferring µf
needs a correct value for ∆f . We will assume that µf , σf , and the cost functions
in ∆f , do only depend on arguments of f non-increasing in size. The consequence
of this restriction is that the costs charged to regions, or to the stack, by the most
external call to f are safe upper bounds to the costs charged by all the lower
level internal calls. This restriction holds for the majority of programs occurring
in the literature. Of course, it is always possible to design an example where the
charges grow as we progress towards the leafs of the call-tree.

We assume that, for every recursive function f , there has been an analysis
giving the following information as functions of the argument sizes xin:

8
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splitExpf [[e]] = (e,#) if e = c, x, C ai
n @ r, or g ai

n @ rj
m with g 6= f

splitExpf [[f ai
n @ rj

m]] = (#, f ai
n @ rj

m)
splitExpf [[let x1 = e1 in e2]] = (eb, er)

where (e1b, e1r) = splitExpf [[e1]]
(e2b, e2r) = splitExpf [[e2]]

eb =


# if e1b = # or e2b = #
let x1 = e1b in e2b otherwise

er =

8>>>><>>>>:
# if e1r = # and e2r = #
let x1 = e1 in e2r if e1r = # and e2r 6= #
let x1 = e1r in e2 if e1r 6= # and e2r = #F let x1 = e1b in e2r

let x1 = e1r in e2

ff
otherwise

splitExpf [[case(!) x of alt i
n
]] = (eb, er)

where (alt ib
n
, alt ir

n
) = unzip (map splitAltf alt i

n
)

eb =


# if alt ib = #→ # for all i ∈ {1 . . . n}
case(!) x of alt ib

n
otherwise

er =


# if alt ir = #→ # for all i ∈ {1 . . . n}
case(!) x of alt ir

n
otherwise

splitAltf [[C xj
n → e]] = (altb, altr)

where (eb, er) = splitExpf e

altb =


#→ # if eb = #
C xj

n → eb otherwise

altr =


#→ # if er = #
C xj

n → er otherwise

Fig. 3. Function splitting a Core-Safe expression into its base and recursive cases

1. ncf , an upper bound to the number of calls to f .
2. bf f , the branching factor of f , i.e. maximum number of internal calls to f

for every external call. If bf f = 1 then f has linear recursion.
3. nrf , an upper bound to the number of calls to f invoking f again. It corre-

sponds to the internal nodes of f ’s call tree.
4. nbf , an upper bound to the number of basic calls to f . It corresponds to the

leaves of f ’s call tree.
5. lenf , an upper bound to the maximum length of f ’s call chains. It corre-

sponds to the height of f ’s call tree.

In general, these functions are not independent of each other. For instance, if
bf f = 1 then nrf = ncf − 1, nbf = 1, and lenf = ncf . However, we will not
assume a fixed relation between them. If this relation exists, it has been already
used to compute them. We will only assume that each function is a correct upper
bound to its corresponding runtime figure.

6.1 Splitting Core-Safe expressions

In order to do a more precise analysis, we separately analyse the base and the
recursive cases of a Core-Safe function definition. Fig. 3 describes the functions
splitExp and splitAlt which, given a Safe expression return the part of its body
contributing to the base cases and the part contributing to the recursive cases.
We introduce an empty expression # in order not to lose the structure of the
original one when some parts are removed. These empty expressions charge null

9
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splitBAf [[e]] = [ ] if e = #, c, x, C ai
n @ r, or g ai

n @ rj
m with g 6= f

splitBAf [[tni=1ei]] = concat [splitBA ei | i ∈ {1 . . . n}]
splitBAf [[f ai

n @ rj
m]] = [(f ai

n @ rj
m,#)]

splitBAf [[let x1 = e1 in e2]] = A++ B
where (e1b, e1r) = splitExpf [[e1]]

(e2b, e2r) = splitExpf [[e2]]
e1r,split = splitBA [[e1r]]
e2r,split = splitBA [[e2r]]
A = [(let x1 = e1 in e2r,b,

let x1 = # in e2r,a) | (e2r,b, e2r,a) ∈ e2r,split ]

B =

8<:
[ ] if e2b = #
[(let x1 = e1r,b in #,

let x1 = e1r,a in e2b) | (e1r,b, e1r,a) ∈ e1r,split ] otherwise

splitBAf [[case(!) x of Ci xijni → ei
n
]] =ˆ`

case(!) x of Ci xijni → ei,b
n
, case(!) x of Ci xijni → ei,a

n´
| (e1,b, e1,a) ∈ splitBAf [[e1]], . . . , (en,b, en,a) ∈ splitBAf [[en]]

˜
Fig. 4. Function splitting a Core-Safe expression into its parts executing before and
after the last recursive call

costs to both the heap and the stack. Since it might be not possible to split
a expression into a single pair with the base and recursive cases, we introduce
expressions of the form t ei, whose abstract interpretation is the least upper
bound of the interpretations of the ei. It will also be useful to define another
function which splits a Core-Safe expression into those parts that execute before
and including the last recursive call, and those executed after the last recursive
call, In Fig. 4 we define such function, called splitBAf . In Fig. 5 we show a Full-
Safe definition for a function split splitting a list, and the result of applying
splitExp and splitBA to its Core-Safe version.

6.2 Algorithm for computing ∆f

If ef is f ’s body, let (er, eb) = splitExpf [[ef ]] and (ebef , eaft) = (
⊔
i e

i
bef ,

⊔
i e

i
aft),

where [(eibef , e
i
aft)

n
] = splitBAf [[er]]. The idea here is to separately compute the

charges to regions of the recursive and non-recursive parts of f ’s body, and then
multiply these charges by respectively the number of internal and leaf nodes of
f ’s call-tree.

1. Set Σ f = ([ ]f , 0, 0).
2. Let (∆r, , ) = [[er]] Σ Γ (n+m)
3. Let (∆b, , ) = [[eb]] Σ Γ (n+m)
4. Then, ∆f

def= ∆r |ρ6=ρself
×nrf +∆b |ρ 6=ρself

×nbf .

Lemma 2. If nrf ,nbf , and all the size functions belong to F, then all functions
in ∆f belong to F.

Lemma 3. ∆f is a correct abstract heap for f .

Proof. This is a consequence of nrf , nbf , and all the size functions being upper
bounds of their respective runtime figures, and of ∆r, ∆b being upper bounds
of respectively the f ’s call-tree internal and leaf nodes heap charges. ut
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split 0 xs = ([],xs)
split n [] = ([],[])
split n (x:xs) = (x:xs1,xs2)

where (xs1,xs2) = split (n-1) xs

split n xs @ r1 r2 r3 =
case n of
_ -> case xs of

(: y1 y2) ->
let y3 = let x6 = - n 1 in

split x6 y2 @ r1 r2 r3 in #

(Full-Safe version, and Core-Safe up to the last call)

split n xs @ r1 r2 r3 =
case n of
0 -> let x1 = [] @ r2 in

let x2 = (x1,xs) @ r3 in x2
_ -> case xs of

[] -> let x4 = [] @ r2 in
let x3 = [] @ r1 in
let x5 = (x4,x3) @ r3 in x5

(Core-Safe base cases)

split n xs @ r1 r2 r3 =
case n of
_ -> case xs of

(: y1 y2) ->
let y3 = let x6 = - n 1 in

split x6 y2 @ r1 r2 r3 in
let xs1 = case y3 of (y4,y5) -> y4 in
let xs2 = case y3 of (y6,y7) -> y7 in
let x7 = (: y1 xs1) @ r2 in
let x8 = (x7,xs2) @ r3 in x8

(Core-Safe recursive cases)

split n xs @ r1 r2 r3 =
case n of
_ -> case xs of

(: y1 y2) ->
let y3 = # in
let xs1 = case y3 of (y4,y5) -> y4 in
let xs2 = case y3 of (y6,y7) -> y7 in
let x7 = (: y1 xs1) @ r2 in
let x8 = (x7,xs2) @ r3 in x8

(Core-Safe after the last call)

Fig. 5. Splitting a Core-Safe definition

Let us call I∆ : D → D to an iteration of the interpretation function, i.e.
I∆(∆1) = ∆2, being ∆2 the abstract heap obtained by initially setting Σ f =
(∆1, 0, 0), then computing (∆, , ) = [[er]] Σ Γ (n+m), and then defining ∆2 =
∆ |ρ6=ρself

.

Lemma 4. For all n, In∆(∆f ) is a correct abstract heap for f .

Proof. This is a consequence of D being a complete lattice, I∆ being monotonic
in D, and I∆(∆f ) v ∆f . As I∆ is reductive at ∆f then, by Tarski’s fixpoint
theorem, In∆(∆f ) is above the least fixpoint of I∆ for all n. ut

As the algorithm for µf critically depends on how good is the result for ∆f ,
it is advisable to spend some time iterating the interpretation I∆ in order to get
better results for µf .

6.3 Algorithm for computing µf

First, we infer the part of µf due to space charges to the self region of f . Let us
call it µself

f . As the self regions for f are stacked, this part only depends on the
longest f ’s call chain, i.e. on the height of the call-tree.

1. Set Σ f = ([ ]f , 0, 0).
2. Let ([ρself 7→ µbef ], , ) = [[ebef ]] Σ Γ (n+m), i.e. the charges to ρself made

by the part of f ′s body before (and including) the last recursive call.
3. Let ([ρself 7→ µaft ], , ) = [[eaft ]] Σ Γ (n+m), i.e. the charges to ρself made

by the part of f ′s body after the last recursive call.
4. Let ([ρself 7→ µb ], , ) = [[eb ]] Σ Γ (n+m), i.e. the charges to ρself made by

the non-recursive part of f ′s body.
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5. Then, µself
f

def= µbef × (lenf − 1) + t{µb, µaft}.
Now, the inference of µf is done by provisionally assuming a signature for f in
which f ’s heap needs are at least those due to charges to self, plus those due to
charges to other regions. The latter are recorded in ∆f .

1. Let µprov
def= |∆f | +µself

f

2. Set Σ f = (∆f , µprov , 0).
3. Then, ( , µf , ) = [[ef ]] Σ Γ (n+m).

Lemma 5. If the functions in ∆f , lenf , and the size functions belong to F, then
µf belongs to F.

Lemma 6. µf is a safe upper bound for f ’s heap needs.

Proof. This is a consequence of the correctness of the abstract interpretation
rules, and of ∆f , lenf , and the size functions being upper bounds of their re-
spective runtime figures. ut
As in the case of ∆f , we can define an interpretation Iµ taking any upper bound
µ1 as input, and producing a better one µ2 = Iµ(µ1) as output.

Lemma 7. For all n, Inµ(µf ) is a safe upper bound for f ’s heap needs.

Proof. This is a consequence of F being a complete lattice, Iµ being monotonic
in F, and Iµ being reductive at µf . ut

6.4 Algorithm for computing σf

The algorithm for inferring µf traverses f ’s body from left to right because the
abstract interpretation rules for µ need the charges to the previous heaps. For
inferring σf we can do it better because its rules are symmetrical. The main idea
is to count only once the stack needs due to calling to external functions.

1. Let ( , , σb) = [[eb]] Σ Γ (n+m).
2. Let ( , , σbef ) = [[ebef ]] Σ[f 7→ ( , , σb)] Γ (n+m), i.e. the stack needs before

the last recursive call, assuming as f ’s stack needs those of the base case.
This amounts to accumulating the cost of a leaf to the cost of an internal
node of f ’s call tree.

3. Let ( , , σaft) = [[eaft ]] Σ Γ (n+m).
4. We define the following function S returning a natural number. Intuitively

it computes an upper bound to the difference in words between the initial
stack in a call to f and the stack just before ebef is about to jump to f again:

S [[let x1 = e1 in #]] td = 2 + S [[e1]] 0

S [[let x1 = e1 in e2]] td =
{

1 + S [[e2]] (td + 1) if f /∈ e1
t{2 + S [[e1]] 0, 1 + S [[e2]] (td + 1)} if f ∈ e1

S [[case x of Ci xijni → ei
n
]] td =

⊔n
r=1(nr + S [[er]] (td + nr))

S [[g aip @ rj
q]] td = p+ q − td

S [[e]] td = 0 otherwise

12
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length [] = 0
length (x:xs) = 1 + length xs

split :: Int → [a]@ρ1 → ρ1 → ρ2 → ρ3 → ([a]@ρ2, [a]@ρ1)@ρ3
length :: [a]@ρ1 → Int
merge :: [a]@ρ1 → [a]@ρ1 → ρ1 → [a]@ρ1
msort :: [a]@ρ1 → ρ1 → ρ2 → [a]@ρ2

merge [] ys = ys
merge (x:xs) [] = x : xs
merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)
| x > y = y : merge (x:xs) ys

msort [] = []
msort (x:[]) = x:[]
msort xs = merge (msort xs1) (msort xs2)

where (xs1,xs2) = split (length xs / 2) xs

Fig. 6. Full-Safe mergesort program

Function Heap charges ∆ Heap needs µ Stack needs σ

length(x) [ ] 0 5x− 4

split(n, x)

2664
ρ1 7→ 1

ρ2 7→ min(n, x− 1) + 1

ρ3 7→ min(n, x− 1) + 1

3775 2 min(n, x− 1) + 3 9 min(n, x− 1) + 4

merge(x, y)
h
ρ1 7→ max(1, 2x+ 2y − 5)

i
max(1, 2x+ 2y − 5) 11(x+ y − 4) + 20

msort1(x)

»
ρ1 7→ x2

2
− 1

2

ρ2 7→ 2x2 − 3x+ 3

–
0.31x2 + 0.25x log(x+ 1) + 14.3x

+ 0.75 log(x+ 1) + 10.3
max(80, 13x− 10)

msort2(x)

»
ρ1 7→ x2

4
+ x− 1

4

ρ2 7→ x2 + x+ 1

–
0.31x2 + 8.38x+ 13.31 max(80, 11x− 25)

msort3(x)

"
ρ1 7→ x2

8
+ 7x

4
+ 9

8

ρ2 7→ x2

2
+ 4x+ 1

2

#
0.31x2 + 8.38x+ 13.31 max(80, 11x− 25)

Fig. 7. Cost results for the mergesort program

5. Then, σf = (S [[ebef ]] (n+m)) ∗ t{0, lenf − 2}+ t{σbef , σaft , σb}

Lemma 8. If lenf , and all the size functions belong to F, then σf belongs to F.

Lemma 9. σf is a safe upper bound for f ’s stack needs.

Proof. This is a consequence of the correctness of the abstract interpretation
rules, and of lenf being an upper bound to f ’s call-tree height. ut
Also in this case, it makes sense iterating the interpretation as we did with ∆f

and µf , since it holds that Iσ(σf ) v σf .

7 Case Studies

In Fig. 6 we show a Full-Safe version of the mergesort algorithm (the code for
split was presented in Fig. 5) with the types inferred by the compiler. Region ρ1

is used inside msort for the internal call split n’ xs @ r1 r1 self, while region
ρ2 receives the charges made by merge. Notice that some charges to msort’s self
region are made by split. In Fig. 7 we show the results of our interpretation
for this program as functions of the argument sizes. Remember that the size of a
list (the number of its cells) is the list length plus one. The functions shown have
been simplified with the help of a computer algebra tool. We show the fixpoints
framed in grey. The upper bounds obtained for length, split, and merge are
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Function Heap needs µ Stack needs σ

partition(p, x) 3x − 1 9x − 5

append(x, y) x − 1 max(8, 7x− 6)

quicksort(x) 3x2 − 20x+ 76 max(40, 20x− 27)

insertD(e, x) 1 9x− 1

insertTD(x, t) 2 11
2
t+ 7

2

fib(n) 2n + 2n−3 + 2n−4 − 3 max(10, 7n− 11)

sum(n) 0 3n+ 6

sumT (a, n) 0 5

Fig. 8. Cost results for miscellaneous Safe functions

sum 0 = 0
sum n = n + sum (n - 1)

sumT acc 0 = acc
sumT acc n = sumT (acc + n) (n - 1)

insertTD x Empty! = Node (Empty) x (Empty)
insertTD x (Node lt y rt)!

| x == y = Node lt! y rt!
| x > y = Node lt! y (insertTD x rt)
| x < y = Node (insertTD x lt) y rt!

Fig. 9. Two summation functions and a destructive tree insertion function

exact and they are, as expected, fixpoints of the inference algorithm. For msort

we show three iterations for ∆ and σ, and another three for µ by using the
last ∆. The upper bounds for ∆ and µ are clearly over-approximated, since a
term in x2 arises which is beyond the actual space complexity class O(x log x) of
this function. Let us note that the quadratic term’s coefficient quickly decreases
at each iteration in the inference of ∆. Also, µ and σ decrease in the second
iteration but not in the third. This confirms the predictions of lemmas 4 and 7.

We have tried some more examples and the results inferred for µ and σ
after a maximum of three iterations are shown in Fig. 8, where the fixpoints are
also framed in grey. There is a quicksort function using two auxiliary functions
partition and append respectively classifying the list elements into those lower
(or equal) and greater than the pivot, and appending two lists. We also show the
destructive insertD function of Sec. 2, and a destructive version of the insertion
in a search tree (its code is shown in Fig. 9). Both consume constant heap
space. The next one shown is the usual Fibonacci function with exponential time
cost, and using a constructed integer in order to show that an exponential heap
space is inferred. Finally, we show two simple summation functions (its code
also appears in Fig. 9), the first one being non-tail recursive, and the second
being tail-recursive. Our abstract machine consumes constant stack space in the
second case (see [11]). It can be seen that our stack inference algorithm is able
to detect this fact.

8 Related and Future Work

Hughes and Pareto developed in [7] a type system and a type-checking algorithm
which guarantees safe memory upper bounds in a region-based first-order func-
tional language. Unfortunately, the approach requires the programmer to provide
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FOPARA 2009 Preliminary Proceedings 15



detailed consumption annotations, and it is limited to linear bounds. Hofmann
and Jost’s work [6] presents a type system and a type inference algorithm which,
in case of success, guarantees linear heap upper bounds for a first-order func-
tional language, and it does not require programmer annotations.

The national project AHA [15] aims at inferring amortised costs for heap
space by using a variant of sized-types [8] in which the annotations are poly-
nomials of any degree. They address two novel problems: polynomials are not
necessarily monotonic and they are exact bounds, as opposed to approximate
upper bounds. Type-checking is undecidable in this system and in [16, 14] they
propose an inference algorithm for a list-based functional language with severe
restrictions in which a combination of testing and type-checking is done. The
algorithm does not terminate if the input-output size relation is not polynomial.

In [2], the authors directly analyse Java bytecode and compute safe upper
bounds for the heap allocation made by a program. The approach uses the
results of [1], and consists of combining a code transformation to an intermediate
representation, a cost relations inference step, and a cost relations solving step.
The second one combines ranking functions inference and partial evaluation.
The results are impressive and go far beyond linear bounds. The authors claim
to deal with data structures such as lists and trees, as well as arrays. Two
drawbacks compared to our results are that the second step performs a global
program analysis (so, it lacks modularity), and that only the allocated memory
(as opposed to the live memory) is analysed. Very recently [3] they have added
an escape analysis to each method in order to infer live memory upper bounds.
The new results are very promising.

The strengths of our approach can be summarised as follows: (a) It scales
well to large programs as each Safe function is separately inferred. The relevant
information about the called functions is recorded in the signature environment;
(b) We can deal with any user-defined algebraic datatype. Most of other ap-
proaches are limited to lists; (c) We get upper bounds for the live memory, as
the inference algorithms take into account the deallocation of dead regions made
at function termination; (d) We can get bounds of virtually any complexity class;
and (e) It is to our knowledge the only approach in which the upper bounds can
be easily improved just by iterating the inference algorithm.

The weak points that still require more work are the restrictions we have im-
posed to our functions: they must be non-negative and monotonic. This exclude
some interesting functions such as those that destroy more memory than they
consume, or those whose output size decreases as the input size increases. An-
other limitation is that the arguments of recursive Safe functions related to heap
or stack consumption must be non-increasing. This limitation could be removed
in the future by an analysis similar to that done in [1] in which they maximise the
argument sizes across a call-tree by using linear programming tools. Of course,
this could only be done if the size relations are linear.

Another open problem is inferring Safe functions with region-polymorphic
recursion. Our region inference algorithm [13] frequently infers such functions,
where the regions used in an internal call may differ from those used in the exter-
nal one. This feature is very convenient for maximising garbage (i.e. allocations
to the self region) but it makes more difficult the attribution of costs to regions.
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Abstract. In the field of implicit computational complexity, we are con-
sidering in this paper the fruitful branch of interpretation methods. Due
to their good intensional properties, they have been widely developped.
Among usual issues is the synthesis problem which has been solved by
the use of Tarski’s decision procedure, and consequently interpretations
are usually chosen over the reals rather than over the integers. Doing
so, one cannot use anymore the (good) properties of the natural (well-)
ordering of N employed to bound the complexity of programs. We show
that, actually, polynomials over the reals benefit from some properties
that allows their safe use for complexity. We illustrate this by two char-
acterizations, one of PTIME and one of PSPACE.

Among studies in rewriting are the noticeable work concerning termination.
This is now a largely and thoroughly studied field, and very elegant methods have
been proposed that cover a large spectrum of algorithms (see for instance [6]).
These studies can be refined to get characterizations of the complexity of first
order program. This has been one of the main successful approach of implicit
computational complexity, see for instance the early works [2, 4].

To prove termination by interpretation over a well-founded ordering seems
rather natural, and such interpretation methods have been introduced in the
70’s (see [12, 11]). Lankford describes interpretations as monotone Σ-algebras
with domain of interpretation being the natural numbers with their usual or-
dering. The fact that this ordering is well-founded gives immediately the well-
foundedness of the rewriting relation. Based on Kruskal’s Theorem, Dershowitz
showed in [5] that the well-foundedness of the domain of interpretation is not
necessary whenever the interpretations are chosen monotonic and have the sub-
term property.

One of the main interesting points about choosing real numbers rather than
natural numbers is that we get (at least from a theoretical point of view) a
procedure to verify the validity of an interpretation of a program by Tarski’s de-
composition procedure [20]. But furthermore, we can even give a semi-algorithm
to compute interpretations: indeed, for a given choice of the degree of the in-
terpretations, finding the coefficients of these polynomial becomes decidable.
Actually, since the problem of the verification or the synthesis (up to some de-
gree) can be stated by a first order formula with 2 alternations of quantifiers,
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following Roy et al. [17], the complexity of these algorithms is exponential with
respect to the size of the program. To obtain a faster procedure, we have used
in the crocus tool –developped by the first author– the (sufficient) criterion of
Hong and Jakuš [10].

A second good point is that the use of reals versus integers enlarges the set
of rewrite systems that have an interpretation as this has been shown recently
by Lucas [13].

The counterpart is that the (usual) ordering on R is not well-founded. Con-
sequently, the analysis of programs with interpretations over the reals has to be
completely reconsidered. As a matter of fact, our contribution is to show that,
if interpretations are restricted to polynomials1, then, choosing integers or reals
does not change the time complexity, neither the space complexity (up to some
polynomials).

More precisely, due to Positivstellensatz, one recovers the two main features
of interpretations, the bound on the derivation length of the rewriting relation
and the size of computed terms. In some way, we follow the belief of Lucas in [14]
who states that the field of algebraic geometry may give some new insight on
issues about polynomial interpretations over the reals.

The use of interpretations to compute the size of terms is a widely used
tool in implicit complexity theory. In particular, this has been considered by
Shkaravska et al [18] to bound the size of computed terms.

Here, we propose the application of Stengle’s Positivstellensatz [19]. This
deep result deals with the algebraic structure of polynomials over the reals. We
actually show that this structure has some fundamental consequences from the
point of view of the complexity of programs.

One of our two characterization use dependency pairs. We mention here the
work of Hirokawa and Moser [8] which is in the same spirit.

Due to lack of space, proofs are omitted. They can be found at http://www.
loria.fr/~bonfante/papers/fopara09.pdf.

1 Preliminaries

We suppose that the reader has familiarity with first order rewriting. We briefly
recall the context of the study, esssentially to fix the notations. Dershowitz and
Jouannaud’s survey [7] of rewriting is a good entry point for beginners.

1.1 Syntax of programs

All along, X will denote a set of variables, C a (finite) signature of constructor
symbols and F a (finite) signature of function symbols.

1 Potentially closed by the max function.
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Definition 1. The sets of terms and the rules are defined in the following way:

(Constructor terms) T (C) 3 u ::= c | c(u1, · · · , un)
(terms) T (C,F ,X ) 3 t ::= c | x | c(t1, · · · , tn) | f(t1, · · · , tn)
(patterns) P 3 p ::= c | x | c(p1, · · · , pn)
(D-rules) D 3 d ::= f(p1, . . . , pn)→ t

where x ∈ X , f ∈ F , and c ∈ C. We shall use a type writer font for function
symbols and a bold face font for constructors. Finally, we use u to denote a
(finite) sequence of terms u1, . . . , un.

The size of a term is defined inductively as S(x) = 1, S(c) = 1, S(c(t1, · · · , t)) =
1 +

∑n
i=1 S(ti) and S(f(t1, · · · , t)) = 1 +

∑n
i=1 S(ti).

A context is a term C with a particular variable ♦. If t is a term, C[t] denotes
the term C where the variable ♦ has been replaced by t.

Definition 2. A program is a quadruplet f = 〈X , C,F , E〉 such that E is a finite
set of D-rules. Each variable in the right-hand side of a rule also appears in the
left hand side of the same rule. We distinguish among F a main function symbol
whose name is given by the program name f. We denote by F-program, the set
of these programs.

The set of rules induces a rewriting relation→. The relation ∗→ is the reflexive
and transitive closure of→. All along, we suppose programs to be confluent, that
is the rewriting relation is confluent.

We note t0 →n tn the fact that t0 → t1 · · · → tn. One defines the derivation
height for a term t as the maximal length of a derivation:

dh(t) = max{n ∈ N | ∃v : t→n v}.

The domain of the computed functions is the constructor term algebra T (C).
The program f computes a partial function JfK : T (C)n → T (C) defined as
follows. For every u1, · · · , un ∈ T (C), JfK(u1, · · · , un) = v iff f(u1, · · · , un) ∗→v.
Otherwise, it is undefined and JfK(u1, · · · , un) = ⊥.

Definition 3 (Call-tree). Suppose we are given a program 〈C,F , E〉. Let  be
the relation

(f, t1, . . . , tn) g(u1, . . . , um)⇔ f(t1, . . . , tn)→ C[g(v1, . . . , vm)] ∗→C[g(u1, . . . , um)]

where f and g are defined symbols, C is a context and t1, . . . , tn, u1, . . . , um
are constructor terms. Given a term f(t1, . . . , tn), the relation  defines a tree
whose root is (f, t1, . . . , tn) and η′ is a daughter of η iff η  η′. The size of a
call-tree is the number of nodes it contains.

When we do not make a distinction between constructors and function sym-
bols, we speak (improperly) of Term Rewriting System. We present them as a
couple (Σ,R) where Σ is the signature and R is the set of rules.
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1.2 Interpretations of programs

Given a signature Σ, a Σ-algebra on the domain A is a mapping L− M which
associates to every n-ary symbol f ∈ Σ an n-ary function Lf M : An → A. A
Σ-algebra can be extended to terms by

– Lx M = 1A, that is the identity on A, for x ∈ X ,
– Lf(t1, . . . , tm) M = comp(Lf M, Lt1 M, . . . , Ltm M) where comp is the composition

of functions.

The interpretation Lt M of a term t with n variables is then a function T (Σ)n →
T (Σ).

An interpretation for a rewrite system (Σ,R) is an order-preserving mappingL− M from (T (Σ), +→) to some (partially) ordered set (A,>). Actually, from now
on, we restrict our attention to the case where (A,>) is the set of non negative
real numbers R+ with the usual ordering and L− M has the structure of a Σ-
algebra:

Definition 4. A strict interpretation of a rewriting system (Σ,R) is given by a
Σ-algebra L− M such that:

1. for all symbol f , the interpretation Lf M is a monotonic function, that is if
xi > x′i, then

Lf M(x1, . . . , xn) > Lf M(x1, . . . , x
′
i, . . . , xn),

2. for all symbol f , the interpretation Lf M verifies the (weak) sub-term property,
that is Lf M(x1, . . . , xn) ≥ xi with i ∈ 1..n,

3. for all rules `→ r, L` M > Lr M.
Example 1. Consider the system(

A(B(x))→ B(B(A(x)))
c(A(x))→ A(A(c(x)))

)
For this system, we define the interpretation LA M(x) = 3(x + 2), LB M(x) =

x+ 1 and Lc M(x) = x2 + 1.

From now on, we restrict interpretations to be Max-Poly functions, that is
functions obtained by finite compositions of maximum, addition and multiplica-
tion. We note Max-Poly, the set of these functions. To stress this choice, we say
that interpretations are chosen over Max-Poly.

Sup-interpretation have been introduced by Marion and Pechoux in [15]. We
give a slight variant of their definition. In [15], the last inequality refers to the
size of normal forms. We prefer to have a more uniform definition.

Definition 5. A sup-interpretation of a rewriting system (Σ,R) is given by a
Σ-algebra L− M such that:
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1. Lf M is a weakly monotonic function, that is if xi ≥ x′i, then

Lf M(x1, . . . , xn) ≥ Lf M(x1, . . . , x
′
i, . . . , xn),

2. for all constructor terms t1, . . . , tn, we have the inequality Lf(t1, . . . , tn) M ≥LJfK(t1, . . . , tn) M.
Lemma 1. Suppose that we are given a Σ-algebra for which interpretations of
symbols f is bounded by some polynomials. Then, for all terms, Lt M ≤ 22O(|t|)

.

Proof. By induction on terms. A proof (for natural numbers, but this has no
consequences here) can be found in [2].

Definition 6. The interpretation of a symbol f is said to be additive (resp.
affine, resp multiplicative) if it has the shape

∑
i xi + c (resp.

∑
aixi + c, resp.

any polynomial). A program with an interpretation is said to be additive(resp.
affine, resp. multiplicative) when its constructors are additive (resp. affine, resp
multiplicative).

2 Positivstellensatz and applications

Given a strict interpretation for a TRS (Σ,R), it follows immediately that for
all s → t, Ls M > Lt M. If one takes the interpretation on natural numbers (as
they were introduced by Lankford [12]), this can be used to give a bound on the
derivation height. Thus, Hofbauer and Lautemann have shown in [9] that the
derivation height is bounded by a double exponential. However, their argument
uses deeply the fact that the interpretation of a term is itself a bound on the
derivation height:

dh(t) ≤ Lt M. (1)

Indeed, suppose t1 → t2 → · · · → tn, then Lt1 M > Lt2 M > · · · > Ltn M. On
natural numbers, this means that n ≤ Lt1 M, a conclusion that does not hold for
interpretation over the reals.

Equation 1 comes from the fact that Lt M ≥ Lu M+ 1 for terms t→ u. This fact
itself is due to a) L` M > Lr M implies that

L` M ≥ Lr M + 1 (2)

and b) that for all xi > yi:

Lf M(x1, . . . , xi, . . . , xn)− Lf M(x1, . . . , yi, . . . , xn) ≥ xi − yi. (3)

The two inequalities 2, 3 do not hold in general for real interpretations.
In the context of termination proofs by dependency pairs, when using real

interpretations instead of integer interpretations, people have enforced the hy-
potheses to recover the good properties holding with natural numbers. For in-
stance [13, 16] suppose the existence of some real δ > 0 such that L` M ≥ Lr M + δ,
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recovering thus the well-foundedness of the order on natural numbers. Actually,
we will show that this kind of extra hypothesis is unnecessary.

In this section, we introduce a deep mathematical result, positivstellensatz,
and we show how it can be used to recover inequalities which can play the role
of 2, 3. These new inequalities are the key features of Theorems 2 and 4.

Theorem 1 (Stengle [19]). Suppose that we are given polynomials P1, . . . , Pm ∈
R[x1, . . . , xk], the two following points are equivalent:

1. {x1, . . . , xk : P1(x1, . . . , xk) ≥ 0 ∧ · · · ∧ Pm(x1, . . . , xk) ≥ 0} = ∅
2. ∃Q1, . . . , Qm : −1 =

∑
i≤mQiPi where the Qi are sums of squares (and so

positive and monotonic).

We give a first application of the Theorem.

Proposition 1. Suppose that a TRS (Σ,R) admits an interpretation L− M over
Max-Poly such that for all rules ` → r, we have L` M > Lr M. There is a positive,
monotonic polynomial P such that for all rules `→ r, we have L` M(x1, . . . , xk)−
Lr M(x1, . . . , xk) ≥ 1

P (max(x1, . . . , xk))
.

Proof. For all rules `→ r, we show below that we can build a monotonic polyno-

mial P`→r such that L` M(x1, . . . , xk)−Lr M(x1, . . . , xk) ≥ 1
P`→r(x1, . . . , xk)

. Let us

note Q`→r(x) = P`→r(x, . . . , x). It is then sufficient to take P =
∑
`→r∈RQ`→r.

Let us consider one rule `→ r. Let L` M(x1, . . . , xk) = maxi∈I(Pi(x1, . . . , xk))
and Lr M(x1, . . . , xk) = maxj∈J(Qj(x1, . . . , xk)). So, for all j, we have the in-
equality L` M(x1, . . . , xk) > Qj(x1, . . . , xk). Suppose that we find for all these j a
polynomial Rj such that

L` M(x1, . . . , xk) ≥ Qj(x1, . . . , xk) +
1

Rj(x1, . . . , xk)
. (4)

Then for all j, we have L` M(x1, . . . , xk) ≥ Qj(x1, . . . , xk) +
1∑

j∈J Rj(x1, . . . , xk)
.

And so, L` M(x1, . . . , xk) ≥ maxj∈J(Qj(x1, . . . , xk)) +
1∑

j∈J Rj(x1, . . . , xk)
. Con-

sequently, we define Pt,u(x1, . . . , xk) =
∑
j∈J Rj(x1, . . . , xk).

So, it remains to find the polynomials Rj for all j ∈ J . Take one of these
j. We define Di to be the set {(x1, . . . , xk) ∈ (R+)k : ∀i 6= ` : Pi(x1, . . . , xk) ≥
P`(x1, . . . , xk)}. On Di, L` M(x1, . . . , xk) = Pi(x1, . . . , xk). And so, on Di, we have
Pi(x1, . . . , xk) > Qj(x1, . . . , xk).

As a consequence, for all i ∈ I, the setx1 ≥ 0, . . . , xk ≥ 0,
Pi(x1, . . . , xk)− P1(x1, . . . , xk) ≥ 0, . . . , Pi(x1, . . . , xk)− Pm(x1, . . . , xk) ≥ 0,
Qj(x1, . . . , xk)− Pi(x1, . . . , xk) ≥ 0
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is empty. And then, by Positivstellensatz, we can state that there are positive
polynomials T1,i, . . . , Tk+m+1,i such that

−1 = x1T1,i + · · ·xkTk,i+
(Pi(x1, . . . , xk)− P1(x1, . . . , xk))Tk+1,i + · · ·+
(Pi(x1, . . . , xk)− Pm(x1, . . . , xk))Tk+m,i+
(Qj(x1, . . . , xk)− Pi(x1, . . . , xk))Tk+1+m,i.

Observe that on Di, we have

(Pi(x1, . . . , xk)−Qj(x1, . . . , xk))Tk+1+m,i ≥ 1.

So that we define Rj =
∑

1≤i≤m Tk+1+m,i.

Proposition 1 has an important consequence. Since, in a derivation all terms
have an interpretation bounded by the interpretation of the first term, there is
a minimal decay at each step of the derivation.

Proposition 2. Suppose that a TRS (Σ,R) admits a strict interpretation L− M
over Max-Poly. For all A > 0, the set of terms {t ∈ T (Σ) | Lt M < A} is finite.

Proof. For all symbols f ∈ Σ, we have Lf M(x1, . . . , xn) > xi for all i. By 1, there

is a polynomial P such that Lf M(x1, . . . , xn) ≥ xi +
1

P (x1, . . . , xn)
. Take a term

f(t1, . . . , tn) such that Lf(t1, . . . , tn) M < A.

Lf(t1, . . . , tn) M ≥ Lti M +
1

P (Lt1 M, . . . , Ltn M)
≥ Lti M +

1
P (A, . . . , A)

where the second inequality is due to the sub-term property together with the
monotonicity of P . Consequently, the height of a term t with Lt M < A is bounded
by A× P (A, . . . , A). There are only finitely many such terms.

Proposition 3. Suppose that a TRS (Σ,R) admits a strict interpretation L− M
over Poly. There is a real A > 0 and a positive, monotonic polynomial P such
that for all x1, . . . , xn ≥ 0, if xi1 , . . . , xik > A, then for all symbol f , we have

Lf M(x1, . . . , xn) ≥ xi1 + · · ·+ xik +
1

P (Lf M(x1, . . . , xn))
.

Proof. Due to Corollary 2, there is a bound A such that for all x1, . . . , xn ≥ 0, if
xi1 , . . . , xik > A, then for all symbol f , we have Lf M(x1, . . . , xn) > xi1 + · · ·+xik .
Applying Theorem 1, we get Qf such that Lf M(x1, . . . , xn) ≥ xi1 + · · · + xik +

1
Qf (x1, . . . , xn)

≥ xi1 + · · · + xik +
1

Qf (Lf M(x1, . . . , xn), . . . , Lf M(x1, . . . , xn))
. It

is then routine to get a uniform polynomial wrt to all symbols.
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3 The role of reals in complexity

We come back to two characterizations of implicit complexity, one of Ptime and
one of Pspace given respectively in [2] and [16]. Using the tools defined in the
previous section, we show that the ordering over the real numbers can be used
without restrictions in place of the ordering on natural numbers.

3.1 Ptime and strict interpretation

Theorem 2. Functions computed by F-programs with an additive interpretation
(over the reals) are exactly Ptime functions. For higher tiers, we get respectively
Etime for affine programs and E2time for multiplicative programs.

The rest of the section is devoted to the proof of the Theorem for addi-
tive programs. We let the reader adapt the proof for affine and multiplicative
programs. From now on, we suppose we are given a F-program with a strict
interpretation over polynomials. The key idea of the proof is to show that a),
the number of steps in a computation remains polynomial in the size of the term
rewritten, and b) the size of terms along the computation remains polynomial.

The main difficulty is that the bounds obtained at the last section (corollary 1
and 3) apply on terms with a sufficiently large interpretation. They introduce
a value, next called A, above which we have a complete control on the step of
computation. Lemma 2 shows that there are only a polynomial number of such
steps. So, our approach is to normalize the term according to small ’step’ (those
below the value A) and then, to apply a ’big’ step. Lemma 4 show that there
are not so many such ’small’ steps.

Lemma 2. There is a polynomial P and a real A > 0 such that for all step `σ →
rσ with Lrσ M > A, then, for all context C, we have LC[`σ] M ≥ LC[rσ] M+

1
P (L`σ M).

Definition 7. Given a real A > 0, we say that the A-size of a closed term t
is the number of subterms u of t (including itself) such that Lu M > A. We note
S(t)A the A-size of t.

Lemma 3. There is a constant A and a polynomial Q for which S(t)A ≤ Q(Lt M)
for all closed terms t. For all B > A, S(t)B ≤ S(t)A ≤ Q(Lt M).

For A > 0, we say that t = C[`σ] → C[rσ] = u is an A-step wheneverLrσ M > A. We note such a rewriting step t→>A u. Otherwise, it is an ≤ A-step,
and we note it t →≤A u. We use the usual ∗ notation for transitive closure. In
case we restrict the relation to the call by value strategy, we add “cbv” as a
subscript. Take care that an →≤A-normal form is not necessarily a normal form
for →.

Lemma 4. There is a constant A and a polynomial P such that for all terms
t, any call by value derivation t →∗≤A,cbv u has length less than P (Lt M).
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Lemma 5. For constructor terms, we have Lt M ≤ Γ × S(t) for some constant
Γ .

Lemma 6. Let us suppose we are given an additive program with interpretation
being polynomials. For a given function symbol f , there is a strategy such that for
all constructor terms t1, . . . , tn, the derivation length of f(t1, . . . , tn) is bounded
by Q(max(S(t1), . . . ,S(tn))) where Q is a polynomial.

Proof. Of Theorem 2 With the strategy defined above, we have seen that the
derivation length of a term f(t1, . . . , tn) is polynomial wrt to max(S(t1), . . . ,S(tn)).
For the converse part, we refer the reader to [2] where a proof that Ptimeprograms
can be computed by functional programs with strict interpretations over the in-
tegers. This proof can be safely used in the present context.

3.2 Dependency Pairs with polynomial interpretation over the reals

Termination by Dependency Pairs is a general method introduced by Arts and
Giesl [1]. It puts into light recursive calls.

Suppose f(t1, . . . , tn) → C[g(u1, . . . , un)] is a rule of the program. Then,
(F (t1, . . . , tn), G(u1, . . . , un)) is a dependency pair where F and G are new sym-
bols associated to f and g respectively. S(C,F , R) denotes the program thus
obtained by adding these rules. The dependency graph links dependency pairs
(u, v) → (u′, v′) if there is a substitution σ such that σ(v) ∗→σ(u′) and termina-
tion is obtained when there is no cycles in the graph. Since the definition of the
graph involves the rewriting relation, its computation is undecidable. In prac-
tice, one gives an approximation of the graph which is bigger. Since this is not
the issue here, we suppose that we have a procedure to compute this supergraph
which we call the dependency graph.

Theorem 3. [Arts,Giesl [1]] A TRS (C,F , R) is terminating iff there exists a
well-founded weakly monotonic quasi-ordering ≥, where both ≥ and > are closed
under substitution, such that

– ` ≥ r for all rules `→ r,
– s ≥ t for all dependency pairs (s, t) on a cycle of the dependency graph and
– s > t for at least one dependency pair on each cycle of the graph.

It is natural to use the polynomial orderings presented above for the quasi-
ordering and the ordering of terms. However, the ordering > is not well-founded
on R, so that system may not terminate. Here is such an example.

Example 2. Consider the non terminating system:(
f(0)→ 0
f(x)→ f(s(x))

)
Take L0 M = 1, Ls M(x) = x/2. The system has a unique dependency pair F (x)→
F (s(x)) for which we can give the interpretation LF M(x) = x+ 1.2

2 The interpretation is correct since for all terms t, Lt M > 0.
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One way to avoid these infinite descent is to force the inequalities over reals to
be of the form P (x1, . . . , xn) ≥ Q(x1, . . . , xn)+δ for some δ > 0 (see for instance
Lucas’s work [14]). Doing so, one gets a well-founded ordering on reals. We
propose an alternative approach to that problem, keeping the original ordering
of R.

Definition 8. A weak polynomial3 algebra for a signature Σ consists of mono-
tone polynomials Lf M for all symbols in Σ.

Definition 9. A R-DP-interpretation for a program P = (C,F , R) is weak poly-
nomial algebra L− M for S(P ) such that

1. there is δ > 0 such that for each n-ary constructor c with n > 0, for all
x1, . . . , xn ≥ 0, we have Lc M(x1, . . . , xn) ≥ δ,

2. L` M ≥ Lr M for `→ r ∈ R,
3. Ls M ≥ Lr M for (s, r) ∈ DP (R),
4. for each dependency pair (s, t) in a cycle, Ls M > Lr M holds.

The main difference with say [16] is that we do not ask for the existence of
some δ such that Ls M ≥ Lr M + δ in the last equation. To simplify the proof of
Theorem 4, we took Ls M > Lt M for all dependency pairs in a cycle, and not for
only one. We make the conjecture that the theorem holds, even in the standard
case: for each cycle, there is a dependency pair (s, t) such that Ls M > Lr M.
Lemma 7. Suppose that a polynomial P is weakly monotonic in every argument
on (R+)n. Suppose that it is not constant wrt some variable. Then for any
arbitrarily small δ > 0, there is a polynomial Pδ such that for all x1 ≥ δ, . . . , xn ≥
δ, if xi ≥ Pδ(A) for some i, then P (x1, . . . , xn) ≥ A.

Theorem 4. A program with a R-DP-interpretation is strongly terminating.

Moreover, its derivation height is bounded by 222O(n)

with n the size of the input.
This bound is tight.

Proof. Since, in the present terms, the hypothesis of the Theorem 3 do not hold,
we come back to its proof and show that we have an extra-ingredient to get the
termination property. Actually, we give a presentation of the proof by means of
call-tree. This allows us a much more direct evaluation of the derivation height
of terms.

Let us consider the call-tree of a term f(t1, . . . , tn) for some constructor terms
t1, . . . , tn. The size of the call tree is precisely the derivation length of the call-
tree. Suppose that we prove that there is a polynomial P such that the depth of
the call tree is polynomial wrt to the interpretation of F (t1, . . . , tn). Since the
branching of the call-tree is bounded by R the maximal size of the right hand
side of rules, the size of the call-tree is bounded by RP (Lf(t1,...,tn) M). But, sinceLF (t1, . . . , tn) M ≤ 22O(|F (t1,...,tn)|)

by Lemma 1, we have P (LF (t1, . . . , tn) M) ≤
P (22O(

Pn
i=1 |ti|+1)

) = 22O(maxn
i=1 |ti|) . And, the conclusion follows.

3 L-polynomial algebra in the terminology of Lucas [14].
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So, it remains to prove that the existence of such a polynomial P . This is
done by induction on the rank of symbols. But, first, consider a rule f(pi)σ →
C[g(ei)]σ with f and g of same rank. Then, we have LF (pi) M > LG(ei) M. Notice
that Proposition 1 applies in the present context for dependency pairs of same

rank, so that we can state that LF (pi) M− LG(ei) M > 1
P (x1, . . . , xn)

where xi are

the variables of F (pi). Wlog, we can suppose (possibly by padding arguments)
that P is common to all the dependency pairs of equal rank.

Base case Let us consider a symbol h of minimal rank and some constructor
terms t1, . . . , tn and finally, let P = f1(u1), . . . , fk(uk)), . . . be a path in the
call tree of f(t1, . . . , tn). From hypothesis (4) of Definition 9, we can state thatLF1(u1) M > LF2(u2) M > · · · .

Given a dependency pair given by ` = f(pi)→ C[g(ei)] = r with f and g of
equal rank, we extract the sequence fψ = (fψ(i)(uψ(i)))i∈N from P such that

– fψ(i) = f and
– `σ = fψ(i)(uψ(i))→ C[fψ(i)+1(uψ(i)+1)] = r.

Wlog, we can suppose that LF (pi) M varies with x1, . . . , xm and is constant
wrt xm+1, . . . , xn. Let us consider a (possibly empty) set θ ⊆ {1..m}. To simplify
the readability of the proof, we suppose θ = {k..m}.

We extract the sequence fϕ = (fϕ(i)(uϕ(i)))i∈N from fψ such that

1. for all j ≤ k, Lσ(xj) M 6= 0,
2. for all j ≥ k, Lσ(xj) M = 0,

where σ is the substitution mention in the construction of fψ.
Observe that LF (pi) M varies with x1, . . . , xk. And that Lσ(xi) M ≥ δ for all

i ≤ k. Consequently, from Lemma 7, we get a polynomial Q such that Lσ(xi) M ≤
Q(Lfi(ui) M). But, then, LF (pi) M ≥ LG(ei) M+ 1

P (Q(LFi(ui) M), . . . , Q(LFi(ui) M)) ≥
LG(ei) M +

1
P (Q(LF1(u1) M), . . . , Q(LF1(u1) M)).

As a conclusion, we have a polynomial bound on the initial subsequence
restricted to the redex of a chosen rule and a particular choice of variable whose
interpretation is 0. Since the number of dependency pairs is finite, since the
number of choice for the variables is finite (bounded by 2D where D is the
maximal number of variables in a rule), since only (finitely many) constants
have interpretation equal to 0, we can say that the length of the sequence P is
bounded by N × 2D × |C| × P (Q(LF1(u1) M), . . . , Q(LF1(u1) M)).
induction step Suppose f has a higher rank. A path of a call-tree can be decom-
posed in a sub-path of nodes with function of rank of f , and symbols of smaller
rank. The depth of symbols of rank of f can be treated as it has been done in
the base case. For symbols of lower rank, one employs the induction. The depth

28



of symbols of different ranks sums, and we get a call-tree of polynomial depth
in the interpretation of the initial term.

The bound is tight as shown by the next example.

Example 3. The Quantified Boolean Formula (QBF) problem is Pspace com-
plete. It consists in determining the validity of a boolean formula with quantifiers
over propositional variables. Without loss of generality, we restrict formulae to
¬,∨,∃. QBF problem is solved by the following program.

not(tt)→ ff not(ff)→ tt L0 M = Lε M = 1
or(tt, x)→ tt or(ff , x)→ x Ls M(x) = LVar M(x) = x+ 1

0 = 0→ tt s(x) = 0→ ff LNot M(x) = LOr M(x) = x+ 1
0 = s(y)→ ff s(x) = s(y)→ x = y LExists M(x) = x+ 2
in(x, ε)→ ff in(x, cons(a, l))→ or(x = a, in(x, l))

verify(Var(x), t)→ in(x, t)
verify(Not(ϕ), t)→ not(verify(ϕ, t))

verify(Or(ϕ1, ϕ2), t)→ or(verify(ϕ1, t), verify(ϕ2, t))
verify(Exists(n, ϕ), t)→ or(verify(ϕ, cons(n, t)), verify(ϕ, t))

qbf(ϕ)→ verify(ϕ, ε)

They admit the following interpretation :

Lor M(x) = Lnot M(x) = Lqbf M(x) = 1L= M(x, y) = Lin M(x, y) = Lverify M(x, y) = 1LNOT M(x) = xLOR M(x, y) = LEQ M(x, y) = max(x, y)LIN M(x, y) = x+ yLVERIFY M(x, y) = 2× x+ y + 1LQBF M(x) = x+ 2

It is well known that the derivation height of the QBF is exponential wrt
the number of nested Exists symbols. Since the following program builds an
input of double exponential depth, we get the triple exponential bound on the
derivation height.

add(0, y)→ y add(s(x), y)→ s(add(x, y))
mult(0, y)→ 0 mult(s(x), y)→ add(y, mult(x, y))
dexp(0)→ s(s(0)) dexp(s′′(x))→ mult(dexp(x), dexp(x))

e(0)→ tt e(s(n))→ Exists(n, e(n))
main(x)→ qbf(e(x))
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with interpretations:

L0 M = 0Ls M(x) = x+ 1Le M(x) = 3x LE M(x) = xLmain M(x) = Lqbf(e(x)) M LMAIN M(x) = xLadd M(x, y) = x+ y LADD M(x, y) = x+ yLmult M(x, y) = x× y LMUL M(x, y) = x+ yLdexp M(x) = x+ 2 LDEXP M(x) = x+ y

We observe that the term main(s′′ · · · s′′︸ ︷︷ ︸
n times q

0) rewrites in normal form to the

term Exists(s2
n

(0, . . . ,Exists(0, tt) · · · ) gives the triple exponential derivation
height lower bound.

It is not clear whether there are some programs with R-DP-interpretation
which do not admit interpretations in the sense of Lucas [14]. Nevertheless, there
is at least one good point for R-DP-interpretation: the logical formulation of the
synthesis of R-DP-interpretation involves less alternation of quantifiers. Suppose
that we are given a program and a fixed degree, the logical formula correspond-
ing to L` M > Lr M is ∀x1, . . . , xn > 0 : L` M(x1, . . . , xn) > Lr M(x1, . . . , xn). While
for expressing >δ, we have to write ∃δ > 0 : ∀x1, . . . , xn > 0 : L` M(x1, . . . , xn) >Lr M(x1, . . . , xn) + δ. Since the complexity of the QED procedure depends drasti-
cally on the number of alternation, we may hope to get thus a better procedure.

With respect to complexity, the proof of Theorem 4 gives us some insight on
the cost of a computation. Consider programs with a R-DP-interpretation such
that any constructor c has an interpretation of the form kc +

∑
i xi, in other

words, an additive R-DP-interpretation in [16]’s terminology. There is a con-
stant K such that for all contructor terms t, Lt M ≤ K.|t|, so that Lf(t1, . . . , tn) M
is polynomially bounded wrt the size of the (constructor) terms ti.4 The proof
shows then that the nesting of function calls is itself bounded polynomially. If,
furthermore the interpretation of capital functions verify the sub-term property,
we can state that the size of arguments remain polynomial. This is an other
formulation (and a slightly more general one) of the hypothesis of “bounded re-
cursion call” which can be found in [16]. So that computations can be performed
within Pspace. Since polynomial time can be done with such systems (cf. [2]),
and QBF can be simulated, it is then clear that the following Theorem holds:

Theorem 5. Functions computed by programs

– with additive R-DP-interpretations
– the interpretation of capital symbols F has the sub-term property

4 See [3] for a proof.
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are exactly Pspace computable functions.

Proof. The QBF program showed above together with the fact that programs
with an R-DP-interpretations are closed under polynomial reduction show that
such programs correspond exactly to Pspace.

Acknowledgement The authors would like thank the anonymous referees for their
valuable help.
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A Some preliminary result about polynomials over the
reals

Definition 10. A polynomial P ∈ R[x, y] is said over-homogeneous of degree d
whenever there is a real A ≥ 0 and a real B ≥ 1 such that ∀x, y ≥ A,∀λ > B :
P (λx, λy) ≥ λdP (x, y). We say that P is A,B-over-homogeneous when we want
to put the focus on A and B.

Lemma 8. Given P ∈ R[x, y] of tota degree greater than 2, we suppose that
there is some C such that for all k ≥ 0, all x, y > C, we have P (x, y) ≥ 0. Then,
P≥k is homogeneous of degree k for k ≥ 1 and P≥k(x, y) ≥ 0 with x, y > C ′ for
some C ′.

Theorem 6. Given a polynomial P ∈ R[x1, . . . , xn] such that

(i) ∀x1, . . . , xn ≥ 0 : P (x1, . . . , xn) > max(x1, . . . , xn),
(ii) ∀x′i > xi, x1, . . . , xn ≥ 0 : P (x1, . . . , x

′
i, xi+1, . . . , xn) > P (x1, . . . , xn),

then, there exist A ≥ 0 such that P (x1, . . . , xn) >
∑n
i=1 xi whenever for all

1 ≤ i ≤ n, we have xi > A.

Using the compactness of [0..A]n, the following hold.

Corollary 1. Let P (x1, . . . , xn) be a polynomial with the hypothesis of The-
orem 6. For all subsets I ⊆ {1..n}, there is a constant AI such that for all
x1, . . . , xn ≥ 0 with xi ≥ AI for i ∈ I, we have P (x1, . . . , xn) >

∑
i∈I xi.

And, as a corollary of the corollary,

Corollary 2. There is a constant A′ ≥ 0 such that for all x1, . . . , xn ≥ 0 with
xi1 , . . . , xik > A′, we have P (x1, . . . , xn) > xi1 + · · ·+ xik .

Notice that compared to the latter corollary 1, the bound is uniform with
respect to I.

Theorem 7. Given a polynomial P ∈ R[x1, . . . , xn] such that
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(i) ∀x1 ≥ 0, . . . , xn ≥ 0 : P (x1, . . . , xn) > max(x1, . . . , xn),

(ii) ∀x1 ≥ 0, . . . , xn ≥ 0 :
∂P

∂xi
(x1, . . . , xn) > 0 for all i ≤ n,

then, there exist A > 0 such that for all ∆ > 0, we have P (x1, . . . , xi +
∆, . . . , xn) > P (x1, . . . , xn) +∆ whenever x1, . . . , xn > A.

Corollary 3. With the hypothesis of the theorem above, we can say that there
is a bound B such that for all x1, . . . , xn ≥ 0, if xi > B, then, P (x1, . . . , xi +
∆, . . . , xn) > P (x1, . . . , xn) +∆.
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Abstract. The overall goal of the research presented in this paper is
to find automatic methods for static complexity analysis of higher order
programs.

1 Introduction and Related Work

In the first part of the paper we consider a first order imperative language. Our
method for dealing with this language is reminiscent of the methods of Ben-
Amram, Jones and Kristiansen [JK09,KJ05,BAJK08] or of Niggl and Wünderlich
[NW06]. The method is also, although the link is not obvious, related to quasi-
interpretation and sup-interpretation; see e.g. Bonfante, Marion and Moyen
[BMM07] and Marion and Péchoux [MP09].

In the second part of the paper, we lift the method developed in the first
part to allow analysis of higher order programs written in a language that is an
imperative version of Gödel’s T . There have not been much research on auto-
matic complexity analysis of higher order programs. One exception is Benzinger
[B04], however, the semi-automatic approach taken in [B04] seems to be very
different from our approach. We believe the work presented in this paper sug-
gests how a number of methods, including the powerful method in [BAJK08],
can be generalised to deal with higher order programs.

The paper presents work in progress. The main result is still conjecture,
and there is much room for simplification, but several examples are given that
illustrate why and how the methods should work.

2 Vectors and Matrices over Semirings

Recall that a semiring is a set S together with two internal operations + and ·,
called addition and multiplication, such that: + is associative, commutative and
has a neutral element 0; · is associative and has a neutral element 1; 0 annihilates
·; · is distributive over +.

⋆ This work was partially supported by a grant from Agence Nationale de la Recherche,
ref. ANR-08-BLANC-0211-01 (COMPLICE project)
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We consider vectors over a semiring S. To make working with sparse repre-
sentations easier, we associate an index set I and define a vector as a mapping
V : I → S. This representation is equivalent to the standard one, in which vec-
tors are represented by S-tuples denoting the coefficients in a linear expansion
in a basis. I might be infinite, but in our analysis, any vector will have only
finitely many nonzero entries.

If i ∈ I is an index and V is a vector, V [i] denotes the ith component of
the vector (that is, Vi in usual notation). Addition and scalar multiplication are
canonically lifted from scalars to vectors point-wise: (V + W )[i] = V [i] + W [i]
and (a · V )[i] = a · (V [i]).

We use the sparse representation ( x1 ··· xn
a1 ··· an

) to denote the vector V , where
V [xi] = ai for ~a ∈ S and ~x ∈ I, and where V [y] = 0 for any y ∈ I \{x1, . . . , xn}.
Notice that () then is the zero vector and that„

x1 · · · xi

a1 ai

«
⊕

„
xi+1 · · · xn

ai+1 an

«
=

„
x1 · · · xn

a1 an

«
when {x1, . . . , xi} and {xi+1, . . . , xn} are disjoint. Let V be a vector. We define„

x1 · · · V · · · xn

a1 ai an

«
= aiV ⊕

„
x1 · · · xi−1 xi+1 · · · xn

a1 ai−1 ai+1 an

«
(*)

This notation will turn out to be convenient. We will use e [x \ t] to denote the
expression e where the free occurrences of x have been replaced by t. By (*),„

x1 · · · xi · · · xn

a1 ai an

«
[xi \ V ] = aiV ⊕

„
x1 · · · xi−1 xi+1 · · · xn

a1 ai−1 ai+1 an

«
(**)

We will also see that the equality (**) provides a convenient way of defining the
product of higher order matrices by certain substitutions.

A matrix over scalars S and index set I is seen as a mapping from the indices
to vectors (over S and I). These vectors are the usual column vectors of algebra
textbooks. We use M, A, B, C, . . . to denote matrices, and Mj to denote the
vector that the matrix M assigns to the index j. Thus, Mj[i] is a scalar.

We have chosen to use the nonstandard notation Mj [i] in place of the stan-
dard notation Mij , the reason being that this notation works much better for
higher order. The reader should note that Mj denotes the jth column vector of
the matrix M , i.e. MT

j in standard row-major notation.
Sums and products of matrices are defined as usual: (A+B)j [i] = Aj [i]+Bj [i]

and (A · B)j [i] =
∑

k∈I Ak[i] ·Bj [k].
If S is non-negative, the matrix M is an upper bound of the matrix A, and

we write M ≥ A, iff there exists a matrix B such that M = A + B. Thus
we have a partial ordering of matrices. The ordering symbols ≥,≤, >, < have
their standard meaning with respect to this ordering, and we will use standard
terminology, that is, we say that A is greater than B when A ≥ B, that A is
strictly less than B when A < B, et cetera.

The zero matrix is denoted by 0, and M = 0 iff Mj = () for all j ∈ I. We
have 0 + M = M + 0 = M for any matrix M . The identity matrix is denoted
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by 1, and 1 by M = 1 iff Mj[i] = 1 for i = j, Mj[i] = 0 for i 6= j. We
have 1 · M = M · 1 = M for any matrix M . Furthermore, let M0 = 1 and
Mn+1 = M · Mn. We define the closure of the matrix M , written M∗, by the
infinite sum M∗ = 1 + M + M2 + M3 + . . ..

Let Mn denote the set of n×n matrices over a semiring. Then the algebraic
structure (Mn, +, ·,0,1) is a semiring. The closure M∗ may not exist for every
matrix M ∈Mn. However, if M∗ exists, the identity M∗ = 1+(M ·M∗) holds.

3 Analysis of a First-Order Programming Language

3.1 The programming language

Syntax and Semantics We consider deterministic imperative programs that
manipulate natural numbers held in variables. Each variable stores a single nat-
ural number. Our language is an extension of the well-know Loop language
studied in Meyer & Ritchie [MR76] and in several other places. In this language,
a function is computable if and only if it is primitive recursive.

Expressions and sequences are defined by the following grammar:

(Variables) ::= X
(Constants) ::= kn for each n ∈ N
(Operators) ::= op
(Expressions) ∋ e ::= op(e1, e2) | X | kn

(Sequences) ∋ s ::= ε | s1;s2 | X:= e | loop X { s }
Sequences will also be called programs.

A program is executed as expected from its syntax, so we omit a detailed
formalisation. The semantics at first order is the restriction of the high-order
semantics depicted in Figure 1. At any execution step, each variable Xi holds a
natural number xi, and the expressions are evaluated straightforwardly without
side effects. There is an unspecified set of operators that are all computable in
constant time. Typical operators include add, mul, sub and max, whose semantics
are respectively addition, multiplication, modified subtraction4 and maximum.
The constant kn denotes the integer n ∈ N. The program loop X { s } executes
the sequence s in its body x times in a row, where x is the value stored in X when
the loop starts. X may not appear in the body of the loop. The sequence s1;s2

executes first the sequence s1 followed by the sequence s2. Programs of the form
X:= e are ordinary assignment statements, and the command ε does nothing. In
all, the semantics of the language is straightforward.

Feasible Programs Let s be a program with variables {X1, . . . , Xn}. The pro-
gram execution relation a1, . . . , an[s]b1, . . . , bn holds iff the variables X1, . . . , Xn

respectively hold the numbers a1, . . . , an when the execution of s starts and re-
spectively the numbers b1, . . . , bn when the execution terminates. We say that a
program s is feasible if for any subprogram s′ there exist polynomials p1, . . . , pn

such that a1, . . . , an[s′]b1, . . . , bn ⇒ bi ≤ pi(a1, . . . , an).
4 That is, sub(X, Y) returns 0 if Y is greater than X.

36



3.2 Abstract Interpretation

A Particular Semiring We will analyse programs by interpreting expressions
as vectors and sequences as matrices. These vectors and matrices will be over

– the index set k, X0, X1, X2, . . ., that is, the set of program variables extended
by the index k,

– and the semiring (N,⊕,⊗, 0, 1) where⊕ is the maximum operator, i.e. a⊕b =
max(a, b), and ⊗ is standard multiplication of natural numbers.

Example In this semiring, the closure M∗ of a matrix M might not exists. Let
A and B be the following matrices over (N,⊕,⊗, 0, 1):

A =
(

1 0 0
2 1 0
0 2 1

)
B =

(
1 0 0
2 2 0
0 0 1

)
Then we have

– A2 =
„ 1 0 0

2 1 0
2 2 1

«
, A3 =

„ 1 0 0
2 1 0
4 2 1

«
, and A4 =

„ 1 0 0
2 1 0
4 2 1

«
– B2 =

„ 1 0 0
4 4 0
0 0 1

«
, B3 =

„ 1 0 0
8 8 0
0 0 1

«
, and B3 =

„ 1 0 0
16 16 0
0 0 1

«

Hence, we see that A∗ exists with the value A∗ = 1 ⊕ A ⊕ A2 ⊕ A3 ⊕ . . . =(
1 0 0
2 1 0
4 2 1

)
whereas B∗ =

(
1 0 0∞ ∞ 0
0 0 1

)
is not a matrix over N.

Some Intuition Our goal is to decide whether or not a given program is feasible
by analysing the syntax of the program. This feasibility problem is of course
undecidable, but we will present a sound computable method in the sense that if
the method certifies a program as feasible, the program will indeed be feasible.

Our abstract interpretation [[s]] of a program s will either be undefined or a
matrix

[[s]] = [X1 7→ V1, . . . , Xn 7→ Vn]

where X1, . . . , Xn are the variables occurring in s and V1, . . . , Vn are vectors over N
and the index set {X1, . . . , Xn}.5 The program s will be feasible if [[s]] is defined,
and the vector Vi will contain information about how the output value of Xi

depends on the input values of X1, . . . , Xn. Let x1, . . . , xn be the input values,
and let x′1, . . . , x

′
n be the output values, of respectively X1, . . . , Xn. If Vi[Xj ] = 0,

then there exists a polynomial independent of xj such that x′i < p. If Vi[Xj ] = 1,
then there exists a polynomial q independent of xj such that x′i ≤ xj +q. Finally,
if Vi[Xj ] > 1, then there exists a polynomial p dependent of xj such that x′i ≤ p.
The exact value of Vi[Xj ] will say something about the degree of the variable xj

in this polynomial: if Vi[Xj ] = k, then the degree of xj will be less or equal to k.
If [[s]] is undefined, s might not be a feasible program.

Let us study an example where s is loop U { X:= add(X, Y); Z:= X }. Our
interpretation of s will be

[[s]] =
[
X 7→

„
XYZU

1202

«
, Y 7→

„
XYZU

0100

«
, Z 7→

„
XYZU

1212

«
, U 7→

„
XYZU

0001

«]
.

5 For simplicity, assume that no constants occurs in s.
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This interpretation tells something about the program s. The entry X 7→ (XYZU1202)
ensures that there exists a polynomial p(y, u) such that the output value of
X is bounded by x + p(y, u), where x, y, u are the input values of respectively
X, Y, U. We cannot read off an exact polynomial, but we can conclude that such
a polynomial exists. Furthermore, we can conclude that the polynomial may be
dependent of the input values of Y and U and is independent of the input values
of X and Z. By inspecting the program s, we can see that p(y, u) might be the
polynomial y×u, but we cannot deduce this information from the interpretation
[[s]]. However, we know from [[s]] that there exists some polynomial p(y, u) where
the degrees of y and u are less or equal to 2. The entry Y 7→ (XYZU0100) tells us that
the output value of Y is bounded by the input value of Y and independent of the
input values of the remaining program variables. The interpretation [[s]] yields
similar information about the output values of Z and U.

The interpretation [[s]] will be undefined for any infeasible program s. E.g.,
the interpretation of the program loop X { Y:= mul(Y, Y) } will not be defined as
the output value of Y will not be bounded by a polynomial in the input values
of X and Y. We have

[[Y:= mul(Y, Y)]] = [X 7→ (XY10) , Y 7→ (XY02)]
[[Y:= mul(Y, Y); Y:= mul(Y, Y)]] = [X 7→ (XY10) , Y 7→ (XY04)]
[[Y:= mul(Y, Y); Y:= mul(Y, Y); Y:= mul(Y, Y)]] = [X 7→ (XY10) , Y 7→ (XY08)]

and so on, but [[loop X { Y:= mul(Y, Y) }]] is undefined.

Loop Correction In addition to the standard operators on vectors and matrices
defined in Section 2, we need the operation of loop correction: For each X ∈ I,
we define a unary operator M↓X on a matrix M , by

M↓X
j =

{
Mj ⊕ ( X

a ) if a > 1
Mj otherwise

where a =
∑

i∈I Mj [i]. Note that both the closure and the loop correction oper-
ator are monotonous, i.e. M ≤ M∗ (if M∗ exists) and M ≤ M↓X for any matrix
M and any X ∈ I.

The Interpretation Operator We define the interpretation operator [[·]] map-
ping expressions to vectors and sequences to matrices.

– Interpretations of expressions:
• for any program variable X, let [[X]] = ( X

1 )
• for any constant kn, let [[kn]] = ( k

1 )
• [[op(e1, e2)]] = [[op]] ([[e1]] , [[e2]]), i.e. the function [[op]] applied to the ar-

guments [[e1]] and [[e2]]
• [[add]] = λxλy ( x y

1 2 ) and [[mul]] = λxλy ( x y
2 2 ) and [[sub]] = λxλy ( x

1 ) and
[[max]] = λxλy ( x y

1 1 )
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– Interpretations of sequences:
• [[s1;s2]] = [[s1]]⊗ [[s2]]
• [[X:= e]] = 1X

[[e]] where 1X
[[e]] denotes the identity matrix 1 where the vector

indexed by X is replaced by the vector [[e]]
• [[ε]] = 1 (the identity matrix)

• [[loop X { s }]] =

{
([[s]]∗)↓X if [[s]]∗ exists
undefined otherwise

Example We will compute the the interpretation of the program expression
max(X1, X2). Recall definition (*) from Section 2, that is, for ~x ∈ I and ~a ∈ S
and any vector V , we have

„
x1 · · · V · · · xn

a1 · · · ai · · · an

«
= aiV ⊕

„
x1 · · · xi−1 xi+1 · · · xn

a1 · · · ai−1 ai+1 · · · an

«
.

[[max(X1, X2)]] = λxλy ( x y
1 1 )

(
X1
1

) (
X2
1

)
= λy

„`
X1
1

´
y

1 1

« (
X2
1

)
= λy

(
1

(
X1
1

)⊕ ( y
1 )

) (
X2
1

)
= λy

„
X1 y
1 1

« (
X2
1

)
=

„
X1

`
X2
1

´
1 1

«
= 1

(
X2
1

)⊕ (
X1
1

)
=

„
X1 X2

1 1

«

Example Next we compute the the interpretation of the program expression
mul(sub(X1, X2), X3). We have [[mul(sub(X1, X2), X3)]] =

λxλy ( x y
2 2 ) ([[sub(X1, X2)]] , [[X3]]) = λxλy ( x y

2 2 ) (λxλy ( x
1 ) ([[X1]] , [[X2]]), [[X3]]) =

λxλy ( x y
2 2 )

((
[[X1]]
1

)
, [[X3]]

)
= λxλy ( x y

2 2 )
(„`

X1
1

´
1

«
,
(
X3
1

))
=

λxλy ( x y
2 2 )

((
X1
1

)
,
(
X3
1

))
=

„`
X1
1

´ `
X3
1

´
2 2

«
=

„
X1 X3

2 2

«
The computation shows that the expression mul(sub(X1, X2), X3) is inter-

preted as the vector
(
X1 X2
2 2

)
. Hence, there exists a polynomial p such that the

value of the expression is bounded by p(X1, X3). Note that the value of the ex-
pression indeed also depends on X2, however, there exists a polynomial bound
on this value that does not depend on X2, e.g. the polynomial X1 × X3.

Example We will now show how to compute the interpretation of the pro-
gram X3:= mul(sub(X1, X2), X3); X2:= max(X2, X3). The interpretations of the ex-
pressions occurring in the program are computed in the previous examples, and
we have

[[X3:= mul(sub(X1, X2), X3); X2:= max(X2, X3)]] =
[[X3:= mul(sub(X1, X2), X3)]] ⊗ [[X2:= max(X2, X3)]] =

1X3
[[mul(sub(X1,X2),X3)]] ⊗ 1X2

[[max(X2,X3)]]
= 1X3“

X1 X3
2 2

” ⊗ 1X2“
X2 X3
1 1

”
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The computation shows that the interpretation of the program is the product of
the the two matrices 1X3“

X1 X3
2 2

” and 1X2“
X1 X3
1 1

”. Recall that 1X3“
X1 X3
2 2

” is the identity

matrix where the column vector indexed by X3 is replaced by the vector
(
X1 X3
2 2

)
,

that is

1X3“
X1 X3
2 2

” =
( X1 X2 X3

X1 1 0 2
X2 0 1 0
X3 0 0 2

)
and 1X2“

X1 X3
1 1

” =
( X1 X2 X3

X1 1 0 0
X2 0 1 0
X3 0 1 1

)

and the product is
( X1 X2 X3

X1 1 0 2
X2 0 1 0
X3 0 0 2

)
⊗

( X1 X2 X3
X1 1 0 0
X2 0 1 0
X3 0 1 1

)
=

( X1 X2 X3
X1 1 2 2
X2 0 1 0
X3 0 2 2

)
. Hence,

we have

[[X3:= mul(sub(X1, X2), X3); X2:= max(X2, X3)]] =
( X1 X2 X3

X1 1 2 2
X2 0 1 0
X3 0 2 2

)
What does this matrix tell us? Let x1, x2, x3 be the numbers stored in X1, X2, X3

when the execution of the sequence begins, and let x′1, x
′
2, x

′
3 be the values stored

in X1, X2, X3 at execution end. The certificate obtained above implies: (i) x′1 ≤ x1.
(ii) x′2 ≤ x2 + p(x1, x3) for some polynomial p; in this case x′2 ≤ x2 + (x1 × x3).
(iii) x′3 ≤ q(x1, x3) for some polynomial q; in this case x′3 ≤ x1 × x3.

Example The bound on a value computed inside a loop may or may not depend
on how many times the loop’s body is executed. The loop correction operator
adds the appropriate dependence on the iteration variable to the value bounds.

Consider the program loop Z { X:= add(X, Y) }. Assume the input value of Z
is z. Any bound on the output value of X depends on z, as the value held by
X will be increased z times by the content of Y. There exists a bound on the
output value of Y that does not depend on z as Y is not modified inside the loop.
The loop correction operator ensures that this is reflected in the interpretation
of loop Z { X:= add(X, Y) }. We invite the reader to check that

[[loop Z { X:= add(X, Y) }]] = ([[X:= add(X, Y)]]∗)↓Z =

([X 7→ ( XY
12 ) , Y 7→ ( Y

1 )]∗)↓Z = [X 7→ ( XY
12 ) , Y 7→ ( Y

1 )]↓Z = [X 7→ ( XYZ
122 ) , Y 7→ ( Y

1 )]

Example We will study the sequence loop Y { s } where s is the sequence
X1:= add(X1, X2); X2:= add(X2, X3). It is left to the reader to verify that [[s]] =0BBBB@

X1 X2 X3 Y

X1 1 0 0 0
X2 2 1 0 0
X3 0 2 1 0
Y 0 0 0 1

1CCCCA. Now, [[s]]∗ exists with [[s]]∗ =

0BBBB@
X1 X2 X3 Y

X1 1 0 0 0
X2 2 1 0 0
X3 4 2 1 0
Y 0 0 0 1

1CCCCA . Hence we obtain

[[loop Y { s }]] = [[s]]∗↓Y =

0BBBB@
X1 X2 X3 Y

X1 1 0 0 0
X2 2 1 0 0
X3 4 2 1 0
Y 0 0 0 1

1CCCCA
↓Y

=

0BBBB@
X1 X2 X3 Y

X1 1 0 0 0
X2 2 1 0 0
X3 4 2 1 0
Y 4 2 0 1

1CCCCA

Now, let x1, x2, x3, y be the numbers stored in respectively X1, X2, X3, Y when the
execution of loop Y { s } starts; and let x′1, x

′
2, x

′
3, y

′ be the numbers stored in
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X1, X2, X3, Y when the execution ends. The computed certificate guarantees that
(i) x′1 ≤ x1 + p(x2, x3, y) for some polynomial p, e.g. x′1 ≤ x1 + y3 × x2 × x3,
(ii) x′2 ≤ x2 + q(x3, y) for some polynomial q, e.g. x′2 ≤ x2 + y × x3, and (iii)
x′3 ≤ x3 and y′ ≤ y.

Example We shall study the sequence loop Y { s } where s is the sequence

X1:= add(X1, X2); X2:= add(X2, X2). One can easily calculate [[s]] =
0BB@

X1 X2 Y

X1 1 0 0
X2 2 2 0
Y 0 0 1

1CCA.

This is the matrix B from Example 1, for which the closure B∗ does not exist.
Hence, [[loop Y { s }]] is undefined, and we cannot certify the program. This is
as desired, since some of the output values of the program are not polynomially
bounded in the input values. Namely x′2 = x2 × 2y.

Theorem 1. Assume that [[s]] = M for some matrix M . Then, for i = 1, . . . , n,
there exists a polynomial pi such that ~a[s]~b ⇒ bi ≤ max(~u) + pi(~v) where aj is
in the list ~u iff MXi

[Xj ] = 1; and aj is in the list ~v iff MXi
[Xj ] > 1.

This is an adaptation of the result of Jones & Kristiansen [JK09].

Corollary 1. If [[s]] is defined, then s is feasible.

3.3 Comments and Comparisons with Related Work

The mwp-analysis presented in [JK09], can be seen as an abstract interpretation
method where first-order imperative programs are interpreted as matrices over
a finite semiring. The method presented above builds on the insights of mwp-
analysis and is, in certain respects, an improvement of mwp-analysis:

– By interpreting operators as λ-expressions over vectors, we can easily include
any operator in our programming language. We have included add, mul, sub
and max, and it is straightforward to extend this list, e.g. we can include e.g.
div (integer division) by the interpretation [[div]] = λxλy ( x

1 ). In contrast,
the original mwp-analysis only admits the operators add and mul.

– We provide a technique for dealing with constants. The mwp-analysis in
[JK09] assumes there are no constants in the programs.

– We interpret programs as matrices over an infinite semiring, and our matrices
contains more information than the finite ones in [JK09]. When an mwp-
matrix is assigned to a program, we know that there exists polynomial upper
bounds on the output values of the program; the present analysis provides
bounds on the degrees these polynomial bounds.

These improvements of mwp-analysis are side effects of our effort to construct an
interpretation method which is suitable for lifting to a higher order setting. The
reader should also be aware that our method in certain respects is weaker than
mwp-analysis, which again is weaker than the method introduced in [BAJK08].
This is acceptable since our motivation is not to capture as many first-order algo-
rithms as possible. Rather, it is to develop a theory and book-keeping framework
that can easily be lifted to higher orders.
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Hopefully, lifting the interpretation presented in this section to higher orders
will be a useful and educating exercise. Eventually, we might embark on more
difficult projects, like e.g. lifting the analysis in [BAJK08].

4 Analysis of a Higher-Order Programming Language

4.1 The Higher-Order Programming Language

Types We will now extend our first order programming language to a higher
order language. This language has variables of any type; variables of type ι hold
natural numbers and variables of type σ, where σ 6= ι, hold compound types.
Expressions are typed in a straightforward way by a classical typing system.
We leave out the typing rules here as they are quite obvious. Product types are
used for typing pairs, arrow types for procedures, and so forth. The notation
σ1, σ2, . . . , σn → τ is shorthand for σ1 → (σ2 → (. . . (σn → τ) . . .)). E.g., a
function from N3 into N will be of the type ι, ι, ι → ι which is shorthand for the
type ι → (ι → (ι → ι)). When needed, we will use superscript to denote the
type of an expression e, that is, eσ is an expression of type σ.

Syntax Types, Expressions and sequences are defined by the following grammar:

(Types) ∋ σ, τ ::= ι|σ ⊗ τ |σ → τ
(Variables) ::= X
(Constants) ::= kn for each k ∈ N
(Operators) ::= op
(Expressions) ∋ e ::= X|kn|op(e1, e2)|pair(e1, e2)|fst(e)|snd(e)|

app(e1, e2) | {s}X | proc(X) e
(Sequences) ∋ s ::= ε | s1;s2 | X:= e | loop Xι { s }

As before, the set of operators is unspecified, but apply only to first order
(i.e. with expressions of type ι). The expression {s}X returns the value of X after
executing the sequence s, while all other variables are left unmodified (i.e. local
copies are created and discarded as needed). It is mostly used as the body of
procedure definitions, thus leading to a call by value mechanism.

The high-order language extends the first order Loop language by using
high-order variables. It is close to the extension done by Crolard & al. [CPV09].
It can be verified that the resulting language is an imperative variant of Gödel’s
System T . Our transformation is easier than the one by Crolard & al., because
we do not require the lock-step simulation of System T .

Semantics Programs are expressions of type ι whose only free variables are of
type ι. They are evaluated by a standard call by value semantics depicted on
Figure 1.

An environment env maps variables to expressions. Updating an environ-
ment is written env{X 7→ e}, env{X 7→ ∅} is used to unbind X when build-
ing λ-abstraction for procedures. Operators are evaluated via a given semantics
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(Var)
X, env ⊢ env(X)

(Cons)
kn, env ⊢ kn

e1, env ⊢∗ e′1 e2, env ⊢∗ e′2
(Op)

op(e1, e2), env ⊢ op(e′1, e
′
2)

e, env{X 7→ ∅} ⊢∗ e′
(Proc)

proc(X) e, env ⊢ proc(X) e′
s, env  env′

(Return)
{s}X, env ⊢ env′(X)

e1, env ⊢∗ proc(X) e′1 e2, env ⊢∗ e′2 e′1env{X 7→ e′2} ⊢∗ e′

(App)
app(e1, e2), env ⊢ e′

(Empty)
ε, env  env

s1, env  env′ s2, env′  env′′
(Comp)

s1;s2, env  env′′

s; . . . ;s, env  env′

(Loop)
loop X { s }, env  env′

e, env ⊢∗ e′

(Assign)
X := e, env  env{X 7→ e′}

Fig. 1. Call by value semantics

function opι,ι→ι. ⊢∗ is the reflexive transitive closure of ⊢. Rule (Proc) reduces
inside the procedure’s body, thus leading to a static binding of variables. Rule
(Loop) expands the loop to env(X) copies of its body.

4.2 Higher Order Vectors and Matrices

Vectors In order to separate the programs and program’s expressions from their
interpretation (as matrices, vectors, and algebraic expressions), we consider a
base type κ for algebraic expressions.

We have first order indices xκ
0 , xκ

1 , xκ
2 , . . ., and Iκ denotes the set of first

order indices. Let S be any semiring. We define the arrow types α → β and
product types α ⊗ β over the base type κ in the standard way. Letters early
in the Greek alphabet α, β, γ . . . t denote types over the base type κ whereas
σ, τ, . . . denote types over the base type ι. For any type α, we have a set of indices
Iα = {xα

0 , xα
1 , xα

2 , . . .}. I denotes the set of all index sets.
Next, we lift the standard addition operator on vectors to an operator on

algebraic expressions of higher types. We define the addition operator +α over
the type α recursively over the structure of the type α.

– a +κ b = a + b (standard addition of vectors over S and Iκ)
– c = a +α→β b iff c(i) = a(i) +β b(i) for every i ∈ α
– (a1, a2) +α⊗β (b1, b2) = (a1 +α b1, a2 +β b2)

We define the higher order vector expressions over S and the index set I as
the set containing the first order vectors (indexed by Iκ), variables (i.e. indexes
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of I) and which is closed by addition, λ-abstraction, application and pairing.
If eβ is an expression and xα is a free index in e, then e[x \ tα] denotes the
expression resulting from replacing all free occurrences of x in e by t. To improve
the readability, we will write e[x1 \ t1, . . . , xn \ tn] in place of e[x1 \ t1] . . . [xn \ tn].

Matrices A higher order matrix over S and I is a mapping from I into the
higher order vector expressions over S and I such that each index of type α
is mapped to an expression of type α. We use M, A, B, C, . . . to denote higher
order matrices, and Mx denotes the expression to which M maps the index x.
The unity matrix matrix 1 is the matrix such that 1x = ( x

1 ) when x ∈ Iκ is an
index of the base type κ; and 1x = x when x ∈ I \ Iκ. The sum A+B of the
matrices A and B is defined by

M = A+B ⇔ Mx = Ax +σ Bx

for any index x of type σ. The matrix A is an upper bound of the matrix B,
written A ≥ B, if there exists a matrix C such that A = B+C. Thus we have a
partial ordering of the higher order matrices. The ordering symbols ≥,≤, >, <
have their standard meaning with respect to this ordering. The product A·B of
the matrices A and B is defined by

M = A·B ⇔ Mx = Bx[y1 \Ay1 , . . . , yn \Ayn ]

where y1, . . . , yn are the free indices in Bx.
It is worth noticing that this multiplication extends the usual matrix mul-

tiplication in the sense that the product, as defined above, of two first-order
matrices (i.e. whose high order indexes are mapped to 0) is the same as the
usual matrix product.

We can now lift the closure operator defined in Section 2 to higher order
matrices. We define the closure M∗ of the higher order matrix M by the infinite
sum M∗ = 1 + M1 + M2 + M3 + . . . where M1 = M and Mn+1 = M ·Mn.

We will use the sparse representation
0BBB@

X1 7→ e1
.
.
.
Xn 7→ en

1CCCA to denote the higher order

matrix where the index X1 maps to the vector expression e1, the index X2 maps
to the vector expression e2, and so on. Furthermore, any index Y not occurring
in the list X1, . . . , Xn maps to Y .

4.3 Interpretation of Programs

Let S be the semiring (N,⊕,⊗, 0, 1) defined in Section 3.2. We map the types
over ι to the types over κ by ι = κ, σ → τ = σ → τ , and σ ⊗ τ = σ ⊗ τ . Let the
index set I be the set of program variables, any variable X ∈ Iσ will serve as an
index of type σ. We will interpret program expressions and program sequences as
respectively vector expressions and matrices over S and I. Before we can define
the interpretation operator [[ · ]], we need to lift the loop correction operator from
Section 3.2 to higher order matrices: the function Φα : Iκ × α −→ α is given by
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– Φκ(x, V ) =

{
V ⊕

(
x
a
)

if a > 1 where a =
∑

y∈Iκ V [y]
V otherwise

– Φα→β(x, W ) = λUαΦβ(x, W (U))
– Φα⊗β(x, W ) = 〈Φα(x, W0), Φβ(x, W1)〉, where W0 and W1 respectively

denote the left and the right component of the pair W

When M is a high order matrix, then M↓x is the matrix A where Ay = Φα(x, My)
for each yα ∈ I. We say that the loop correction M↓x takes place with respect
to the first order index x. Next, we define the interpretation operator [[ · ]].
– Interpretations of expressions:

• for any program variable Xι let [[X]] = ( X
1 )

• for any program variable Xσ where σ 6= ι let [[X]] = xσ

• [[proc(X) e]] = λx[[e]]
• [[app(e1, e2)]] = [[e1]]([[e2]])
• [[pair(e1, e2)]] = 〈[[e1]], [[e1]]〉
• [[fst(e)]] = ℓ where ℓ is the first component of the pair [[e]]
• [[snd(e)]] = ℓ where ℓ is the second component of the pair [[e]]
• [[add]] = λxκλyκ ( x y

1 2 ) [[mul]] = λxλy ( x y
2 2 )

• [[sub]] = λxλy ( x
1 ) [[max]] = λxλy ( x y

1 1 )
• [[{s}X]] = [[s]]X

– Interpretations of sequences:
• [[s1;s2]] = [[s1]]·[[s2]]
• [[x:= e]] = (1x

[[e]]) where 1x
[[e]] denotes the identity matrix 1 where the

vector indexed by x is replaced by the vector [[e]]
• [[ε]] = 1 (the identity matrix)

• [[loop X { s }]] =
{

([[s]]∗)↓X if [[s]]∗ exists
undefined otherwise

5 Conjectures

A sequence s is a program iff, for some n > 0, the first order variables Xι
1, . . . , X

ι
n

are the only free variables occurring in s.
The program execution relation a1, . . . , an[s]b1, . . . , bn holds if and only if the

variables X1, . . . , Xn respectively hold the numbers a1, . . . , an when the execution
of s starts and the numbers b1, . . . , bn when the execution terminates; that is,
the program execution relation is defined exactly as for first-order programs.

Conjecture 1. Let 2x
0 = x and 2x

ℓ+1 = 22x
ℓ , and let s be a program. Assume that

there exists a matrix M such that [[s]] = M . Then, for i = 1, . . . , n, there exists
ℓ ∈ N such that

~a[s]~b ⇒ bi ≤ max(~u) + 2max(~v,1)
ℓ

where aj is in the list ~u iff MXi
[Xj ] = 1; and aj is in the list ~v iff MXi

[Xj ] ≥ 2.

Conjecture 2. The existence of M with [[s]] = M is decidable.

We will now give examples that justify the conjectures. However, no proofs
are provided.
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6 Justifying the Conjectures

In our higher order language we can write a program p of the form

F:= proc(fι→ι) proc(Zι) {loop Z { f:= proc(Uι) ff(U) }}f; Xι:= F(g, Y)(Z)

where g is some expression of type ι → ι, that is, a function N → N. To im-
prove the readability, we will write f(X) in place of app(f, X), F(g, Y) in place
of app(app(F, g), Y), et cetera. The program assigns a functional to F such that
F(g, n)(X) = g2n

(X), that is, the expression F(g, kn) executes the function g re-
peatedly 2n times on its input argument and returns the result. Thus, the last
command of the program assigns to the numeric variable X the result of applying
a function over and over again, 2Y times, to the value held by Z. We have

[[p]] = λfλz(([f 7→ λuff ( u
1 )]∗)↓z)f

Note that we used typewriter font for the program variables while we now use
normal font for the high-order algebraic expression variables that interpret them.
Now we have:

λuff ( u
1 ) [f \ λuff ( u

1 )] = λu(λuff ( u
1 ) (λuff ( u

1 ) ( u
1 ))) = λuffff ( u

1 )

Hence,

[f 7→ λuff ( u
1 )]2 = [f 7→ λuff ( u

1 )] · [f 7→ λuff ( u
1 )] = [f 7→ λuffff ( u

1 )]

By the same token we have [f 7→ λuff ( u
1 )]3 = [f 7→ λuffffffff ( u

1 )] and
[f 7→ λuff ( u

1 )]4 = [f 7→ λuffffffffffffffff ( u
1 )], etc., and thus

[f 7→ λuff ( u
1 )]∗ = 1 +σ [f 7→ λuff ( u

1 )] +σ [f 7→ λuff ( u
1 )]2 +σ . . . =

[f 7→ 1 +σ λuff ( u
1 ) +σ λuffff ( u

1 ) +σ . . .]

where σ ≡ κ → κ. If the infinite sum on the right hand side converges to the
value A, then

[f 7→ λuff ( u
1 )]∗ = [f 7→ A]

Now, A is an expression of type κ → κ, and

[f 7→ λuff ( u
1 )]∗↓z = [f 7→ A]↓z = [f 7→ Φκ→κ(z, A)] = [f 7→ λuΦκ(z, Au)]

The two last equalities hold by the definition of the loop correction operator.
Notice that we are not yet able to compute the actual value of this interpretation.
Indeed, we first need to instantiate the λ-abstraction within it before computing.
So it is not possible, at this point, to decide, e.g., whether the closure exists.
This is expected, as it is the interpretation of the functional F, whose behaviour
(with respect to the bound on the computed value) depends not only on the first
order values, but also on its high-order arguments (namely f, being interpreted
as the abstracted variable f). Now, we see that

[[p]] = λfλz(([f 7→ λuff ( u
1 )]∗)↓z)f = λfλz(λuΦκ(z, Au)) (*)
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where A ≡ 1σ +σ λuff ( u
1 ) +σ λuffff ( u

1 ) +σ . . . and

Φκ(z, Au) =
{

Au ⊕ ( z
a ) if a > 1 where a =

∑
y∈I(Au)[y]

Au otherwise

What happens now, if the g in our program is the identity function, and
what happens if g is the doubling function? First, assume that g is the identity
function, i.e. we have the program

s0 ≡ F:= proc(fι→ι) proc(Zι){loop Z { f:= proc(Uι) ff(U) }}f;
Xι:= F(proc(X)X, Y)(Z)

Then,

[[s0]] =
(
F 7→ λfλz(([f 7→ λuff ( u

1 )]∗)↓z)f

X 7→ λfλz(([f 7→ λuff ( u
1 )]∗)↓z)f ([[λx.x]], [[y]])[[z]]

)
If f is the identity function, that is the function λxκ ( x

1 ), then get

A ≡ 1σ +σ λuff ( u
1 ) +σ λuffff ( u

1 ) +σ . . . = λuλxκ ( x
1 ) (λxκ ( x

1 ) ( u
1 ) +σ

λuλxκ ( x
1 ) (λxκ ( x

1 ) (λxκ ( x
1 ) (λxκ ( x

1 ) ( u
1 )))) +σ . . . = λu ( u

1 ) .

Hence, by (*) we obtain

λfλz(([f 7→ λuff ( u
1 )]∗)↓z)f ([[proc(X) X]], [[Y]]) =

λfλz(λuΦκ(z, Au)(λxκ ( x
1 ) , ( y

1 )) = λz(λuΦκ(z, λu ( u
1 )u)) ( y

1 ) =

λuΦκ(( y
1 ) , ( u

1 )) = λu

{
( u

1 )⊕ ( y
a ) if a > 1 where a =

∑
i∈I ( u

1 ) [i]
( u

1 ) otherwise

= λu ( u
1 )

Finally, we get

[[s0]]X = ((λfλz(λuΦκ(z, Au))λxκ ( x
1 )) ( Y

1 ) ( Z
1 ) = λu ( u

1 ) ( Z
1 ) =

„
Z

1

«
Thus, the value assigned to the first order index X by the interpretation [[s0]] is
the vector ( Z

1 ). This is good. If we inspect the program, we see that if a is held
by Z when the execution of s0 starts, and b is held by X when the execution
terminates, then b ≤ a.

What, then, will the interpretation of our program look like if we call the
functional F with the doubling function instead of the identity function? That
is, if we have the program

s1 ≡ F:= proc(fι→ι) proc(Zι){loop Z { f:= proc(Uι) ff(U) }}f;
Xι:= F(add, Y)(Z)

The answer is: The interpretation [[s1]] does not exist.
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Note that [[proc(X) {X:= add(X, X)}X]] = λx ( x
2 ). Thus, computing [[s1]] in-

volves computing the infinite sum

1σ +σ λuff ( u
1 ) +σ λuffff ( u

1 ) +σ λufffffff ( u
1 ) +σ . . .

where f is the function λx ( x
2 ). We get

1σ +σ λuλx ( x
2 ) (λx ( x

2 ) ( u
1 )) +σ

λuλx ( x
2 ) (λx ( x

2 ) (λx ( x
2 ) (λx ( x

2 ) ( u
1 )))) +σ . . . =

λu ( u
4 ) +σ λu ( u

16 ) +σ λu ( u
256 ) +σ . . .

This sum does not converge, and hence, the interpretation of program s1 is
undefined.

Now, let us show both the use of the constants kn and an example where the
program is certified, even if the computed values are not polynomial. Let g in
the program above be the successor function. That is, we have the program s2

where

s2 ≡ F:= proc(fι→ι) proc(Zι){loop Z { f:= proc(Uι) ff(U) }}f;
Sι→ι:= proc(X)add(X, k1); Xι:= F(S, Y)(Z)

This program computes the value Z + 2Y and stores it in X, and the program
has a certificate. Notice first that [[S]] = λx ( x k

1 2 ), where k is the special index
dedicated to the constants. Computing [[s2]] involves computing the infinite sum

1σ +σ λuff ( u
1 ) +σ λuffff ( u

1 ) +σ λufffffff ( u
1 ) +σ . . .

where f is the function λx ( x k
1 2 ). This sum converges and equals λu ( u k

1 2 ). This
entails that the program has an interpretation. This certificate has x 7→ (

z y k
1 2 2

)
.
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Abstract. We describe a programming language, Pola, in which the
evaluation of every well-typed program halts in time polynomial with
respect to the size of its input. It is a functional style language intended
as a practical language for writing real-time or embedded system ap-
plications in which time and space resources are critical. Pola supports
“polynomial” inductive data types, such as trees and lists, but also sup-
ports coinductive data types which are lazily evaluated. In addition to
a discussion of these data types, the syntax and operational semantics
of Pola are provided with particular emphasis on type inference. It is,
of course, the type system which enforces the polynomial-time property
of the language. Finally, a system for automatically inferring run-time
bounds is presented.

1 Introduction

Pola [2] is a functional language, first introduced in [3], wherein every well-typed
program halts in polynomial time with respect to the size of its input. It is also
polynomial time complete: any polynomial-time Turing machine can be simu-
lated in Pola. While the type discipline required to ensure Pola programs are
polynomial time necessarily affects the expressiveness of the language, Pola is
designed to allow a natural style of programming which retains as much expres-
siveness for the programmer as is possible.

The type discipline of Pola allows the compiler to automatically infer run-
time and size bounds for programs. This positions Pola well for developing crit-
ical real-time or embedded software. Pola can provide absolute guarantees on
resource consumption beyond what testing can offer.

Pola grew from the interpretation of the safe recursion of Bellantoni and
Cook [1] as a proof theory of a polarized logic [4]. Polarized logics were de-
signed to model games and some of this terminology, such as the “player” and
“opponent” worlds (cf. “safe” and “normal”), has been retained in Pola.

Bellantoni and Cook’s system of safe recursion, which only considered bi-
nary natural numbers, was a simplification of an earlier system developed by
Leivant [8] which had general inductive data types. Both these systems allowed
duplication in the safe world. Pola, however, uses a crucial idea introduced by
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Hofmann [6]: Pola’s player (or safe) world is affine and is inhabited by purely
constant time computations and it is by “iterating” these that one obtains poly-
nomial time.

In order to model Bellantoni and Cook’s system, Hofmann found it neces-
sary to allow the duplication of certain types (such as binary numbers) into his
safe computations. Furthermore, in [7], Hofmann highlighted various expressiv-
ity problems with systems based on predicative recursion. Pola resolves these
issues with a novel new programming construct called “peeking” while retain-
ing an affine “player” world wherein every computation is constant time. Not
only can one simulate Bellantoni and Cook’s system but also Pola offers the
ability to perform safe recursion on general inductive data (including Leivant’s
data) while ensuring every computation halts in polynomial time. In addition,
it avoids many of the performance problems described by Colson [5] and offers
coinductive data, which provide laziness and further higher-order capabilities.

Pola aims to be foremost a practical language, offering general inductive
and coinductive data in a setting with the theoretical benefits of guaranteed
termination and run-time inference.

A more theoretical foundation to Pola is provided in [3]; here we focus on
practical concerns except where a theoretical exposition is required for under-
standing.

2 Data types

To introduce Pola it is first necessary to discuss data types: all the computational
power of Pola is delivered by recursion over data types.

2.1 Tuple types

Pola offers two tuple types: tensors, denoted (α1, . . . , αn) over types αi; and
products, denoted (α1; · · · ;αn). The two sorts of tuples share the same unit,
(). The only distinction between the two constructs, made more precise in sec-
tion 4.2, is in the typing restrictions.

2.2 Inductive data types

The general form for defining a new inductive data type, A, optionally parame-
terized over type variables b1, . . . , bk, is as follows:

data A(b1, . . . , bk)→ c = C1 : F1(c, b1, . . . , bk)→ c

| ...
| Cn : Fn(c, b1, . . . , bk)→ c;

The Fi are modalities: that is, type expressions, built from the type variables
c, b1, . . . , bk, constant types, and tuple types. The declaration introduces a new
inductive data type A together with constructors C1, . . . ,Cn. Examples of simple
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data Bool→ c = False : → c
| True : → c;

data Nat→ c = Zero : → c
| Succ : c→ c;

data List(a)→ c = Nil : → c
| Cons : a, c→ c;

data BNat→ c = BEnd : → c
| B0 : c→ c;
| B1 : c→ c;

data Tree(a, b)→ c = Leaf : a→ c
| Node : c, b, c→ c;

data LTree(a, b)→ c = LLeaf : a→ c
| LNode : c; b; c→ c;

Fig. 1. Examples of common inductive data types.

inductive data types are given in figure 1. Note the use of the type variable c to
stand recursively for the type being defined.

Mutually recursive inductive data types can be defined as well. For instance,
rose trees (trees in which each node has zero or more children) can be defined
as follows:

data RoseTree(a)→ c = Rose : a, d→ c;
and RoseList(a)→ d = RNil : → d

| RCons : c, d→ d;

Inductive data types are sufficient to describe polynomial-time computation, but
alone they do not offer an adequate level of expressiveness.

2.3 Coinductive data types

A good intuition for coinductive data is to think of them as objects (in the
object-oriented programming sense) where each “destructor” (in Pola’s termi-
nology) can be thought of as an object-oriented “method”. Coinductive data
types capture a collection of computations waiting to happen and thus provide
a general framework for describing laziness and closures.

The general form for defining a coinductive data type, A, optionally parame-
terized over type variables b1, . . . , bk, with destructors D1, . . . ,Dn, is as follows:

data c→ A(b1, . . . , bk) = D1 : c,F1(c, b1, . . . , bk)→ G1(c, b1 . . . , bk)

| ...
| Dn : c,Fn(c, b1, . . . , bk)→ Gn(c, b1 . . . , bk);

Here, both Fi and Gi are modalities. Coinductive data types can be mutually
recursive in the same style as inductive data types.

A common usage for coinductive data types is to represent a lazily evaluated
infinite list. There are two simple descriptions for an infinite list, as follows:

data c→ InfList1(a) = Head : c→ a
| Tail : c→ c;

data c→ InfList2(a) = Next : c→ (a, c);
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InfList2 has a single destructor which returns both its head and tail as a tensor
pair (allowing both the head and the tail to be subsequently used).

Another common usage for coinductive data types is to provide closure-like
objects. This is possible by providing a destructor with more than one argu-
ment (analogous to a method with an argument). For instance, the data type of
(player) functions with domain a and codomain b can be described as follows:

data c→ Fn(a, b) = Eval : c, a→ b;

Usage and operation of both inductive and coinductive data types will be dealt
with in later sections.

3 Abstract syntax

Pola is a functional language and aims to keep its syntax as close to a typical
functional language as possible. The unique parts of the syntax pertain to the
distinction between the opponent and player worlds, described in section 4.1,
the fold and unfold constructs to provide safe recursion and syntax relating to
coinductive data types. The syntax is given in figure 2.

At the top level, we have a series of data type or function declarations. Func-
tion declarations consist of a list of parameters (split into “opponent” parameters
and “player” parameters) followed by a term. Since Pola relies on type inference,
described in section 4, there is no need for any explicit type annotations in func-
tion declarations, though the programmer is certainly allowed to provide type
constraints.

The peek construct is syntactically and semantically the same as a case con-
struct; the difference is in the typing rules. It will be described further in sec-
tion 4. Branches of case, peek and fold constructs all perform pattern-matching
and optionally introduce new variables into scope.

Records create (non-recursive) coinductive objects. For instance, to create a
record of type Fn(Nat,Nat) (function from the natural numbers to the natural
numbers) which adds one to its argument, we could write ( Eval : x.Succ(x) ).
Other coinductive data types, for instance infinite lists, necessarily need to be
described recursively and for that we use the unfold construct. An unfold is
syntactically just like a record except that it introduces a function which can be
called recursively in a controlled way. The restrictions on this recursive function
are dealt with in section 4. Consider the infinite list of all natural numbers:

unfold g(x) as (
Head : x;
Tail : g(Succ(x))

) in g(Zero)

The result of this unfold construct, like all coinductive objects, is lazy. No com-
putation takes place until we destruct it. For instance, if we assign the variable
nats to the infinite list of natural numbers above, Head(nats) yields the value
Zero and Head(Tail(nats)) yields the value Succ(Zero).
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Declaration := data D(a1, . . . , am)→ c = {Constructor+} Inductive data type
Declaration := data c→ D(a1, . . . , am) = {Destructor+} Coinductive data type
Declaration := f = x1, . . . , xm | y1, . . . , yn.Term Function declaration

Constructor := C : Modality → c
Destructor := D : c,Modality → Modality

Modality := x Single type variable
Modality := Modality , . . . ,Modality Tensor
Modality := Modality ; · · · ; Modality Product

Term := x Variable
Term := (Term, . . . ,Term) Tensor
Term := (Term; · · · ; Term) Product
Term := f(Term) Function call
Term := C(Term) Construction
Term := D(Term) Destruction
Term := case Term of { Branch+ } Case
Term := peek Term of { Branch+ } Peek
Term :=

`
Cobranch+

´
Record

Term := fold f(x,Modality) as { Branch+ } in Term Fold
Term := unfold f(Modality) as ( Cobranch+ ) in Term Unfold

Branch := C(VarPatterns).Term Constructor pattern
Branch := (VarPatterns).Term Tuple projection

Cobranch := D : VarPatterns.Term Destructor
VarPatterns := x Single Variable
VarPatterns := VarPatterns, . . . ,VarPatterns Tensor projection
VarPatterns := VarPatterns; · · · ; VarPatterns Product projection

Fig. 2. Abstract syntax of Pola.

General recursion is not allowed in Pola, instead recursion is controlled by
the fold construct. A fold is a case construct in the context of a recursive function
in the same way that an unfold construct is a record construct in the context of
a recursive function – though the typing restrictions are different. For example,
consider the fold expression which adds two natural numbers, m and n:

add = n | m.fold f(x, y) {
Zero.y;
Succ(z).Succ(f(z, y))
} in f(n,m);

This fold construct is a case, performing pattern matching, on the variable x in
the context of the recursive function f . The reason for separating the parameters
of the function, n and m, by a vertical bar is described in section 4.1.

4 Type inference

Proper type inference is key to the operation of Pola since it is correct typing
that ensures every function runs in polynomial time.
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4.1 Opponent and player worlds

Variables in Pola live in one of two worlds: the opponent world and the player
world. For both types and patterns, a vertical bar separates variables of the
two worlds. For instance, the add function defined in section 3 would have type
add :: Nat | Nat 7→ Nat to read that it takes one parameter (n) in the opponent
world and one parameter (m) in the player world.

The opponent world has no restriction on how many times variables can be
referenced. Also, a variable can be brought from the opponent world to the player
world, but not the other way around. The first argument to a fold construct (n
in the add function)—the argument which drives the recursion—must be in the
opponent world.

Variables in the player world may not be duplicated. That is, once introduced,
they may only be referenced once. An apparent exception to this is the peek
construct, which will be explained later.

Usually we shall refer to the opponent environment as Γ and the player
environment as ∆ or Σ.

4.2 Sequent notation

Global symbols, such as constructors, destructors or previously defined functions,
are added to the opponent context, Γ . A type inference sequent is of the form
Γ | ∆ 7→ t : α, read as the inferring of Pola term t, assigned type variable α, in
context (Γ | ∆). Γ is an opponent context (mapping from symbols to types), ∆
is a player context, t is a term and α is a type. The opponent context is a set
of symbols paired with types; ordering is unimportant. The player context is a
bunched context, described below. Premises to a rule can either be sequents or
of the form Γ ⇒ (f : β), signifying that a look-up of f is done in the global
environment Γ , but that no inference is being done and that β is not a type
variable which needs to be unified. Note that constructors will be generally of
type (C : | α 7→ β) to say that they have no opponent parameters. A rule of
the following form stands to mean, given premises A1, . . . , Ak, sequent B can be
proved if type equations ζ1, . . . , ζm are satisfied:

A1 · · · Ak
B

ζ1, . . . , ζm

The player context is a bunched context, i.e., represented as a tree ([11, 10]).
In BNF form, the player context ∆ is defined as follows: ∆ ::= ∅ | x : α | ∆,∆ |
∆;∆. I.e., it is either the empty context, a single mapping between variable and
type, a tensor (separated by commas) or product (separated by semicolons).
Both tensors and products are commutative and associative. When constructing
a tensor, player contexts must be disjoint; when projecting from a tensor, all
elements of the tensor may be used. Conversely, player contexts can be shared
when constructing a product, but elements must be kept disjoint when projecting
from a product.
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We use Σ[∆] to signify that ∆ appears somewhere in the bunched context Σ.
Note that in some cases, such as in the inference rule for tensor, we consider a
player context to be split into two or more subcontexts. For brevity and simplicity
we state in the rules here that the player context is split correctly, as if non-
deterministically. For non-bunched contexts an efficient solution, passing around
a context and removing variables as they are used3, is only a minor modification.
For bunched logics a mechanism for efficiently splitting contexts is less clear and
is elided here.

4.3 Simple terms

Figure 3 defines rules of type inference for simple terms in Pola.
Type equations in Pola can be quantified either existentially or universally.

Existentially quantified type equations are analogous to type equations in other
Hindley-Milner type inference type systems [12], where ∃α.α = β is to be read as
finding the most general type for β satisfying the equation in the context of some
fresh type variable α. They should not be confused with existentially quantified
types as described in other typing systems. Universally quantified types differ
from usual type variables and are used in sections 4.4 and 4.5.

4.4 Terms on inductive data types

Rules of inference for terms on inductive data types are given in figure 4. The
rules given here gloss over the issues involved with polymorphic types. A con-
structor, Cons, for instance, would reasonably have type Λα. | α, List(α) 7→
List(α) and thus each time it is used it needs to be instantiated with new type
variables. To avoid complicating what are otherwise already crowded rules of
inference, we assume we already have Cons specific to whatever type we are
interested in, e.g., Cons : | Nat, List(Nat) 7→ List(Nat). Treatment of polymor-
phism is elided since it is not the focus of these rules.

The simplest term on inductive data types is the construction, in which
case we look up the constructor C in the global environment and then perform
inference on the arguments to the constructor.

The case construct does pattern matching on terms strictly in the opponent
world. This is enforced by ensuring that inference on the subject of the case, t,
happens with an empty player environment. Variables x̃i introduced by pattern-
matching in the case are therefore introduced into the opponent environment.
Note that the x̃i variables may be a product or tensor, or some combination
thereof, but this multiplicative structure is ignored when brought into the “flat”
opponent environment since the opponent environment does not need to main-
tain any affineness.

3 In practice it is better to mark them as “already used” rather than have them
removed entirely, in the interest of the compiler providing useful error messages.
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x : β, Γ | ∆ 7→ x : α
α = β

Opponent variable

Γ | Σ[x : β] 7→ x : α
α = β

Player variable

[Γ | ∆i 7→ ti : βi]i=1,...,n

Γ | ∆1, . . . ,∆n 7→ (t1, . . . , tn) : α
∃β1, . . . , βn.α = (β1, . . . , βn)

Tensor

[Γ | ∆ 7→ ti : βi]i=1,...,n

Γ | ∆ 7→ (t1; · · · ; tn) : α
∃β1, . . . , βn.α = (β1; · · · ;βn)

Product

Γ ⇒ (f : β | γ 7→ η)
Γ | 7→ t : β′

Γ | ∆ 7→ u : γ′

Γ | ∆ 7→ f(t|u) : α
∃β′, γ′.β = β′, γ = γ′, α = η Function calls

(t opponent, u player)

Γ | ∆ 7→ t : β
Γ | Σ[(x1 : γ1, . . . , xn : γn);∆] 7→ u : α

Γ | Σ[∆] 7→ peek t of (x1, . . . , xn).u : α
∃β, γ1, . . . , γn.β = (γ1, . . . , γn)

Tensor projection

Γ | ∆ 7→ t : β
Γ | Σ[x1 : γ1; · · · ;xn : γn;∆] 7→ u : α

Γ | Σ[∆] 7→ peek t of (x1; · · · ;xn).u : α
∃β, γ1, . . . , γn.β = (γ1; · · · ; γn)

Product projection

Γ | ∆ 7→ u : β Γ | Σ[x : β;∆] 7→ t : α

Γ | Σ[∆] 7→ t where x := u : α
∃β.

Player where

Γ | 7→ u : β x : β, Γ | ∆ 7→ t : α

Γ | ∆ 7→ t where x = u : α
∃β.

Opponent where

Fig. 3. Rules of type inference for simple Pola terms.

The peek construct is similar to the case with the most notable exception be-
ing that the subject, t, can be in the player world4 and accordingly the variables
x̃i are introduced in the player world. However, there is one other complication
aimed at allowing the programmer more expressiveness: if the variables intro-
duced are not used, the original variables used by t may be reused. Intuitively
this corresponds to the idea of “peeking” at the result of t without actually using
the result of t and thus t can still not be duplicated in general. We use product
((· · ·);∆) to indicate that ∆ may be reused if and only if the other variables
introduced are not. There is a further restriction not stated in the rule in that

4 By “can be in the player world” we mean that type inference on the term happens
in the context of the player environment. In contrast, the subject, t, of a case is “in
the opponent world”, i.e., without any player environment.
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Γ ⇒ β = [(Ci : | γ̃i 7→ c)]i=1,...,n Γ | ∆ 7→ t : γ̃′j
Γ | ∆ 7→ Cj(t) : α

∃γ̃′j .γ̃′j = γ̃j , α = β
Construction

Γ | 7→ t : β
Γ ⇒ δ = [(Ci : | γ̃i 7→ c)]i=1,...,n

[x̃i : γ̃i[δ/c], Γ | ∆ 7→ ui : α]i=1,...,n

Γ | ∆ 7→ case t of {· · ·Ci(x̃i).ui; · · ·} : α
∃β.β = δ

Case

Γ | ∆ 7→ t : β
Γ ⇒ δ = [(Ci : | γ̃i 7→ c)]i=1,...,n

[Γ | Σ[x̃i : γ̃i[δ/c];∆] 7→ ui : α]i=1,...,n

Γ | Σ[∆] 7→ peek t of {· · ·Ci(x̃i).ui; · · ·} : α
∃β.β = δ

Peek

(f : β | η̃ 7→ α), Γ | ∆ 7→ v : α
Γ ⇒ δ = [(Ci : | γ̃i 7→ c)]i=1,...,n»
(f : | ζ, η̃ 7→ α),
x̃′i : γ̃i[δ/c], Γ

x̃i : γ̃i[ζ/c],
ỹ : η̃

7→ ui : α

–
i=1,...,n

Γ | ∆ 7→ fold f(x, ỹ) as {· · ·Ci(x̃
′
i|x̃i).ui; · · ·} in v : α

∃β, η̃.∀ζ.
β = δ Fold

Fig. 4. Rules of inference for Pola terms on inductive types.

the variables of t may only be reused if t does not contain a destruction or a
recursive function call; otherwise, super-polynomial time evaluations can arise5.

Note that a data type may introduce the x̃i variables as tensor, product, or
any combination thereof. Tensor variables are introduced into ∆ as tensors and
product variables are introduced as products, as expected.

The fold construct is, in essence, a case construct in the context of a recursive
function, f , though it requires more care in typing. The fold is the only construct,
other than the unfold dealt with in section 4.5, which makes use of universally
quantified types. A universal type variable cannot be unified with any other type.
The mechanics of this are described in section 4.6. In the opponent environment,
x̃′
i variables are introduced with the concrete type of the subject of the fold δ

substituted for c. In the player context, x̃i variables are introduced with the
universal type ζ substituted for c. For instance, in the branch Cons(h′|h, t′|t).u
where the subject of the fold is of type List(Nat), h′ : Nat, h : Nat, t′ : List(Nat)
and t : ζ. Since the first parameter of the recursive function f is of type ζ and ζ
cannot be unified with any other type, this means that only variables introduced
by pattern matching of the appropriate type can be used to make a recursive call.

5 In fact, relaxing this restriction does not affect the polynomial space bound and per-
mits the encoding of QBF, a well-known PSPACE-complete problem [2]. It would be
interesting to compare this system with Leivant and Marion’s system for polyspace
given in [9].
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Further, since the xi,j variables are introduced in the player context, they may
not be duplicated, and hence at most one recursive call per variable is allowed.

To more clearly see how typing works in fold constructions, consider the
following example of a fold over a list of booleans, which returns the second last
element of the list l:

fold f(x, y) as {
Nil.y;
Cons(z|−, zs ′|zs).f(zs, case zs ′ of {
Nil.y;
Cons(−,−).z })
} in f(l,True)

The type of the entire expression, and the type of each branch, is α = Bool. The
type being folded over is β = List(Bool). The type of the only argument to the
fold is η1 = Bool, corresponding to the variable y. No variables are introduced
in the Nil branch, but in the Cons branch we have z : Bool and zs ′ : List(Bool)
being introduced to the opponent context and zs : ζ added to the player context.
Since zs is the only variable in context of type ζ, it is the only variable that can
be used as the first argument in a recursive call to f .

4.5 Terms on coinductive data types

Rules of inference relating to coinductive types are given in figure 5.

Γ ⇒ β = [(Di : | c, γ̃i 7→ δi)]i=1,...,n

[Γ | x̃i : γ̃i,∆ 7→ ti : δ′i]i=1,...,n

Γ | ∆ 7→ (· · ·Di : x̃i.ti; · · ·) : α

∃δ′i.δ′i = δi[β/c],
α = β Record

(g : | η̃ 7→ α), Γ | ∆1 7→ u : α
Γ ⇒ β = [(Di : c, γ̃i 7→ δi)]i=1,...,nˆ

(g : | η̃ 7→ ζ), Γ ỹ : η̃, x̃i : γ̃i,∆2 7→ ti : δi[ζ/c]
˜
i=1,...,n

Γ | ∆1,∆2 7→ unfold g(ỹ) as (· · ·Di : x̃i : ti; · · ·) in u : α

∃η̃.∀ζ.
α = β Unfold

Γ ⇒ β = [(Di : c, γ̃i 7→ δi)]i=1,...,n

Γ | ∆1 7→ r : β′

Γ | ∆2 7→ t : γ̃′j
Γ | ∆1,∆2 7→ Dj(r, t) : α

∃β′, γ̃′j . β
′ = β, γ̃′j = γ̃j ,

α = δj Destruction

Fig. 5. Rules of inference for Pola terms on coinductive objects.

The return type of the recursive function, g, in an unfold is universal in type
ζ in the same way that the first parameter of a recursive function for a fold is
universal.
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4.6 Unification

Unification of type equations generated by type inference works slightly differ-
ently in Pola than in other languages due to the requirement that universally
quantified type variables never be allowed to unify with any other types. From
unification we get a single equation with likely many quantifiers, for instance
∃α, β.∀γ.β = Bool,∃δ.δ = α, α = β. Unification works from right-to-left, elimi-
nating quantifiers until only concrete types or free variables remain.

We use capital letters (e.g., A,B) to stand for strings of equations (where B
does not contain a quantifier) and lowercase Greek letters (e.g., α, β) to stand
for types or type variables. There are only four rewriting rules:

A,∃α.B ⇒ A,B If there is no mention of α in B
A,∃α.α = β,B ⇒ A,B[β/α]

A,∀α.B ⇒ A,B If there is no mention of α in B

A,�α.β(γ) = β(η), B ⇒ A,�α.γ = η,B
Breaking up structure.
� ∈ {∃,∀}

B[β/α] stands for B with α substituted by β, performing an occurs check to
ensure β does not contain α. It is a type error if there is a universal quantifier
where α does occur in B. Ordering within a list of equations not containing a
quantifier is unimportant.

As an example, consider the following unification process:

∃α, β.∀γ.β = Bool,∃δ.δ = α, α = β
⇒ ∃α, β.∀γ.β = Bool, α = β
⇒ ∃α, β.β = Bool, α = β
⇒ ∃α.α = Bool

5 Operational semantics

We describe the semantics of the language in big step style, shown in figure 6.
A sequent is given in the notation Γ ` t⇒ u to mean that, in the environment
of Γ which maps symbols to values, term t reduces to value u. Note that since
affineness and distinctions between player and opponent player contexts only
have significance during type inference, we only have a flat context, between
symbols and values, when evaluating via the operational semantics. Likewise, the
difference between product and tensor, between case and peek and the difference
between player where and opponent where are no longer considered.

Coinductive values store the environment from when they were “recorded”,
similarly to closures in other languages. They also store the bodies of all de-

structors. The notation

〈
Φ

D1 : λx1, . . . , xm.t1
...

Dn : λy1, . . . , yk.tn

〉
is used to denote a coinduc-

tive “record” with stored environment Φ and destructors D1 through Dn. Note
in the semantics for a destruction that we switch to the stored environment, Φ,
when evaluating the destructor.
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x = u, Γ ` x⇒ u Variable reference

Γ ` t1 ⇒ u1 · · · Γ ` tn ⇒ un

Γ ` (t1, . . . , tn)⇒ (u1, . . . , un) Tensor/product

[f = · · · , Γ ` ti ⇒ ui]1≤i≤n x1 = u1, . . . , xn = un, f = · · · , Γ ` t⇒ u

f = λx1 . . . xn.t, Γ ` f(t1, . . . , tn)⇒ u Function call

[Γ ` ti ⇒ ui]1≤i≤n

Γ ` C(t1, . . . , tn)⇒ C(u1, . . . , un) Construction

Γ ` r ⇒
*
Φ

Di : λy1 . . . yk.t
...

+
Γ ` ti ⇒ ui y1 = u1, . . . , yk = uk, Φ ` t⇒ u

Γ ` Di(r, t1, . . . , tk)⇒ u Destruction

Γ ` t⇒ Ci(s1, . . . , sk) x1 = s1, . . . , xk = sk, Γ ` ti ⇒ u

Γ ` peek t of {· · ·Ci(x1, . . . , xk).ti; · · ·} ⇒ u Case/peek

Γ `
0@D1 : x1 . . . xm.t1;

· · · ;
Dn : y1 . . . yk.tn

1A⇒ *
Γ

D1 : λx1 . . . xm.t1
...

Dn : λy1 . . . yk.tn

+
Record

f = λy1 . . . yn.peek y1 of {· · ·}, Γ ` t⇒ u

Γ ` fold f(y1, . . . , yn) as {· · ·} in t⇒ u Fold

f = λy1 . . . yn.(· · ·), Γ ` t⇒ u

Γ ` unfold f(y1, . . . , yn) as (· · ·) in t⇒ u Unfold

Γ ` s⇒ v x = v, Γ ` t⇒ u

Γ ` t where x = s⇒ u Where

Fig. 6. Operational semantics.
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Γ B ‖x‖ = 1 Variable

Γ B ‖(t1, . . . , tn)‖ = 1 +
nP

i=1

Γ B ‖ti‖ Tensor/product

Γ B ‖f(t1, . . . , tn)‖ = 1 +
nP

i=1

Γ B ‖ti‖+
ftime(Γ B |t1|, . . . , Γ B |tn|)

where fsize ∈ Γ

Function call

Γ B ‖C(t1, . . . , tn)‖ = 1 +
nP

i=1

Γ B ‖ti‖ Construction

Γ B
‚‚‚‚ peek t of
{ Ci(xi, yi).ui }

‚‚‚‚ = 1 + Γ B ‖t‖+ max
i
Γ, a/xi, b/yi B ‖ui‖

where (a, b) = Γ B |t|Ci

Case/peek

Γ B

‚‚‚‚‚‚
fold f(w, z) as
{ Ci(xi, yi).ui }

in t

‚‚‚‚‚‚ = Γ,

0BBB@
λwz.

P
i

a · (Γ ′ B ‖ui‖)
where (a, b) = Γ B |w|Ci

Γ ′ = Γ, 0/ftime,
a/xi, b/yi

1CCCA /ftime B ‖t‖ Fold

Γ B ‖Di(r, t1, . . . , tm)‖ = 1 +
mP

j=1

Γ B ‖tj‖+ ‖r‖+
‖r‖PDi

(Γ B |t1|, . . . , Γ B |tm|)
Destruction

Γ B ‖(· · ·Di : xi.ti; · · ·)‖ = 1 Record

Γ B
‚‚‚‚unfold g(· · ·) as

(· · ·) in t

‚‚‚‚ = (Γ, 1/gtime B ‖t‖) Unfold

Γ B ‖t where x = s‖ = 1 + (Γ B ‖s‖)+
(Γ, 1/xtime, (Γ B |s|)/xsize B ‖t‖)

Where

Fig. 7. Inferring time bounds from Pola terms.

6 Bounds inference

We sketch how to infer bounds on Pola terms: this is still a work in progress.
There are two bounds which need to be inferred simultaneously: the time bound
(indicating the amount of computational time needed to evaluate according to
the operational semantics) and the size bound (indicating the size of the value
yielded by the computation). Each function defined in Pola has, along with a type
signature, a time signature (denoted ftime and either an inductive size signature
fsize or potential time and size signatures (fpot).

We do not prove that the bounds are correct according to the operational
semantics given in section 5, but rather give some intuition for them. A proof
of polynomial-time soundness has been provided in [3] and a complete proof of
correctness of bounds inference will be provided in future work.

For inductive data types, the size bound is a count of how many of each
constructor a type has, paired with the maximum sizes of its constituent data.
For example, the list [5, 7, 2] : List(Nat) would be of size 〈Nil : 1,Cons : (3, 〈Zero :
1,Succ : 7〉)〉 to indicate the list has at most (in this case exactly) 1 Nil construc-
tor and 3 Cons constructors and that each Cons constructor contains a number
containing at most 1 Zero constructor and at most 7 Succ constructors. In this
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example the counts were simple integers, but in general they are polynomials
over integer coefficients, typically with variables being the inputs to the term or
function being analysed. The size of a tuple is a tuple of the sizes of its elements.

Note that one could provide a simpler system for inferring bounds by neglect-
ing to keep a list of constructor counts and instead maintain only an aggregate
count of all constructors. However, to get tighter, and thus more useful, bounds,
this level of detail is necessary. E.g., a fold over natural numbers may have high
computational cost for the Zero branch but little computation cost for the Succ
case; taking the maximum cost across the branches and multiplying by the total
number of constructors would yield an unacceptable loose upper bound.

Time bounds are given in figure 7. Many of these are constant or given
recursively in terms of their subterms and the sizes of the terms they work over.
For instance, the time taken to execute a fold construct depends on the number
of constructors present in the subject of the fold multiplied by the time taken
to execute each branch of the fold. Within the body of the fold, the time bound
signature of recursive function f is taken to be 0.

Coinductive potential time bounds are omitted as future work, though re-
ferred to as the | |P function, which yields destructors paired with potential time
bounds and potential size bounds.

Special attention must be paid to variables. Sizes of variables introduced by
patterns, such as by case constructs, are determined by the terms which they
match. For instance, if the size of x is 〈Nil : xNil | Cons : xCons, xdata〉, then in
the term case x of {· · · ; Cons(z, zs).zs }, the size of term zs is 〈Nil : xNil | Cons :
xCons − 1, xdata〉, i.e., it is given in terms of x.

Figure 8 shows the method to determine the inductive size of a term, or
more precisely, the size of the value that a term evaluates to under the oper-
ational semantics. Surprisingly, the most complex size term is that associated
with constructors. In that case we separate the arguments into non-recursive and
recursive, Ci(t, u) where u is recursive. In this case we recursively determine the
sizes of the u terms; this yields a tuple of inductive sizes, all of the inductive sizes
being over the same constructors. We “sum” the elements of that tuple, summing
the constructor counts and taking the maximum of its constituent data.

For example, should we want to find |Node(Node(Leaf(1), Leaf(0)), Leaf(0))|,
we must first find |(Node(Leaf(1), Leaf(0)), Leaf(1))| which is calculated recur-
sively to be 〈〈Leaf : (2, 〈Zero : 1,Succ : 1〉),Node : 1〉, 〈Leaf : (1, 〈Zero : 1,Succ :
0〉),Node : 0〉〉. Summing the two elements of the tuple gives 〈Leaf : (3, 〈Zero :
1,Succ : 1〉),Node : 1〉. We then add one to the count of the Node constructor to
give the final size value of 〈Leaf : (3, 〈Zero : 1,Succ : 1〉),Node : 2〉.

6.1 Inferring size bounds from folds

Inferring size bounds from fold constructs requires special care. To determine
|fold f(x, y) as { Ci(xi, wi).ui } in f(t, u)|, we first must determine the maximum
values of y = (y1, . . . , ym). Initially, |yj | = |tj | for each 1 ≤ j ≤ m; however,
the values of yj change through each recursive call to function f in general. The
case where these yj values change is left to future work. As the yj variables are
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Γ,m/xsize B |x| = m Variable
Γ B |(t1, . . . , tn)| = 〈Γ B |t1|, . . . , Γ B |tn|〉 Tensor/product
Γ B |f(t1, . . . , tn)| = fsize(Γ B |t1|, . . . , Γ B |tn|) where fsize ∈ Γ Function call

Γ B |Ci(t, u)| = 〈C1 : (m1, z1), . . . ,
Ci : (1 +mi,max(zi, Γ B |t|)),
· · · ,Cn : (mn, zn)〉

where 〈C1 : (m1, z1), · · · ,Cn : (mn, zn)〉
=
P
Γ B |u|

Construction

Γ B |peek t of { Ci(xi, yi).ui }| = max
i
Γ, a/xi, b/yi B |ui| where (a, b) = |t|Ci Case/peek

Γ B |fold f(· · ·) as {· · ·} in t| = Γ,See section 6.1/fsize B |t| Fold
Γ B |Di(r, t1, . . . , tm)| = Γ B |r|PDi

(Γ B |t1|, . . . , Γ B |tm|) Destruction
Γ B |t where x = s| = Γ, (Γ B |s|)/xB |t| Where

Fig. 8. Inferring size bounds from inductive Pola terms.

player variables, these values cannot affect inference of time bounds, but the size
bounds may be expressed in terms of the yj variables.

Once bounds on the sizes of yj can be determined, bounds for the terms ui of
the fold can be determined. We denote u?i to be the size of each branch and the
size of the entire fold term to be max

i
u?i . If ui does not contain any recursive calls

to function f , then simply u?i = |ui|. If ui contains a recursive call to function
f , we determine the operations performed on the recursive function and iterate
those by the the number of constructors Ci in the subject of the fold. Again, the
details of this are left to future work.

As an example, consider the fold term in the body of the add function given
in section 3. In that case we have |y| = m, since y is never modified in a recursive
call and thus has the same size as its initial value, m. Looking at the branches
of the fold, then, u?1 = (u1)? = |y| = m. For the Succ branch we have:

u?2 = nSucc · 〈Zero : 0 | Succ : 1〉+m
= 〈Zero : mZero | Succ : mSucc + nSucc〉

We find that max(u?1, u
?
2) = u?2 and thus the size of the value resulting from the

fold is 〈Zero : mZero | Succ : mSucc + nSucc〉. In this case this is a tight bound:
the value resulting from an addition will have a number of Succ constructors
equal to m+ n. In general, the bound given by this method may be quite loose,
however.

6.2 Potential time and size bounds

For coinductive data types, inductive size bounds are not relevant. The typing
system enforces that coinductive values will never be considered in the context
of inferring inductive size bounds. However, we must consider the potential time
and size bounds of coinductive values, i.e., the time and size costs that would be
incurred if the coinductive object were to be destructed. Coinductive data works
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from a state and destruction causes state change and production of values. But
each destructor is constant time so their cumulative effect can be obtained both
in time and size by adding effects.

7 Conclusion

We have provided an overview of the implementation details surrounding the
programming language Pola. Pola is a restricted language wherein every program
halts in time polynomial with respect to its input, a property enforced by the
typing system. It is a functional language offering type inference and laziness.
We also presented a method for automatically inferring upper bounds on time
and size requirements.
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Abstract. This work is a consequence of studying the (un)relatedness of the
principles that allow to implicitly characterize the polynomial time functions
(PTIME) under two perspectives. One perspective is predicative recursion, where
we take Safe Recursion on Notation as representative. The other perspective is
structural proof theory, whose representative can be LightAffine Logic (LAL). A
way to make the two perspectives closer is to devise polynomial sound general-
izations ofLAL whose set of interesting proofs-as-programs is larger thanthe set
LAL itself supplies. Such generalizations can be found inMS.
MS is aMultimodal Stratified frameworkthat containssubsystemsamong which
we can find, at least,LAL. Every subsystem is essentially determined by two sets.
The first one is countable and finite, and supplies the modalities to form modal
formulæ. The second set contains building rules to generateproof nets. We call
MS multimodalbecause the set of modalities we can use in the types for the proof
nets of a subsystem is arbitrary.MS is alsostratified. This means that every box,
associated to some modality, in a proof net of a subsystem cannever be opened.
So, insideMS, we preservestratification which, we recall, is the main struc-
tural proof theoretic principle that makesLAL a polynomial time sound deductive
system.MS is expressive enough to containLAL and Elementary Affine Logic
(EAL), which is PTIME-unsound. We supply a set of syntactic constraints on
the rules that identifies thePTIME-maximal subsystems ofMS, i.e. thePTIME-
sound subsystems that contain the largest possible number of rules. It follows a
syntactic condition that discriminates amongPTIME-sound andPTIME-unsound
subsystems ofMS: a subsystem isPTIME-sound if its rules are among the rules
of somePTIME-maximal subsystem. All our proofs widely use the techniques
Context Semantics supplies, and in particular the geometrical configuration that
we calldangerous spindle: a subsystem is polytime if and only if its rules cannot
build dangerous spindles.

1 Introduction

This work fits the theoretical side of Implicit Computational Complexity (ICC). Our
primary goal is looking for the systems that can replace the question marks (1), (2), and
(3) in Fig.1. In there,SRN is Safe Recursion on Notation [1], namely a polynomial time

⋆ Both the authors have been supported by MIUR PRIN CONCERTO — protocol number
2007BHXCFH
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PTIME Turing Machines SRN ? (3)

? (1) ? (2)

BC± BC- LAL
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⊇

⊇ ⊇

Fig. 1. Relations betweenSRN andLAL.
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PTIME-maximal subsystems ofMS } PTIME-sound subsystems,

LAL included

PTIME-unsound subsystems,EAL included

Fig. 2.PTIME-unsound,PTIME-sound, andPTIME-maximal subsystems ofMS.

(PTIME) sound and complete restriction of Primitive Recursion;LAL is Light Affine
Logic [2], a deductive system derived from Linear Logic (LL, [3]), based on proof nets,
which isPTIME sound and complete under the proofs-as-programs analogy. As shown
in [4], there exists a subalgebraBC− of SRN that compositionally embeds intoLAL.
However, it is not possible to extend the same embedding to the wholeSRN. As far as
we know, any reasonable replacement of the question marks (1), (2), and (3) in Fig. 1 is
still unknown. The results in [5] and [6] justify the obstructions to the extension of the
embedding in [4] that would replaceLAL for (2), or (3). Indeed, [5] shows thestrong
PTIME-soundness ofLAL, while [6] shows thatSRN is just weaklyPTIME-sound,
once we see it as a term rewriting system. Since the strongPTIME-sound programs
are, intuitively speaking, far less than the weak ones, the misalignment looks evident.
So, a way to fill the gaps in Fig. 1 is looking for an extension ofLAL. This is not
impossible sinceLAL does not supply the largest set of programs we can write under
the structural proof theoretic constraints thatLAL itself relies on. To better explain this,
we need some steps.

RecallingLAL. The proof nets ofLAL inherits the!-boxes fromLL. Every!-box identi-
fies a specific region of a proof net that can be duplicated by the cut elimination.In LAL
each box that can be duplicated, called!-box, depends on at most a single assumption.
Besides the duplicable!-boxes,LAL has§-boxes, which cannot be duplicated.§-boxes
implement theweak derelictionprinciple !A ⊸ §A. Namely, every§-box allows to
access the content of a!-box, preserving its border. Accessing the proof net insidea
!-box is useful to program iterations through Church numerals, for example. Since also
the§-boxes can never be “opened”,the proof nets ofLAL are stratified. “Stratification”
means that every nodeu of every proof net ofLAL either gets erased by the cut elim-
ination, or the number of nested boxes the residuals ofu are contained in keeps being
constant when the cut elimination proceeds.
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Fig. 3. Carrier and Contraction nodes ofLinearXn.

PTIME-sound andPTIME-unsound extensions ofLAL. Once recalledLAL, we pro-
pose some extensions of it that preserve stratification. We start extendingLAL to LALA∇
by adding an “asymmetric” Contraction!A ⊸ (!A ⊗ §A). We shall prove thePTIME-
soundness ofLALA∇ thanks to Proposition 1. ThePTIME-completeness ofLALA∇
should be evident since it containsLAL. Though, what is worth remarking now is that
(i) LAL can bePTIME-soundly extendedto another system by adding some rules, and
(ii) the new building rule may allow to write new interesting programs. This potentially
candidatesLALA∇ to replace (2) or (3) in Fig.1 becauseLALA∇ might have programs
missing inLAL that allow to simulate terms not inBC−. Instead, extendingLAL to
LAL∇§ by adding a Contraction§A ⊸ (§A ⊗ §A) yields aPTIME-unsound system.
The reason is thatLAL∇§ containsEAL, the affine version ofELL [7], which soundly
and completely characterizes the class of Elementary Functions. Finally, we might think
to extendLAL to LAL6 1, in which the!-boxes are allowed to depend on more than one
assumption. Once again,LAL6 1 is PTIME-unsound.

The above experiments show that extendingLAL by new contraction nodes or new
boxes, flexibly depending on parameters, we can hope to devise PTIME-sound gener-
alizations ofLAL, able to replace (2) or (3) in Fig. 1.

The stratified an multimodal framework MS (Section 2).Abstracting away from the
experiments onLAL led to this work. Fig. 2 visualizes what we mean.MS was first
introduced in [8]. Here we make the definition more essential, while extending it so
that the (sub)systems of proof netsMS contains can use unconstrained Weakening.MS
is a Multimodal andStratifiedframework.MS is a class of triples(X,BX,RX). The
first elementX, we call carrier, is anarbitrary countable and finite set of elements we
use as modalities inside a languageFX of formulæ. The second elementBX is a set of
building rules, ideally partitioned intolinear andmodalones. Thelinear building rules
define the proof nets of Multiplicative and Second Order Fragment (MLL2) of LL. The
exponentialbuilding rules are specific to the triple, and define both (i) which modal
formulæ ofFX that label the premises of a proof net can be contracted into asingle
premise, and (ii) which modal formulæ are associated to the conclusion of a box around
a proof net. At this point, to keep things intuitive, we can think a subsystemP of MS
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is every triple that satisfies an essential requirement to use the proof netsPN(P) that
BX can generate as a rewriting system. This amounts to require thatRX is the largest
rewriting relation inPN(P)×PN(P).
An example of a whole class of subsystems ofMS is Linearn, with n ∈ N, already
defined in [8].Linearn allows to remark the freedom we have when choosing a carrier
set. Fig. 3(b) shows the partial order that we can take asXn to defineLinearn, while
Fig. 3(a) shows a subset of the Contraction nodes induced byXn. Remarkably, (i)Lin-
earn has a linear normalization cost, likeMLL2, but (ii) it can represent the Church
numerals as much long asn, together with the basic operations on them, so strictly
extending the expressiveness ofMLL2.
The local criterion (Section 3-4).Its statement relies on the notion ofPTIME-max-
imal subsystemP of MS. Specifically,P is PTIME-maximal if it isPTIME-sound, and
any of its extensions becomesPTIME-unsound. Our criterion says that a givenP is
PTIME-maximal by listing a set of sufficient and necessary conditions on the syntax
of the building rules inP. As a corollary, any givenP ′ is PTIME-sound if its rules
are among those ones of aPTIME-maximal subsystems ofMS. To conclude,spindle
(Section 3, Fig. 12(a)) is the technical notion we base our criterion on. A spindle is a
conceptual abstraction of the general quantitative analysis tools that Context Semantics
(CS) [9] supplies. Intuitively, if a subsystemP allows to concatenate arbitrary long
chains of spindles(Fig. 12(b)), then it isPTIME-unsound, namely some of its rules
cannot by instance of anyPTIME-maximal subsystem ofMS.

Acknowledgments.We like to thank the anonymous referees whose comments allowed
to better justify the main aspects of this work, we hope.

2 The framework MS

We defineMS by extending, and cleaning up, the definition in [8]. Our current MS
generates subsystems with unconstrained weakening, likeLAL, to easy programming.
The Formulæ.Let X be an alphabet ofmodalities, ranged over bym, n, p, q, . . ., andV
be a countable set of propositional variables, ranged over by x, y, w, . . .. The setFX of
formulæ, generated withF as start symbol, is:

F : : = L | E E : : = mF L : : =x | F ⊗ F | F ⊸ F | ∀x.F

E generatesmodalformulæ,L linear (non-modal) ones.A, B, C range over formulæ
of FX. Γ, ∆, Φ range over, possibly empty, multisets of formulæ.A

[
B/y

]
is the substi-

tution ofB for y in A. Thenumber of modalitiesof FX is the cardinality ofX.

The framework. MS is a class of triples(X,BX,RX), for every countable setX. The
elementBX is the set of thebuilding rulesin Fig. 4, typed with formulæ ofFX. The
nodes i , o just show inputs and output, respectively. The other nodes are standard
ones. BothPromotion andContraction aremodalas opposed to thelinear remaining
ones. The second componentRX is the set ofrewriting rulesin Fig. 5, 6, 7, and 8, typed
with formulæ ofFX. The name of every rewriting rule recalls the nodes it involves.
Fig. 5 defines thelinear rewriting ruleswhich, essentially, just rewires a proof net.
Fig. 6 contains themodal rewriting rules, those ones that, once instantiated, may cause
exponential blow up. Fig. 7 and 8 describegarbage collection.
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Fig. 4. Building rules, with short and long names.

Subsystems.A triple P = (X,BX,RX) in MS is asubsystem(of MS) whenever:
1. BX contains all the instances of the linear building rules;
2. BX contains every instance ofPromotion Pn(), that generatesclosedn-boxes;
3. BX is downward closed. Namely, for everyPq(m0, . . . , mk) in BX, Pq(n0, . . . , nl)

belongs toBX as well, for every{n0, . . . , nl} ⊆ {m0, . . . , mk};
4. If we denote byPN(P) the set of proof nets thatBX inductively generates, using

Identity andDæmonas base cases, thenRX is the largestrewriting relation inside
PN(P)×PN(P).
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Fig. 5. Linear rewriting rules.[∀R/∀L] substitutesB for α as usual.
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Fig. 6. Modal rewriting rules.

By abusing the notation, we writeP ⊆ MS to abbreviate thatP is a subsystems ofMS.

An example of subsystem.Let M ≥ 2, andX = {i! | i ≤ M} ∪ {i§ | i ≤ M}.
ThensLAL = (X,BX,RX) is the subsystem ofMS such thatBX contains the modal
building rules in Fig.9. The “s” in front ofLAL stands forsorted. With n? we mean that
the premise it represents can occur at most once. Withn∗ we mean that the premise
it represents can occur an unbounded, but finite, number of times. By the forthcoming
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Fig. 7. Garbage collection rewritign rules, involvingW.

Yq(m,n) → Cut Cut

Cut h h

h

mA nA

qA

qA

mA nA

mA nA

⊗L → Cut Cut

Cut h h

h

A B

A⊗B

A⊗B

A B

A B

W

⊸L → Cut Cut

Cut h

h

B

AA⊸B

A⊸B

B A

B A

[h/Yq(m, n)] [h/⊗L] [h/ ⊸L]

∀L → Cut

Cut h

h

A
h
B/x

i

A
h
B/x

i

∀x.A[x]

A
h
B/x

i

A
h
B/x

i
Σ → h

Cut W W W

h

mA

m1A1

nC

mkAk

mA

m1A1 ... mkAknC
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Fig. 8. Garbage collection rewriting rules, involvingh.

Proposition 1,sLAL is PTIME-sound. Notice thatsLAL strictly extendsLAL. We shall
get back to the relevance ofsLAL in Section 5.

Remarks on standard computational properties of subsystems.A subsystemP does
not necessarily enjoy standard computational properties.For example, in a givenP a
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Pi!(i!
?, j1§∗, . . . , jm§∗) for everyj1, . . . , jm < i ≤ M

Pi§(i!∗, i§∗, j1§∗, . . . , jm§∗) for everyj1, . . . , jm < i ≤ M
Yi!(i!, i!) for everyi ≤ M

Fig. 9. The modal rules ofsLAL.

full normalization may fail because some building rule is missing. Analogously, the
Church-Rosser property may not hold, because, for example,[Pq(r)/Yq(n, m)] gener-
ates a non-confluent critical pair. This might be considereda drawback of the “wild”
freedom in the definition of the instances of[Pq(r)/Yq(n, m)]. We believe such a free-
dom necessary to have a chance to find some replacement of the question marks in
Fig. 1. Instead, everyP is strongly normalizing sincePN(P) embeds into the proof
nets ofEAL by collapsing all its modalities into the single one ofEAL. So, standard
results imply thatP is Church-Rosser if it is locally confluent.

Notations.LetΠ be a proof net of a givenP ⊆ MS. The set of its nodes isVΠ , andEΠ

the set of edges. Moreover,BΠ is the set ofBox-outnodes, in natural bijection with the
set of theboxes. A box, corresponding to some instance ofPq(m1, . . . , mk), has one
conclusionof type qC andk assumptionsof type respectivelym1A1, . . . , mkAk, for
someC, A1, . . . , Ak. Thedepth, or level, ∂(u) of u ∈ VΠ ∪ EΠ is the greatest number
of nested boxes containingu. Thedepth∂(Π) of Π is the greatest∂(u) with u ∈ VΠ .
Thesize|Π | counts the number of the nodes inΠ . We notice thatBox-in/outnodes do
not contribute to the size of the proof net inside the box theydelimit.

3 Polynomial time soundness

The goal of this section is an intermediate step to get the local criterion. Here we char-
acterize the classPMS of polynomial time sound(PTIME-sound) subsystems ofMS.
MS is the one in Sec. 2, which, recall, generalizes, while cleaning it up, the one in [8]
by adding unconstrained weakening, and the corresponding dæmon. This is why we
shall briefly recall the main tools and concepts that allow toprove a sufficient structural
condition forPTIME-soundness, relatively to subsystems ofMS. Later, we prove the
newPTIME-sound necessary condition.

3.1 Sufficient condition for PTIME-soundness

Context Semantics (CS) [9]. The basic tool to identify a sufficient structural condition
on the subsystems ofMS that impliesPTIME-soundness isCS. We use a simplified
version ofCS, because the proof nets that any subsystem ofMS can generate are free
of both dereliction and digging.
CS identifiesCS-paths to travel along any proof net of any subsystem. EveryCS-path
simulates the annihilation of pairs of nodes that, eventually, will interact thanks to the
application ofr.steps. The goal of usingCS to analyze our proof nets is to count the
numberRΠ(u) of maximalCS-pathswhich, traversing a proof netΠ , go from any box
root u of Π to either a weakening node, erasing it, or to the terminal node of Π or of
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Fig. 10.An example of maximal path.

the proof net inside a box that containsu. The paths that we consider do never cross the
border of a box. The value ofRΠ(u) counts the contraction nodes that, possibly, will
duplicate the box rooted atu.
Figure 10 shows an example of maximalCS-path from the rightmost box to the con-
clusion of the proof net. It is built by interpreting every node as it was a kind of operator
that manipulates the top element of a stack whose elements can contain symbols of a
specific signature. For example, let us focus on the pair(r(e), +) theCS-path in Fig-
ure 10 starts from. The polarity+ says we are feeding the contraction with the value
r(e), coherently with the direction of its premise. We have to think that the top cell of a
stack storesr(e). The contraction node replacesr(e) by e in the top. The axiom node
behaves as an identity operator on the top. The first⊸L we meet pushesa on the top, so
that such a symbol can be popped out by the second⊸R we meet. We keep going with
these corresponding push-pop sequences until we reach the conclusion. By the way, we
notice that the leftmost box is interpreted as an identity w.r.t. the stack content. This is
because we are in a stratified setting.
Figure 11 recalls the set of transition steps that formally realize the stack machine that
builds theCS-paths and that we can use to work out the details about how constructing
the maximalCS-path just described.

The point of determining RΠ(u). CS allows to define a weightW(Π), for everyΠ
in a subsystem ofMS. The weight has two relevant properties.
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Fig. 11. Rewriting relation among contexts. If(e, U, b) 7→Π (e′, U ′, b′) then also
(e′, U ′,−b′) 7→Π (e, U,−b), where−b is the polarity opposed tob.

The first one is that ther.stepsstrictly decreaseW(Π), for anyΠ . Namely, the weight
bounds both the normalization time ofΠ and the size of the reducts ofΠ under a
standard normalization strategy which is proved to be the worst one. So, the weight is a
bound for any strategy.
The second property is thatW(Π), for anyΠ , is dominated by

∑
b∈BΠ

RΠ(u), up
to a polynomial. More formally, it exists a polynomialp(x, y) such that, for everyΠ ,
W (Π) ≤ p

(∑
b∈BΠ

RΠ(u), |Π |).

Spindles.They are the structure of proof nets whose absence allows to put a polynomial
bound on

∑
b∈BΠ

RΠ(u), giving us a sufficient condition forPTIME-soundness.
Figure 12(a) shows an example ofspindlebetweenu andd. A spindle contains two, and
only two, distinctCS-paths to go from one node of a proof net to another. The point
is that two differentCS-paths can sum up to duplicate structure, a potentially harmful
behavior, when the control over the normalization complexity is a concern.

Definition 1 (Spindles and Dangerous Spindles).Let Π ∈ PN(P); e ∈ EΠ an
edge labelledmA entering a contractionu; f ∈ EΠ an edge outgoing aPo node
b; g ∈ EΠ an edge labelledB (possiblyg = f ); ∂(e) = ∂(f) = ∂(g). A spindle
mA : Σ : B betweene and f (or also betweenu and d) is a triple of CS-paths:τ
from e to f passing through the left conclusion ofu; ρ from e to f passing through the
right conclusion ofu; χ from f to g (possibly empty); and such thatτ andρ are the
only CS-paths connectinge with f . e, g, u are resp. theprincipal premise, principal
conclusionandprincipal contractionof Σ. An edge that is premise (resp. conclusion) of
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Fig. 12.A spindle and a chain of two spindles.

a node ofΣ, but that is not part ofΣ, is saidnon-principalpremise (resp. conclusion).
We shortenmA :Σ :nB with m :Σ :n. Finally, everymA :Σ :mB is dangerous.

Chains of spindles.The spindles that a subsystem can generate can be composed into
chains. In Figure 12(b) there is a chain of two spindlesmA : Σ : nB andnB : Σ′ : pC.
Of course a concatenation can cut together an arbitrary number r ≥ 1 of spindles
m1A1 : Σ1 : m2A2, . . . , mrAr : Σr : mrAr yielding a chain that we abbreviate as
m1A1 :Σ1; . . . ; Σr :mrAr, or simplym1A1 :Θr :mrAr, with Θr equal toΣ1; . . . ; Σr.
Intuitively, a subsystem ofMS that can build arbitrarily long chains of spindles cannot
bePTIME-sound essentially because we cannot bound the amount of duplicated struc-
ture during the normalization. For example, arbitrarily long chains exist as soon as the
rules of a subsystem allow to buildmA : Θr : mA, which can compose with itself an
arbitrary numberL of times, yielding a chainmA :Θr·L :mA.
Finally, the sufficient condition forPTIME-soundness that extends the one in [8]:

Proposition 1 (PTIME-soundness: Sufficient Condition).Let X be finite, andP ⊆
MS. If P cannot build dangerous spindles, thenP ∈ PMS.

Proof (Sketch).Both the absence of dangerous spindles in any proof netΠ of P and
the finiteness ofX lead to a constant boundL on the length of the chains of spindles in
Π . L only depends onP . The boundL implies the existence of a polynomial that only
depends onP and on the depth ofΠ , which bounds

∑
b∈BΠ

RΠ(u). For what observed
above, this implies thePTIME-soundness ofP. ⊓⊔

3.2 Necessary condition forPTIME-soundness

Here we present a necessary condition forPTIME-soundness of subsystems inMS.

76



Po(m)

⊗R

I I

Pi(m) Pi(n)

Cut

Po(n)

⊗R

Po(q)

I I

Pi(q)

Pi(n) Pi(n)

Ym(m,n)

m(B⊗(B⊗qC))

B⊗(B⊗qC)

B B⊗qC

n(B⊗qC)

mB nB

mB

nqC

B⊗qC

B qC

C

(a) Σ′

Po(m)

⊸R

W I W

Pi(m) Pi(n)

Cut

Po(n)

⊸R

I

W W

Pi(n) Pi(n)

Ym(m,n)

mA

A

γ

A A

nA

mA
nA

mA

mA

A

γ

A A

(b) Σ⋆

Po(m)

⊸R

I

W W

Pi(m) Pi(n)

Cut

Po(n)

⊸R

I

W

Pi(n)

Ym(m,n)

mA

A

γ

A A

nA

mA
nA

mA

A

γ

A

A

(c) Σ′′

Fig. 13.Examples relative the proof of Lemma 1.

Proposition 2 (PTIME-soundness Necessary Condition).LetP ⊆ MS. If P ∈ PMS
thenP cannot build dangerous spindles.

The idea is that if a dangerous spindlemA : Σ : mB exists inP , thenΣ can be trans-
formed into another onemC : Σ′ : mC which, obviously, can be freely composed with
itself, leading to an exponential blow-up. We now develop the proof of Proposition 2.

Fact 1. LetP ⊆ MS.
1. For everyl ≥ 0,P containsΠl ⊲ A, . . . , A ⊢ A, withA = γ ⊸ γ, l occurrences of

A as assumptions, and∂(Πl) = 1.
2. IfP provesA, . . . , A ⊢ A, with l occurrences ofA, then it proves alsom1A, . . . , mkA ⊢

qA for k < l, for everyPq(m1, . . . , mk) ∈ P .

For example,Πl in Fact 1 can just contain the nodes⊸R and W .

Lemma 1. LetP ⊆ MS be a subsystem that can build a (dangerous) spindleΣ. In P
there is another (dangerous) spindleΣ′′, obtained constructively fromΣ, such that: (a)
Σ′′ contains only Contractions, Box-out and Cut nodes at level 0. (b) Every edgee at
level0 has labelqA, for some fixedA. (c) ∂(Σ′′) = 1. (d) The only premise ofΣ′′ is
the principal one.

Proof. Let Π ∈ PN(P) be the proof net containingΣ.
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We reduce all the linear cuts inΠ at level 0. We get toΠ ′ ∈ PN(P) with Σ′, the reduct
of Σ, in it. An example of a possibleΣ′ is in Figure 13(a).Σ′ is still a (dangerous)
spindle, as well as the residuals of the threeCS-pathsρ, τ, χ of Σ are stillCS-paths in
Π ′. The threeCS-paths cannot contain linear nodes. Indeed, we just observethat, e.g.,
τ must begin in a contraction, with labelnA, and must stop in a box, with labelmB.
So it cannot cross neither any right-node, otherwise it would add a non-modal symbol
to nA, and so the last formula could not bemB, nor any left-node, otherwise it would
remove a non-modal symbol fromnA.
We transformΣ′, just generated, into another graphΣ⋆ by replacing every proof net
enclosed in a boxPq(m1, . . . , mk) of Σ′ by Πk ⊲ A, . . . , A ⊢ A as in point 1 of Fact 1.
Consequently, everyqB at level 0 inΣ′ becomesqA in Σ⋆, for someq. This replace-
ment implies∂(Σ⋆) = 1 (Figure 13(b)).
Σ⋆ is a graph satisfying the requirements (a)-(b)-(c) in the statement. However in gen-
eral it does not satisfy (d). MoreoverΣ⋆ is not necessarily a spindle, because it may
be not contained in a proof net ofP . We can modifyΣ⋆ to get aΣ′′ that satisfies the
point (d). If e is a non-principal premise ofΣ⋆, entering some boxb of Σ⋆, then we
remove the edgee and we reduce the number of premises ofb, according to point 2 of
Fact 1. Now, we can plug every non-principal conclusion ofΣ′′, exiting upward from
some contractionu of Σ′′, with a weakening node: we get a proof netΠ ′′ containing
Σ′′, thus showing thatΣ′′ is a spindle. IfΣ was dangerous,Σ′′ is too. ⊓⊔
In particular,n :Σ :n dangerous implies that both the principal premise and conclusion
of Σ′′ havenA as type.

Proof (of Proposition 2).By contraposition, we show that: “IfP can build a dangerous
spindleΣ, then it is notPTIME-sound.” Let us assumem : Σ : m has premisesΓ, mB
and conclusions∆, mC, recalling thatΣ may not be a proof net, so admitting more
non-principal conclusions∆. By Lemma 1 we build a dangerous spindleΣ′′ of depth 1
with premisemA and conclusionsmA, ∆̃. The dangerous spindleΣ′′ becomes a proof
netΠ ′′ ⊲ mA ⊢ mA, using weakening. Now we concatenate as many copies ofΠ ′′ as
we want, with a closed boxb ⊲ ⊢ mA, obtaining a family〈Θn⊲ ⊢ mA | n ∈ N〉. Every
Θn has depth 1 and sizeO(n). The canonical strategy replicatesb, until the level0 is
normal. This takes linear time. Though, the final size at level 1 has grown exponentially,
implying thatΘn reduces in timeO (2n). So,P /∈ PMS. ⊓⊔
Remark 1.The proof of Proposition 2 highlights a peculiar aspect ofPTIME-sound
subsystems.PTIME-soundness combines two more primitive properties we can call
polynomial step soundness(pstep) andpolynomial size soundness(psize). A subsystem
Π is pstep (resp. psize) iff there is a polynomialp(x) such that, for everyΠ ∈ P ,
Π →k Σ implies thatk (resp.|Σ|) is bounded byp (|Π |). So, the proof of Proposition 2
shows also that “if P ⊆ MS is psize, then it is pstep as well, namelyPTIME-sound”.

4 PTIME-maximal subsystems

This section supplies the local criterion that distinguishesPTIME-sound andPTIME-
unsound subsystems ofMS, just looking at their rules.
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Definition 2 (PTIME-maximal subsystems).Let P = (X,BX,RX) be a subsystem
of MS. We say thatP is PTIME-maximalif, for everyP ′ = (X,B′X,R′

X), BX ⊂ B′X
impliesP ′ /∈ PMS.

Let P ⊆ MS. We writem � n whenever there exists a proof netΠ ∈ PN(P) con-
taining aCS-path whose edges are all labeled by modal formulæ, the first one exiting
upwards from aPo node with modalitym, and the last one with modalityn.� is clearly
transitive.

Fact 2. LetP be aPTIME-maximal subsystem.
1. If P hasPq(

−→m , n, n) it also hasPq(
−→m , n∗), wheren∗ stands for any unlimited and

finite sequence of assumptions with an-modal formula.
2. If P hasPq(m, n) andPq(n, r) it also hasPq(m, n, r).
3. ∀q ∈ X, P has at leastPq(q?), wheren? stands for at most one assumption with a

n-modal formula. This is like requiring a reflexive�.

The justification to the first point develops as follows.P cannot havePq(
−→m , n∗) if such

a rule generates a spindle. In that case, the same spindle exists thanks toPq(
−→m , n, n)

against thePTIME-maximality ofP . An analogous argument can be used to justify the
second point. The third one is obvious becausePq(q?) has at most one assumption.

Lemma 2. LetP be aPTIME-maximal subsystem. Then� is a linear quasi-order, i.e.
� is transitive, reflexive and connected.

Proof. � is always transitive. Here it is also reflexive, because of the presence ofPq(q).
We have to prove that it is connected, that is:∀m, n (m � n ∨ n � m). Let us assume
thatP is PTIME-maximal and¬(m � n). We show thatn � m. ¬(m � n) implies that
addingPn(m) to P gives aPTIME-unsound systemP ′. So we can find a dangerous
spindleq : Σ : q in P ′ containingPn(m). This spindle is not inP. However, inP , we
can find a graphΣ′ that, extended with a suitable number ofPn(m) boxes, givesΣ. In
particular, we find inΣ′ (and so inP) two paths, one from modalityq to m and the other
one fromn to q, that can be composed to create a path fromn to m. So,n � m. ⊓⊔
Remark 2.We focus only onPTIME-maximal systems with alinear order�. This
because anyP whose� is not as such is as expressive as anotherP ′ with less modalities
and whose� is linear. For example, ifP is PTIME-maximal and containsPn(m) and
Pm(n), thenm andn cannot be distinguished, as� is transitive, son, n can be identified.
We shall write≺ for the strict order induced by�.

Theorem 1 (Structure of PTIME-maximal Subsystems).Let P be a subsystem of
MS with a linear�. P is PTIME-maximal iffP contains exactly the following rules:

1. all the rulesYq(m, n) for everyq ≺ m, n;
2. all the rulesYq(q, n) for everyq ≺ n;
3. all the rulesPq(q?, m∗

1, . . . , m
∗
k) for everym1, . . . , mk ≺ q;

4. only one amongYq(q, q) andPq(q∗, m∗
1, . . . , m

∗
k), for everym1 . . . , mk ≺ q.

For example,LAL is not maximal. It can be extended to aPTIME-maximal system
letting ! ≺ §, and adding the missing rules.
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Proof. “Only if” direction. We want to prove that every systemP containing the rules
described in points1, 2, 3, 4 isPTIME-maximal. The order� prevents to build danger-
ous spindles thanks to its linearity. So, Proposition 1 impliesP is PTIME-sound. More-
over, ifYq(q, q) belongs toP , addingPq(q∗, m∗

1, . . . , m
∗
k), against point4, would allow

to construct a dangerous spindle. The same would be by starting withPq(q∗, m∗
1, . . . , m

∗
k)

in P and, then, addingYq(q, q).
“If ” direction. We assumeP is PTIME-maximal and we want show that it must contain
at least all the rules described in the statement. We prove itby contradiction first rela-
tively to points1, 2, and3, then to point 4. A contradiction relative to points1, 2, and3
requires to assume thatP has not a ruleR described in1, 2, 3. LetP ′ = P ∪ {R}. The
PTIME-maximality ofP implies thatP ′ is notPTIME-sound. Now, thanks to the con-
traposition of Proposition 1,P ′ 6∈ PMS implies thatP ′ can build a dangerous spindle
r :Σ :r. We are going to see that this causes various kinds of contradictions.
Let u be an instance ofR = Yq(m, n). For example, we can assume that one of the two
distinctCS-paths inΣ crossesu from qA to mA. By definition of�, r � q ≺ m � r,
so contradicting the linearity of�.
Let u be an instance ofR = Yq(q, n). The previous case excludes that one of the two
distinctCS-paths inΣ crossesu from qA to nA. So, it must crossu from its premise,
labeledqA to its conclusion, labeledqA. This means thatr :Σ′ :r, obtained fromΣ just
removingu, exists inP, which could not bePTIME-sound.
The caseR = Pq(q, m1, . . . , mk) combines the two previous ones.
Now we move to prove point4. Without loss of generality, we can prove the thesis for
Pq(q, q) instead ofPq(q∗, m∗

1, . . . , m
∗
k). By contradiction, letP be PTIME-maximal,

and let the thesis be false. So, there areR1 = Yq(q, q) andR2 = Pq(q, q) such that
eitherP has both of them,or P has none of them. In the first case the two rules would
build a spindle, makingP not PTIME-sound. In the second case, neitherR1 nor R2

belong toP . This means that neitherP1 = P ∪{R1}, norP2 = P ∪{R2} arePTIME-
sound, because, recall,P is PTIME-maximal. So, there has to exist bothr1 : Σ1 : r1 in
P1 that involves an instanceu1 of R1 (Figure 14(a)), andr2 : Σ2 : r2 in P2 involving
the instanceb2 of R2 (Figure 14(b)). Thanks to Lemma 1 we can assume that all the
labels inΣ1 andΣ2 are of the formnA, for a fixedA and somen’s. Then,u1 must be
theprincipal contraction ofΣ1. If not, we could eliminate it as we did foru in point 2,
proving thatP is notPTIME-sound. This is whyr1 = q in Σ1 of Figure 14(a). Now,
let Θ beΣ1 withoutu1 that we can build inP (Figure 14(c)).Θ has two premisesqA
and one conclusionqA, exactly as the boxb2 in Σ2. So, we can replaceb2 in Σ2 with
Θ getting a new spindler2 : Σ : r2 in P. But Σ ∈ PN(P) impliesP is notPTIME-
sound. ⊓⊔

5 Conclusions

We supply a criterion that discriminatesPTIME-sound stratified systems, based on a
quite general structure of proof nets, from thePTIME-unsound ones. Such systems
are subsystems of the frameworkMS. Roughly, every subsystem is a rewriting system,
based on proof nets. The proof nets are typable with modal formulæ whose modalities
can be quite arbitrary. We justify the “arbitrariness” of deciding the set of modalities to
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r1A=qA
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(a) r1 :Σ1 :r1 in P1

Pq(q,q)

Y
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(b) r2 :Σ2 :r2 in P2
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qA qA

(c) Θ from Σ1

Θ

Y

r2A

qA

qAqA

r2A

(d) r2 :Σ :r2 in P

Fig. 14.The proof nets used in the proof of Theorem 1

use by our will to extend as much as we can the set of programs-as-stratified-proof nets.
To this respect, the “largest” subsystems are thePTIME-maximal ones that we can
recognize thanks to the form of their proof nets building rules. The “state transition”
from a PTIME-maximal subsystem to aPTIME-unsound one corresponds to moving
from a system that composes chains of spindles with bounded length to a system with
unbounded long chains.
Finally, we can state thatMS accomplishes the reason we devised it. The subsystem
sLAL in Section 2 can replace (2) in Fig. 1 for a suitable extensionof BC−, inside
SRN, in place of (1). To show how, however, really requires a whole work, whose
technical details will be included in Vercelli’s doctoral thesis, which shall also present
some conditions able to assure if a subsystem enjoys cut-elimination.
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Abstract. Recursive analysis was introduced by A. Turing [1936], A.
Grzegorczyk [1955], and D. Lacombe [1955] as an approach for inves-
tigating computation over the real numbers. It is based on enhanc-
ing the Turing machine model by introducing oracles that allow the
machine to access finitary portions of the real infinite objects. Classes
of computable real functions have been extensively studied as well as
complexity-theoretic classes of functions restricted to compact domains.
However, much less have been done regarding complexity of arbitrary
real functions. In this article we give a definition of polynomial time
computability of arbitrary real functions. We survey some of the results
based on this definition, in particular relationships with polynomial time
computability of continuous rational functions. O. Bournez, E. Hainry,
and myself have been developing a function algebra of real functions
based on the predicative recursion philosophy developed by S. Bellantoni
and S. Cook [1992] and was used by them to give an algebraic machine-
independent characterization of the polynomial time computable integer
functions. The proposed algebra is able to capture the Bellantoni-Cook
class, however, it is still weaker than the whole polynomial time real
computability.

1 Introduction

The theory of recursive analysis was introduced by A. Turing in 1936 [23], A.
Grzegorczyk in 1955 [14], and D. Lacombe in 1955 [17]. It is an approach for
investigating computation over the real numbers that is based on enhancing the
normal Turing machine model by introducing oracles that provide access to the
R-inputs. Recursive analysis is a reductionist approach where the real number is
deconstructed into some finitary representation such as Cauchy sequences. Com-
pare this with the Blum-Shub-Smale (BSS) model [3, 19] where real numbers
are considered as atomic entities that can be written directly on the machine
tape cells. Given a function f : R → R, computability of f in the context of
recursive analysis simply means the existence of a Turing machine that when
successively fed with increasingly accurate representation of x ∈ R, it will be
able to successively output increasingly accurate representation of the function
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value f(x). Turing machines represent discrete-time discrete-space model of R-
computation; they are finitary objects, hence only countable number of real
functions are computable.

Unlike the case of discrete computation, which has enjoyed a kind of unifor-
mity and conceptual universality, there have been several different approaches
to real computation some of which are not even comparable. A survey on the
wide spectrum of models of R-computation is written by P. Orponen in 1997
[22]. An up-to-date version of Orponen’s has been written by O. Bournez and
M. Campagnolo in 2008 [21]. V. Blondel and J. Tsitsiklis wrote a more spe-
cialized survey about the role of classical computational complexity in systems
and control theory [2]. A dedicated survey about the class of BSS models was
written by K. Meer and C. Michaux [19]; this survey essentially focuses on the
complexity-theoretic aspects of these models. A less detailed survey of the main
BSS model is given in [11]; this article focuses on extending the Grzegorczyk
hierarchy to the reals through that model [12]. In spite of this diversity recursive
analysis seems to be the most practical and physically realizable approach to
real computation and so is typically considered as the most plausible theoretical
framework for numerical analysis algorithms.

Much of the current research have been directed towards giving machine-
independent characterizations of recursive analysis. This is mostly done through
the use of function algebras.

Definition 1 (Function algebra). A function algebra F = [B;O] is the small-
est class of functions that contains some basic functions B and their closure un-
der a set of operations O. An operation is a functional that takes a finite set of
functions as arguments and returns a new function.

A typical example is Kleene’s class that characterizes discrete computability:

K = [0, s, P ;Comp,Rec, µ] (1)

It contains the constant 0, successor function s, a set of projection functions
P , and closed under the operations of composition, primitive recursion, and min-
imalization. Naturally, when moving to the reals primitive recursion is replaced
by differential equations. Minimalization has been extended to the reals in vari-
ous ways (see for example, [20],[5]), however, this operator is not intuitive over
R and does not appear natural especially from the mathematical analysis per-
spective. Several articles have addressed this issue by replacing minimalization
by strong forms of differential equations as well as different forms of the limit
operator, see for example, [4, 9, 18, 15, 6, 8, 7]. It seems that the limit operator is
essential in capturing the whole class of recursive analysis functions.

From the complexity perspective much work have been devoted to investi-
gate real functions defined only over compact domains. The interested reader
may consult [16]. Much less has been done regarding the complexity-theoretic
properties of arbitrary real functions. The current article is an attempt in that
direction. A definition of polynomial time real computability over arbitrary do-
mains is given along with a quick survey of the results based on that definition, in
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particular relationships with polynomial time rational computation. O. Bournez,
E. Hainry, and myself have been developing a function algebra of real functions
based on the philosophy of predicative recursion developed by S. Bellantoni and
S. Cook in 1992 [1]. The proposed class coincides with polynomial time inte-
ger computation, however, it can only partially capture polynomial time real
computation.

We will assume the typical binary alphabet {0, 1}, so for convenience we
restrict our attention to the set of dyadic rationals: D = {d ∈ Q : d = a

2b , a ∈
Z, b ∈ N}; these are the rationals with finite binary notation. Notice that D
forms a dense subset of R.

The article is organized as follows. Section 1 is an introduction. Section 2
discusses polynomial time computation over D and the role of continuity in such
computation. Section 3 introduces the basic concepts of recursive analysis, de-
fines polynomial time computation of real functions over non-compact domains,
and contrasts with the corresponding notion over the rationals. Section 4 in-
troduces the Bellantoni-Cook class which is a function algebra that captures
polynomial time integer computation. Based on this class a function algebra of
real functions is proposed in Section 5 and the main properties of this class are
proved. The article ends with a conclusion in Section 6.

2 Polynomial Time Dyadic Computation

In the following we consider domains of the form (a, b) where a ∈ R∪{−∞} and
b ∈ R∪{∞}. When restricted to D it will be denoted (a, b)D. For d ∈ D, let α(d)
denote the binary representation of d.

Definition 2 (Polynomial time computability of dyadic functions). As-
sume a function f : (a, b)D → D. We say that f is polynomial time computable
if there exists a Turing machine M such that for every d ∈ (a, b)D the following
holds:

M(α(d)) = α(f(d))

and the computation time of M is bounded by p(|α(d)|) for some polynomial
function p.

Dyadics are finite objects, hence the computation is exact. Next we define a
notion of continuity for dyadic functions.

Definition 3 (Continuous dyadic functions).

1. Assume a function f : D → D. We say that f is continuous if f has a
modulus of continuity, that is, if there exists a function m : N2 → N such
that for every k, n ∈ N and for every x, y ∈ [−2k, 2k] the following holds:

if |x− y| ≤ 2−m(k,n), then |f(x)− f(y)| ≤ 2−n (2)
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2. Assume a function f : (a, b)D → D where a, b ∈ D. We say that f is con-
tinuous if f has a modulus of continuity, that is, if there exists a function
m : N2 → N such that for every k, n ∈ N and for every x, y ∈ [a+2−k, b−2−k]
the following holds:

if |x− y| ≤ 2−m(k,n), then |f(x)− f(y)| ≤ 2−n (3)

3. Given the two previous cases other domains can be handled in the obvious
way.

In the following k will be referred to as the extension argument and n as the
precision argument. In the previous definition continuity of a dyadic function f
over an open domain is reduced to continuity over successively enlarging com-
pact subintervals of the domain. Compact domains are usually controllable, for
example, the continuous function is always bounded over any compact subinter-
val of its domain. As will be seen below besides determining the continuity of
a function, the modulus also controls how smooth and well behaved (especially
from the real computation perspective) the function is. It is clear that the com-
pletion of a continuous dyadic function gives a continuous real function with the
same domain plus the limit points and the same range plus the limit points, and
more importantly it has the same modulus. Unlike the case of real computation
where continuity is a necessary condition we can easily give an example of a
computable dyadic function that is discontinuous. Furthermore, the smoothness
of a dyadic function does not affect its complexity as indicated by the following
proposition.

Proposition 1 ([13]). There exist polynomial time computable continuous dyadic
functions that have arbitrarily large moduli.

Proof. (outline) Construct a dyadic function f that is piecewise linear and grows
polynomially in terms of the whole length of the input, hence it is continuous
and polynomial time computable. However, f grows exponentially (or any super-
polynomial growth) in terms of the length of the integer part of the input which
makes the function very steep and have exponential lower bound for the modulus.

3 Polynomial Time Real Computation

3.1 Representation of real numbers

Real numbers are infinite objects so in order to perform computations over them
using Turing machines, which are inherently finite objects, we must have a fini-
tary representation of R. Given x ∈ R, there are several such representations for
x among which are the following:

1. Binary expansion: x is represented by a function ψx : N∪{−1} → N∪{−1},
such that ψx(−1) ∈ {−1, 1} (the sign of x) and ψx(k) ∈ {0, 1} for every
k ≥ 1. Then

x = ψx(−1) · (ψx(0) +
∑
k≥1

ψx(k) · 2−k) (4)
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2. Left cut: x is represented by the set Lx = {d ∈ D : d < x}.
3. Cauchy sequence: x is represented by a Cauchy function ϕx : N → D that

binary converges to x

∀n ∈ N : |ϕx(n)− x| ≤ 2−n (5)

So from this given sample of representations we see that x is represented
either by a set of finite objects or a by a function over finite objects. We say that
x is computable with respect to some representation R if there exists a Turing
machine that either decides the set or computes the function that represent x
with respect to R. Examples of computable real numbers include the rationals,
algebraic numbers such as

√
2, and transcendental numbers such as π and e.

An important remark is that all the above representations give the same class
of computable real numbers, however, on the sub-computable and complexity-
theoretic levels they induce different classes. In particular we have:

Proposition 2. PT ime[BE] ≡ PT ime[LC] ( PT ime[CF ]

For the remaining part of this article we adopt the Cauchy representation. For
x ∈ R let CFx denote the set of all Cauchy sequences that represent x. Ap-
parently, only a countable subset of the real numbers are polynomial time com-
putable; this set forms a real closed field.

3.2 Polynomial computation of real functions

For a comprehensive treatment of polynomial time computation of real functions
over compact domains consult [16]. One of the basic results of recursive analysis
is that continuity is a necessary condition for computing real functions and as
we will see below the smoothness of the function plays an essential role in its
complexity.

Definition 4. (Polynomial time computation of real functions) Assume a func-
tion f : R → R. We say that f is polynomial time computable if the following
conditions hold:

1. There exists a function oracle Turing machine M such that for every x ∈ R,
for every ϕx ∈ CFx, and for every n ∈ N the following holds:

|Mϕx

(n)− f(x)| ≤ 2−n (6)

2. The computation time of M
ϕx (n) is bounded by p(k, n) for some polynomial

p, where k = min{j : x ∈ [−2j, 2j]}.
Assume a function g : (a, b) → R where a, b ∈ R. Fix some ϕa ∈ CFa and
some ϕb ∈ CFb. We say that g is polynomial time computable if the following
conditions hold:

86



1. There exists a three-function oracle Turing machine N such that for every
x ∈ (a, b), for every ϕx ∈ CFx, and for every n ∈ N the following holds:

|Nϕx,ϕa,ϕb (n)− f(x)| ≤ 2−n (7)

2. The computation time of N
()
(n) is bounded by p(k, n) for some polynomial

p, where k = min{j : x ∈ [a+ 2−j , b− 2−j]}.
Remark 1. Some remarks about Definition 4:

1. Intuitively, polynomial time computation of real functions (in the context
of recursive analysis) implies the existence of a Turing machine that when
successively fed with a Cauchy sequence that represents the input it will
be able to successively print out a Cauchy sequence that represents the
function value. And the machine does that efficiently with respect to the
particular components of the Cauchy sequences. This view is more explicit
in the approach taken by K. Weihrauch [24].

2. In this definition polynomial time computability over a non-compact domain
is reduced to polynomial time computability over compact subintervals of the
function domain. This is made possible by the continuity of the underlying
function. Compact intervals are easier to handle.

3. In addition to the extension argument k which exclusively accounts for the
complexity of rational functions, the precision argument is part of the com-
plexity measure of real functions.

4. The precision argument is assumed in its unary notation when measuring
the complexity. Intuitively, this argument implies the required length of the
fractional part of the machine output.

5. The interpretation of the argument k differs in the two kinds of functions
mentioned in the definition. For unbounded domains it accounts for the
length of the integer part of the input, whereas for open bounded domains
it accounts for how far the input is from the boundary points.

Let PR denote the class of polynomial time computable real functions. The
following theorem relates the computational and the analytic properties of real
functions.

Theorem 1 ([13]). Assume a function f : R → R. Then f is polynomial time
computable iff there exist two functions over finite objects: m : N2 → N and
ψ : D× N → D such that

1. m is a modulus function for f and it is polynomial with respect to both the
extension parameter k and the precision parameter n, that is, m(k, n) =
(k + n)b for some b ∈ N,

2. ψ is an approximation function for f , that is, for every d ∈ D and every
n ∈ N the following holds:

|ψ(d, n)− f(d)| ≤ 2−n (8)

3. ψ(d, n) is computable in time p(|d|+ n) for some polynomial p.

FOPARA 2009 Preliminary Proceedings 87



Proof. (outline) Assume the existence of m and ψ that satisfy the given condi-
tions. Assume an f -input x ∈ R and let ϕx ∈ CFx. Assume n ∈ N. Let M

ϕx (n)
be an oracle Turing machine that does the following:

1. let d1 = ϕx(2),
2. use d1 to determine the least k such that x ∈ [−2k, 2k] (taking into account

the error in d1),
3. let α = m(k, n + 1) (locating the appropriate component of the Cauchy

sequence of x),
4. let d = ϕx(α),
5. let e = ψ(d, n+ 1) and output e.

Note that every step of the above procedure can be performed in polynomial
time with respect to both k and n. Now verifying the correctness of M

()
(n):

|e− f(x)| ≤ |e− f(d)|+ |f(d)− f(x)|
≤ 2−(n+1) + |f(d)− f(x)|, by definition of ψ

≤ 2−(n+1) + 2−(n+1), |d− x| ≤ 2−mk(n+1) and definition of m

= 2−n

This completes the first part of the proof. As for the reverse direction the ex-
istence of the efficiently computable approximation function ψ follows directly
from the existence of a Turing machine M

()
that efficiently computes f . Us-

ing the Heine-Borel compactness theorem and the computation of M
()

a finite
open covering of the compact interval [−2k, 2k] can be effectively found and the
modulus then follows almost immediately.

As indicated by the previous theorem, the modulus function plays a crucial
role in the computability and complexity of real functions. On one hand it enables
the machine to access an appropriate finite approximation of the input (which
component of the Cauchy sequence). On the other hand it enables evaluating
the machine output: how good it is as an approximation to the actual desired
value.

Proposition 1 and Theorem 1 directly imply the following.

Theorem 2. There exist continuous dyadic functions that are polynomial time
computable, however, their extensions to R are not polynomial time computable.

The converse of this also holds as indicated in the next theorem.

Theorem 3 ([13]). There exists a dyadic-preserving function g : R → R such
that g is polynomial time computable, however, g ↾ D is not polynomial time
computable.

Proof. (outline) Construct a function g : R → R such that g is piecewise linear,
preserves D, and is smooth enough (has a polynomial modulus), hence g is
polynomial time computable as a real function. However, for any x ∈ D, the
fractional part of g(x) has an exponential length with respect to the length of
x. Hence, g ↾ D is not polynomial time computable.
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The last two theorems indicate that polynomial time real computation is not
simply an extension of the corresponding notion over the rationals. This can be
justified from both directions as follows. Going from the rationals to the reals we
saw that continuity and smoothness do not play any role in the computability
and complexity of rational functions; whereas the situation is completely the op-
posite in the case of real functions where continuity is a necessary condition for
computability and smoothness is a necessary condition for efficient computabil-
ity. On the other hand going from the reals down to the rationals a fundamental
difference can be easily observed: real computation is approximate whereas ratio-
nal computation is exact. Looking at the function constructed in Theorem 3 we
see that since rational computation is exact the whole long fraction of the func-
tion value must be printed out by the machine. Whereas in the real computation
case generally the fraction is partially printed out and this part is accounted for
by the precision argument.

4 The Bellantoni-Cook Class

The first characterization of the polynomial time discrete class was given by
A. Cobham in 1964 [10]. However, Cobham’s class still contains explicit refer-
ence to resource bounds. This was alleviated in the work of S. Bellantoni and
S. Cook in 1992 [1]. Their philosophy is that the functions that are not poly-
nomial time computable are inherently impredicative, that is, their definitions
presume the existence of totalities such as the whole set of natural numbers.
So in order to capture feasible polynomial time computation, only predicative
operators should be applied to generate new functions from a small basic set
of efficiently computable ones. They achieve that through the use of two types
of function arguments: normal arguments and safe arguments. Any function in
this class would have the general from f(x1, . . . , xm; y1, . . . , yn) where the nor-
mal arguments x1, . . . , xm come first, followed by the safe ones y1, . . . , yn with
the ‘;’ separating these two groups. The class is defined as follows.

Definition 5. Define the following class of functions that operate on binary
strings.

B = [0, U, s0, s1, pr, cond;SComp, SRec] (9)

1. a zero-ary function for the constant 0: 0(; ) = 0,
2. a set of projection functions Um+n

i (x1, . . . , xm;xm+1, . . . , xm+n) = xi,
3. two successor functions: si(;x) = x ◦ i for i ∈ {0, 1}; this arithmetically

corresponds to 2x+ i,
4. a predecessor function:

pr(;x) =

{
0 x = 0
y x = y ◦ i

5. a conditional function

cond(;x, y, z) =

{
y x ≡2 0
z ow

(10)
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6. safe composition operator SComp: assume a vector of functions ḡ1(x̄; ) ∈ B,
a vector of functions ḡ2(x̄; ȳ) ∈ B, and a function h ∈ B of arity |ḡ1|+ |ḡ2|.
Define new function f

f(x̄; ȳ) = h(ḡ1(x̄; ); ḡ2(x̄; ȳ))

7. safe recursion on notation operator SRec: assume functions g, h0, h1 ∈ B,
define a new function f as follows:

f(0, ȳ; z̄) = g(ȳ; z̄)
f(si(;x), ȳ; z̄) = hi(x, ȳ; z̄, f(x, ȳ; z̄))

Several observations are in place here: (1) all the basic functions (except
projections) have only safe arguments, (2) all the basic functions increase the
length of the input by at most a constant amount, this leads to the fact that safe
arguments contribute only by a constant amount to the output of the function,
(3) in SComp the arguments ȳ which appear safe with respect to f do not appear
in normal positions with respect to h, this means that safe arguments can not
be repositioned as normal arguments; that is why the functions in ḡ1 must have
exclusively normal arguments, (4) in SComp both kinds of arguments x̄, ȳ of f
appear in safe positions with respect to h, this means that normal arguments
can be repositioned as safe ones; because of this asymmetry adding a function
that operates on safe arguments to B is generally more powerful than adding
the same function operating only on normal arguments, and (5) in SRec the
recursion variable x appears in the defined function f in a normal position,
whereas the recurred value f(x, ȳ; z̄) appears in a safe position in the defining
function h.

The main result concerning the class B is the following.

Theorem 4. ([1]) The class of polynomial time computable discrete functions is
exactly captured by those functions in B that have exclusively normal arguments.

5 Partially Capturing PR

In the following we define a class of real functions which are essentially extensions
to R of the Bellantoni and Cook class [1]. That former class was developed as a
joint work with O. Bournez and E. Hainry. For any n ∈ Z we call [2n, 2n+1] an
even interval and [2n+ 1, 2n+ 2] an odd interval.

Definition 6. Define the function algebra

W = [0, U, s0, s1, pr0, pr1, θ1, e, o;SComp, SI, Lin] (11)

1. successor functions, si(;x) = 2x+ i for i ∈ {0, 1},
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2. two predecessor functions

pr0(;x) =

{
n 2n ≤ x ≤ 2n+ 1, n ∈ Z
n+ (ǫ− 1) 2n+ 1 ≤ x ≤ 2n+ ǫ, 1 ≤ ǫ ≤ 2

pr1(;x) =

{
n+ ǫ 2n ≤ x ≤ 2n+ ǫ, 0 ≤ ǫ ≤ 1
n+ 1 2n+ 1 ≤ x ≤ 2n+ 2

So the function pr0 acts as ⌊x
2 ⌋ over even intervals and piecewise linear oth-

erwise, whereas the function pr1 acts as ⌈x
2 ⌉ over odd intervals and piecewise

linear otherwise.
3. a continuous function to sense inequalities, θ1(;x) = max{0, x},
4. parity distinguishing functions

e(;x) =
π

2
θ1(sinπx)

o(;x) =
π

2
θ1(−sinπx)

The function e is non-zero only over even intervals and conversely o is non-
zero only over odd intervals. Notice that on integer values e(; k) = o(; k) = 0.

5. safe integration operator SI: assume functions g, h0, h1, define a new func-
tion f satisfying

f(0, ȳ; z̄) =g(ȳ; z̄)
∂xf(x, ȳ; z̄) = e(x; )[h1(pr0(x; ), ȳ; z̄, f(pr0(x; ), ȳ; z̄))

− h0(pr0(x; ), ȳ; z̄, f(pr0(x; ), ȳ; z̄))]
+ o(x; )[h0(pr1(x; ), ȳ; z̄, f(pr1(x; ), ȳ; z̄))

− h1(pr1(x; ) − 1, ȳ; z̄, f(pr1(x; ) − 1, ȳ; z̄))]

Notice that for simplicity we misused the basic functions so that their argu-
ments are now in normal positions (the alternative is to redefine a new set
of basic functions with arguments in normal positions).

6. A linearization operator Lin: given functions g, h, define a new function f
by

f(x, ȳ; z̄) =

{
δh(2pr0(x; ) + 1, ȳ; z̄) + (1− δ)g(2pr0(x; ), ȳ; z̄) e(;x) ≥ o(;x)
δ′g(2pr1(x; ), ȳ; z̄) + (1− δ′)h(2pr1(x; )− 1, ȳ; z̄) o(;x) ≥ e(;x)

where δ = x− 2pr0(x; ), δ′ = x+ 1− 2pr1(x; ). Note that at even integers f
reduces to g whereas at odd integers it reduces to h.

The class W as defined above is an attempt to capture efficient real compu-
tation in a syntactical way that depends on the particular binary representation
of numbers. We believe that the syntactical approach is more appropriate for
characterizing efficient lower complexity classes (at least in the Turing mecha-
nistic framework) for it provides means to control the complexity growth of a
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function through the exclusive use of predicative definitions. On the other hand,
more abstract definitions are typically inherently impredicative leading to un-
controllable growth of the functions being defined. In the following we list some
of the properties of W starting with the fact that it preserve N.

Proposition 3. Let f ∈ W. Then f ↾ N : N → N.

Proof. Proof is by induction on the construction of functions in W . Note that
for integer values the parity functions e and o are always 0. It is easy to see that
the other basic functions preserve the integers and that composition preserves
this property. Assume two functions g, h ∈ W that preserve N and consider the
application of linearization. Given an input x = 2n any of the two cases of the
definition of f can be applied (with δ = 0 and δ′ = 1) to give f(ȳ; 2n, z̄) =
g(ȳ; 2n, z̄) which is integer. Alternatively, given x = 2n + 1 then again any of
the two cases can be applied (with δ = 1 and δ′ = 0) to give f(ȳ; 2n + 1, z̄) =
h(ȳ; 2n + 1, z̄) which is again an integer by the induction hypothesis. Assume
functions g, h0, h1 ∈ W that preserve N and consider the application of the
safe integration operator to define a new function f ∈ W . We then use strong
induction over the integration variable to show f preserves N. The base case
f(0, ȳ; z̄) = g(ȳ; z̄) holds by assumption on g. Assume f(j, ȳ; z̄) ∈ N for every
integer j ≤ 2n and consider an input x ∈ [2n, 2n+1]. Then o(;x) = 0, e(;x) 6= 0,
and

h1(pr0(x; ), ȳ; z̄, f(pr0(x; ), ȳ; z̄))− h0(pr0(x; ), ȳ; z̄, f(pr0(x; ), ȳ; z̄)) =
h1(n, ȳ; z̄, f(n, ȳ; z̄))− h0(n, ȳ; z̄, f(n, ȳ; z̄))

This latter difference is independent of the integration variable x. Further-
more, by the hypotheses of the main and secondary inductions it is an integer
value. Notice also that

∫ 2n+1

2n

e(;u)du =
π

2

∫ 2n+1

2n

θ1(; sinπu)du

=
π

2

∫ 2n+1

2n

sinπu du = 1

This implies that

f(2n+ 1, ȳ; z̄) = f(2n, ȳ; z̄) + h1(n, ȳ; z̄, f(n, ȳ; z̄)) − h0(n, ȳ; z̄, f(n, ȳ; z̄))

which is an integer value. Similarly for doing induction over odd intervals.
Hence, the safe integration operator preserves N. This completes the proof of
the proposition.

Let dp(W) = {f ↾ N : f ∈ W}. The following theorem shows that the discrete
part of W coincides with the Bellantoni-Cook class implying that the class W
exactly captures polynomial time discrete computability.
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Theorem 5. dp(W) = B

Proof. B ⊆ dp(W) : proof is by induction on the construction of functions in
B. It is obvious that the basic functions 0, U, s0, s1 exist in dp(W). The function
pr0 from W acts exactly like pr when restricted to N. Using U we can define the
identity function inside W . Then using linearization we can define the function:

f(;x, y, z) =

{
δz + (1− δ)y e(;x) ≥ o(;x)
δ′y + (1 − δ′)z o(;x) ≥ e(;x)

(12)

where δ = x − 2pr0(;x), δ′ = x + 1 − 2pr1(;x). It can be easily verified that
f(; 2n, y, z) = y and f(; 2n+1, y, z) = z for every n ∈ N, hence f ↾ N = cond. The
case for safe composition is easy. Now assume f ∈ B that is defined from g, h0, h1

by safe recursion. Then by the induction hypothesis there exist g̃, h̃0, h̃1 ∈ W
such that g̃ ↾ N = g, h̃0 ↾ N = h0, and h̃1 ↾ N = h1. Define the function f̃ ∈ W
using safe integration from g̃, h̃0, and h̃1. We claim that f̃ ↾ N = f . Proof is by
strong induction over the recursion variable. For readability we will exclude the
ȳ and z̄ arguments. At the base case we have f̃(0; ) = g̃(; ) = g(; ) = f(0; ). From
the proof of Proposition 3 we have

f̃(2n+ 1; ) = f̃(2n; ) + h̃1(n; f̃(n; ))− h̃0(n; f̃(n; ))

= f(2n; ) + h̃1(n; f(n; ))− h̃0(n; f(n; )), by induction hypothesis
= f(2n; ) + h1(n; f(n; ))− h0(n; f(n; )), by assumption
= h0(n; f(n; )) + h1(n; f(n; ))− h0(n; f(n; )), by safe recursion
= h1(n; f(n; ))
= f(2n+ 1; ), by safe recursion

Similarly, it can be shown that f̃(2n+2; ) = f(2n+2; ). This completes the first
part of the proof.

dp(W) ⊆ B : proof is by induction on the construction of functions in W and
using Proposition 3. The case for the basic functions 0, U, si, pr0 is obvious. For
x ∈ N we have (pr1 ↾ N)(;x) = ⌈x

2 ⌉ which is polynomial time computable.
θ1 ↾ N is the identity function. For all x ∈ N we have e(;x) = o(;x) = 0. Safe
composition sustains polynomial time computability. Assume a function f ∈ W
defined by linearization from g and h. At integer values f reduces either to h
or g, hence by the induction hypothesis f ↾ N is polynomial time computable.
Finally, assume a function f ∈ W defined by safe integration from g, h0, and h1.
Let ĝ = g ↾ N, ĥ0 = h0 ↾ N, and ĥ1 = h1 ↾ N. Then by the induction hypothesis
we have ĝ, ĥ0, ĥ1 ∈ B. Define f̂ ∈ B by safe recursion from ĝ, ĥ0, ĥ1. We claim
that f ↾ N = f̂ ; proof is by strong induction on the integration variable and is
similar to that given in the first part. This completes the proof of the theorem.

Efficient computability of the functions in W is indicated by the following
theorem.
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Theorem 6. W ⊆ PR

Proof. Proof is by induction on the construction of functions in W . It is easy
to see that the basic functions 0, U, si, pri, and θ1 are all polynomial time com-
putable. The constant π is polynomial time computable. The trigonometric sine
and cosine functions are computable in polynomial time using, for example, Tay-
lor series expansion as an approximation. Hence, the parity functions e and o
are polynomial time computable. Composition preserves polynomial time com-
putability. Given polynomial time computable functions g and h, then clearly
their linearization is polynomial time computable. Assume a function f ∈ W
that is defined by safe integration from g, h0, h1 where these latter functions are
polynomial time computable. Then from Theorem 5 we have f ↾ N is polynomial
time computable. As can be seen from the proof of Proposition 3 the function
f is piecewise trigonometric with breakpoints at N, hence it is also polynomial
time computable at non-integer points.

6 Conclusion

The computational complexity of real functions over non-compact domains is
accounted for by two parameters: the precision of the desired output and the
location of the input either with respect to the integer line or to the limit points
of a bounded domain. When considering polynomial time computation it is ap-
parent that there is a conceptual gap between applying this notion to the reals
and to the rationals. This is due to two main reasons: (1) though smoothness
is necessary for efficient real computability, it does not play any role in rational
computation and (2) real computation is approximate whereas rational com-
putation is exact. The next move is to study this transition phenomenon from
the perspective of computability and other complexity-theoretic classes. We pro-
posed a function algebra of real functions based on the Bellantoni-Cook class.
This algebra is able to capture this latter class, though it is still weaker than poly-
nomial time real computation. Still work needs to be done with strengthening
this class in order to give a fully algebraic machine-independent characterization
of polynomial time real computability.
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Abstract. We introduce Non-deterministic Boolean proof nets to study
the correspondence with Boolean circuits, a parallel model of computa-
tion. We extend the cut elimination of Non-deterministic Multiplicative
Linear logic to a parallel procedure in proof nets. With the restriction of
proof nets to Boolean types, we prove that the cut-elimination procedure
corresponds to Non-deterministic Boolean circuit evaluation and recip-
rocally. We obtain implicit characterization of the complexity classes NP
and NC (the efficiently parallelizable functions).

1 Introduction

The proof nets [Gir87,DR89] of the Linear logic (LL) are a parallel syntax for
logical proofs without all the bureaucracy of sequent calculus. Their study is also
motivated by the well known Curry-Howard isomorphism: there is a correspon-
dence between proofs and programs which associates cut-elimination in proofs
and execution in functional programs. Proof nets were used in subsystems of
LL to give Curry-Howard characterizations of complexity classes. Usually this
is done in LL by reducing the deductive power of the exponentials connectives,
also known as modalities, controlling duplication in cut-elimination process. The
most known restrictions characterize P , the class of decision problems which can
be solved in polynomial time. E.g. it is the case of the Intuitionistic Light Affine
Logic (ILAL). By expressing non-determinism by an explicit rule to choose be-
tween proofs of the same formula, the Non-deterministic extension of ILAL char-
acterizes quite naturally NP [Mau03]. This sum rule is a logical counterpart to
non-deterministic choice in process calculi. With proof nets, other characteri-
zations were given by correspondence with models of parallel computation like
Boolean circuits as we shall see later. In this paper we make use of the sum rule
to extend these proof nets to a non-deterministic framework.

Boolean circuits are a standard models of parallel computation [Coo85,BS90]
[Vol99]. Several important complexity classes are defined in terms of Boolean cir-
cuits. E.g. NC can be thought of as the problems that can be efficiently solved
on a parallel computer just as the class P can be thought of as the tractable
problems. Because a Boolean circuit has a fixed input size, an infinite family
of Boolean circuits is needed to do computations on arbitrary inputs. With a
uniformity property, a family can be however regarded as an implementation
? Work partially supported by the french project Complice (ANR-08-BLANC-0211-01)
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of an algorithm. The Boolean circuit depth is the time on a parallel computer
where the size is the number of processors. For instance NC is the set of Boolean
functions computable by uniform Boolean circuits of polynomial size and poly-
logarithmic depth.

By restricting proved formulae and with a logical depth notion, there is
a proofs-as-programs correspondence between proof nets and NC such that
both size and depth are preserved [Ter04]. In this setting, the proof nets al-
low among others to simulate gates by higher order. Here we consider a non-
deterministic extension of proof nets, to give a proof-as-programs correspondence
with NNC (k(n)), the class defined from NC Boolean circuits with O(k(n)) non-
deterministic variables. In particular NC = NNC (log n) and NP = NNC (poly).
So the Curry-Howard isomorphism for parallel model of computation gives us
new tools to study theoretical implicit complexity.

In section 2 we present MLLu, the multiplicative LL with arbitrary arity
This is the smallest fragment of LL that encodes the unbounded fan-in Boolean
circuits [Ter04]. We recall the reduction steps of the cut-elimination. We give
its non-deterministic extension nMLLu and proof nets for it as in [Mau03]. We
recall several size and depth notions used in the proofs, all are natural graph
theoretic notions. In section 3 we mostly analyze and define a new cut elimination
from a parallel point of view. We prove the central theorems which allow us to
establish the results on the complexity classes. In section 4 we recall Boolean
circuit definitions. They include uniformity of both proof net families and circuit
families as well as hierarchy of NC and NNC (). We introduce the Boolean proof
nets of nMLLu, i.e with sum-boxes, which generalize the proof nets of MLLu.
In section 5 we apply the previous theorems to our Boolean proof nets with
sum-boxes and we establish a proofs-as-programs correspondence with NNC ()
Boolean circuits. They are translation and simulation theorems that preserve
both size and depth of the Boolean proof nets and Boolean circuits. Finally
in section 6 we summarize the obtained results via UBPN (), a hierarchy of
proof net complexity classes defined analogously to the NNC () hierarchy. The
classes UBPN (poly), UBPN (polylog) and UBPN (1) of uniform Boolean proof net
families with respectively nO(1), logO(1) n and O(1) sum-boxes are respectively
equal to NP , NNC (polylog) and NC.

2 Non-deterministic Linear logic

2.1 Formulae, Sequent calculus and cut-elimination

We write −→A (respectively ←−A ) for an ordered sequence of formulae A1, . . . , An
(resp. An, . . . , A1).

The formulae of MLLu and nMLLu are built on literals by conjunction�n(−→A ) and disjunction On(←−A ) of Multiplicative Linear logic but with unbounded
arities n > 1. The only difference with binary connectives is that this gives us
depth-efficient proofs [DR89]. The negation of a non-literal formula is defined by

De Morgan’s duality: (�n(−→A ))⊥ =On(←−A⊥) and (On(−→A ))⊥ = �n(←−A⊥) where
the negation applies to sequences of formulae as expected.

2
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The sequents of nMLLu are of the form ` Γ , where Γ is a multiset of for-
mulae. The rules of the nMLLu sequent calculus are described in Fig.1. As in
Linear logic sequent calculus, MLLu and nMLLu admit a cut-elimination the-
orem (Hauptsatz) and implicit exchange. The cut-elimination steps of nMLLu

(a)

` Γ,A ` ∆,A⊥
` Γ,∆ cut ` A,A⊥

ax
(b)
` Γ · · · ` Γ

` Γ sum

` Γ1, A1 · · · ` Γn, An

` Γ1, . . . , Γn,�n(
−→
A )

�n
` Γ,An, . . . , A1

` Γ,On(
←−
A )

On

Fig. 1. Sequent calculus rules: (a) MLLu and (a+b) nMLLu

sequent calculus are n-ary versions of the Linear logic proofs rewriting: an axiom
cut (i.e. a cut rule with an axiom premise) rewrites without the axiom rule, and
the multiplicative cut (i.e. a cut rule between multiplicative formulae) rewrites in
sequence of cuts between premisses. In Fig.2 we give the sum-rule cut-elimination
step as in [Mau03].

` Γ,A · · · ` Γ,A
` Γ,A sum ` ∆,A⊥

` Γ,∆ cut −→

` Γ,A ` ∆,A⊥
` Γ,∆ cut · · ·

` Γ,A ` ∆,A⊥
` Γ,∆ cut

` Γ,∆ sum

Fig. 2. nMLLu sum-rule cut-elimination step

2.2 Proof nets and reduction rules

We suppose the reader familiar with proof nets and more specifically with the
reduction rules corresponding to the cut-elimination steps [Gir96].

A proof net [Gir87,DR89] is a graph that just keeps the structure of sequent
calculus proofs without some computational irrelevant part. It is a set of con-
nected links that we build by inference from the sequent calculus rules. There

1
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0
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0 0 &

1

0

1

0

2

2
3 &

1

0

1

0

2

2
3

b0 ≡ b1 ≡

Fig. 3. ax-link, �-link, O-link and �-link ; small proof nets

are several sorts of links: ax-link, �-link and O-link corresponding respectively
to MLLu rules. Every link has several ports numbered by convention as in Fig.3.
This numbering is omitted when there is no ambiguity. The conclusion port, also
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called conclusion of the link, is the port numbered 0. We use a wire between two
conclusion ports rather than a cut-link that corresponds to sequent calculus cut-
rule. Now we focus us on the nMLLu proof nets which extend those of MLLu. As
we only consider proof nets inferred from sequent calculus, we can inductively
built them in a equivalent way from the ax-links with the constructors of Fig. 4.
The sequent calculus sum-rule corresponds to a box (Fig.4), called sum-box, en-
closing proof nets, called sub-nets, such that we associate one �-link for each
shared conclusion.

1

0

n & 1

0

n

0 0

P P1 n P

0 0 0 0

P Q

1

0

n

S

S

1

0

n

0 0

n

1

0 0

Fig. 4. Proof net constructors: �-link, O-link, cut and sum-box

Definition 1. A proof net is (i) a finite set L of links, (ii) a function σ :
L→ {•,�} ∪ {�n,On}n>1 giving the sort of each link, (iii) a symmetric binary
relation over L× N for each wire between two ports of distinct links, and (iv) a
function τ : L→ N which associates to each link a unique number corresponding
to the sum-box that encloses it.

A summand of a proof net is a proof net obtained by erasing all but one
sub-net in every sum-box.

In section 4 we give a Logspace description which extends this one. We call the
conclusions of a proof net the set of links whose conclusion ports are unrelated
with other link ports. We write proof nets either with graphs or just with the
link names. For instance the last proof net in Fig.4 is sum(S1, . . . , Sn).

Remark that in every summand of a proof net the �-links correspond to
superfluous sum-rules with only one premise. So every summand of a proof net
of nMLLu easily induces a proof net of MLLu.

Definition 2. The reduction rules1 for MLLu proof nets, called respectively ax-
reduction and m-reduction, are defined by:

cut(ax(A,A⊥), A) →ax A and cut(�n(−→A ),On(←−A⊥)) →m {cut(Ai, A⊥i )}16i6n

For nMLLu proof nets there are moreover the reduction rules, called respectively
merge-reduction and down-reduction, defined for an arbitrary context C by:

sum(sum(−→A ),−→B )→merge sum(−→A,−→B )

sum(C[sum(−→A )],−→B ) →down sum(sum(C[−→A ]),−→B )

1 Up to the order when they are not drawn
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We define various notions of depth in a natural way: the box-depth associated
to sum-boxes, the depth of formulae and the logical depth associated to cuts.

Definition 3. The box-depth b(l) of a link l is the number of sum-boxes that
enclose it. The box-depth of a sum-box is the box-depth of its �-link links. The
box-depth b(P ) of a proof net P is the maximal box-depth of its links.

The depth d(A) of a formula A in a sequent calculus derivation π is the
length of the longest sequence of rules in π since axioms until the introduction
of the formula A. The depth d(π) of a nMLLu sequent calculus derivation π is
the maximal depth of its cut formulas.

The logical depth c(P ) of a proof net P is c(P ) = min{d(π) | P is inferred
by the sequent calculus derivation π}. We write c(P ) the logical depth without
counting the sum-rules.

Remark that by definition all �-links of the same sum-box are at same box-
depth. When a proof net is induced by a sequent calculus proof, he keeps traces
of sequentialization by the sum-boxes. This corresponds to a stratification by
the box-depth that we use in our reduction strategy.

The size |P | of a proof net P is the number of links in P such that we count
boxes but not the �-links.

3 Parallel reductions

Like the cut-elimination of sequent calculus the reduction of proof net is ter-
minating. Even if the reduction of proof nets has the Church-Rosser property,
reductions cannot be done in parallel as there is critical pairs. A critical pair
arises when redexes of reduction rules overlap. In order to have efficient proof
net reductions we consider all possible critical pairs. E.g. a cut between two
distinct axioms has two overlapping redexes depending on if we consider one or
the other axioms. This is solved for MLLu in [Ter04] by introducing a tightening
reduction: one reduces each maximal alternating chain of cuts and axioms in
only one global step leading to what is expected by sequential reduction steps.
Here is an example where the maximal chain starts with a cut and finishes with
an axiom:

0
0 0 0 0 0 0

0

We define various notions of depth in a natural way: the box-depth associated
to sum-boxes, the depth of formulae and the logical depth associated to cuts.

Definition 3. The box-depth b(l) of a link l is the number of sum-boxes that
enclose it. The box-depth of a sum-box is the box-depth of its �-link links. The
box-depth b(P ) of a proof net P is the maximal box-depth of its links.

The depth d(A) of a formula A in a sequent calculus derivation π is the
length of the longest sequence of rules in π since axioms until the introduction
of the formula A. The depth d(π) of a nMLLu sequent calculus derivation π is
the maximal depth of its cut formulas.

The logical depth c(P ) of a proof net P is c(P ) = min{d(π) | P is inferred
by the sequent calculus derivation π}. We write c(P ) the logical depth without
counting the sum-rules.

Remark that by definition all �-links of the same sum-box are at same box-
depth. If we consider stratification of boxes then the depth and the logical depth
can be decomposed in partial depths. We write it with indexes for the box-depths
as follows: d(l) =

�
0�x�b(P ) dx(l)

The size |P | of a proof net P is the number of links in P such that we count
boxes but not the �-links. The partial size |P |x of a proof net P for a sum-box
x is the size of P restricted by the box-depth x: |P | =

�
0�x�b(P ) |P |x.

3 Parallel reductions

Like the cut-elimination of sequent calculus the reduction of proof net is ter-
minating. Even if the reduction of proof nets has the Church-Rosser property,
reductions cannot be done in parallel as there is critical pairs. A critical pair
arises when redexes of reduction rules overlap. In order to have efficient proof
net reductions we consider all possible critical pairs. E.g. a cut between two
distinct axioms has two overlaping redexes depending on if we consider one or
the other axioms. This is solved for MLLu in [Ter04] by introducing a tightening
reduction: one reduces each maximal alternating chain of cuts and axioms in
only one global step leading to what is expected by sequential reduction steps.
Here is an example where the maximal chain starts with a cut and finishes with
an axiom:

0

0 0 0 0 0 0

t 0

−→t

Remark that by maximality, no critical pairs can be tightening redexes. So such
reductions can be done in parallel. We denote t-reduction a tightening reduction
and we write it →t. We write ⇒t the parallel →t reductions. As →m redexes
are never critical pairs we write ⇒m the parallel →m reductions. In the rest of
the paper we write ⇒k for k parallel reduction steps (⇒t or ⇒m) in MLLu.

5

Remark that by maximality, no critical pairs can be tightening redexes. So such
reductions can be done in parallel. We denote t-reduction a tightening reduction
and we write it →t. We write ⇒t for the simultaneous application of all the
→t reductions that can be fired in a given proof net. As →m redexes are never
critical pairs we also write ⇒m for the simultaneous →m reductions. In the rest
of the paper we write ⇒k for k parallel reduction steps (⇒t or ⇒m) in MLLu.

In this section we introduce new reduction rules to answer the parallelization
question for nMLLu such that reduction is confluent. We will give a bound on
the number of reductions to normalize a proof net (theorem 1).
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3.1 Parallel reductions of merged sum-boxes

The merge rules applied to distinct sum-boxes immediately within a same sum-
box are not really a conflict case even if it is a critical pair. We could merge
them in parallel if the sum-box itself would not be merged at the same time.
Because the merge-rule is confluent one can consider a global rewriting rule by
merging sum-boxes as expected. This corresponds to a sort of innermost sequen-
tial strategy. We define a new reduction →M whose redex is a maximal tree of
successively nested sum-boxes. So the root of the tree of sum-boxes is an outer-
most sum-box that cannot be merged further. The →M reduction merges this
tree in the root sum-box as it is mimicked in Fig.5. We do not draw neither wires
between the �-links nor the sub-nets which are not sum-boxes. By maximality
this reduction has no critical pairs, so we can do simultaneously→M reductions.

In this section we introduce new reduction rules to answer the parallelization
question for nMLLu such that reduction is confluent. We will give a bound on
the number of reductions to normalize a proof net (theorem 1).

3.1 Parallel reductions of merged sum-boxes

Applications of merge rules in distinct summands of the same sum-box are not a
conflict case. We can apply merge rules in parallel on them if the sum-box itself
would not be merged at the same time. Because the merge-rule is confluent one
can easily consider a global rewriting rule by merging sum-boxes as expected. We
reduce a sub-net composed of maximal successive sum-boxes in only one step:
the sub-net starts with a tree of sum-boxes and is disjoint of all other merge
redexes by maximality. The reduction merges this sum-box tree. We write it
→M . To simplify the presentation we symbolically describe the corresponding
rule in Fig.5 where we write only the links of one sum-box with a simple square.

Fig. 5. →M is the global reduction by merging

−→M

3.2 Parallel down-reductions

According to the context C, the pattern sum(C[sum(−→A )],−→B ) can be a critical
pair for the down rule. For example under a sum-box cut(sum(−→A ), sum(−→B ))
reduces to sum(sum(cut(−→A,

−→
B ))) in two →down steps. The same holds for a

more general context C but remains convergent. To simplify the notations, we
use the notion of section of indexed family of elements.

Definition 4. Let B be a sum-box and let S be a summand of B. Let {Bi}i∈I

be the family of sum-boxes of S such that b(Bi) = b(B) + 1 for all i ∈ I. Let
C be the context of the Bi with relation to S i.e. S = C[{Bi}i∈I ]. Let Bi be
the family of summands of Bi i.e. Bi = sum(Bi). The section A�F of a family
F = {Bi}i∈I is a family A = {ai}i∈I such that for all i ∈ I we have ai ∈ Bi.
We defined the reduction of a summand S = C[{sum(Bi)}i∈I ] of a sum-box by:

sum(−→X,C[{sum(Bi)}i∈I ]) →B sum(−→X, {C[A] | A�{Bi}i∈I})

We abusively use a set to denote the reduct but the corresponding family is
easily obtained from the implicit order associated to sections.

6

Fig. 5. →M is the global reduction by merging

3.2 Parallel down-reductions

According to the context C, the pattern sum(C[sum(−→A )],−→B ) can reveal a criti-
cal pair for the down rule. E.g. within a sum-box cut(sum(A1, A2), sum(B1, B2))
reduces to sum(sum({cut(Ai, Bj)}16i,j62))) in four→down steps. The same holds
for a more general context C but remains convergent. To simplify the notations,
we use the mathematical notion of section of indexed family of elements.

Definition 4. Let B be a sum-box and let S be a sub-net of B, i.e. B =
sum(−→X,S). Let {Bi}i∈I be the family of nested sum-boxes of B in S, i.e. Bi ⊂ S
and b(Bi) = b(B) + 1 for all i ∈ I. Let C be the context of the Bi with re-
lation to S, i.e. S = C[{Bi}i∈I ]. We write Bi the family of sub-nets of Bi,
i.e. Bi = sum(Bi). The section A/F of a family F = {Bi}i∈I is a family
A = {ak}k∈I such that for all k ∈ I we have ak ∈ Bi. We define →B the
reduction of a sub-net of a sum-box B by:

sum(−→X,C[{sum(Bi)}i∈I ]) →B sum(−→X, {C[A] | A/{Bi}i∈I})

We abusively use a set to denote the reduct but the corresponding family is
easily obtained from the implicit order associated to sections.

The intuition is to reduce in one (parallelizable) reduction step the sum-boxes
Bi of one sub-net S, merging only affected sum-boxes: the result is a set of sub-
nets which are the combination of all the contents of the Bi and the context
outside the Bi. So the sum-boxes Bi go down whereas contexts go up. Remark
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that if the family of Bi is such that each Bi contains exactly one sub-net then
by definition the context C applies on this set of sub-nets.

We give an example: let B1 = sum(a1, a2) and B2 = sum(b1, b2), let C be a
context without other sum-boxes than B1 and B2. We have:
sum(−→X,C[B1, B2]) →B sum(−→X,C[a1, b1], C[a1, b2], C[a2, b1], C[a2, b2]).

Remark that the affected sum-boxes were merged by our reduction, but just
to have a more readable definition. This reduction rule is a generalization of
the case of context composed only with cut sum-boxes: in such case we need
to reduct at fixed box-depth after all other reductions at this box-depth. But
without this generalization we are not able to decrease at the same time the
logical depth.

We redefine now →B as the previous reduction extended to all sub-nets of
the same sum-box B. This reduction is well defined as sub-nets are disjoints.
We write⇒Dx such reductions applied in parallel to every sum-box at the same
box-depth x − 1. By this way the sum-boxes at box-depth x go down. We do
this in order to have no conflicts. For a given proof net P , we write ⇒D

b(P )

the reduction sequence ⇒Db(P ) · · ·⇒D1. So we have the following remarkable
properties:

Lemma 1. Let P be a proof net such that b(P ) > 0.
If sum(P )⇒Db(P )sum(P ′) then b(P ′) = b(P )− 1 and c(P ′) = c(P ).
Proof. Let S be a sub-net of a sum-box B of box-depth b(P )− 1 in sum(P ).
We have b(S) = 1. By definition each link in the reduct of S by →B has the
box-depth b(P ) − 1. It is the same for all sub-nets of B by →B reduction. By
definition the ⇒Db(P ) reduction applies to all sum-boxes of box-depth b(P )− 1
in sum(P ). So the conclusion follows. �
The above Lemma implies the following:

Lemma 2. Let P be a proof net such that b(P ) > 0.
If sum(P )⇒Db(P ) · · ·⇒D1 ⇒M sum(P ′) then we have:

i) c(P ′) = c(P ) and b(P ′) = 0 i.e. P ′ is sum-box free.
ii) For all choice of summand si for i ∈ I, si(sum(P ′))⇒c(P ) Pi cut-free.

Theorem 1. There is a sequence of O(c(P ) + b(P )) parallel reductions which
reduces a nMLLu proof net P in a cut-free one.
Proof. Let P ′ defined from P as in lemma 2. Because all the summands si for
i ∈ I are pairwise disjoint we have ∪i∈Isi(sum(P ′)) ⇒c(P ) ∪i∈IPi cut-free. So
sum(P )⇒b(P )

D ⇒1
M sum(P ′)⇒c(P ) sum({Pi}i∈I) gives a cut-free proof net. �

Remark that c(P ) = O(c(P ) + b(P )).

4 Boolean circuits and Boolean proof nets

In this section we recall the definitions and some properties of Boolean circuits
and Boolean proof nets. We give also certain relationships between complexity
classes associated to Boolean circuits [Coo85,All89,Wol94,Par89]. The novelties
concern only the Boolean proof nets of nMLLu that extend those of MLLu.
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4.1 Boolean circuits

A basis is a finite set of sequences of Boolean functions. The standard basis are
B0 = {¬,∧,∨} and B1 = {¬, (∧n)n∈N, (∨n)n∈N}. The circuits over basis with
an infinite sequence of Boolean functions (resp. without) are called unbounded
fan-in (resp. bounded fan-in) circuits. We extend the basis with a stCONN2 gate
to test the strong connectivity of an edge set given in input. As in [Ter04] we
will use this gate to simulate the tightening reduction of proof nets.

Definition 5. A deterministic Boolean circuit with n inputs over a basis B is a
directed acyclic graph with n + 1 sources or inputs (vertices with no incoming
edges) and one sink or output (a vertex with no out-going edges). Sources are
labeled by literals from {x1, . . . , xn}∪{1} and nodes of in-degree k are labeled by
one of the k-ary Boolean functions of B. Non-inputs nodes are called gates, and
in-degree and out-degree are called fan-in and fan-out respectively. Let Fn be the
set of all Boolean functions f : {0, 1}n → {0, 1} for some n ∈ N. A deterministic
circuit computes a function in Fn (or accepts a set X ⊆ {0, 1}n) in a natural
way.

A non-deterministic Boolean circuit C with n inputs over a basis B with
k non-deterministic variables is a circuit with n + k + 1 sources labeled by
{x1, . . . , xn} ∪ {y1, . . . , yk} ∪ {1} s.t. it computes a function f ∈ Fn as follows:
for x ∈ {0, 1}n, f(x) = 1 iff ∃y ∈ {0, 1}k a witness s.t. C(x, y) evaluates to 1.

A family of circuits C = (Cn)n∈N computes a function f : {0, 1}∗ → {0, 1}
(or accepts a set X ∈ {0, 1}∗) if for every n ∈ N the circuit Cn computes the
restriction of f to Fn.

The size of a circuit is the number of gates and the depth is the length of a
longest directed path.

4.2 Boolean proof nets

Boolean values are represented with the type B =O3(α⊥, α⊥,�2(α, α)). The
non-deterministic Boolean values are represented with the same type ! Let us
consider the following proof nets of type B: the non-deterministic Boolean rep-
resented by b2 ≡ sum(b0, b1) where b0 and b1 are the two cut-free proof nets of
MLLu respectively called false and true given in Fig.3.

Definition 6 ([Ter04]). A Boolean proof net with n inputs −→p = p1, . . . , pn,
one output and k(n) sum-boxes is a proof net P (−→p ) of nMLLu of type:

` p1 : B⊥[A1], . . . , pn : B⊥[An], q : �m+1(B,−→C )

with k(n) a function of n, and some −→A ≡ A1, . . . , An and −→C ≡ C1, . . . , Cm
where we denote B[A] the formula B where all occurrences of α are substituted
by A. Given −→x ≡ bi1 , . . . , bin we write P (−→x ) the proof net where we cut every
bi with pi.

Without loss of generality we can always set sum(P ) for P : if a Boolean proof
net P is without sum-boxes then sum(P ) is a sum-box with only one summand
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in MLLu. This generalizes uniform MLLu Boolean proof nets. We often omit
this initial sum-box for the sake of simplicity.

Following the definition, for a given −→x ≡ bi1 , . . . , bin , a Boolean proof net
sum(P (−→x )) is of type �m+1(B,−→C ) and reduces in a unique cut-free proof net
of the same type (e.g. by the reduction sequence of the previous section). We
say that sum(P (−→x )) evaluates to 1 iff one of its summands is b1 with some
garbage −→C . There is an asymmetry between 1 and 0 as for non-deterministic
Turing machines.

Definition 7 ([Ter04]). A Boolean proof net P (−→p ) with n inputs computes a
function f : {0, 1}n → {0, 1} (or accepts a set X ⊆ {0, 1}n) if P (−→x ) evaluates
to bf(x) for every −→x ≡ bi1 , . . . , bin corresponding to x ≡ i1 · · · in ∈ {0, 1}n.

The Boolean proof net encoding of K. Terui [Ter04] of functions as negation,
conditional, disjunction, composition, duplication, and so on, is trivially valid in
the extended setting of nMLLu. We give some of them in the Appendix.

4.3 Uniformity and complexity classes

The given notions are used for Boolean circuit families and for nMLLu proof
net families. Both are denoted by F = (Fn)n∈N. From an algorithmic point of
view the uniformity is an important issue because only a uniform family can be
regarded as an implementation of an algorithm.

Definition 8 ([Ruz81]). A family F = (Fn)n∈N is called L-uniform (respec-
tively P -uniform) if there is a function which computes a description of Fn from
1n (unary numeral) in space O(log |Fn|)) (respectively in time |Fn|O(1)).

A description means all informations about elements like sort, predecessors, ...
Usually the description is also chosen according to the uniformity notion used.
Because we work with NP the P -uniformity is sufficient [All89]. Nevertheless
if we want to study a property in NC then we use the L-uniformity with the
following notion of description where links and sorts are identified by binary
numbers. Let W be the set of binary words and let x be the binary representation
of the integer x.

Definition 9 ([Ruz81]). The direct connection language LDC(C) of a Boolean
circuit family C = (Cn)n∈N over basis B is the set of tuples 〈y, g, w, b〉 ∈ W 4,
where for y = n we have g is a gate in Cn labeled by the function b from B if
w = ε else b is the wth predecessor gate of g. In case of input, b is not a function
but a sort (deterministic input or non-deterministic variable).

This definition adapted to MLLu proof nets [MR07] is here extended analogously
to nMLLu proof nets:

Definition 10. The direct connection language LDC(P ) of a nMLLu proof net
family P = (Pn)n∈N is the set of tuple 〈y, l, w, b, s〉 ∈ W 5 where for y = n we
have l is a link in Pn of sort b if w = ε else the wth premise of l is the link b.
The link l is also enclosed by the sth sum-box.
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Remark that the length of all identifiers of such family P is bounded by log |P |.
We finish this section recalling the complexity classes defined with uniform

families of Boolean circuits ([Coo85,All89,Vol99] and [Wol94,Par89] for non-
deterministic Boolean circuits). All dimensions are defined w.r.t the length of
the input, which we write everywhere n. We use abusively the words poly for
nO(1) and polylog for logO(1) (n).

The classes NCi and ACi for i > 0 are the functions computable by uniform
families of polynomial size, O(login) depth circuits over B0 and B1 respectively.
We add the suffix (stCONN2) to classes if we extend basis with a stCONN2 gate.
The class NNCi(k(n)) (resp. NACi(k(n))) are the functions computable by NCi

(resp. ACi) circuit families with O(k(n)) non-deterministic variables. We write
NC, NNC (k(n)), AC and NAC (k(n)) the respective unions over the exponents of
the depth. Relationships between complexity classes follow: ∀i ∈ N and ∀j ∈ N∗

AC0 ( NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ NC2 ⊆ . . . ⊆ AC = NC ⊆ P

ACi ⊆ ACi(stCONN2) ⊆ ACi+1

NNCj(log n) = NCj , and then NNC (log n) = NC

NNCj(poly) = NNC (poly) = NACi(poly) = NAC (poly) = NP

5 Translation and simulation

5.1 Logspace translation

Let C = (Cn)n∈N be a uniform Boolean circuit family over the basis B1(stCONN2)
with non-deterministic variables. The intermediate proof nets we build are called
modules.

First of all without distinguishing the inputs, we associate a uniform Boolean
proof net family P = (Pn)n∈N to C using uniformity. After what we consider
non-deterministic variables. Indeed the uniformity function of Boolean circuits
builds the uniformity function of Boolean proof nets in the same way as in
[MR07]. The main idea is already given in [Ter04]. Starting from LDC(C):

- For each n-fan-in gate labeled f(n) read in LDC(Cn) we give a polysize
module computing f(n). If the gate is a non-deterministic variable we cut
the corresponding input with the proof net b2 ≡ sum(b0, b1),

- For each n-fan-out gate read in LDC(Cn) we make a polysize duplication,
- For each edge read in LDC(Cn) we joint modules and duplications.

Just parsing the LDC(Cn) for i = 0 to |Cn| we detail a Logspace translation into
LDC(Pn): everything is identified with a binary number

1. For each 〈n, i, ε, b〉 we build the module associated to the function b of the
basis of the family (or to the sort b in case of inputs). It is a subset of
LDC(Pn) where relationships between links and sorts are given.

10
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2. If there are several 〈n, i, k, j〉 (i.e. j is the k-th predecessor of i) for fixed n and
j then the fan-out of j is multiple. We build the corresponding duplication.
It is again a subset of LDC(Pn).

3. For each 〈n, i, k, j〉 (i.e. j is the k-th predecessor of i) we build 〈n, a, b, c, 0〉
(i.e. an edge from (a, 0) to (b, c)) where a is the link associated to the output
of the module (step 1) corresponding to j and b is the link associated to the
c-th input of the module corresponding to i, modulo added duplications.

The novelty is the translation of non-deterministic variables into cuts with b2 ≡
sum(b0, b1). Only in this case the last bit of the description is not null.

Theorem 2. For every uniform family C of unbounded fan-in Boolean circuit of
size s and depth c over the basis B1(stCONN2) and with k(n) non-deterministic
variables, there is a uniform family of Boolean proof nets of nMLLu of size sO(1)

and logical depth O(c) and with k(n) sum-boxes, which accepts the same set as
C does.
Proof. Let Cn ∈ C and Pn ∈ P the Boolean proof net obtained by translation.
By translation b(Pn) = 1. Every gate is translated by a module of size O(s4) and
constant depth, and only the composition of these modules increases linearly the
depth [Ter04]. Let x ∈ {0, 1}n an input of Cn and −→x corresponding to x as in def-
inition 7. By theorem 1 proof we have: sum(Pn(−→x ))⇒1

D1 ⇒1
M sum({Pi}i∈I)⇒c

sum({Qi}i∈I) is an O(c) steps reduction such that sum({Qi}i∈I) is cut free and
there is a witness y ∈ {0, 1}k(n) such that Cn(x, y) evaluates to 1 if and only if
Pn(−→x ) evaluates to 1 (i.e. ∃i ∈ I such that Qi = b1). �
By translation c = O(c), so we have the same result for logical depth O(c).

5.2 Simulation of parallel reductions

Let P = (Pn)n∈N be a uniform Boolean proof net family of nMLLu with k(n)
sum-boxes. We associate a uniform Boolean circuit family C = (Cn)n∈N to P in
two big steps based on the reduction sequence of theorem 1:

– We both initialize the circuit descriptions and simulate all the parallel down
reductions with a polysize and constant depth circuit, using uniformity,

– As in [Ter04] we simulate all the ⇒ reductions of all summands using
stCONN2 gates for ⇒t simulation and then we check the result of the last
configuration.

In more detail, from the description of a proof net Pn ∈ P we build Θ0 an initial
set of boolean values representing the proof net to simulate. A configuration
Θ ∈ Conf(Pn) is the set of the following Boolean values: alive(l), sort(l, s),
box(l, i) and edge(l, 0, l′, i′). These values are initialized to 1 respectively iff a
link l ∈ L is in Pn, l is of sort s, l is enclosed by the sum-box numbered i,
and the conclusion port of l is in relation with the i′th port of a link l′ ∈ L.
In other terms our initial configuration Θ0 is the description itself extended to
alive values. Every reduction step simulation is made by a small circuit which
modifies a configuration in the other. All of this can be done in Logspace.

11
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Lemma 3. There is an unbounded fan-in circuit C of size O(|Pn|3) and constant
depth over B1 with non-deterministic variables, which computes in Logspace Θ ∈
Conf(P ′) from Θ0 ∈ Conf(Pn) whenever Pn(bi1 , . . . , bin) ⇒b(Pn)

D ⇒1
M P ′ from

given inputs i1, . . . , in.
Proof. Like in the translation we parse the configuration of Pn(bi1 , . . . , bin)
without taking care of sum-boxes to build partially LDC(C) in Logspace. From
Conf(Pn), we complete LDC(C) in Logspace and compute Conf(P ′) as follows:
The simulation of one k-ary sum-box t which corresponds to k summands/choices,
uses log(k) non-deterministic variables {Gt}. Let l be a link of box-depth b(l),
i.e. l is enclosed in exactly b(l) sum-boxes {ti}i∈I . Let ki be the arity of the
sum-box ti. So the link l simulation depends on Σi∈I log(ki) non-deterministic
gates. We initialize the value of the corresponding edges with the conjunction
of the values of these non-deterministic gates ∪i∈I{Gti} like in Fig. 6. Globally
this constant depth initialization uses one conjunction gate by edge in Conf(Pn)
and one negation gate by non-deterministic gates. �

edge edge edge edge
1 2 3 4

edge' edge' edge' edge'
1 2 3 4

Gt G' t

Fig. 6. 22-ary sum-box simulation where edge′i is in the ith summand

Lemma 4. [Ter04] There is an unbounded fan-in circuit C over B1(stCONN2)
of size O(|P |3) and constant depth such that whenever a configuration Θ ∈
Conf(P ) is given as input and P ⇒ P ′, C outputs a Θ′ ∈ Conf(P ′).

Theorem 3. For every uniform family P of Boolean proof nets of nMLLu of
size s and logical depth c, with k(n) sum-boxes of maximal arity k, there is a
uniform family of unbounded fan-in Boolean circuit over the basis B1(stCONN2)
of size sO(1) and depth O(c) and with O(k(n).log(k)) non-deterministic variables,
which accepts the same set as P does.
Proof. By theorem 1, i1 · · · in is accepted by P if and only if b1 ∈ {Qi}i∈I
where Pn(bi1 , . . . , bin)⇒b(P )

D ⇒1
M P ′ ⇒c(P ) sum({Qi}i∈I). By lemma 3 we build

from Pn a uniform polysize constant depth circuit with O(k(n).log(k)) non-
deterministic variables. For each of the ⇒c(P ) reductions we apply the same
construction as in Terui’s lemma starting from our previous configuration. At
the end we easily build a polysize constant depth circuit to check if the last
configuration represents b1 or not. �

12
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6 Proof net complexity

We define a hierarchy of complexity classes based on proof nets:

Definition 11. For i ∈ N, the classes UBPN i(k(n)) and UBPN i are func-
tions computable by uniform families of polynomial size, O(login) depth Boolean
proof nets of respectively nMLLu with O(k(n)) sum-boxes and MLLu. We write
UBPN (k(n)) and UBPN the respective unions over the exponents of the depth.

From theorem 2 and theorem 3 we have:

Theorem 4. For all i ∈ N,
NACi(k(n))(stCONN2) ⊆ UBPN i(k(n)) ⊆ NACi(k(n)× log n)(stCONN2)
Proof. For a Boolean proof net of size s the arity k of a sum-box is O(s)
in the worst case. By theorem 2 we have O(s) = nO(1). So O(k(n).log k) =
O(k(n)× log n). �

Corollary 1. For all i, j ∈ N,

1. UBPN i(poly) = NACi(poly)(stCONN2) = NP ,
2. NACi(logj n)(stCONN2) ⊆ UBPN i(logj n) ⊆ NACi(logj+1 n)(stCONN2),
3. UBPN (1) = UBPN = NC,
4. UBPN (log n) ⊇ NC,
5. UBPN (polylog) = NNC (polylog),
6. UBPN (poly) = NNC (poly) = NP .

Proof. Point 1. O(nO(1) × log n) = O(nO(1)).
Point 3. NAC (1)(stCONN2) = NC = NNC (log n) = NAC (log n)(stCONN2).
Point 5. by union over i and j from Point 2.
Point 6. by union over i from Point 1. �

Remark that UBPN (1) = UBPN is what we expect: a constant number of
sum-boxes corresponds to nO(1) summands/choices in the worst case, and so it
can be simulated with a disjunction of a polynomial number of circuits of the
same depth. I.e. it corresponds to NNC (log n) = NC.

7 Conclusion

Our study generalizes the work of K. Terui [Ter04] to non-deterministic exten-
sion as follows. We have defined the parallel reductions of proof nets of Non-
deterministic Multiplicative Linear logic, nMLLu. We have defined the uniform
Boolean proof nets with an amount of explicit non-determinism analogously to
the uniform Boolean circuits of NNC (), the non-deterministic NC class. By the
way we give a proof-as-programs correspondence between this model of paral-
lel computation and the uniform Boolean proof nets, preserving both size and
depth. We define in a standard way the classes of uniform Boolean proof nets
families UBPN () and we establish the following results:

NC = UBPN (1) ⊆ UBPN (log n) ⊆ UBPN (polylog) ⊆ UBPN (poly) = NP
q q q

UBPN NNC (polylog) NNC (poly)
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Remark that the proofs of translation and simulation theorems could apply for
Boolean circuits without depth constraint. Such a Boolean circuit is simply called
a polynomial size circuit and the corresponding class equal P . So there is a chain
from P to NP for families of uniform polynomial size Boolean proof nets.

There is a reduction which replaces sequence of ⇒D in our theorem in only
one step: our circuit simulating parallel down reductions made it in lemma 3.
The same thing could be done by parsing the sub-nets without reducing sum-
boxes (only k(n).log(n) bits are used) but with our theorem reduction we do fully
parallel computation. Ad-hoc Boolean proof net classes can be given to have a
more strictly correspondence with NNC (), using only binary �-links. Then the
encoding are no more constant depth but O(k(n)) depth: it corresponds to NC
with O(log n) sum-boxes. Remark that if we use a bigger uniformity notion then
the descriptions are easier: e.g. for sum-boxes a relation between the �-links is
sufficient.

Acknowledgments. We would thank the reviewers for the improvements they
have suggested and which will help the reader to understand this work.
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A Appendix: functions in Boolean proof nets

The ports of the proof nets are labeled by letters rather than numbers, so that
proof nets described only by the name of their links are more readable. For a
given link l, we denote lp1,...,pn

q if its conclusion port is q and the other ports are
respectively p1, . . . , pn in this order. Axiom link are more simply denoted axp.

The conditional (if-then-else) is the base of the Terui’s gates translations:
given two proof nets P1 and P2 of types ` Γ, p1 : A and ` ∆, p2 : A resp., one
can build a proof net condp1,p2r [P1, P2](q) of type ` Γ,∆, q : B[A]⊥, r : A � A
(Fig.7(b)). Given a cut between bi and q we have:

condp1,p2r [P1, P2](b1)→∗ tensorp1,p2r (P1, P2)
condp1,p2r [P1, P2](b0)→∗ tensorp2,p1r (P2, P1).

&

1

0

1

0

2

2
3 &

1

0

1

0

2

2
3

b0 ≡ b1 ≡ 1

0

P2

P1

2

3

0

Fig. 7. (a) The Boolean b0, b1 and (b) The conditional Boolean proof net

Disjunction, conjunction and duplication are based on the conditional:
let n > 2 be an integer and C ≡ �(B[A1], . . . ,B[An]), we have:

or(p1, p2) ≡ cond[b1, axp1 ](p2) of type ` p1 : B⊥, p2 : B[B]⊥, q : B�B,
and(p1, p2) ≡ cond[axp1 , b0](p2) of type ` p1 : B⊥, p2 : B[B]⊥, q : B�B,
copyn(p) ≡ cond[tensor(−→b1), tensor(−→b0)](p) of type ` p : B⊥[C], q : C � C.

The composition of two translated circuits is defined by:
let Γ ≡ p′1 : A′1, . . . , p

′
n : A′n and ∆ ≡ q′1 : B′1, . . . , q

′
n : B′m, let P (

−→
p′ ) and

Q(
−→
q′ ) be proof nets of type ` Γ, p : �2(B,−→C ) and ` q : B⊥[A], ∆, r : �2(B,−→D),

respectively. Then we have:

compp,q,rs [P,Q](
−→
p′ ,
−→
q′ )

is of type ` Γ [A], ∆, s : �2(B,−→D,−−→C[A]). With this composition one can construct
n-ary versions of conjunction and disjunction.
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Abstract. We show that in the context of orthogonal constructor rewrit-
ing systems, derivational complexity is an invariant cost model, both
in innermost and in outermost reduction. This has some interesting
consequences for (asymptotic) complexity analysis, since many existing
methodologies only guarantee bounded derivational complexity.

1 Introduction

Genuine applications of computational complexity to rule-based programming
are few and far between. Notwithstanding the development and diffusion of high-
level programming languages of this kind, most part of the complexity analysis
for them is bound to be done by reference to low level implementations with
an explicit notion of constant-time computational step. Indeed, the basic step of
computation for rule-based programming is not a constant-time operation, being
it resolution, pattern matching, term-rewriting, higher-order beta-reduction, and
so on. Therefore, to bound the actual execution time, one has to look at specific
implementations of these mechanisms—in many cases, to revert to imperative
programming and to an analysis on Turing machines.

In this paper we focus on (constructor) term rewriting systems and the prob-
lem of verifying the existence of a bound on the time needed to execute a program
on any input, as a function of the input’s length. Or, to devise sound (and nec-
essarily incomplete) static techniques to infer such bounds. While real execution
time clearly depends on the interpreter, for asymptotic bounds the details on the
underlying interpreter become less crucial. More important, those details should
be less crucial. For a sufficiently robust complexity class P (say, the polynomial-,
or the elementary-time computable functions) proving that a given program may
be executed in time bounded by a function in P should be the same whichever
cost model is chosen, provided such a model is invariant [16]—that is, the cost
attributed to the computation by the model differs by at most a polynomial from
the cost of performing an equivalent computation on a Turing machine. And the
simpler the cost model is, the easier is proving the existence of such bounds.

? The authors are partially supported by PRIN project “CONCERTO” and FIRB
grant RBIN04M8S8, “Intern. Inst. for Applicable Math.”
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If programs are defined by rewriting, the most natural cost model for com-
putation time is the one induced by rewriting. Time passes whenever rewriting
is performed and, more importantly, the time needed to fire a redex is assumed
to be unitary. Indeed, several recent papers propose methodologies for proving
asymptotic bounds (typically, polynomial bounds) on the derivational complex-
ity of term rewriting systems, where the derivational complexity of a term t is
the number of rewriting steps necessary to reduce t to its normal form.

Is this cost model invariant? Or, which is the relation between the derivational
complexity of a term and the time needed to rewrite it to normal form, observed
on an efficient interpreter? The question is not trivial, even if a positive answer
to the invariance issue seems part of the folklore. Indeed, the literature often
distinguishes between results about computational complexity on the one hand
and results about derivational complexity on the other. And there are examples
of rewrite systems which produce exponentially big terms in a linear number
of steps. For example, the one defined by the following rewrite rules (under
innermost reduction): f(0) = c, f(n+ 1) = g(f(n)), and g(x) = d(x, x).

Aim of this paper is to fill this gap, at least partially. More precisely, we
prove that terms of orthogonal constructor rewrite systems can be reduced to
their normal form in time polynomially related to their derivational complexity,
both when innermost and outermost reduction is adopted. We prove this by
showing that any such rewrite system can be implemented with (term) graph
rewriting. In this setting, whenever a rewriting causes a duplication of a subterm
(because of a non right-linear variable in a rule), the subgraph corresponding
to the duplicated term is shared and not duplicated. This achieves two goals.
First (and most important) the size of all the (graphs corresponding to) terms
generated along the reduction of a term t remains under control—it is polynomial
in the size of t and the number of reduction steps leading t to its normal form (see
Section 5). Therefore, the actual cost of manipulating these graphs is bounded
by a polynomial, thus giving also a polynomial relation between the number
of reduction steps and the cost of producing the graph in normal form. Since
we will prove that graph reduction simulates term rewriting step by step under
innermost reduction, this gives us the desired invariance results in the innermost
case.

In outermost reduction the situation is even better, because, in presence of
sharing, every graph rewriting step corresponds to at least one term rewriting
step. In graphs, in fact, shared redexes are reduced only once and, moreover, any
redex appearing in an argument which will be later discarded, will not be reduced
at all. Therefore, in presence of sharing outermost reduction becomes a call-by-
need strategy. And hence the invariance result also for outermost reduction.

We believe the central argument and results of the paper may be classified as
folklore (see, for instance, results of similar flavor, but for imperative programs
with data-sharing, in Jones’ computability textbook [10]). But we were struck
by the observation that in the published literature it seems that such complexity
related issues are never made explicit or used.
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2 Term Rewriting

We will consider in this paper orthogonal constructor (term) rewrite systems
(CRS, see [5]). Let Υ be a denumerable set of variables. A constructor (term)
rewrite system is a pair Ξ = (ΣΞ ,RΞ) where:
• Symbols in the signature ΣΞ can be either constructors or function symbols,

each with its arity.
• Terms in C(Ξ) are those built from constructors and are called constructor

terms.
• Terms in P(Ξ, Υ ) are those built from constructors and variables and are

called patterns.
• Terms in T (Ξ) are those built from constructor and function symbols

and are called closed terms.
• Terms in V(Ξ, Υ ) are those built from constructors, functions symbols

and variables in Υ and are dubbed terms.
• Rules in RΞ are in the form f(p1, . . . ,pn)→Ξ t where f is a function symbol,

p1, . . . ,pn ∈ P(Ξ, Υ ) and t ∈ V(Ξ, Υ ). We here consider orthogonal rewrite
systems only, i.e. we assume that no distinct two rules in RΞ are overlapping
and that every variable appears at most once in the lhs of any rule in RΞ .

• Different notions of reduction can be defined on Ξ. The (binary) rewriting
relation → on T (Ξ) is defined by imposing that t → u iff there are a rule
v →Ξ w in RΞ , a term context (i.e., a term with a hole) C and a substi-
tution σ with t = C[vσ] and u = C[wσ]. Two restrictions of this definition
are innermost and outermost reduction. In the innermost rewriting relation
→i on T (Ξ) we require that vσ do not contain another redex. Dually, the
outermost rewriting relation →o on T (Ξ) is defined by requiring (the specific
occurrence of) vσ not to be part of another redex in C[vσ].

For any term t in a CRS, |t| denotes the number of symbol occurrences in t,
while |t|f denotes the number of occurrences of the symbol f in t.

Orthogonal CRSs are confluent but not necessarily strongly confluent [5]. As
a consequence, different reduction sequences may have different lengths. This
does not hold when considering only outermost (or only innermost) reductions:

Proposition 1. Given a term t, every innermost (outermost, respectively) re-
duction sequence leading t to its normal form has the same length.

Proof. Immediate, since there are no critical pairs when performing innermost
or outermost reduction. ut
As a consequence, it is meaningful to define the outermost derivational complex-
ity of any t, written Timeo(t) as the unique n (if any) such that t→n

o u, for u a
normal form. Similarly, the innermost derivational complexity of t is the unique
n such that t→n

i u (if any) and is denoted as Time i(t).

3 Graph Rewriting

In this Section, we introduce term graph rewriting, following [4] but adapting
the framework to (orthogonal) constructor rewriting.
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Definition 1 (Labelled Graph). Given a signature Σ, a labelled graph over
Σ consists of a directed acyclic graph together with an ordering on the outgoing
edges of each node and a (partial) labelling of nodes with symbols from Σ such
that the out-degree of each node matches the arity of the corresponding symbols
(and is 0 if the labelling is undefined). Formally, a labelled graph is a triple
G = (V, α, δ) where:
• V is a set of vertices.
• α : V → V ∗ is a (total) ordering function.
• δ : V ⇀ Σ is a (partial) labelling function such that the length of α(v) is the

arity of δ(v) if δ(v) is defined and is 0 otherwise.
A labelled graph (V, α, δ) is closed iff δ is a total function.

Consider the signature Σ = {a, b, c, d}, where arities of a, b, c, d are 2, 1, 0, 2
respectively, and b, c, d are constructors. Examples of labelled graphs over the
signature Σ are the following ones:

a
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c

⊥

a

��%%
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������
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a
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b
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������
��8888

⊥ b

��
⊥

The symbol ⊥ denotes vertices where the underlying labelling function is unde-
fined (and, as a consequence, no edge departs from such vertices). Their role is
similar to the one of variables in terms.

If one of the vertices of a labelled graph is selected as the root, we obtain a
term graph:

Definition 2 (Term Graphs). A term graph, is a quadruple G = (V, α, δ, r),
where (V, α, δ) is a labelled graph and r ∈ V is the root of the term graph.

The following are graphic representations of some term graphs. The root is the
only vertex drawn inside a circle.
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⊥
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There are some classes of paths which are particularly relevant for our pur-
poses.

Definition 3 (Paths). A path v1, . . . , vn in a labelled graph G = (V, α, δ) is
said to be:
• A pattern path iff for every 1 ≤ i ≤ n, δ(vi) is either a constructor symbol

or is undefined;
• A left path iff n ≥ 1, the symbol δ(v1) is a function symbol and v2, . . . , vn is

a pattern path.

The notion of an homomorphism between labelled graphs is not only interesting
mathematically, but will be crucial in defining rewriting:

Definition 4 (Homomorphisms). An homomorphism between two labelled
graphs G = (VG, αG, δG) and H = (VH , αH , δH) over the same signature Σ is a
function ϕ from VG to VH preserving the labelled graph structure. In particular

δH(ϕ(v)) = δG(v)
αH(ϕ(v)) = ϕ∗(αG(v))

for any v ∈ dom(δ), where ϕ∗ is the obvious generalization of ϕ to sequences of
vertices. An homomorphism between two term graphs G = (VG, αG, δG, rG) and
H = (VH , αH , δH , rH) is an homomorphism between (VG, αG, δG) and (VH , αH , δH)
such that ϕ(rG) = rH . Two labelled graphs G and H are isomorphic iff there is
a bijective homomorphism from G to H; in this case, we write G ∼= H. Similarly
for term graphs.

In the following, we will consider term graphs modulo isomorphism, i.e., G = H
iff G ∼= H. Observe that two isomorphic term graphs have the same graphical
representation.

Definition 5 (Graph Rewrite Rules). A graph rewrite rule over a signature
Σ is a triple ρ = (G, r, s) such that:
• G is a labelled graph;
• r, s are vertices of G, called the left root and the right root of ρ, respectively.
• Any path starting in r is a left path.

The following are three examples of graph rewriting rules, assuming a to be a
function symbol and b, c, d to be constructors:
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Graphically, the left root is the (unique) node inside a circle, while the right root
is the (unique) node inside a square.

Definition 6 (Subgraphs). Given a labelled graph G = (VG, αG, δG) and any
vertex v ∈ VG, the subgraph of G rooted at v, denoted G ↓ v, is the term graph
(VG↓v, αG↓v, δG↓v, rG↓v) where
• VG↓v is the subset of VG whose elements are vertices which are reachable from
v in G.

• αG↓v and δG↓v are the appropriate restrictions of αG and δG to VG↓v.
• rG↓v is v.

We are finally able to give the notion of a redex, that represents the occur-
rence of the lhs of a rewrite rule in a graph:

Definition 7 (Redexes). Given a labelled graph G, a redex for G is a pair
(ρ, ϕ), where ρ is a rewrite rule (H, r, s) and ϕ is an homomorphism between
H ↓ r and G.

If ((H, r, s), ϕ) is a redex in G, we say, with a slight abuse of notation, that
ϕ(r) is itself a redex. In most cases, this does not introduce any ambiguity.

Given a term graph G and a redex ((H, r, s), ϕ), the result of firing the redex
is another term graph obtained by successively applying the following three steps
to G:
1. The build phase: create an isomorphic copy of the portion of H ↓ s not

contained in H ↓ r (which may contain arcs originating in H ↓ s and entering
H ↓ r), and add it to G, obtaining J . The underlying ordering and labelling
functions are defined in the natural way.

2. The redirection phase: all edges in J pointing to ϕ(r) are replaced by edges
pointing to the copy of s. If ϕ(r) is the root of G, then the root of the newly
created graph will be the newly created copy of s. The graph K is obtained.

3. The garbage collection phase: all vertices which are not accessible from the
root of K are removed. The graph I is obtained.

We will write G
(H,r,s)−→ I (or simply G→ I, if this does not cause ambiguity) in

this case.
Similarly to what we did for term rewriting, we can define two restrictions

on → as follows. Let ((H, r, s), ϕ) be a redex in G. Then it is said to be
• An innermost redex iff for every redex ((J, p, q), ψ) in G, there is no proper

path from ϕ(r) to ψ(p).
• An outermost redex iff for every redex ((J, p, q), ψ) in G, there is no proper

path from ψ(p) to ϕ(r).

If the redex ((H, r, s), ϕ) is innermost we also write G
(H,r,s)−→i I or G →i I.

Similarly, for an outermost redex ((H, r, s), ϕ) we write G
(H,r,s)−→o I or G→o I.
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As an example, assuming again a to be a function symbol and b, c, d to be
constructors, consider the term graph G and the rewriting rule ρ = (H, r, s):'&%$ !"#a
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b
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aoo
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c
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ρ

There is an homomorphism ϕ from H ↓ r to G. In particular, ϕ maps r to the
rightmost vertex in G. Applying the build phase and the redirection phase we
get J and K as follows:'&%$ !"#a
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b
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c

J
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Finally, applying the garbage collection phase, we get the result of firing the
redex (ρ, ϕ): '&%$ !"#a

��

��
b

��
a

������
��66666

b // c

I

Given two graph rewrite rules ρ = (H, r, s) and σ = (J, p, q), ρ and σ are said
to be overlapping iff there is a term graph G and two homomorphism ϕ and ψ
such that (ρ, ϕ) and (σ, ψ) are both redexes in G with ϕ(r) = ϕ(p).

Definition 8. A constructor graph rewrite system (CGRS) over a signature Σ
consists of a set of non-overlapping graph rewrite rules G on Σ.

We now want to give some confluence results for CGRSs. Let us first focus
on outermost rewriting. Intuitively, outermost rewriting is the most efficient way
of performing reduction in presence of sharing, since computation is performed
only if its result does not risk to be erased. First, we need the following auxiliary
lemma:
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Lemma 1. Suppose G →o H and G → J , where H 6= J . Then either J →o H
or there is K such that H → K and J →o K.

Proof. Let v and w be the two redexes in G giving rise to G→o H and G→ J ,
respectively. Similarly, let ρ and σ be the two involved rewriting rules. Clearly,
there cannot be any (non-trivial) path from w to v, by definition of outermost
rewriting. Now, the two rewriting steps are independent from each other (because
of the non-overlapping condition). There are now two cases. Either w is erased
when performing G →o H, or it is not erased. In the first case, w must be
“contained” in v, and therefore, we may apply ρ to J , obtaining H. If w has not
been erased, one can clearly apply ρ to J and σ to H, obtaining a fourth graph
K. ut

The observation we just made can be easily turned into a more general result
on reduction sequences of arbitrary length:

Proposition 2. Suppose that G →n
o H and G →m J . Then there are K and

k, l ∈ N such that H →k J , J →l
o K and n+ k ≤ m+ l.

Proof. An easy induction on n+m. ut
Proposition 2 tells us that if we perform n outermost steps and m generic steps
from G, we can close the diagram in such a way that the number of steps in the
first branch is smaller or equal to the number of steps in the second branch.

With innermost reduction, the situation is exactly dual:

Lemma 2. Suppose G→ H and G→i J , where H 6= J . Then either J → H or
there is K such that H →i K and J → K.

Proposition 3. Suppose that G →n H and G →m
i J . Then there are K and

k, l ∈ N such that H →k
i J , J →l K and n+ k ≤ m+ l.

In presence of sharing, therefore, outermost reduction is the best one can do,
while innermost reduction is the worst strategy, since we may reduce redexes in
subgraphs that will be later discarded. As a by-product, we get confluence:

Theorem 1. Suppose that G →n
o H, G →m J and G →k

i K, where H, J and
K are normal forms. Then H = J = K and n ≤ m ≤ k.

Proof. From G →n
o H, G →m J and Proposition 2, it follows that n ≤ m and

that H = J . From G→m
o J , G→k K and Proposition 3, it follows that m ≤ k.

ut

4 From Term Rewriting to Graph Rewriting

Any term t over the signature Σ can be turned into a graph G in the obvious
way: G will be a tree and vertices in G will be in one-to-one correspondence with
symbol occurrences in t. Conversely, any term graph G over Σ can be turned
into a term t over Σ (remember: we only consider acyclic graphs here).

Similarly, any term rewrite rule t→ u over the signature Σ can be translated
into a graph rewrite rule (G, r, s) as follows:
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• Take the graphs representing t and u. They are trees, in fact.
• From the union of these two trees, share those nodes representing the same

variable in t and u. This is G.
• Take r to be the root of t in G and s to be the root of u in G.

As an example, consider the rewriting rule

a(b(x), y)→ b(a(y, a(y, x))).

Its translation as a graph rewrite rule is the following:

'&%$ !"#a
�������

��77777 b

��
b

��

⊥ aoo

��55555

⊥ a

ZZ

gg

An arbitrary constructor rewriting system can be turned into a constructor
graph rewriting system:

Definition 9. Given a constructor rewriting system R over Σ, the correspond-
ing constructor graph rewriting system G is defined as the class of graph rewrite
rules corresponding to those in R. Given a term t, [t]G will be the corresponding
graph, while the term graph G corresponds to the term 〈G〉R .

Let us now consider graph rewrite rules corresponding to rewrite rules in R.
It is easy to realize that the following invariant is preserved while performing
innermost rewriting in [R]G : whenever any vertex v can be reached by two
distinct paths starting at the root (i.e., v is shared), v cannot be a redex, i.e.,
there cannot be a redex ((G, r, s), ϕ) such that ϕ(r) = v. A term graph satisfying
this invariant is said to be redex-unshared.

Redex-unsharedness holds for term graphs coming from terms and is pre-
served by innermost graph rewriting:

Lemma 3. For every closed term t, [t]G is redex-unshared. Moreover, if G is
closed and redex-unshared and G→i I, then I is redex-unshared.

Proof. The fact [t]G is redex-unshared for every t follows from the way the [·]G
map is defined: it does not introduce any sharing. Now, suppose G is redex-
unshared and

G
(H,r,s)−→i I

where (H, r, s) corresponds to a term rewrite rule t → u. The term graph J
obtained from G by the build phase is itself redex-unshared: it is obtained from
G by adding some new nodes, namely an isomorphic copy of the portion of
H ↓ s not contained in H ↓ r. Notice that J is redex-unshared in a stronger
sense: any vertex which can be reached from the newly created copy of s by two
distinct paths cannot be a redex. This is a consequence of (H, r, s) being a graph
rewrite rule corresponding to a term rewrite rule t → u, where the only shared
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vertices are those where the labelling function is undefined. The redirection phase
preserves itself redex-unsharedness, because only one pointer is redirected (the
vertex is labelled by a function symbol) and the destination of this redirection is
a vertex (the newly created copy of s) which had no edge incident to it. Clearly,
the garbage collection phase preserve redex-unsharedness. ut
Lemma 4. A closed term graph G in G is a normal form iff 〈G〉R is a normal
form.

Proof. Clearly, if a closed term graph G is in normal form, then 〈G〉R is a term
in normal form, because each redex in G translates to a redex in 〈G〉R . On the
other hand, if 〈G〉R is in normal form, then G is in normal form: each redex in
〈G〉R translates back to a redex in G. ut
Reduction on graphs correctly simulates reduction on terms:

Lemma 5. If G → I, then 〈G〉R →+ 〈I〉R . Moreover, if G →i I and G is
redex-unshared, then 〈G〉R → 〈I〉R .

Proof. The fact each reduction step starting inG can be mimicked by n reduction
steps in 〈G〉R is known from the literature. If G is redex-unshared, then n = 1,
because no redex in a redex-unshared term graph can be shared. ut
As an example, consider the term rewrite rule a(c, c)→ c and the following term
graph, which is not redex-unshared and correspond to a(a(c, c), a(c, c)):

'&%$ !"#a
�� ��
a

������
��7777

c c

The term graph rewrites in one step to the following one

'&%$ !"#a
�� ��
c

while the term a(a(c, c), a(c, c)) rewrites to a(c, c) in two steps.

Lemma 6. If t→n
o u, u is in normal form and 〈G〉R = t, then there is m ≤ n

such that G→m
o I, where 〈I〉R = u.

Proof. An easy consequence of Lemma 5 and Proposition 1. ut
Theorem 2 (Outermost Graph-Reducibility). For every constructor rewrite
system R over Σ and for every term t over Σ, the following two conditions are
equivalent:
1. t→n

o u, where u is in normal form;
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2. [t]G →m
o G, where G is in normal form and 〈G〉R = u.

Moreover, m ≤ n.

Proof. Suppose t→n
o u, where u is in normal form. Then, by applying Lemma 6,

we obtain a normal form G such that [t]G →m
o G, where m ≤ n and 〈G〉R = u.

Now, suppose [t]G →m
o G where 〈G〉R = u and G is in normal form. By applying

n times Lemma 5, we obtain that 〈[t]G〉R →n 〈G〉R = u where m ≤ n. But
〈[t]G〉R = t and u is a normal form by Lemma 4, since G is normal. ut
The innermost case can be treated in a similar way:

Lemma 7. If t →n
i u, u is in normal form and 〈G〉R = t and G is redex-

unshared, then G→n
i I, where 〈I〉R = u.

Proof. An easy consequence of Lemma 5 and Proposition 1. ut
Theorem 3 (Innermost Graph Reducibility). For every constructor rewrite
system R over Σ and for every term t over Σ, the following two conditions are
equivalent:
1. t→n

i u, where u is in normal form;
2. [t]G →n

i G, where G is in normal form and 〈G〉R = u.

5 Consequences for Complexity Analysis

Theorems 2 and 3 tell us that term graph rewriting faithfully simulates term
rewriting, with both outermost and innermost rewriting. In the outermost case,
graph rewriting may perform better than term rewriting, because redex can be
shared and one graph rewriting step may correspond to more than one term
rewriting step. In innermost reduction, on the other hand, every graph step
corresponds to exactly one term rewriting step.

But how much does it cost to perform reduction in a graph rewrite system
G corresponding to a term rewrite system R? Let us analyze more closely the
combinatorics of graph rewriting, fixing our attention to outermost rewriting for
the moment:
• Consider a closed term t and a term graph G such that [t]G →∗o G.
• Every graph rewriting step makes the underlying graph bigger by at most the

size of the rhs of a rewrite rule. So, if [t]G →∗o G →o H, then the difference
|H| − |G| cannot be too big: at most a constant k depending on R but
independent on t. As a consequence, if [t]G →n

o G then |G| ≤ nk + |t|. Here,
we exploit in an essential way the possibility of sharing subterms.

• Whenever [t]G →n
o G, computing a graph H such that G→ H takes polyno-

mial time in |G|, which is itself polynomially bounded by n and |t|.
Exactly the same reasoning can be applied to innermost reduction. Hence:

Theorem 4. For every orthogonal, constructor term rewriting system R, there
is a polynomial p : N2 → N such that for every term t the normal form of [t]G
can be computed in time at most p(|t|,Timeo(M)) when performing outermost
graph reduction and in time p(|t|,Time i(M)) when performing innermost graph
reduction.
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We close this section by observing explicitly that the normal form of [t]G
is not a direct representation of the normal form of t. It may contain many
shared subterms, that have to be “unshared” if one wants to print the normal
form of t. As a limit example consider the system we already mentioned in the
introduction: f(0) = c, f(n + 1) = g(f(n)), and g(x) = d(x, x). Here f(n) will
normalize in O(n) steps with innermost reduction, but the normal form as a
term is of size O(2n), being the complete binary tree of height n. We believe
this has to be considered a feature of our cost model, allowing to distinguish
the time (and space) needed for the computation from the one necessary for the
communication of the result.

Despite the succinct representation of data via shared graphs, equality of
terms is efficiently computed on graph representatives. We state this as a propo-
sition, being of interest in its own.

Proposition 4. Given two term graphs G and H, it is decidable in time poly-
nomial in |G|+ |H| whether 〈G〉R = 〈H〉R .

Proof. We can give a naive procedure working in quadratic time as follows.
More efficient algorithms are available, for instance Paige and Tarjan’s one for
bisimulation, which runs in time O(|E| log |V |), where E and V are the sets of
edges and vertices, respectively, of the graphs.

The decision procedure will fill a m1 × m2 matrix, with m1 and m2 the
number of nodes of G and H, respectively, using dynamic programming. Any
element will contain either

√
(OK) or × (fail). Start by filling all the elements

(cG, cH) where cG is a sink of G and cH is a sink of H (a sink is a node labeled
with a constructor of arity 0). Fill it with

√
if they are the same constructor;

with × otherwise. Now proceed along the inverse of the topological order (that
is, go to the nodes pointing to the ones you just considered), and fill any such
element (dG, dH) with

√
, if they are the same constructor and all the pairs

(cG, cH) — with cG successor in topological order of dG and cH successor in
topological order of dH — are marked with

√
. Otherwise, fill (dG, dH) with ×.

At the end return
√

iff the two roots are marked with
√

. ut

6 Context and Related Work

Graph-reducibility of any orthogonal term rewrite system is well known [14].
However, this classical result do not mention anything about the relation between
the complexity of term rewriting and the one of graph-rewriting. Quantitative
analysis of the involved simulations is outside the scope of the classical results
on the subject.

Asymptotic complexity analysis in the context of term rewriting systems
has received a lot of attention in the last ten years [13, 6, 3, 9]. In some cases
time complexity results are a consequence of an argument taking into account
both the number of reduction steps and some other parameter (e.g., the size of
intermediate terms [13]), so to bound the actual cost of the computation with an
ad hoc combination of these two dimensions. In other cases [3, 9], results about

122



the derivational complexity of TRS are kept distinct from other results about
actual computation time. This body of research has been the main motivation
for our work.

In a recent paper [7] we proved a close correspondence between orthogonal
constructor term rewrite systems and weak call-by-value λ-calculus. In particular
the two systems can simulate each other with a linear overhead, taking as cost
model for both systems the number of reduction steps to normal form, that is the
most natural one. This should not confuse the reader who knows that “optimal
λ-reduction is not elementary recursive” [2, 1], meaning that there are terms
whose normalization requires on a Turing machine a time hyperexponential in
the number of optimal beta-reductions (which are a sophisticated form of graph-
rewritings with partial sharing). For these results to hold is essential to take
full beta-reduction, where we are allowed to reduce a redex also inside a λ-
abstraction.

Graph rewriting has been considered in this paper as a technical tool to
obtain our main result. An interesting research line would be to situate graph
rewriting – and its complexity theory – in the context of those other machine
models with a dynamically changing configuration structure, like Knuth’s “link-
ing automata” [11], Schönage’s storage modification machines [15], and especially
their common moral ancestor — Kolmogorov and Uspensky’s machines [12, 8].
This would be particularly interesting in the study of classes like linear time
and real time. Indeed, while the class of polynomial functions is very robust and
coincide on all these different models (and on Turing machines, of course), these
automata seem to give a better understanding of the lower complexity classes.
After some preliminary investigation, the authors are convinced that the task
of relating term graph rewriting and pointer machines from a complexity point
of view is not trivial. For example, garbage collection is a non-local operation
that is implicitly performed as part of any term graph rewriting step, while
in pointer machines only the ”programmer” is responsible for such (potentially
costly) operations.
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Abstract. Cost functions provide information about the amount of re-
sources required to execute a program in terms of the sizes of input
arguments. They can provide an upper-bound, a lower-bound, or the
average-case cost. Motivated by the existence of a number of automatic
cost analyzers which produce cost functions, we propose an approach for
automatically proving that a cost function is smaller than another one.
In all applications of resource analysis, such as resource-usage verifica-
tion, program synthesis and optimization, etc., it is essential to compare
cost functions. This allows choosing an implementation with smaller cost
or guaranteeing that the given resource-usage bounds are preserved. Un-
fortunately, automatically generated cost functions for realistic programs
tend to be rather intricate, defined by multiple cases, involving non-linear
subexpressions (e.g., exponential, polynomial and logarithmic) and they
can contain multiple variables, possibly related by means of constraints.
Thus, comparing cost functions is far from trivial. Our approach first
syntactically transforms functions into simpler forms and then applies a
number of sufficient conditions which guarantee that a set of expressions
is smaller than another expression. Our preliminary implementation in
the COSTA system indicates that the approach can be useful in practice.

1 Introduction

Cost analysis [12,6] aims at statically predicting the resource consumption of
programs. Given a program, cost analysis produces a cost function which ap-
proximates the resource consumption of the program in terms of the input data
sizes. This approximation can be in the form of an upper-bound, a lower-bound,
or the average-case resource consumption, depending on the particular analysis
and the target application. For instance, upper bounds are required to ensure
that a program can run within the resources available; lower bounds are useful
for scheduling distributed computations. The seminal cost analysis framework
by Wegbreit [12] was already generic on the notion of cost model, e.g., it can be
used to measure different resources, such as the number of instructions executed,
the memory allocated, the number of calls to a certain method, etc. Thus, cost
functions can be used to predict any of such resources.

In all applications of resource analysis, such as resource-usage verification,
program synthesis and optimization, etc., it is necessary to compare cost func-
tions. This allows choosing an implementation with smaller cost or to guarantee
that the given resource-usage bounds are preserved. Essentially, given a method
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m, a cost function fm and a set of linear constraints φm which impose size re-
strictions (e.g., that a variable in m is larger than a certain value or that the size
of an array is non zero, etc.), we aim at comparing it with another cost function
bound b and corresponding size constraints φb. Depending on the application,
such functions can be automatically inferred by a resource analyzer (e.g., if we
want to choose between two implementations), one of them can be user-defined
(e.g., in resource usage verification one tries to verify, i.e., prove or disprove,
assertions written by the user about the efficiency of the program).

From a mathematical perspective, the problem of cost function comparison
is analogous to the problem of proving that the difference of both functions is
a decreasing or increasing function, e.g., b − fm ≥ 0 in the context φb ∧ φm.
This is undecidable and also non-trivial, as cost functions involve non-linear
subexpressions (e.g., exponential, polynomial and logarithmic subexpressions)
and they can contain multiple variables possibly related by means of constraints
in φb and φm. In order to develop a practical approach to the comparison of cost
functions, we take advantage of the form that cost functions originating from
the analysis of programs have and of the fact that they evaluate to non-negative
values. Essentially, our technique consists in the following steps:

1. Normalizing cost functions to a form which make them amenable to be syn-
tactically compared, e.g., this step includes transforming them to sums of
products of basic cost expressions.

2. Defining a series of comparison rules for basic cost expressions and their
(approximated) differences, which then allow us to compare two products.

3. Providing sufficient conditions for comparing two sums of products by relying
on the product comparison, and enhancing it with a composite comparison
schema which establishes when a product is larger than a sum of products.

We have implemented our technique in the COSTA system [3], a COSt and
Termination Analyzer for Java bytecode. Our experimental results demonstrate
that our approach works well in practice, it can deal with cost functions obtained
from realistic programs and verifies user-provided upper bounds efficiently.

The rest of the paper is organized as follows. The next section introduces the
notion of cost bound function in a generic way. Sect. 3 presents the problem of
comparing cost functions and relates it to the problem of checking the inclusion
of functions. In Sect. 4, we introduce our approach to prove the inclusion of one
cost function into another. Section 5 describes our implementation and how it
can be used online. In Sect. 6, we conclude by overviewing other approaches and
related work.

2 Cost Functions

Let us introduce some notation. The sets of natural, integer, real, non-zero nat-
ural and non-negative real values are denoted by N, Z, R, N+, and R+, respec-
tively. We write x, y, and z, to denote variables which range over Z. A linear

2
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expression has the form v0 + v1x1 + . . . + vnxn, where vi ∈ Z, 0 ≤ i ≤ n. Simi-
larly, a linear constraint (over Z) has the form l1 ≤ l2, where l1 and l2 are linear
expressions. For simplicity we write l1 = l2 instead of l1 ≤ l2 ∧ l2 ≤ l1, and
l1 < l2 instead of l1 +1 ≤ l2. Note that constraints with rational coefficients can
be always transformed into equivalent constraints with integer coefficients, e.g.,
1
2x > y is equivalent to x > 2y. The notation t̄ stands for a sequence of entities
t1, . . . , tn, for some n>0. We write ϕ, φ or ψ, to denote sets of linear constraints
which should be interpreted as the conjunction of each element in the set. An
assignment σ over a tuple of variables x̄ is a mapping from x̄ to Z. We write
σ |= ϕ to denote that σ(ϕ) is satisfiable.

The following definition presents our notion of cost expression, which char-
acterizes syntactically the kind of expressions we deal with.

Definition 1 (cost expression). Cost expressions are symbolic expressions
which can be generated using this grammar:

e::= n | nat(l) | e+ e | e ∗ e | loga(nat(l) + 1) | nat(l)n | anat(l) | max(S)
where n, a ∈ N+ and a ≥ 2, l is a linear expression, S is a non empty set of cost
expressions, nat : Z → N is defined as nat(v)=max({v, 0}). Given an assignment
σ and a basic cost expression e, σ(e) is the result of evaluating e w.r.t. σ.

Observe that linear expressions are always wrapped by nat, as we will explain
below in the example. Logarithmic expressions contain a linear subexpression
plus “1” which ensures that they cannot be evaluated to loga(0). By ignoring
syntactic differences, cost analyzers produce cost expressions in the above form.

It is customary to analyze programs (or methods) w.r.t. some initial context
constraints. Essentially, given a method m(x̄), the considered context constraints
ϕ describe conditions on the (sizes of) initial values of x̄. With such information, a
cost analyzer outputs a cost function fm(x̄s) = 〈e, ϕ〉 where e is a cost expression
and x̄s denotes the data sizes of x̄. Thus, fm is a function of the input data
sizes that provides bounds on the resource consumption of executing m for any
concrete value of the input data x̄ such that their sizes satisfy ϕ. Note that ϕ is
basically a set of linear constraints over x̄s. We use CF to denote the set of all
possible cost functions. Let us see an example.

Example 1. Figure 1 shows a Java program which we use as running example.
It is interesting because it shows the different complexity orders that can be
obtained by a cost analyzer. We analyze this program using the COSTA system,
and selecting the number of executed bytecode instructions as cost model. Each
Java instruction is compiled to possibly several corresponding bytecode instruc-
tions but, since this is not a concern of this paper, we will skip explanations
about the constants in the upper bound function and refer to [2] for details.

Given the context constraint {n > 0}, the COSTA system outputs the upper
bound cost function for method m which is shown at the bottom of the figure.
Since m contains two recursive calls, the complexity is exponential on n, namely
we have a factor 2nat(n). At each recursive call, the method f is invoked and
its cost (plus a constant value) is multiplied by 2nat(n). In the code of f, we
can observe that the while loop has a logarithmic complexity because the loop
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void m(int n, int a, int b) {
if (n > 0) {

m(n - 1, a, b);
m(n - 2, a, b);
f(a, b, n);

}
}

void f(int a, int b, int n) {
int acc = 0;
while (n > 0) {

n = n/2; acc++;
}
for (int i = 0; i < a; i++)

for (int j = 0; j < b; j++) acc++;
}

Upper Bound Cost Function

m(n, a, b) = 2nat(n)∗(31+ (8∗ log(1+nat(2∗n−1))| {z }
while loop

+ nat(a)∗(10+6∗nat(b)| {z }
nested loop

)))

| {z }
cost of f| {z }

cost of recursive calls

+ 3∗2nat(n)| {z }
base cases

Fig. 1. Running example and upper bound obtained by COSTA on the number
of executed bytecode instructions.

counter is divided by 2 at each iteration. This cost is accumulated with the
cost of the second nested loop, which has a quadratic complexity Finally, the
cost introduced by the base cases of m is exponential since, due to the double
recursion, there is an exponential number of computations which correspond to
base cases. Each such computation requires a maximum of 3 instructions.

The most relevant point in the upper bound is that all variables are wrapped
by nat in order to capture that the corresponding cost becomes zero when the
expression inside the nat takes a negative value. In the case of nat(n), the nat is
redundant since thanks to the context constraint we know that n > 0. However,
it is required for variables a and b since, when they take a negative value, the
corresponding loops are not executed and thus their costs have to become zero
in the formula. Essentially, the use of nat allows having a compact cost function
instead of one defined by multiple cases. Some cost analyzers generate cost func-
tions which contain expressions of the form max({Exp, 0}), which as mentioned
above is equivalent to nat(Exp). We prefer to keep the max operator separate
from the nat operator since that will simplify their handling later. 2

3 Comparison of Cost Functions

In this section, we state the problem of comparing two cost functions represented
as cost expressions. As we have seen in Ex. 1, a cost function 〈e, ϕ〉 for a method
m is a single cost expression which approximates the cost of any possible execu-
tion of m which is consistent with the context constraints ϕ. This can be done
by means of nat subexpressions which encapsulate conditions on the input data
sizes in a single cost expression. Besides, cost functions often contain max sub-
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expressions, e.g., 〈max({nat(x) ∗ nat(z), nat(y) ∗ nat(z)}), true〉 which represent
the cost of disjunctive branches in the program (e.g., the first sub-expression
might correspond to the cost of a then-branch and the second one the cost of
the else-branch of a conditional statement).

Though nat and max expressions allow building cost expressions in a compact
format, when comparing cost functions it is useful to expand cost expressions into
sets of simpler expressions which altogether have the same semantics. This, on
one hand, allows handling simpler syntactic expressions and, on the other hand,
allows exploiting stronger context constraints. This expansion is performed in
two steps. In the first one we eliminate all max expressions. In the second one we
eliminate all nat expressions. The following definition transforms a cost function
into a set of max-free cost functions which cover all possible costs comprised in
the original function. We write e[a 7→ b] to denote the expression obtained from
e by replacing all occurrences of subexpression a with b.

Definition 2 (max-free operator). Let 〈e, ϕ〉 be a cost function. We define
the max-free operator τmax : 2CF 7→ 2CF as follows: τmax(M) = (M − {〈e, ϕ〉}) ∪
{〈e[max(S) 7→ e′], ϕ〉, 〈e[max(S) 7→ max(S′), ϕ〉}, where 〈e, ϕ〉 ∈ M contains a
subexpression of the form max(S), e′ ∈ S and S′ = S − {e′}.
In the above definition, each application of τmax takes care of taking out one
element e′ inside a max subexpression by creating two non-deterministic cost
functions, one with the cost of such element e′ and another one with the re-
maining ones. This process is iteratively repeated until the fixed point is reached
and there are no more max subexpressions to be transformed. The result of
this operation is a max-free cost function, denoted by fpmax(M). An important
observation is that the constraints ϕ are not modified in this transformation.

Once we have removed all max-subexpressions, the following step consists in
removing the nat-subexpressions to make two cases explicit. One case in which
the subexpression is positive, hence the nat can be safely removed, and another
one in which it is negative or zero, hence the subexpression becomes zero. As
notation, we use capital letters to denote fresh variables which replace the nat
subexpressions.

Definition 3 (nat-free operator). Let 〈e, ϕ〉 be a max-free cost function. We
define the nat-free operator τnat : 2CF 7→ 2CF as follows: τnat(M) = (M −
{〈e, ϕ〉})∪{〈ei, ϕi〉 | ϕ∧ϕi is satisfiable , 1 ≤ i ≤ 2}, where 〈e, ϕ〉 ∈M contains
a subexpression nat(l), ϕ1 = ϕ ∪ {A = l, A > 0}, ϕ2 = ϕ ∪ {l ≤ 0}, with A a
fresh variable, and e1 = e[nat(l) 7→ A], e2 = e[nat(l) 7→ 0].

In contrast to the max elimination transformation, the elimination of nat subex-
pressions modifies the set of linear constraints by adding the new assignments
of fresh variables to linear expressions and the fact that the subexpression is
greater than zero or when it becomes zero. The above operator τnat is applied
iteratively until there are new terms to transform. The result of this operation
is a nat-free cost function, denoted by fpnat(M). For instance, for the cost func-
tion 〈nat(x) ∗ nat(z−1), {x > 0}〉, fpnat returns the set composed of the following
nat-free cost functions:
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〈A ∗ B, {A = x, A > 0, B = z−1, B > 0}〉 and 〈A ∗ 0, {A = x, A > 0, z−1 ≤ 0}〉
In the following, given a cost function f , we denote by τ(f) the set fpnat(fpmax({f}))
and we say that each element in fpnat(fpmax({f})) is a flat cost function.

Example 2. Let us consider the cost function in Ex. 1. Since such cost func-
tion contains the context constraint n>0, then the subexpressions nat(n) and
nat(2∗n−1) are always positive. By assuming that fpnat replaces nat(n) by A
and nat(2∗n−1) by B, only those linear constraints containing ϕ = {n > 0, A =
n,A > 0, B = 2∗n−1, B > 0} are satisfiable (the remaining cases are hence not
considered). We obtain the following set of flat functions:
(1) 〈2A∗(31+8∗ log(1+B)+C∗(10+6∗D))+3∗2A, ϕ1 = ϕ ∪ {C=a, C > 0, D=b, D>0}〉
(2) 〈2A∗(31+8∗ log(1+B))+3∗2A, ϕ2 = ϕ ∪ {a≤0, D=b, D>0}〉
(3) 〈2A∗(31+8∗ log(1+B)+C∗10+3∗2A, ϕ3 = ϕ ∪ {C=a, C > 0, b≤0}〉
(4) 〈2A∗(31+8∗ log(1+B))+3∗2A, ϕ4 = ϕ ∪ {a≤0, b≤0}〉 2

In order to compare cost functions, we start by comparing two flat cost functions
in Def. 4 below. Then, in Def. 5 we compare a flat function against a general,
i.e., non-flat, one. Finally, Def. 6 allows comparing two general functions.

Definition 4 (smaller flat cost function in context). Given two flat cost
functions 〈e1, ϕ1〉 and 〈e2, ϕ2〉, we say that 〈e1, ϕ1〉 is smaller than or equal to
〈e2, ϕ2〉 in the context of ϕ2, written 〈e1, ϕ1〉E〈e2, ϕ2〉, if for all assignments σ
such that σ |= ϕ1 ∪ ϕ2 it holds that σ(e1) ≤ σ(e2).

Observe that the assignments in the above definition must satisfy the conjunc-
tion of the constraints in ϕ1 and in ϕ2. Hence, it discards the values for which
the constraints become incompatible. An important point is that Def. 4 allows
comparing pairs of flat functions. However, the result of such comparison is weak
in the sense that the comparison is only valid in the context of ϕ2. In order to
determine that a flat function is smaller than a general function for any context
we need to introduce Def. 5 below.

Definition 5 (smaller flat cost function). Given a flat cost function 〈e1, ϕ1〉
and a (possibly non-flat) cost function 〈e2, ϕ2〉, we say that 〈e1, ϕ1〉 is smaller
than or equal to 〈e2, ϕ2〉, written 〈e1, ϕ1〉 � 〈e2, ϕ2〉, if ϕ1 |= ϕ2 and for all
〈ei, ϕi〉 ∈ τ(〈e2, ϕ2〉) it holds that 〈e1, ϕ1〉E〈ei, ϕi〉.
Note that Def. 5 above is only valid when the context constraint ϕ2 is more
general, i.e., less restrictive than ϕ1. This is required because in order to prove
that a function is smaller than another one it must be so for all assignments which
are satisfiable according to ϕ1. If the context constraint ϕ2 is more restrictive
than ϕ1 then there are valid input values for 〈e1, ϕ1〉 which are undefined for
〈e2, ϕ2〉. For example, if we want to check whether the flat cost function (1) in
Ex. 2 is smaller than another one f which has the context constraint {n > 4},
the comparison will fail. This is because function f is undefined for the input
values 0 < n ≤ 4. This condition is also required in Def. 6 below, which can be
used on two general cost functions.
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Definition 6 (smaller cost function). Consider two cost functions 〈e1, ϕ1〉
and 〈e2, ϕ2〉 such that ϕ1 |= ϕ2. We say that 〈e1, ϕ1〉 is smaller than or equal to
〈e2, ϕ2〉 iff for all 〈e′1, ϕ′1〉 ∈ τ(〈e1, ϕ1〉) it holds that 〈e′1, ϕ′1〉 � 〈e2, ϕ2〉.
In several applications of resource usage analysis, we are not only interested
in knowing that a function is smaller than or equal than another. Also, if the
comparison fails, it is useful to know which are the pairs of flat functions for which
we have not been able to prove them being smaller, together with their context
constraints. This can be useful in order to strengthen the context constraint of
the left hand side function or to weaken that of the right hand side function.

4 Inclusion of Cost Functions

It is clearly not possible to try all assignments of input variables in order to prove
that the comparison holds as required by Def. 4 (and transitively by Defs. 5 and
6). In this section, we aim at defining a practical technique to syntactically
check that one flat function is smaller or equal than another one for all valid
assignments, i.e., the relation E of Def. 4. The whole approach is defined over
flat cost functions since from it one can use Defs. 5 and 6 to apply our techniques
on two general functions.

The idea is to first normalize cost functions so that they become easier to
compare by removing parenthesis, grouping identical terms together, etc. Then,
we define a series of inclusion schemas which provide sufficient conditions to
syntactically detect that a given expression is smaller or equal than another one.
An important feature of our approach is that when expressions are syntacti-
cally compared we compute an approximated difference (denoted adiff) of the
comparison, which is the subexpression that has not been required in order to
prove the comparison and, thus, can still be used for subsequent comparisons.
The whole comparison is presented as a fixed point transformation in which we
remove from cost functions those subexpressions for which the comparison has
already been proven until the left hand side expression becomes zero, in which
case we succeed to prove that it is smaller or equal than the other, or no more
transformations can be applied, in which case we fail to prove that it is smaller.
Our approach is safe in the sense that whenever we determine that a function is
smaller than another one this is actually the case. However, since the approach
is obviously approximate, as the problem is undecidable, there are cases where
one function is actually smaller than another one, but we fail to prove so.

4.1 Normalization Step

In the sequel, we use the term basic cost expression to refer to expressions of the
form n, loga(A+1), An, al. Furthermore, we use the letter b, possibly subscripted,
to refer to such cost expressions.

Definition 7 (normalized cost expression). A normalized cost expression
is of the form Σn

i=1ei such that each ei is a product of basic cost expressions.
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Note that each cost expression as defined above can be normalized by repeatedly
applying the distributive property of multiplication over addition in order to get
rid of all parentheses in the expression. We also assume that products which are
composed of the same basic expressions (modulo constants) are grouped together
in a single expression which adds all constants.

Example 3. Let us consider the cost functions in Ex. 2. Normalization results in
the following cost functions:
(1)n 〈34∗2A+8∗ log2(1+B)∗2A+10∗C∗2A+6∗C∗D∗2A,

ϕ1 = {A=n, A>0, B=2∗n−1, B>0, C=a, C > 0, D=b, D>0}〉
(2)n 〈34∗2A+8∗ log2(1+B)∗2A,

ϕ2 = {A=n, A>0, B=2∗n−1, B>0, a≤0, D=b, D>0}〉
(3)n 〈34∗2A+8∗ log2(1+B)∗2A+10∗C∗2A,

ϕ3 = {A=n, A>0, B=2∗n−1, B>0, C=a, C > 0, b≤0}〉
(4)n 〈34∗2A+8∗ log2(1+B)∗2A,

ϕ4 = {A=n, A>0, B=2∗n−1, B>0, a≤0, b≤0}〉
2

Since e1 ∗ e2 and e2 ∗ e1 are equal, it is convenient to view a product as the set
of its elements (i.e., basic cost expressions). We use Pb to denote the set of all
products (i.e., sets of basic cost expressions) and M to refer to one product of
Pb. Also, since M1 +M2 and M2 +M1 are equal, it is convenient to view the
sum of products as the set of its elements (its products). We use PM to denote
the set of all sums of products and S to refer to one sum of products of PM.
Therefore, a normalized cost expression is a set of sets of basic cost expressions.

Example 4. For the normalized cost expressions in Ex. 3, we obtain the following
set representation:

(1)s 〈{{34, 2A}, {8, log2(1+B), 2A}, {10, C, 2A}, {6, C, D, 2A}},
ϕ1 = {A=n, A>0, B=2∗n−1, B>0, C=a, C > 0, D=b, D>0}〉

(2)s 〈{{34, 2A}, {8, log2(1+B), 2A}},
ϕ2 = {A=n, A>0, B=2∗n−1, B>0, a≤0, D=b, D>0}〉

(3)s 〈{{34, 2A}, {8, log2(1+B), 2A}, {10, C, 2A}},
ϕ3 = {A=n, A>0, B=2∗n−1, B>0, C=a, C > 0, b≤0}〉

(4)s 〈{{34, 2A}, {8, log2(1+B), 2A}},
ϕ4 = {A=n, A>0, B=2∗n−1, B>0, a≤0, b≤0}〉

2

4.2 Product Comparison

We start by providing sufficient conditions which allow proving the E relation
on the basic cost expressions that will be used later to compare products of
basic cost expressions. Given two basic cost expressions e1 and e2, the third
column in Table 1 specifies sufficient, linear conditions under which e1 is smaller
or equal than e2 in the context of ϕ (denoted as e1 ≤ϕ e2). Since the conditions
under which ≤ϕ holds are over linear expressions, we can rely on existing linear
constraint solving techniques to automatically prove them. Let us explain some
of entries in the table. E.g., verifying that An ≤ ml is equivalent to verifying
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e1 e2 e1 ≤ϕ e2 adiff

n n′ n ≤ n′ 1

n loga(A + 1) ϕ |= {an ≤ A + 1} 1

n Am m > 1 ∧ ϕ |= {n ≤ A} Am−1

n ml m > 1 ∧ ϕ |= {n ≤ l} ml−n

l1 l2 l2 6∈ N+, ϕ |= {l1≤l2} 1

l An n > 1 ∧ ϕ |= {l ≤ A} An−1

l nl′ n > 1 ∧ ϕ |= {l ≤ l′} nl′−l

loga(A+1) l l 6∈ N+, ϕ |= {A + 1 ≤ l} 1

loga(A+1) logb(B+1) a ≥ b ∧ ϕ |= {A ≤ B} 1

loga(A+1) Bn n > 1 ∧ ϕ |= {A + 1 ≤ B} Bn−1

loga(A+1) nl n > 1 ∧ ϕ |= {l > 0, A + 1 ≤ l} nl−(A+1)

An Bm n > 1 ∧ m > 1 ∧ n ≤ m ∧ ϕ |= {A ≤ B} Bm−n

An ml m > 1 ∧ ϕ |= {n ∗ A ≤ l} ml−n∗A

nl ml′ n ≤ m ∧ ϕ |= {l ≤ l′} ml′−l

Table 1. Comparison of basic expressions e1 ≤ϕ e2

logm(An) ≤ logm(ml), which in turn is equivalent to verifying that n∗logm(A) ≤
l when m > 1 (i.e., m ≥ 2 since m is an integer value). Therefore we can verify
a stronger condition n ∗A ≤ l which implies n ∗ logm(A) ≤ l, since logm(A) ≤ A
when m ≥ 2. As another example, in order to verify that l ≤ nl′ , it is enough to
verify that logn(l) ≤ l′ when n > 1, which can be guaranteed if l ≤ l′.

The “part” of e2 which is not required in order to prove the above rela-
tion becomes the approximated difference of the comparison operation, denoted
adiff(e1, e2). An essential idea in our approach is that adiff is a cost expression
in our language and hence we can transitively apply our techniques to it. This
requires having an approximated difference instead of the exact one. For in-
stance, when we compare A ≤ 2B in the context {A ≤ B}, the approximated
difference is 2B−A instead of the exact one 2B −A. The advantage is that we do
not introduce the subtraction of expressions, since that would prevent us from
transitively applying the same techniques.

When we compare two products M1, M2 of basic cost expressions in a
context constraint ϕ, the basic idea is to prove the inclusion relation ≤ϕ for
every basic cost expression in M1 w.r.t. a different element in M2 and at each
step accumulate the difference in M2 and use it for future comparisons if needed.

Definition 8 (product comparison operator). Given 〈M1, ϕ1〉, 〈M2, ϕ2〉
in Pb we define the product comparison operator τ∗ : (Pb,Pb) 7→ (Pb,Pb) as
follows: τ∗(M1,M2) = (M1−{e1},M2−{e2}∪{adiff(e1, e2)}) where e1 ∈M1,
e2 ∈M2, and e1 ≤ϕ1∧ϕ2 e2.

In order to compare two products, first we apply the above operator τ∗ iteratively
until there are no more terms to transform. In each iteration we pick e1 and e2
and modify M1 and M2 accordingly, and then repeat the process on the new
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sets. The result of this operation is denoted fp∗(M1,M2). This process is finite
because the size of M1 strictly decreases at each iteration.

Example 5. Let us consider the product {8, log2(1+B), 2A} which is part of (1)s

in Ex. 4. We want to prove that this product is smaller or equal than the following
one {7, 23∗B} in the context ϕ = {A ≤ B−1, B≥10}. This can be done by
applying the τ∗ operator three times. In the first iteration, since we know by
Table 1 that log2(1+B) ≤ϕ 23∗B and the adiff is 22∗B−1, we obtain the new
sets {8, 2A} and {7, 22∗B−1}. In the second iteration, we can prove that 2A ≤ϕ

22∗B−1, and add as adiff 22∗B−A−1. Finally, it remains to be checked that 8 ≤ϕ

22∗B−A−1. This problem is reduced to checking that ϕ |= 8 ≤ 2∗B−A−1, which
it trivially true. 2

The following lemma states that if we succeed to transform M1 into the empty
set, then the comparison holds. This is what we have done in the above example.

Lemma 1. Given 〈M1, ϕ1〉, 〈M2, ϕ2〉 where M1,M2 ∈ Pb and for all e ∈M1

it holds that ϕ1 |= e ≥ 1. If fp∗(M1,M2) = (∅, ) then 〈M1, ϕ1〉E〈M2, ϕ2〉.
Note that the above operator is non-deterministic due to the (non-deterministic)
choice of e1 and e2 in Def. 8. Thus, the computation of fp∗(M1,M2) might not
lead directly to (∅, ). In such case, we can backtrack in order to explore other
choices and, in the limit, all of them can be explored until we find one for which
the comparison succeeds.

4.3 Comparison of Sums of Products

We now aim at comparing two sums of products by relying on the product
comparison of Sec. 4.2. As for the case of basic cost expressions, we are interested
in having a notion of approximated adiff when comparing products. The idea is
that when we want to prove k1∗A ≤ k2∗B and A ≤ B and k1 and k2 are constant
factors, we can leave as approximated difference of the product comparison the
product (k2−k1)∗B, provided k2−k1 is greater or equal than zero. As notation,
given a product M, we use constant(M) to denote the constant factor in M,
which is equals to n if there is a constant n ∈ M with n ∈ N+ and, otherwise,
it is 1. We use adiff(M1,M2) to denote constant(M2)− constant(M1).

Definition 9 (sum comparison operator). Given 〈S1, ϕ1〉 and 〈S2, ϕ2〉, where
S1,S2 ∈ PM, we define the sum comparison operator τ+ : (PM,PM) 7→ (PM,PM)
as follows: τ+(S1,S2) = (S1−{M1}, (S2−{M2})∪A) iff fp∗(M1,M2) = (∅, )
where:

- A = { } if adiff(M1,M2) ≤ 0;
- otherwise, A = (M2 − {constant(M2)}) ∪ {adiff(M1,M2)}.

In order to compare sums of products, we apply the above operator τ+ iteratively
until there are no more elements to transform. As for the case of products, this
process is finite because the size of S1 strictly decreases in each iteration. The
result of this operation is denoted by fp+(S1,S2).
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Example 6. Let us consider the sum of products (3)s in Ex. 4 together with
S = {{50, C, 2B}, {9,D2, 2B}} and the context constraint ϕ = {1+B≤D}. We
can prove that (3)s ES by applying τ+ three times as follows:

1. τ+((3)s,S) = ((3)s − {{34, 2A}},S ′), where S ′ = {{16, C, 2B}, {9,D2, 2B}}.
This application of the operator is feasible since fp∗({34, 2A}, {50, C, 2B}) =
(∅, ) in the context ϕ3∧ϕ, and the difference constant part of such compar-
ison is 16.

2. Now, we perform one more iteration of τ+ and obtain as result τ+((3)s −
{{34, 2A}},S ′) = ((3)s−{{34, 2A}, {10, C, 2A}},S ′′), where S ′′ = {{6, C, 2B},
{9,D2, 2B}}. Observe that in this case fp∗({10, C, 2A}, {{16, C, 2B}) = (∅, ).

3. Finally, one more iteration of τ+ on the above sum of products, gives (∅,S ′′′)
as result, where S ′′′ = {{6, C, 2B}, {1,D2, 2B}}.

In this last iteration we have used the fact that {1+B≤D} ∈ ϕ in order to prove
that fp∗({8, log2(1+B), 2A}, {9,D2, 2B}) = (∅, ) within the context ϕ3 ∧ ϕ. 2

Theorem 1. Let 〈S1, ϕ1〉, 〈S2, ϕ2〉 be two sum of products such that for all
M ∈ S1, e ∈ M it holds that ϕ1 |= e ≥ 1. If fp+(S1,S2) = (∅, ) then
〈S1, ϕ1〉E〈S2, ϕ2〉.
Example 7. For the sum of products in Ex. 6, we get fp+((3)s,S) = (∅,S ′′′).
Thus, according to the above theorem, it holds that 〈(3)s, ϕ3〉E〈S, ϕ〉. 2

4.4 Composite Comparison of Sums of Products

Clearly the previous schema for comparing sums of products is not complete.
There are cases like the comparison of {{A3}, {A2}, {A}} w.r.t. {{A6}} within
the context constraint A > 1 which cannot be proven by using a one-to-one
comparison of products. This is because a single product comparison would
consume the whole expression A6. We try to cover more cases by providing a
composite comparison schema which establishes when a single product is greater
than the addition of several products.

Definition 10 (sum-product comparison operator). Consider 〈S1, ϕ1〉 and
〈M2, ϕ2〉, where S1 ∈ PM, M2 ∈ Pb and for all M∈ S1 it holds that ϕ1 |= M >
1. Then, we define the sum-product comparison operator τ(+,∗) : (PM,Pb) 7→
(PM,Pb) as follows: τ(+,∗)(S1,M2) = (S1−{M′

2},M′′
2), where fp∗(M′

2,M2) =
(∅,M′′

2).

The above operator τ(+,∗) is applied while there are new terms to transform. Note
that the process is finite since the size of S1 is always decreasing. We denote by
fp(+,∗)(S1,M2) the result of iteratively applying τ(+,∗).

Example 8. By using the sum-product operator we can transform the pair ({{A3},
{A2}, {A}}, {A6}) into (∅, ∅) in the context constraint ϕ = {A > 1}. To this end,
we apply τ(+,∗) three times. In the first iteration, fp∗({A3}, {A6}) = (∅, {A3}).
In the second iteration, fp∗({A2}, {A3}) = (∅, {A}). Finally in the third iteration
fp∗({A}, {A}) = (∅, ∅). 2
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When using the sum-product comparison operator to compare sums of prod-
ucts, we can take advantage of having an approximated difference similar to the
one defined in Sec. 4.3. In particular, we define the approximated difference of
comparing S and M, written adiff(S,M), as constant(M)−constant(S), where
constant(S)=

∑
M′∈S constant(M′). Thus, if we compare {{A3}, {A2}, {A}} is

smaller or equal than {4, A6}, we can have as approximated difference {A6},
which is useful to continue comparing further summands. As notation, we use
PS to denote the set of all sums of products and Ss to refer one element.

Definition 11 (general sum comparison operator). Let us consider 〈Ss, ϕ〉
and 〈S2, ϕ

′〉, where Ss ∈ PS and S2 ∈ PM. We define the general sum com-
parison operator µ+ : (PS ,PM) 7→ (PS ,PM) as follows: µ+(Ss,S2) = (Ss −
{S1}, (S2−{M})∪A), where fp(+,∗)(S1,M) = (∅, ) and A = { } if adiff(S1,M) ≤
0; otherwise A = (M−{constant(M)}) ∪ {adiff(S1,M)}.
Similarly as we have done in definitions above, the above operator µ+ is applied
iteratively while there are new terms to transform. Since the cardinality of Ss

decreases in each step the process is finite. We denote by fpg
+(Ss,S2) to the result

of applying the above iterator until there are no sets to transform.
Observe that the above operator does not replace the previous sum compara-

tor operator in Def. 9 since it sometimes can be of less applicability since fp(+,∗)
requires that all elements in the addition are strictly greater than one. Instead,
it is used in combination with Def. 9 so that when we fail to prove the com-
parison by using the one-to-one comparison we attempt with the sum-product
comparison operator above.

In order to apply the general sum comparison operator, we seek for partitions
in the original S which meet the conditions in the definition above.

Theorem 2 (composite inclusion). Let 〈S1, ϕ1〉, 〈S2, ϕ2〉 be two sum of prod-
ucts such that for all M′ ∈ S1, e ∈M′ it holds ϕ1 |= e>1. Let Ss be a partition
of S1. If fpg

+(Ss,S2) = (∅, ) then 〈S1, ϕ1〉E〈S2, ϕ2〉.

5 Implementation and Experimental Evaluation

We have implemented our technique and it can be used as a back-end of ex-
isting non-asymptotic cost analyzers for average, lower and upper bounds (e.g.,
[8,2,10,4,5]), and regardless of whether it is based on the approach to cost anal-
ysis of [12] or any other. Currently, it is integrated within the COSTA Sys-
tem, and it can be tried out through its web interface which is available from
http://costa.ls.fi.upm.es.

We first illustrate the application of our method in resource usage verification
by showing the working mode of COSTA through its Eclipse plugin. Figure 2
shows a method which has been annotated to be analyzed (indicated by the an-
notation @costaAnalyze true) and its resulting upper bound compared against
the cost function written in the assertion @costaCheck. The output of COSTA
is shown in the Costa view (bottom side of the Figure). There, the upper bound
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Fig. 2. Screenshot of the COSTA plugin for Eclipse, showing how annotations
are used to interact with COSTA

inferred by COSTA is displayed, together with the result of the comparison with
the user’s assertion. Besides, the verification of the upper bound is shown in the
same line where the annotation is as a marker in the left side of the editor. If
the verification fails, a warning marker is shown, instead of the star-like marker
of Figure 2. Thus, by annotating the methods of interest with candidate upper
bounds, it is possible to verify the resource usage of such methods, and to mark
those methods that do not meet their resource usage specification.

In Table 2, we have performed some experiments which aim at providing
some information about the accuracy and the efficiency of our technique. The
first seven benchmark programs correspond to examples taken from the JOlden
benchmark suite [11], the next two ones from the experiments in [1] and the last
one is our running example. COSTA infers the upper bound cost functions for
them which are shown in the second column of the table. All execution times
shown are in milliseconds and have been computed as the average time of ten
executions. The environment were the experiments were run was Intel Core2
Duo 1.20 GHz with 2 processors, and 4 GB of RAM.

The first column is the name of the benchmark. The second column is the
expresion of the cost function. The next two columns show the time taken by
our implementation of the comparison approach presented in the paper in two
different experiments which we describe below. The next two columns include the
term size of the cost function inferred by COSTA and normalized as explained
in Section 4, and the term size of the product of the cost function by itself. The
next two columns include the ratio between size and time; those are estimations
of the number of terms processed by milisecond in the comparison. We use CF
to refer to the cost function computed by COSTA.

13
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Bench. Cost Function T1 T2 Size1 Size2 Size/T1 Size/T2

bH 128 + 96 ∗ nat(x) 0 0.2 6 11 N/A N/A

treeAdd 4 + (4 ∗ nat(x) + 1) + 40 ∗ 2nat(y−1) 8 18 11 41 1.40 2.28
biSort 16 + (4 ∗ nat(x) + 1) ∗ nat(y − 1) 15 39 9 33 0.60 0.85

health 28 ∗ (4nat(x−1) − 1)/3 + 28 ∗ 4nat(x−1) 7 23 21 115 3.00 5.00
voronoi 20 ∗ nat(2 ∗ x− 1) 2 5 3 5 1.50 1.00
mst max(12 + 4 ∗ nat(1 + x) 96 222 49 241 0.51 1.09

+nat(1 + x) ∗ (20 + 4 ∗ nat(1/4 ∗ x))
+16 ∗ nat(1 + x) ∗ nat(1 + x) + 8 ∗ nat(1 + x),
4 + max(16 + 4 ∗ nat(1 + x)
+nat(1 + x) ∗ (20 + 4 ∗ nat(1/4 ∗ x))
+16 ∗ nat(1 + x) ∗ nat(1 + x) + 16 ∗ nat(1 + x),
20 + 4 ∗ nat(1 + x)+
+nat(1 + x) ∗ (20 + 4 ∗ nat(1/4 ∗ x))+
4 ∗ nat(1/4 ∗ x)))

em3d 93 + 4 ∗ nat(t) + 4 ∗ nat(y)+ 54 113 19 117 0.35 1.04
nat(t− 1) ∗ (28 + 4 ∗ nat(y)) + 4 ∗ nat(t)+
4 ∗ nat(y) + nat(t− 1) ∗ (28 + 4 ∗ nat(y))+
4 ∗ nat(y)

multiply 9 + nat(x) ∗ (16 + 8 ∗ log2(1 + nat(2 ∗ x− 3))) 10 24 14 55 1.40 2.29
evenDigits 49 + (nat(z) ∗ (37 + (nat(y) ∗ (32 + 27 ∗ nat(y)) 36 94 29 195 0.81 2.07

+27 ∗ nat(y))) + nat(y) ∗ (32 + 27 ∗ nat(y))
+27 ∗ nat(y))

running 2nat(x) ∗ (31 + (8 ∗ log2(1 + nat(2 ∗ x− 1))+ 40 165 34 212 0.85 1.28

+nat(y) ∗ (10 + 6 ∗ nat(z)))) + 3 ∗ 2nat(x)

Table 2. Experiments in Cost Function Comparison

T1 Time taken by the comparison CF � rev(CF ), where rev(CF ) is just the
reversed version of CF . I.e., rev(x + y + 1) = 1 + x + y. The size of the
expressions involved in the comparison is shown in the fifth column of the
table (Size1).

T2 Time taken by the comparison CF + CF � CF ∗ CF , assuming that CF
takes at least the value 2 for all input values. In this case, the size of the
expression grows considerably and hence the comparison takes a longer time
than the previous case. The size of the largest expression in this case is shown
in the sixth column of the table (Size2).

In all cases, we have succeeded to prove that the comparison holds. Ignoring the
first benchmark, that took a negligible time, the ratio between size and time and
falls in a narrow interval (1 or 2 terms processed by milisecond). Interestingly,
for each one of the benchmarks (except voronoi), that ratio increases with term
size, implying that the number of terms processed by milisecond is higher in
more complex expressions. However, these performance measurements should
be verified with a larger number of case studies, to verify how it varies with the
size of the input. We leave that task as further work. In any case, we believe that
our preliminary experiments indicate that our approach is sufficiently precise in
practice and that the comparison times are acceptable.

6 Other Approaches and Related Work

In this section, we discuss other possible approaches to handle the problem of
comparing cost functions. In [7], an approach for inferring non-linear invariants
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using a linear constraints domain (such as polyhedra) has been introduced. The
idea is based on a saturation operator, which lifts linear constraints to non-
linear ones. For example, the constraint Σaixi = a would impose the constraint
ΣaiZxiu = au for each variable u. Here Zxiu is a new variable which corresponds
to the multiplication of xi by u. This technique can be used to compare cost
functions, the idea is to start by saturating the constraints and, at the same
time, converting the expressions to linear expressions until we can use a linear
domain to perform the comparison. For example, when we introduce a variable
Zxiu, all occurrences of xiu in the expressions are replaced by Zxiu. Let us see
an example where: in the first step we have the two cost functions to compare;
in the second step, we replace the exponential with a fresh variable and add the
corresponding constraints; in the third step, we replace the product by another
fresh variable and saturate the constraints:

w · 2x ≥ 2y {x ≥ 0, x ≥ y, w ≥ 0}
w · Z2x ≥ Z2y {x ≥ 0, x ≥ y, Z2x ≥ Z2y}
Zw·2x ≥ Z2y {x ≥ 0, x ≥ y, Z2x ≥ Z2y , Zw·2x ≥ Z2y}

Now, by using a linear constraint domain, the comparison can be proved.
We believe that the saturation operation is very expensive compared to our
technique while it does not seem to add significant precision.

Another approach for checking that e1 � e2 in the context of a given context
constraint ϕ is to encode the comparison e1 � e2 as a Boolean formula that
simulates the behavior of the underlying machine architecture. The unsatisfia-
bility of the Boolean formula can be checked using SAT solvers and implies that
e1 � e2. The drawback of this approach is that it requires fixing a maximum
number of bits for representing the value of each variable in ei and the values of
intermediate calculations. Therefore, the result is guaranteed to be sound only
for the range of numbers that can be represented using such bits. On the positive
side, the approach is complete for this range. In the case of variables that corre-
spond to integer program variables, the maximum number of bits can be easily
derived from the one of the underlying architecture. Thus, we expect the method
to be precise. However, in the case of variables that correspond to the size of
data-structures, the maximum number of bits is more difficult to estimate.

Another approach for this problem is based on numerical methods since our
problem is analogous to proving whether 0 � b − fm in the context φb. There
are at least two numerical approaches to this problem. The first one is to find
the roots of b − fm, and check whether those roots satisfy the constraints φb.
If they do not, a single point check is enough to solve the problem. This is
because, if the equation is verified at one point, the expressions are continuous,
and there is no sign change since the roots are outside the region defined by
φb, then we can ensure that the equation holds for all possible values satisfying
φb. However, the problem of finding the roots with multiple variables is hard in
general and often not solvable. The second approach is based on the observation
that there is no need to compute the actual values of the roots. It is enough
to know whether there are roots in the region defined by φb. This can be done
by finding the minimum values of expression b − fm, a problem that is more
affordable using numerical methods [9] . If the minimum values in the region
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defined by φb are greater than zero, then there are no roots in that region. Even
if those minimum values are out of the region defined by φb or smaller than zero,
it is not necessary to continue trying to find their values. If the algorithm starts
to converge to values out of the region of interest, the comparison can be proven
to be false. One of the open issues about using numerical methods to solve our
problem is whether or not they will be able to handle cost functions output from
realistic programs and their performance. We have not explored these issues yet
and they remain as subject of future work.

7 Conclusions

In conclusion, we have proposed a novel approach to comparing cost functions
which is relatively efficient and powerful enough for performing useful compar-
isons of cost functions. Making such comparisons automatically and efficiently is
essential for any application of automatic cost analysis. Our approach could be
combined with more heavyweight techniques, such as those based on numerical
methods, in those cases where our approach is not sufficiently precise.
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Abstract. An important application of resource analysis is to improve
the performance of parallel and distributed programs. In this context key
resources are time, space and communication. Given the spectrum of cost
models and associated analysis techniques, what combination should be
selected for a specific parallel or distributed context?

We address the question as follows. We outline a continuum of coordi-
nation cost models and a range of analysis techniques. We consider six
representative parallel/distributed applications of resource analysis tech-
niques, and aim to extract general principles governing why the combi-
nation of techniques is effective in its context.

1 Introduction

Parallel and distributed programs must specify both the computation to be per-
formed, and how this is to be coordinated across multiple locations. Effective
resource analyses enable better coordination, for example scheduling can be im-
proved with accurate estimates of the computational cost for units of work. The
resource analyses need to build on realistic cost models to reflect the resource
consumption incurred during execution. Furthermore, an appropriate analysis
technique must be used to predict resource consumption to the required accu-
racy. Finally, there are many possible uses of such resource information.

Section 2 classifies the cost models, focusing on the level of abstraction over
the hardware that is provided. The PRAM model is extremely simple and ab-
stract. More refined models use a fixed structure of the execution of the code
to produce an accurate cost model: Bulk Synchronous Processes (BSP) is one
such example. Finally, there is a rich class of models that take hardware details
such as caches and processor pipelines into account to produce a very accurate
model: for example the processor model used by AbsInt’s aiT analysis.
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Section 3 classifies the analysis techniques. We start by outlining several rep-
resentative systems that use resource bounds to improve coordination: design-
time cost analysis through the use of structured program notations such as
the Bird-Meertens-Formalism (BMF) or Bulk Synchronous Processes (BSP);
compile-time cost analysis through the use of type inference, abstract interpreta-
tion, or constraint system solving; run-time cost analysis through the (abstract)
execution of (abstracted) input based on a costed semantics.

Section 4 outlines six applications of resource analysis techniques in a par-
allel/distributed context. The applications are selected to be effective, i.e. they
improve parallel/distributed coordination, and representative. The applications
are representative in utilising a range of analyses from the most abstract to the
most concrete, and in using the resource information for a range of coordination
purposes including resource-safe execution, compiler optimisations, optimising
parallel execution and enabling mobility.

Section 5 investigates in the impact of the choices made for the cost model
and analysis technique on the concrete application domain. Section 6 summarises
the general principles governing why combinations of cost model and analysis
technique are effective, and speculates on future trends for resource analysis in
the parallel/distributed arena.

2 Coordination Cost Models

Coordination cost models provide tractable abstractions of the performance of
real parallel or distributed systems. They cover a well populated continuum from
the most simple and abstract, through to the highly detailed and concrete. For
our purposes we note three well-known examples that are used in the analysis
methodologies presented subsequently. As we shall see in Section 4, classical
sequential cost models are also useful, e.g. using predicted execution time for
tasks to inform scheduling.

2.1 PRAM

The Parallel Random Access Machine (PRAM) model [17] is the most abstract
parallel cost model. PRAM is the fundamental parallel machine and cost model
within the parallel algorithms and complexity research community. In its sim-
plest form, it models stepwise synchronous, but otherwise unrestricted access
to a shared memory by a set of conventional sequential processors. At each
synchronous step, each processor performs one operation from a simple, conven-
tional instruction set. Each such step is costed at unit time, irrespective of the
operations involved, and in particular, irrespective of which shared memory loca-
tions are accessed. It therefore ignores more practical issues such as contention,
memory hierarchy, underlying communication infrastructure and all processor
internal issues. Nevertheless, it has provided a durable and sound basis for at
least the initial phases of asymptotically analysed parallel algorithm design. A
plethora of variants aim to introduce more pragmatic cost issues.
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2.2 BSP

The Bulk Synchronous Parallel (BSP) model [7] occupies a less abstract position
in the cost model spectrum than PRAM. In contrast to PRAM it recognises
that synchronisation is not free, that sharing of data involves communication
(whether explicitly or implicitly), and that the cost of this communication, both
absolutely and relative to that of processor-local computation can be highly
machine dependent. To tame this complexity BSP introduces a constrained op-
erational model. Thus, a BSP computer consists of processors connected by a
communication network. Each processor has a fast local memory, and may fol-
low its own thread of computation. A BSP computation proceeds in a series of
supersteps comprising three stages:

– Independent concurrent computation on each processor using only local val-
ues.

– Communication: in which each processor exchanges data with every other
processor.

– Barrier synchronisation: where all processes wait until all other processes
have finished their communication actions.

The BSP cost model has two parts: one to estimate the cost of a superstep, and
another to estimate the cost of the program as the sum of the costs of the super-
steps. The cost of a superstep is the sum of the cost of the longest running local
computation, the cost of the maximum communication between the processes,
and the cost of the barrier synchronisation. The costs are computed in terms
of four abstract parameters which respectively model the number of processors,
the cost of global synchronisation, the global bandwidth of the network and the
raw computational speed of the processors. The constrained computation model
allows BSP implementations to provide a benchmark suite which derives con-
crete, machine-specific values for the four BSP parameters. These can then be
inserted into the abstract (architecture independent) cost already derived for a
given program, to predict its true performance.

While BSP makes no attempt to account for processor internals or memory
hierarchy (other than indirectly through benchmarking) or specific communica-
tion patterns (indeed, classical BSP implementations rely on randomisation to
deliberately obliterate patterns in the interests of predictability), a considerable
literature testifies to the pragmatic success of the approach [7].

2.3 Cost Semantics

Cost semantics occupy a more concrete position in the cost model spectrum
than BSP. Cost semantics use a non-standard semantics with a cost assigned to
primitive operations, and language constructs combine the costs of their sub-
terms, e.g. the cost of a multiplication might be 1 plus the cost of evaluating the
left and right operands. The costs of coordination operations like communication
latency, or synchronisation, are accounted as some architecture dependent value.
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Concrete cost semantics aim to provide precise cost estimates by assigning
accurate costs to terms, often based on careful profiling of a target architec-
ture [9]. In contrast an abstract cost semantics assigns unit costs to terms and
hence is both simpler and architecture independent.

2.4 Accurate Hardware Models

Accurate hardware models occupy the most concrete position in the cost model
spectrum. These models provide precise cost information of low-level code, for
example by providing time information in clock cycles for each machine instruc-
tion. Such level of detail is required for industry strength worst-case execution
time (WCET) analyses. These analyses must be safe in the sense of always pro-
ducing upper bounds. They also have to be precise to be of any practical use.
One example of a WCET analysis that combines these features is AbsInt’s aiT
tool [16]. It is based on abstract interpretation, operates on machine code for a
range of embedded systems processors, and produces WCET bounds. In order
to obtain accurate bounds, the analysis models details of the hardware archi-
tecture, in particular the cache behaviour and the possible pipeline structure of
the processor. Thus, the accurate cost model is complemented by an accurate
hardware model at the analysis stage.

3 Resource Analyses

3.1 Design Time Analysis

Abstract cost models based around PRAM, BSP and Bird-Meertens-Formalism
(BMF) enable the programmer to reason about costs during program design. The
models often require that the program is expressed using a specific structure, e.g.
as a sequence of supersteps for BSP analysis. A significant advantage of these
techniques is that, guided by the model, the programmer can relatively cheaply
transform the program design to reduce the consumption of a specific resource,
before committing to an implementation.

3.2 Compile Time Analysis

In the area of compile time analyses many techniques have been developed to
statically infer information of the behaviour of the program at runtime. The
best known techniques are type inference, abstract interpretation, and constraint
system solving, and they may be used in combination.

Type Inference: Based on the observation that type inference can be separated
into two phases, collecting constraints on type/resource variables and solving
these constraints [28], several type-inference based analyses have been developed
that extend Hindley-Milner type inference to collect constraints on resources.
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Abstract Interpretation: Abstract interpretation [12] defines an abstract domain
of values, which is typically very small and is often used to provide only quali-
tative information. For example in strictness analysis the interesting distinction
is only whether an expression is strict or not. By using a richer abstract do-
main quantitative information can be modelled, too. Functions are mapped to
abstracted functions that operate over the abstract domain. The analysis then
proceeds by executing these abstract functions, and in particular finding fixpoints
for recursive functions. Many practically useful techniques have been developed
for this process, and therefore well-developed inference engines exists that can
be used for cost analysis.

Constraint System Solving: This approach is related to the type inference ap-
proach. In the former, constraints are collected during type inference and then
solved separately. In the (pure) constraint system solving approach the collec-
tion of constraints is not tied to type inference. An example of this approach is
control flow analysis [36].

3.3 Run-Time Analysis

Run-time cost analysis typically entails the abstract execution with some ab-
stracted input. It differs from profiling in that the execution and resources are
abstract rather than real. It is often used in conjunction with a static resource
analysis, e.g. to approximate the sizes of key data structures, e.g. [23, 32].

4 Parallel/Distributed Resource Analysis Applications

This section outlines six representative parallel/distributed applications of re-
source analysis techniques. The applications are ordered from those applying
the most abstract analysis (BMF-PRAM) to the most concrete (Type-based
Analysis with a Precise Model).

It is well known that performance analysis within conventional programming
models is undecidable. Pragmatic progress can be made by relaxing the extent to
which we hope for computable analysis for example by requiring oracular insight
from the programmer and/or by constraining the programming model in some
way.

For each system we outline how resource information is obtained and ap-
plied. Each representative model is effective, i.e. the cost information improves
coordination and hence performance.

4.1 BMF-PRAM

The Bird-Meertens Formalism (BMF) [5] is a calculus for deriving functional pro-
grams from specifications, with an emphasis on the use of bulk operations across
collective data-structures such as arrays, lists and trees. While independent of
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any explicit reference to parallelism, many of its operations clearly admit po-
tentially efficient parallel implementation. A number of projects have attempted
to exploit this opportunity by adding parallel cost analyses to BMF inspired
programming models.

In [37] Cai and Skillicorn present an informal PRAM based cost model for
BMF across list-structured data. Each operation is provided with a cost, param-
eterised by the costs of the applied operations (for example, the element-wise
cost of an operation to be mapped across all elements of a list) and data structure
sizes, and rules are provided for composing costs across sequential and concur-
rent compositions. The paper concludes with a sample program derivation for
the maximum segment sum problem. In conventional BMF program-calculation
style, an initially “obviously” correct but inefficient specification is transformed
by the programmer into a much more efficient final form.

In [25], Jay et al. build a formal cost calculus for a small BMF-like language
using PRAM as the underlying cost model. In order to aid implementation, the
language is further constrained to be shapely, meaning that the size of inter-
mediate bulk data-structures can be statically inferred from the size of inputs.
The approach is demonstrated by automated application to simple matrix-vector
operations.

These approaches can be characterised as being of relatively low accuracy (a
property inherited from their PRAM foundation), offering a quite rich, though
structurally constrained source language, being entirely static in nature and with
varying degrees of formality and support.

4.2 BMF-BSP

Building on Jay and Skillicorn’s seminal work, a number of projects have sought
to inject more realism into the costing of BMF inspired parallel programming
frameworks. The primary vehicle to this end was the substitution of BSP for
PRAM as the foundational cost model [25, 20]. In particular, [20] defines and
implements a BMF-BSP calculus and compares the accuracy of its predictions
with the runtime of equivalent (but hand-translated) BSP programs. Using max-
imum segment as a case study, the predictions exhibit good accuracy and would
lead to the correct decision at each stage of the program derivation.

Meanwhile, in a more informal setting reflecting the approach of [37], [6] re-
ports upon a BSP based, extended BMF derivation of a program for the solution
of tridiagonal systems of linear equations. Once again good correlation between
(hand generated) predictions and real implementation is reported, with no more
than 12% error across a range of problem sizes.

These developments can be characterized as offering enhanced accuracy (and
for the first time, experimentally validated), while retaining similarly structured
models and support. As a by-product of the use of BSP, analyses are now tar-
get architecture specific, once instantiated with the machine’s BSP constants,
though still static with respect to any particular instance.
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4.3 Skeleton-based Approaches

The skeleton based approach to parallel programming [11] advocates that com-
monly occuring patterns of parallel computation and interaction be abstracted
as library or language constructs. These may be tied to data-parallel bulk op-
erations, in the style of BMF, or used to capture more task oriented process
networks (for example, pipelines). Various projects have sought to tie cost mod-
els to skeletons and to use these, either explicitly or implicitly to guide program
development and implementation.

For example, based around a simple model of message passing costs, [19]
uses meta-programming to build cost equations for a variety of skeleton imple-
mentations into an Eden skeleton library, allowing the most appropriate imple-
mentation to be chosen at compile-time given instantiation of target machine
specific parameters (i.e. in the style of, but distinct in detail from, BSP). Dis-
crimination between four possible variants of a farm skeleton, used to implement
a Mandelbrot visualisation is reported.

Meanwhile, [18] describes an attempt to embed the BSP model directly into a
functional programming language, ML. At the level of parallelism, the program-
ming model is thus constrained to follow the BSP superstep constraints (which
might be viewed as relatively loose skeleton), while computation within a super-
step is otherwise unconstrained. Analysis is informal, in the conventional BSP
style, but the language itself has a robust parallel and distributed implementa-
tion. A reported implementation of an N-body solver once again demonstrates
close correlation between predicted and actual execution times.

The approach proposed by [40] presents the programmer with imperative
skeletons, each with an associated parallel cost model. The models are defined
in a performance enhanced process algebra [22], parameterised by a small num-
ber constants derived by running benchmark code fragments. As in [19] models
of competing implementation strategies are evaluated and the best selected. In
a novel extension, designed to cater for systems in which architectural perfor-
mance characteristics may vary dynamically, the chosen model is periodically
validated against actual performance. Where a significant discrepancy is found,
the computation can be halted, re-evaluated and rescheduled.

These approaches are strong in terms of language support, offering essentially
a two-layer model in which parallelism is constrained by the available skeleton
functions but local computation is free and powerful. The cost foundations are
of middling accuracy, sometimes augmented by the use of real code profiling.
They employ a range of static and dynamic analysis.

4.4 Using Statically Inferred Granularity Information for Parallel
Coordination

This section outlines several systems that apply cost information in the context
of parallel computation to decide whether a parallel thread should be generated
for some computation. In particular, it should become possible to identify very
small pieces of computation, for which the overhead of generating a parallel

FOPARA 2009 Preliminary Proceedings 147



thread is higher than the actual computation itself. Hence the characteristic
feature of the cost information here is that while it must be accurate for small
computations, it can be far less accurate for larger computations. Potentially all
computations beyond a certain threshold can be mapped to an abstract value of
infinity.

Static Dependent Costs: Reistad and Gifford [35] define the notion of static
dependent costs for the analysis of a strict, higher-order functional language
with imperative features. These costs describe the execution time of a function
in terms of the size of its input by attaching cost information to the type of a
function. Thereby it becomes possible to propagate cost information from the
definition of a function to its use, enabling the static, type-based analysis of
higher-order programs. The static inference of cost expressions is combined with
runtime calculation that instantiate cost expressions for concrete sizes to gain
concrete estimates. Runtime measurements of the system show that their cost
estimates are usually within a factor of three of the real costs. This information
is used in a dynamic profitability analysis, that compares the cost estimate of an
expression with the thread creation overhead, and generates parallelism only if it
is profitable. A game of life program, based on a parallel map operation exploiting
this profitability analysis, achieved a speedup of more than two compared to a
naive version of a parallel map on a four processor SGI shared-memory machine.

Dynamic Granularity Estimation: Another instance of this approach is [23],
where a technique of dynamic granularity estimation for strict, list-based, higher-
order languages is developed. This technique consists of two components:

– A compile-time (static) component, based on abstract interpretation to iden-
tify components whose complexity depends on the size of a data structure.

– A run-time (dynamic) component, for approximating sizes of the data struc-
tures at run-time.

Based on the results of the static component, the compiler inserts code for check-
ing the size of parameters at certain points. At runtime the result of these checks
determine whether a parallel task is created or not. The dynamic component is
implemented on a Sequent Symmetry shared-memory machine on top of a paral-
lel SML/NJ implementation. It is stated that the runtime overhead for keeping
track of approximations (one additional word per cons cell) is very low. For the
quicksort example an efficiency improvement of 23% has been reported.

Sized Time Systems: The sized time system in [30] develops a type-based infer-
ence of execution time and combines it with sized types [24], a static type system
for inferring bounds on the size of data structures. Thus, in contrast to the pre-
vious systems, no run-time analysis is required. As in the previous systems, the
analysis of time information is restricted to non-recursive functions. As tradi-
tional, the inference is separated into a phase of collecting constraints, inequali-
ties over natural numbers, and a separate phase of solving these constraints. A
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simulator for the parallel execution of Haskell programs has been used to imple-
ment several scheduling algorithms that make use of granularity information. In
its most naive instance all potential parallelism below a fixed granularity thresh-
old is discarded. In a second variant, granularity information is used to always
pick the largest item when generating new parallelism. In a final version, gran-
ularity information is used by the scheduler to favour the largest thread upon
re-scheduling. The results with these three version showed [29][Chapter 5], that
the most naive version of a fixed granularity threshold performed best, since
the management overhead of the more refined policies dominated the gains in
execution time.

In summary, all three systems discussed here are based on an abstract,
architecture-independent cost model, and use a static, type-based cost analy-
sis to determine size-dependent bounds. Two of the three systems combine these
with a very simple run-time analysis, which mainly supplies size information.
The languages covered are predominantly functional, although the static de-
pendent cost system also covers imperative constructs. The run-time techniques
that use the provided cost information are very simple: in most cases a binary
decision on the profitability of a potential parallel thread is made. Arguably
the use of the cost information is a priori limited by the choice of an abstract
cost model, which cannot provide precise bounds. However, measurements of
the system show that even with the abstract cost model, cost predictions, where
possible, are reasonably accurate.

4.5 Abstract Cost Semantics: Autonomous Mobile Programs

Autonomous mobile programs (AMPs) periodically use a cost model to decide
where to execute in a network [15]. The key decision is whether the predicted
time to complete on the current location is greater than the time to communicate
to the best available location and complete there.

The AMP cost model is an abstract cost semantics for a core subset of the
Jocaml mobile programming language including iterating higher-order functions
like map. Rather than predicting the time to evaluate a term the model predicts
the continuation cost of every subterm within a term. This information is used
to estimate the time to complete the program from the current point in the
execution.

The AMP continuation cost model is generated statically, and is then pa-
rameterised dynamically to determine movement behaviour. Key dynamic pa-
rameters include the current input size, execution speed on the current location,
predicted execution speeds of alternative locations.

In summary the AMP abstract costed operational semantics is applied to
a core mobile functional language with higher-order functions. The model is
statically generated but dynamically parameterised. While such an abstract cost
semantics provides low accuracy, empirical results show that the information
adequately informs mobility decisions [15].
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4.6 Type-based Analysis (Precise Model): Resource-safe Execution
in Hume

The goal of resource-safe execution is to statically guarantee that available re-
sources are never exhausted. This is highly desirable in many contexts, e.g. to
provide resource guarantees for mobile code, or in embedded systems where re-
sources are highly constrained.

With multi-core architectures entering the main-stream of computer archi-
tectures, embedded system designers are looking into exploiting the parallelism
provided on such platforms. Thus, the new challenge is to combine resource-safe
execution with a model for parallel execution that can effectively, and safely
exploit the parallelism. One aspect to this challenge is to best use the special
nature of the resource bounds, required for resource-safe execution, to guide
parallel execution.

In order to meet safety requirements on embedded systems, the resource pre-
dictions, and hence the cost model, have to be upper bounds on the concrete
resource consumption rather than simple predictions. These bounds don’t nec-
essarily have to be precise, however they must be concrete enough to assure
that no concrete evaluation exceeds them. Furthermore, formal guarantees of
the validity for these bounds are highly desirable.

The resource analysis for Hume [26], together with the infrastructure for ex-
ecuting Hume code on embedded systems, is an instance of such resource-safe
execution. The source language, Hume, has two layers. The box layer defines
a network of boxes that communicate along single-buffer one-to-one wires. The
expression layer is a strict, higher-order functional language. The resource anal-
ysis is a static, type-based analysis, building on the concept of amortised costs.
It produces, where possible, linear bounds on the resource consumption. Some
supported resources are heap- and stack-space consumption, and worst case ex-
ecution time.

The underlying cost model is an accurate hardware model obtained by per-
forming machine-code-level worst-case execution time analysis on the operations
of the underlying abstract machine. Thus, it is a concrete cost model , taking into
account hardware characteristics such as cache and pipeline structure. It is a safe
cost model in the sense that all costs are upper bounds. The results of the re-
source analyses for space and time have been validated against measurements
obtained on real embedded systems hardware for a range of applications [27].

The Hume compiler currently uses the resource information only in determin-
ing sizes of buffers etc, needed to assure resource-safe, single processor execution.
In the longer term this information will also be used in other components of the
system, for example in the scheduler on the box layer. The decomposition of
the program into boxes provides a natural model for parallel execution on multi-
core machines. In this context, the number of threads, namely boxes, is statically
fixed. The main usage of the resource information is therefore in statically map-
ping the threads to the available cores and in dynamically deciding which thread
to execute next. Since on box layer the execution of a program is an alternating
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sequence of compute- and communicate-steps, the mapping process is akin to
the process of developing a parallel program in a BSP model.

5 Cost Model & Analysis Critique

Given the spectrum of cost models and associated analysis techniques, what
combination should be selected for a specific parallel or distributed application?
This section investigates why a specific cost model and analysis technique proves
effective in the specific parallel/distributed context.

5.1 BMF-PRAM

In common with their PRAM base, the techniques discussed in Section 4.1
are most appropriate in the early phases of algorithm design, rather than de-
tailed program development. The techniques enable the designer to quickly com-
pare coarse performance estimates of alternative approaches. An informal, even
asymptotic flavour predominates.

5.2 BMF-BSP

The BMF-BSP approaches discussed in Section 4.2 are more appropriate when
a reasonably detailed algorithm already exists, allowing more refined, machine-
sensitive cost modelling as a concrete program is refined. They are most appro-
priate in (indeed, almost constrained to) contexts which provide a BSP library
implementation, with its associated benchmark suite.

5.3 Skeleton-based Approaches

Since the skeleton techniques outlined in Section 4.3 largely aim to absolve the
programmer of responsibility for the detailed expression and exploitation of par-
allelism, resource analysis techniques are typically exploited in the library im-
plementation itself, both statically and even dynamically. With the exception of
the work in [18], the programmer is unaware of the cost model’s existence.

5.4 Using Statically Inferred Granularity Information for Parallel
Coordination

The three granularity estimation systems outlined in Section 4.4 share the fol-
lowing notable features.

– The inference engine is simple and cheap, but limited to non-recursive func-
tions.

– Most of the information is inferred statically, but in some cases a light-weight
run-time analysis is applied, too.
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– The inferred quantitative information is mostly used in a qualitative way
(whether a thread is profitable, i.e. large enough to be evaluated in parallel).

For an application domain where imprecise, mostly qualitative information is
sought, ad hoc techniques or light-weight, type-inference based techniques work
very well. The mostly static nature of the analysis avoids run-time overhead.

5.5 Abstract Cost Semantics: Autonomous Mobile Programs

The rather simple Abstract Costed Operational Semantics used by AMPs is
effective for a combination of reasons.

– It compares the relative cost of completing at the current location with the
cost of completing at an alternative location.

– It requires only coarse grain execution time estimates. That is, rather than
attempting to predict the execution time of small computational units, it
compares the time to complete the entire program on the current location
with the time to complete on an alternative location.

– It incorporates dynamic information into the static model, i.e. parameteris-
ing the model with current performance.

5.6 Type-based Analysis (Precise Model): Resource-safe Execution
in Hume

The following characteristics of the resource analysis for Hume make it an effec-
tive tool for delivering guaranteed resource information.

– The analysis is purely static and thus resource-safe execution can be guar-
anteed before executing the code.

– To deliver such guarantees, the type-based analysis builds on strong formal
foundations and the type system is proven sound.

– Through its tight integration of resource information into the type system,
using numeric annotations to types, it is natural to base the static analysis
on a type inference engine.

– To guarantee that the analysis delivers bounds, we must start with a precise
and safe cost model, itself representing upper bounds.

– To facilitate tight upper bounds the analysis uses an accurate hardware
model.

The key requirement in this application domain is safety, and thus the emphasis
is on the formal aspects of the analysis. Beyond these aspects the following
practical aspects contribute to the usability of the inferred resource information.

– Through the generic treatment of resources, the analysis can be easily re-
targeted for other (quantitative) resources.

– By using a standard linear program solver in the constraint solving stage,
we achieve an efficient analysis.
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6 Discussion

We have outlined a continuum of coordination cost models and a range of analy-
sis techniques for parallel/distributed programs. By critiquing six representative
resource analysis applications we identify the following general principles gov-
erning why the combination of techniques is effective in its context.

– Predominantly, the effective parallel/distributed resource analyses have been
carefully designed to deliver the right information for the specific coordina-
tion purposes, and this has a number of aspects.
• The analysis must deliver information that is sufficiently accurate. Of-

ten a surprisingly simple cost model is effective, e.g. for the AMPs in
Section 5.5.

• The analysis must combine static and dynamic components appropri-
ately. For some applications purely static information suffices, where
others require at least some dynamic information (Section 4.4).

• In many cases it is sufficient for the analysis to produce qualitative pre-
dictions, e.g. is it worth creating a thread to evaluate an expression.
However in some scenarios, such as resource-safe execution, the analysis
must produce (upper) bounds (Section 4.6).

– Highly abstract resource analyses like BMF-PRAM are informative even at
early phases of parallel algorithm design (Section 5.1).

– More refined, architecture dependant analyses can be utilised during parallel
program development (Section 5.2).

– Improving reusable coordination abstractions like algorithmic skeletons can
have a significant impact and resource analyses are commonly applied within
skeleton libraries (Section 5.3).

– Even partial cost information can prove very useful, for example in deciding
whether to generate parallelism (Section 4.4).

– Often the inferred quantitative information is mostly used in a qualitative
way. Therefore, imprecise or relative resource information is sufficient (Sec-
tion 4.4).

Clearly resource analysis will remain an important tool for parallel/distributed
systems, and we trust that the principles above will assist in the design of future
systems. We anticipate that these systems will be able to exploit the rapidly-
improving resource analysis technologies. Indeed recent advances have already
widened the range of programs for which static information can be provided
(a detailed survey of WCET analyses is given in [39]) and caused a shift from
run-time to compile-time techniques (Section 3). Some important trends that we
anticipate in the near future are as follows.

In the area of static analyses there is a general trend to type-based analysis
and to enriching basic type systems with information on resource consumption.
The standard type-inference machinery has proven to be a very flexible engine
that can be re-used to infer resource information.

Static analyses are getting increasingly complex and therefore more error-
prone. At the same time automated theorem proving techniques increasingly
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mature. The combination of both, for example through formalised soundness
proofs of the analysis, is desirable in particular in safety-critical systems. Alter-
natively, proof-carrying-code [33] or abstraction carrying code, avoid the (com-
plex) soundness proof in general, and perform (formal) certificate validation on
each program instead.

Hardware, and hence precise cost models, are becoming increasingly complex.
This will push existing, low-level resource analysis to their limits and significantly
worsen the WCET bounds that are achievable. For these reasons, probabilistic
cost models are of increasing interest to the WCET community [34]. In the con-
text of parallel and distributed execution, where predictions rather than bounds
are sufficient, this trend will be even more relevant, but is currently not explored.

With respect to programming models, increasing interest in structured and
constrained approaches [14] can be seen to bring benefits in terms of simplifica-
tion, when coupled with correspondingly structured cost models. Constraining
the patterns of parallelism available to the programmer facilitates the construc-
tion of tractable cost models, parameterised by the costs of the composed se-
quential fragments.
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Abstract. In this paper, we study semantic interpretation criteria in
order to ensure safety and complexity properties of first order Haskell like
programs on streams. We study global and local upper bounds properties
of both theoretical and practical interests guaranteeing that the size of
each output stream element is bounded by a function in the maximal
size of the input stream elements.

1 Introduction

A wider interest for infinite data structures and, particularly, streams has emer-
ged in the last past two decades. Indeed, advances in computer networking com-
bined with the creation of modern operating systems have made streaming prac-
tical and affordable for ordinary computers, thus leading streaming to become
one of the most used network technologies.
This technological jump has coincided with a renewal of interest in theoretical
infinitary models and studies. Several formal frameworks have been designed for
the manipulation of infinite objects including infinitary rewriting [1], infinitary
lambda-calculus [2] and computable analysis, which provides several models of
computation over real numbers [3]. Several properties of these models such as
infinitary weak and strong normalizations and complexity classes definitions and
characterizations, among others, have been deeply studied in the literature.
An interesting approach to deal with infinite data is the use of laziness in func-
tional programming languages [4]. In languages like Haskell, streams are list
expressions whose elements are evaluated on demand. In this way streams can
be treated by finitary means.
In parallel, several studies have emerged on the underlying theories. Many effort
have been made on studying tools and techniques, as co-induction and bisimula-
tion, to prove stream program equivalence [5, 6]. Other studies have been made
in developing techniques to ensure productivity, a notion introduced in [7]. A
stream definition is productive if it can be effectively evaluated in a unique con-
structor infinite normal form. Productivity is in general undecidable, so, many
restricted languages and restricting criteria have been studied to ensure it [8–12].
Besides program equivalence and productivity, other stream properties surpris-
ingly have received little attention. Some interesting considerations about buffer-
ing and overflow in stream programs have been made in [10, 13] emphasising that
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complexity aspects of streams are of real practical interest. Moreover, the fact
that usual tools of complexity theory, well behaving on inductive data types,
cannot be directly adapted to streams suggests that an extensive study of theo-
retical tools is necessary.
In [14], we considered a small stream Haskell-like first order language and we
started the study of some space properties, i.e. properties about the size of stream
elements. We presented a new method that use semantic interpretations in order
to ensure I/O and synchrony upper bounds properties for functions working on
streams. The semantic interpretations used there are extensions of the notions of
quasi-interpretation [15] and sup-interpretation [16], introduced to obtain upper
bounds on finitary term rewriting systems.
The method introduced in [14] is promising and is well adapted to purely opera-
tional reasoning, nevertheless the properties studied there are limited to proper-
ties about functions working on input streams and they do not consider defini-
tions of streams, i.e. functions that do not have streams in input. In particular,
such properties do not hold even for simple examples of stream programs like

ones :: [Nat]
ones = 1 : ones

nats :: Nat→ [Nat]
nats x = x : (nats (x + 1))

In the present work, we generalize the method of [14], in order to study proper-
ties of stream programs, i.e. properties of both functions working on streams and
stream definitions. In particular, we study space properties of streams like nats
or ones. We design criteria to ensure a global and a local space upper bound
properties.
Consider the following stream program:

repeat :: Nat→ [Nat]
repeat x = x : (repeat x)

zip :: [α]→ [α]→ [α]
zip (x : xs) ys = x : (zip ys xs)

It is easy to verify that the size of every element of a stream s built only using
repeat and zip is bounded by a constant k, i.e. the maximal natural number n
in a subterm repeat n in s. In particular, it means that every stream s built only
using repeat and zip is globally bound by a constant k. In order to generalize
this property, we study a Global Upper Bound (GUB) property ensuring that
the size of stream elements is bound by a function in the maximal size of the
input elements.
Analogously, consider the following stream program:

nats :: Nat→ [Nat]
nats x = x : (nats (x + 1))

sad :: [Nat]→ [Nat]→ [Nat]
sad (x : xs) (y : ys) = (add x y) : (sad xs ys)

Clearly, every stream s built using nats and sad is not globally bound. Never-
theless it is easy to verify that for every such an s there exists a function f such
that every element a of s in the local position n has a size bound by f(n). In
order to generalize this property, we study a Local Upper Bound (LUB) property
ensuring that the size of the n-th evaluated element of a stream is bounded by
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a function in its index n and the maximal size of the input.
The above properties, very natural from a complexity theory point of view, are
also of practical interest since they can be used to prove upper bounds on classi-
cal stream examples. For this reason, we study two distinct criteria guaranteeing
them.
From the technical point of view, in order to ensure the global upper bound prop-
erty, we need to simply adapt the tools developed in [14]. The result is simple but
gives an interesting insight on the way global properties of infinite data types
can be given in a finitary way. Conversely, in order to ensure the local upper
bound we need an extension of the usual semantic interpretation. In particular,
we introduce the new notion of parametrized semantic interpretation, i.e. seman-
tic interpretation where functions depend on external parameters. Parametrized
semantic interpretations allow us to ensure the local upper bound and seem to
be a pertinent tool for future developments.

Outline of the paper In Section 2, we introduce the language considered
and notations. In Section 3, we recall some basic notions about interpretations.
In Section 4, we study the global upper bound properties and the semantic
interpretation criteria to ensure it. In Section 5, we introduce the local upper
bound property, we generalize semantic interpretations to the parametrized ones
and we study criteria to ensure it. Finally in Section 6 we conclude by giving
some remark about the combination of the global and local criteria.

2 Preliminaries

2.1 Syntax of the first order sHask language

We consider a first order Haskell-like language sHask computing on stream data
presented in [14]. Consider three disjoint sets X , C and F representing the set
of variables, the set of constructor symbols and, respectively, the set of function
symbols. A sHask program consists in a set of definitions described in the the
grammar of Table 1, where x ∈ X , c ∈ C and f ∈ F . Throughout the paper,
we use the identifier t to represent a symbol in C ∪ F and the notation d, for
some identifier d, to represent the sequence d1, . . . , dn, whenever n is clear from
the context. We will also use the notation t −→e as a short for the application
t e1 · · · en, whenever t is a symbol of arity n. Notice that, as usual, application
associates to the left. Moreover, we distinguish a special error symbol Err in C
of arity 0 corresponding to pattern matching failure.
The language sHask includes a Case operator to carry out pattern match-
ing and first order program definitions. Note that Case operator can appear
only in definitions. In this, our grammar presentation differs from the one in
[14], but there we also have some additional conditions that turn the defini-
tions to be exactly the same considered here. We will use set of definitions
f −→p1 = e1, . . . , f

−→pk = ek as syntactic sugar for an expression of the shape
f −→x = Case x of p1 → e1, . . . , pk → ek.

3
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p ::= x | c p1 · · · pn (Patterns)

e ::= x | t e1 · · · en (Expressions)

v ::= c e1 · · · en (Values)

v ::= c v1 · · · vn (CValues)

d ::= f x1 · · · xn = Case e of p1 → e1 . . . pm → em (Definitions)

Table 1. sHask syntax

Finally, we suppose that all the free variables contained in the expression ei of
a case expression appear in the patterns pi, that no variable occurs twice in pi
and that patterns are non-overlapping. It entails that programs are confluent.
For simplicity, we only consider well-typed first order programs dealing with lists

x :: A
(Var)

Err :: A
(E)

e :: A p1 :: A · · · pm :: A e1 :: A · · · em :: A

Case e of p1 → e1, . . . , pm → em :: A
(Case)

t :: A1 → · · · → An → A
(Tb)

t :: A1 → · · · → An → A e1 :: A1 · · · en :: An

t e1 · · · en :: A
(Ts)

Table 2. sHask type system

that do not contain other lists. We assure this property by a typing restriction
similar to the one of [13].

Definition 1. Let S be the set of base and source types defined by the following
grammar:

σ, τ ::= α | Nat | σ × σ (source types)
A ::= a | σ | A× A | [σ] (base types)

where α is a source type variable, a is a base type variable, Nat is a constant
type representing natural numbers, × and [ ] are type constructors.

Notice that the above definition can be extended to standard algebraic data
types. In the sequel, we use α, β to denote source type variables, a, b to denote
base type variables, σ, τ to denote source types and A, B to denote base types.
As in Haskell, we allow restricted polymorphism, i.e. a source type variable α
and a base type variable a represent every source type and respectively every
base type. As usual, → associates to the right. For notational convenience, we
will use

−→
A → B as an abbreviation for A1 → · · · → An → B.

Every function and constructor symbol t of arity n come equipped with a type
A1 → · · · → An → A. Well typed symbols, patterns and expressions are defined
using the type system in Table 2. Note that the symbol Err can be typed with
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every base type A in order to get type preservation in the evaluation mechanism.
Moreover, it is worth noting that the type system, in order to allow only first
order function definitions, assigns functional types to constructors and function
symbols, but only base types to expressions. Typing judgments are of the shape
t ::
−→
A → B, for some symbol t and some type

−→
A → B. In our examples, we will

only consider three standard data types: numerals, lists and pairs, encoded by
the constructor symbols 0 and infix + 1, nil and infix : and, respectively, ( , ).
In this work,we are specifically interested in studying stream properties. So we
pay attention to particular classes programs working on [α], the type of both
finite and infinite lists of type α. In what follows we use a terminology slightly
different from the one used in [14]. A function symbol f is called a stream function
if f :: [σ1]→ · · · → [σn]→ −→τ → [σ] with n > 0. In the case where f :: −→τ → [σ],
the function symbol f is called a stream constructor. Given a definition f−→p = e
we say that it is a function definition if f is a stream function, otherwise if f
is a stream constructor we say that it is a stream definition. In what follows,
we will in general talk about properties of function symbols to stress that such
properties holds both for functions and stream definitions.

Example 1. Consider the following program:

zip :: [α]→ [α]→ [α]
zip (x : xs) ys = x : (zip ys xs)

nats :: Nat→ [Nat]
nats x = x : (nats (x + 1))

zip is a stream function and nats is a stream constructor.

2.2 sHask lazy operational semantics

The sHask language has a standard lazy operational semantics, where sharing
is not considered. The semantics is described by the rules of Table 3 using sub-
stitutions, where a substitution σ (sometimes denoted {e1/x1, . . . , en/xn}) is a
mapping from variables to expressions. The computational domain is the set of
Values defined in Table 1. Values are either particular expressions with a con-
structor symbol at the outermost position or the symbol Err corresponding to
pattern matching errors. Note that the intended meaning of the notation e ⇓ v
is that the expression e evaluates to the value v ∈ Values. As usual in lazy
semantics the evaluation does not explore the entire results but stop once the
requested information is found.

Example 2. Consider again the program defined in Example 1. We have the
following evaluations: nats 0 ⇓ 0 : (nats (0+1))) and zip nil (nats 0) ⇓ Err.

2.3 Preliminary notions

In this section, we introduce some useful programs and notions in order to
study stream properties by operational finitary means. First, we define the usual
Haskell list indexing function !! which returns the n-th element of a list.
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c ∈ C
c e1 · · · en ⇓ c e1 · · · en

(val)
e{e1/x1, · · · , en/xn} ⇓ v f x1 · · · xn = e

f e1 · · · en ⇓ v
(fun)

Case e1 of p11 → . . .→ Case em of pm
1 → d1 ⇓ v v 6= Err

Case e of p1 → d1, . . . , pn → dn ⇓ v
(cb)

Case e1 of p11 → . . .→ Case em of pm
1 → d1 ⇓ Err Case e of p2 → d2, . . . , pn → dn ⇓ v

Case e of p1 → d1, . . . , pn → dn ⇓ v
(c)

e ⇓ c e1 · · · en Case e1 of p1 → . . . Case en of pn → d ⇓ v

Case e of c p1 · · · pn → d ⇓ v
(pm)

e ⇓ v v 6= c e1, · · · , en

Case e of c p1, · · · , pn → d ⇓ Err
(pme)

e′{e/x} ⇓ v

Case e of x→ e′ ⇓ v
(pmb)

Table 3. sHask lazy operational semantics

!! :: [α]→ Nat→ α
(x : xs) !! 0 = x
(x : xs) !! (y + 1) = xs !! y

Second, we define a program eval that forces the (possibly diverging) full evalu-
ation of expressions to constructor values in CValues described in Table 1, which
are expressions composed only by constructors. We define eval for every value
type A as:

eval :: A→ A
eval (c e1 · · · en) = Ĉ (eval e1) · · · (eval em)

where Ĉ is a function symbol representing the strict version of the primitive con-
structor c. For example in the case where c is +1 we can define Ĉ as the program
succ :: Nat → Nat defined by succ 0 = 0 + 1 and succ (x + 1) = (x + 1) + 1.
When we want to stress that an expression e is completely evaluated (i.e. eval-
uated to a constructor value) we denote it by e. A relevant set of completely
evaluated expressions is the set N = {n | n :: Nat} of canonical numerals. In
general we write 0, 1, . . . for concrete instances of canonical numerals. Finally we
introduce a notion of size for expressions.

Definition 2 (Size). The size of a expression e is defined as

|e| = 0 if e is a variable or a symbol of arity 0

|e| =
∑

i∈{1,...,n}
|ei|+ 1 if e = t e1 · · · en, t ∈ C ∪ F .

Note that for each n ∈ N we have |n| = n. Let F (e) denote the componentwise ap-
plication of F to the sequence e (i.e. F (e1, · · · , en) = F (e1), . . . , F (en)). For ex-
ample, given a sequence s = s1, · · · , sn, we use the notation |s| for |s1|, . . . , |sn|.
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3 Interpretations

Now we introduce interpretations, our main tool in order to ensure stream prop-
erties. Throughout the paper, ≥ and > denote the natural ordering on real
numbers and its restriction.

Definition 3 (Assignment). An assignment of a symbol t ∈ F ∪ C of arity
n is a function LtM : (R+)n → R+. For each variable x ∈ X , we define LxM = X,
with X a fresh variable ranging over R+. This allows us to extend assignmentsL−M to expressions canonically. Given an expression t e1 . . . en with m variables,
its assignment is a function (R+)m → R+ defined canonically by:

Lt e1 . . . enM = LtM(Le1M, · · · , LenM)
A program assignment is an assignment L−M defined for each symbol of the pro-
gram. An assignment is monotonic if for any symbol t, LtM is an increasing
function, that is for every symbol t and all Xi, Yi of R+ such that Xi ≥ Yi, we
have LtM(. . . , Xi, . . .) ≥ LtM(. . . , Yi, . . .).
Now we define the notion of additive assignments which guarantees that the
assignment of a constructor value remains affinely bounded by its size.

Definition 4. An assignment of a symbol c of arity n is additive if

LcM(X1, · · · , Xn) =
n∑
i=1

Xi + αc

with αc ≥ 1, whenever n > 0, and LcM = 0 otherwise. The assignment L−M of
a program is called additive assignment if each constructor symbol of C has an
additive assignment.

Additive assignments have the following interesting property.

Lemma 1. Given an additive assignment L−M, there is a constant α such that
for each constructor value v, the following inequalities are satisfied:

|v| ≤ LvM ≤ α× |v|
Proof. Assume that for every c of arity n whenever n > 0 then LcM(X1, · · · , Xn) =∑n
i=1Xi+αc, with αc ≥ 1, otherwise LcM = 0. If v is a constructor symbol of ar-

ity 0 then |v| = LvM = 0, else v = c v1 . . . vn and we show the result by induction
on the size. Take α = maxc∈C(αc) and suppose that |vi| ≤ LviM ≤ α× |vi|:

|c v1 . . . vn| =
n∑
i=1

|vi|+ 1 ≤
n∑
i=1

LviM + αc = Lc v1 . . . vnM
≤

n∑
i=1

α× |vi|+ α = α× |c v1 . . . vn|

The first inequality is a consequence of the combination of induction hypothesis
and the fact that αc ≥ 1. The second inequality is a consequence of the combi-
nation of induction hypothesis and the fact that αc ≤ α. ut
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Definition 5 (Interpretation). A program admits an interpretation L−M ifL−M is a monotonic assignment such that for each definition of the shape f −→p = e
we have Lf −→p M ≥ LeM.
Example 3. The following assignment LzipM(X,Y ) = X + Y and L:M(X,Y ) =
X + Y + 1 is an additive interpretation of the program zip of Example 1:

Lzip (x : xs) ysM = LzipM(Lx : xsM, LysM) By canonical extension
= Lx : xsM + LysM By definition of LzipM
= LxM + LxsM + LysM + 1 By definition of L:M
= Lx : (zip ys xs)M Using the same reasoning

Let→ be the rewrite relation induced by giving an orientation from left to right
to the definitions and let →∗ be its contextual, transitive and reflexive closure.
We start by showing some properties on monotonic assignments:

Proposition 1. Given a program admitting the interpretation L−M, then for ev-
ery closed expression e we have:

1. If e→∗ d then LeM ≥ LdM
2. If e ⇓ v then LeM ≥ LvM
3. If eval e ⇓ v then LeM ≥ LvM

Proof.

1. By induction on the derivation length and can be found in [17].
2. It is a direct consequence of point 1 of this proposition because the lazy

semantics is just a particular rewrite strategy.
3. By induction on the size of constructor values using point 2 of this proposi-

tion and monotonicity. ut

It is important to relate the size of an expression and its interpretation.

Lemma 2. Given a program having an assignment L−M, there is a function G :
R+ → R+ such that for each expression e we have: LeM ≤ G(|e|).

Proof. By induction on the size of expressions, it can be found in [14]. ut

In the following sections, we study global and local stream properties related to
constructor value size upper bounds. Moreover, we introduce criteria that use
interpretations to ensure them. Although these properties are mostly undecid-
able, the criteria we discuss are decidable when considering restricted classes of
functions, for example polynomials over real numbers of bounded degree and
coefficients, see [18, 19] for a more detailed discussion.
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4 Global upper bound (GUB)

In studing space properties of programs it is natural to relate the output element
size with respect to the input size. Ensuring this provides interesting information
about the complexity of functions computed by the corresponding program.
However, recognize the true complexity measure in order to express interesting
bound properties, when lazy languages and infinite data are involved, is not so
obvious. In particular, streams are infinite data and it would be nonsense to
consider their whole size as input. One solution is to take the maximal size of a
stream element as a parameter and to bound the maximal output element size by
a function in the maximal input size. This is what we call a global upper bound
because it bounds the size of output elements globally. Notice that, in general,
such a definition has a meaning if the input stream has a maximal element size.
This trivially holds when there is no input stream.

Definition 6. Given a sHask program, the function symbol f ::
−→
[σ]→ −→τ → [σ]

has a global upper bound if there is a function G : R+ → R+ such that for every
expression si :: [σi] and ei :: τi of the program:

∀n ∈ N s.t. eval((f −→s −→e ) !! n) ⇓ v, G(max(|s|, |e|)) ≥ |v|
A program has a global upper bound if every function symbol in it has a global

upper bound.

Note that in the definition above we consider both stream functions and stream
constructors, this means that we can both have globally bounded function and
stream definitions.

Example 4. The program consisting in the zip function definition of Example 1
together with the stream definition ones = 1 : ones has a global upper bound.
Let e be zip ones ones. We know that every element of ones has size bounded
by the constant 1. Since for each n ∈ N, eval(e !! n) ⇓ 1, by taking G(X) = X+1,
we obtain |1| = 1 + |0| = 1 ≤ 1 = G(0) ≤ G(|ones|).
Now, we define a criterion using interpretations in order to ensure the global
upper bound.

Definition 7. A program is GUB if it admits an interpretation L−M that is
additive but on the constructor : where L:M is defined by L:M(X,Y ) = max(X,Y ).

Lemma 3. If a program is GUB, ∀e :: [σ],∀n ∈ N s.t. e !! n ⇓ v and v 6=
Err, LeM ≥ LvM.
Proof. We proceed by induction on n ∈ N.
Let n = 0 and e !! 0 ⇓ v and v 6= Err. It is easy to verify that neces-
sarily e ⇓ hd : tl because programs are well typed. By definition of GUB
and by Proposition 1(2) we know that there is an interpretation such thatLeM ≥ Lhd : tlM = L:M(LhdM, LtlM) ≥ LhdM, because L:M(X,Y ) = max(X,Y ). Apply-
ing Proposition 1(2) again, we know that if hd ⇓ v then LhdM ≥ LvM. So we have
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LeM ≥ LvM and then the conclusion.
Now, let n = n′ + 1 and e !! (n′ + 1) ⇓ v and v 6= Err. It is easy to verify
that necessarily e ⇓ hd : tl and again we have LeM ≥ Lhd : tlM ≥ LtlM. Moreover
e !! (n′+1) ⇓ v implies by definition that tl !! n′ ⇓ v and by induction hypothesis
we have LtlM ≥ LvM. So we can conclude LeM ≥ LvM and so the conclusion. ut

Theorem 1. If a program is GUB then it has a global upper bound.

Proof. It suffices to show that every function symbol has a global upper bound.
For simplicity, we suppose that for each function symbol we have only one def-
inition. The general case with several definitions follows directly. Consider a
function symbol f ::

−→
[σ]→ −→τ → [σ] and a definition f −→ps −→pb = e.

Let n ∈ N and σ be a substitution and suppose eval((f −→psσ −→pbσ) !! n) ⇓ v. It
follows that (f −→psσ −→pbσ) !! n ⇓ v, for some v such that eval v ⇓ v. By Lemma 3,Lf −→psσ −→pbσM ≥ LvM. By Proposition 1(3) LvM ≥ LvM and, by Lemma 1, LvM ≥ |v|.
Hence we can conclude Lf −→psσ −→pbσM ≥ |v|.
By Lemma 2 and monotonicity, we know that there is a function F : R+ → R+

such that LfM (F (|psσ|), F (|pbσ|)) ≥ LfM (LpsσM, LpbσM) = Lf −→psσ −→pbσM. So we
obtain a global upper bound by taking G(X) = LfM(F (X), F (X)). ut

Example 5. The program consisting in the zip function definition of Example 1
together with the stream definition ones = 1 : ones is GUB wrt the following
assignment LzipM(X,Y ) = max(X,Y ), LonesM = 1, L0M = 0, L+1M(X) = X + 1
and L:M(X,Y ) = max(X,Y ). Indeed, we let the reader check that LonesM ≥L1 : onesM. Consequently, it admits a global upper bound. For example, taking
G(X) = X + 1 and F (X) = LzipM(X,X) we know that LonesM ≤ G(|ones|) and
we obtain that for all n ∈ N such that eval((zip ones ones)!!n) ⇓ vn, we have
F (G(|ones|)) = F (G(0)) = F (1) = 1 ≥ |vn| (Indeed for all n, we have vn = 1).

We show a more involved example.

Example 6 (Thue-Morse sequence). The following program computes the Thue-
Morse sequence:

morse :: [Nat]
morse = 0 : (zip (inv morse) (tail morse))

tail :: [α]
tail x : xs = xs

inv :: [Nat]→ [Nat]
inv 0 : xs = 1 : xs
inv 1 : xs = 0 : xs

zip :: [α]→ [α]→ [α]
zip (x : xs) ys = x : (zip ys xs)

Clearly this program has a global upper bound. Moreover, it is GUB with re-
spect to the following interpretation: L0M = 0, L+1M(X) = 1, L:M(X,Y ) = LzipM =
max(X,Y ), LinvM(X) = max(1, X), LtailM(X) = X and LmorseM = 1. Indeed
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for the first rule, we have that for each L ∈ R:

LmorseM = 1 ≥ max(0, 1, 1, 1)
= max(L0M,max(1, LmorseM, LmorseM))
= max(L0M,max(Linv morseM, Ltail morseM))
= max(L0M, L(zip (inv morse) (tail morse))M)
= L0 : (zip (inv morse) (tail morse))M

We let the reader check the inequalities for the other definitions.

5 Local upper bound (LUB)

Previous upper bounds are very useful in practice but also very restrictive. Sim-
ple examples like the stream definition of nats does not admit any global upper
bound (and it is not GUB because we should demonstrate that Lnats xM ≥? Lx :
(nats (x + 1))M = max(LxM, LnatsM(LxM + k)), for some k ≥ 1) just because they
compute streams with unbounded element size. However we would like to estab-
lish some properties over such kind of programs depending on other parameters.
Clearly, in functional programming we never expect a stream to be fully eval-
uated. A Haskell programmer will evaluate some elements of a stream s using
some function like !! or take. In this case, it may be possible to derive an upper
bound on the size of the elements using the input index n of the element we
want to reach. For example, we know that the size of the complete evaluation of
(nats 0) !! n is bounded by the size of n.
From these obsrvations it is easy to argue that we need another kind of space
property, that we call local because it does not only rely on the maximal size of
the input stream elements but also on their index in the output stream.

Definition 8. Given a sHask program, the function symbol f ::
−→
[σ]→ −→τ → [σ]

has a local upper bound if there is a function G : R+ → R+ such that for every
expression si :: [σi], ei :: τi of the program:

∀n ∈ N s.t. eval((f −→s −→e ) !! n) ⇓ v, G(max(|s|, |e|, |n|)) ≥ |v|
A program has a local upper bound if every function symbol in it has a local

upper bound.

Note that also in the definition above, like in the case of GUB, we consider both
stream functions and stream constructors, this means that we can both have
locally bounded function and stream definitions.

Example 7. Consider the stream definition of nats of Example 1. The output
stream has unbounded elements size. However we know that ∀n ∈ N and ∀e :: Nat
if (nats e) !! n ⇓ v then v = ((e+1) + · · · ) + 1︸ ︷︷ ︸

n times

. Consequently, taking F (X) =

2×X, we obtain that ∀n ∈ N:

|v| = |n|+ |e| ≤ 2×max(|n|, |e|) = F (max(|n|, |e|))
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Now we define a criterion ensuring the fact that the size of an output element
may depend on its index. For that purpose, we need to introduce a variation on
assignments.

Definition 9. A program assignment is parametrized by some variable L ∈ R,
denoted L−ML, if for each symbol t of arity n, LtML is a function from (R+)n×R to
R. In what follows, we use the notation L−Mr, whenever some r ∈ R is substituted
to L. The parametrized assignment of a variable x is defined by a fresh variable
X ranking over R+. Each parametrized assignment is extended to expressions as
follows:

Lt e1 · · · enML = LtML(Le1ML, . . . , LenML) if t 6= :Lhd : tlML = L:ML(LhdML, LtlML−1) otherwise

A parametrized assignment is monotonic if it is monotonic with respect to each
of its arguments, including the parameter L ∈ R.
We extend the notion of additivity to parametrized interpretation so that an
additive symbol c of arity n, for some k ≥ 1, has the interpretation

LcM(X1, · · · , Xn)L =
n∑
i=1

Xi + L+ k

A program admits a parametrized interpretation L−ML if there is a monotonic
parametrized assignment L−ML such that for each definition of the shape f −→p = e
we have Lf −→p ML ≥ LeML.

Proposition 2. Given a program admitting the parametrized interpretation L−ML,
then for every closed expression e and every r ∈ R we have:

1. If e→∗ d then LeMr ≥ LdMr
2. If e ⇓ v then LeMr ≥ LvMr
3. If eval e ⇓ v then LeMr ≥ LvMr

Proof.

1. We show that this result holds for every expression d such that e →∗ d, by
induction on the reduction length n. It trivially holds for n = 0. Suppose it
holds for n and take a reduction of length n+ 1: e→n+1 d. Define a context
C[�] to be a non case expression with one hole � and let C[e] denote the
result of filling the hole � with e. We know that there are a context C[�],
a substitution σ and a definition l = r such that e →n C[lσ] → C[rσ] = d.
By induction hypothesis, LeMr ≥ LC[lσ]Mr. Now let LCMr be a function in
R → R satisfying LCMr(X) = LC[�]Mr for each X ∈ R+ such that X = L�Mu,
for all u ∈ R. We know that there is some r′ ∈ R such that LC[lσ]Mr =LCMr(LlσMr′). The real number r′ just depends on the structure of the context
C[�] (indeed it is equal to r minus the number of times where the expression
lσ appears as a subterm of the rightmost argument of the constructor symbol

12

168



: in the context C[�]). By definition of parametrized interpretations, we also
know that for all L (and in particular for r′), LlσML ≥ LrσML. So we haveLCMr(LlσMr′) ≥ LCMr(LrσMr′) = LdMr, by monotonicity.

2. follows for every v such that e ⇓ v, from the fact that the lazy semantics is
just a particular rewrite strategy.

3. we prove it using the same reasoning as in the proof of Proposition1.3. There
are two cases to consider. If e ⇓ c −→e , with c 6=:, then we can show easily
that eval e ⇓ c −→v , for some vi such that eval ei ⇓ vi. Since LeMr ≥ Lc −→e Mr,
by (2), and LeiMr ≥ LviMr, by induction hypothesis, we conclude that LeMr ≥Lc −→e Mr = LcMr(LeMr) ≥ LcMr(LvMr) = Lc −→v Mr, by monotonicity of LcMr and,
by definition of canonical extension. Now if e ⇓ hd : tl and eval hd ⇓ v
and eval tl ⇓ w then LeMr ≥ Lhd : tlMr, by (2), and LhdMr ≥ LvMr andLtlMr−1 ≥ LwMr−1, by induction hypothesis. We conclude that LeMr ≥ Lhd :
tlMr = L:Mr(LhdMr, LtlMr−1) ≥ L:Mr(LvMr, LwMr−1) = Lv : wMr, by monotonicity
of L:Mr. ut

Lemma 4. Given a program admitting a monotonic parametrized assignmentL−ML, there is a function G : R+ × R+ → R+ such that for each expression e
and every r ∈ R+: LeMr ≤ G(|e|, r)

Proof. Define F (X,L) = max(maxt∈C∪F LtML(X, . . . ,X), X) and Fn+1(X,L) =
F (Fn(X,L), L) and F 0(X,L) = F (X,L). We prove by induction on the struc-
ture of e that LeMr ≤ F |e|(|e|, r). If e is a variable, a constructor or a func-
tion symbol of arity 0, then conclusion follows directly by definition of F , i.eLeML ≤ F (X,L). Now, consider e = t d1 · · · dn and suppose |dj | = maxni=1 |di|.
By induction hypothesis, we have LdiMr ≤ F |di|(|di|, r). We have two possibilities
depending on the shape of t. If t 6=: then by induction hypothesis, definition
and monotonicity of F :

LeMr = LtMr(Ld1Mr, . . . , LdnMr) ≤ LtMr(F |d1|(|d1|, r), . . . , F |dn|(|dn|, r))
≤ LtMr(F |dj |(|dj |, r), . . . , F |dj |(|dj |, r)) ≤ F (F |dj |(|dj |, r), r)
≤ F |dj |+1(|e|, r) ≤ F |e|(|e|, r)

Conversly in the case t =: by definition of parametrized interpretation, induction
hypothesis, definition and monotonicity of F , we have:

LeMr = Lhd : tlMr = L:Mr(LhdMr, LtlMr−1) ≤ L:Mr(F |hd|(|hd|, r), F |tl|(|tl|, r − 1))

≤ L:Mr(F |hd|(|hd|, r), F |tl|(|tl|, r)) ≤ F |e|(|e|, r)
Now the conclusion follow easily by taking G(X,L) = FX(X,L). ut

Definition 10. A program is LUB if it admits an additive parametrized inter-
pretation L−ML but on : where L:ML is defined by L:ML(X,Y ) = max(X,Y ).
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Example 8. Consider again the stream definition of nats of example 1 together
with the following parametrized assignment L−ML defined by LnatsML(X) = X+
L, L + 1ML(X) = X + 1, L0ML = 0 and L:ML(X,Y ) = max(X,Y ). We check that:

Lnats(x)ML = LnatsML(LxML) = X + L ≥ max(X, (X + 1) + (L− 1))
= max(LxML, Lnats(x + 1)ML−1) = Lx : (nats (x + 1))ML

It is a parametrized interpretation and, consequently, nats is LUB.

Now, we show an intermediate result for parametrized interpretations.

Lemma 5. For every n ∈ N and e :: [σ], if e !! n ⇓ v and v 6= Err then

LeMn ≥ LvM0
Proof. We proceed by induction on n ∈ N.
Let n = 0 and e !! 0 ⇓ v. It is easy to verify that necessarily e ⇓ hd : tl. By
definition of L:M and by Proposition 2.2 we have LeM0 ≥ Lhd : tlM0 ≥ LhdM0. By
Proposition 2.3, if eval hd ⇓ v then LhdM0 ≥ LvM0. So we have LeM0 ≥ LvM0 and
then the conclusion.
Consider the case n = n′+1 and e !! (n′+1) ⇓ v. It is easy to verify that necessarily
e ⇓ hd : tl, hence we have LeMn ≥ Lhd : tlMn = max(LhdMn, LtlMn−1) ≥ LtlMn−1,
by Proposition 2.2. Moreover e !! (n′+1) ⇓ v implies by definition that tl !! n′ ⇓ v
and by induction hypothesis we have LtlMn−1 ≥ LvM0. So we have LeMn ≥ LvM0
and then the conclusion. ut
Theorem 2. If a program is LUB then it admits a local upper bound.

Proof. It suffices to show that every function symbol has a local upper bound.
For simplicity, we consider the case where for each function symbol we have only
one definition. The general case with several definitions follows directly. Consider
a stream function symbol f ::

−→
[σ]→ −→τ → [σ] defined by f −→ps −→pb = e.

Let n ∈ N and σ be a substitution and suppose eval((f −→psσ −→pbσ) !! n) ⇓ v. It
is easy to verify that (f −→psσ −→pbσ) !! n ⇓ v, for some v such that eval v ⇓ v.
By Lemma 5, Lf −→psσ −→pbσMn ≥ LvM0. By Proposition 2.3 and Lemma 1, LvM0 ≥LvM0 ≥ |v|. Notice that Lemma 1 still holds because if L−ML is an additive
parametrized assignment then L−M0 is an additive assignment. Hence we can
conclude Lf −→psσ −→pbσMn ≥ |v|. By Lemma 4 and monotonicity:

LfM|n| (G(|psσ|, |n|), G(|pbσ|, |n|)) ≥ LfMn (LpsσMn, LpbσMn) = Lf −→psσ −→pbσMn
By taking F (X) = LfMX(G(X,X), G(X,X)), we have a local upper bound. ut
Example 9. Consider the stream definition of nats of Example 1 together with
the parametrized interpretation of Example 8. It is LUB, consequently, it admits
a local upper bound. Taking F (X) = LnatsMX(X) = X + X, we know that for
each canonical numerals m, n ∈ N such that eval((nats m) !! n) ⇓ vn, we have
F (max(|n|, |m|)) = 2×max(m,n) ≥ |vn| (Indeed for all n, we have vn = m + n).

14
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We show a more involved example.

Example 10 (Fibonacci). The following program computes the Fibonacci se-
quence:

fib :: [Nat]
fib = 0 : (1 : (sad fib (tail fib)))

tail :: [α]
tail x : xs = xs

add :: Nat→ Nat→ Nat
add (x + 1) (y + 1) = ((add x y) + 1) + 1
add (x + 1) 0 = x + 1
add 0 (y + 1) = y + 1

sad :: [Nat]→ [Nat]→ [Nat]
sad (x : xs) (y : ys) = (add x y) : (sad xs ys)

This program is LUB with respect to the following interpretation: L0ML = 0,L+1ML(X) = X+L+1, L:ML(X,Y ) = max(X,Y ), LsadML(X,Y ) = LaddML(X,Y ) =
X + Y , LtailML(X) = X and LfibML = 2L. Indeed for the first rule, we have
that for each L ∈ R:

LfibML = 2L ≥ max(0, L, 2× 2L−2)
= max(L0ML,max(L1ML−1, 2× LfibML−2))
= max(L0ML,max(L1ML−1, Lsad fib (tail fib)ML−2))
= max(L0ML, L1 : sad fib (tail fib)ML−1)
= L0 : (1 : sad fib (tail fib))ML

We let the reader check the inequalities for the other definitions. We obtain that
the function 2L is a parametrized upper bound on the Fibonacci sequence: for
each canonical numerals n ∈ N s.t. eval(fib !! n) ⇓ vn, we have 2|n| ≥ |vn|.

6 Combining the criteria

One issue of interest is to study what happens if we consider locally bounded
streams (like in the case of LUB) and if we want to obtain a global upper bound
without any reference to the index as illustrated by the following example.

Example 11. This program computes the componentwise positive minus between
two streams of numerals:

min :: Nat→ Nat→ Nat
min 0 x = 0
min (x + 1) 0 = x + 1
min (x + 1) (y + 1) = min x y

smin :: [Nat]→ [Nat]→ [Nat]
smin (x : xs) (y : ys) = (min x y) : (smin xs ys)

The size of the result is always bounded by the maximal size of the first input
stream elements even if the sizes of the second input stream elements are not
bounded. Consequently, if the first input only contains GUB symbols, whatever
the second input is we know that the result will be bounded. In this particular
case, we might ask the program to be LUB together with the restrictions:

15
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– LsminML(X,Y ) is constant in Y and L,
– the first argument of smin only applies to expressions e such that LeML is

constant in L

By Proposition 2.3 and by Lemmata 5 and 1, if eval((smin e d)!!n) ⇓ v we
know that Lsmin e dMn ≥ LvM0 ≥ |v|. By the above restrictions, we obtainLsminMn(LeMn, LdMn) = LsminM0(LeM0, 0) ≥ |v| (substituting arbitrarily the con-
stant 0 to n) and, consequently, we obtain an upper bound independent from n.
We claim it can be generalized easily to every LUB program. For example, we
may show that smin ones (nats 0) has a global upper bound using this method-
ology.
We leave this kind of questions for future investigations.
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Abstract. The core of our resource analysis for the embedded sys-
tems language Hume is a resource-generic, type-based inference engine
that employs the concept of amortised costs to statically infer resource
bounds. In this paper we present extensions and improvements of this
resource analysis in several ways. We develop and assess a call count
analysis, as a specific instance of our inference engine. We address us-
ability aspects and discuss an improved presentation of the inferred re-
source bounds together with the possibility of interactively tuning these
bounds. Finally, we demonstrate improvements in the performance of
our analysis.

1 Introduction

In the past [19] we have developed an amortised cost based resource analysis
for a higher-order, strict functional language, namely expression-level Hume.
Salient features of this analysis are its strong formal foundations, building on
amortised program complexity and type systems, high performance due to em-
ploying efficient linear program solvers, and the possibility to express not only
size-dependent but also data-dependent bounds on (generic) resource consump-
tion. This analysis has been successfully used to infer upper bounds on the heap-
and stack-space consumption and on the worst-case execution time of expression-
level Hume programs.

One of the main strengths of our analysis is its flexible design, which permits
easy adaptation to model other quantitative resources. In essence, only a cost
table, mapping abstract machine instructions to basic costs, needs to be mod-
ified. We use this flexibility to develop a call count analysis for (higher-order)
programs. The bounds inferred by our analysis are in general data-dependent
and we demonstrate this strength on a standard textbook example of insertion
into a red-black tree, which is discussed in context of our automatic amortised
resource analysis herein for the first time.

This paper also addresses pragmatic limitations in the practical application
and acceptance of our type-based analysis.

We have found that the presentation of resource bounds in the form of nu-
meric annotations to the types is difficult to understand for the non-expert user.
? We acknowledge financial support by EU Framework VI projects IST-510255 (Em-

Bounded) and IST-26133 (SCIEnce), and by EPSRC grant EP/F030657/1 (Islay).
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We therefore produced an elaboration module, which translates the annotated
types, produced by our analysis, into more easily digestable closed form expres-
sions. Furthermore, the bounds shown to the user are usually just one of many
possible solutions, picked by an heuristic. All solutions to the linear program
yield valid cost bounds and there is no “best” solution. Hence we now allow
the user to interactively explore the solution space, starting with the solution
presented by our heuristic, which we will describe here for the first time.

While our analysis was designed from the start to be highly efficient, we
identified several possibilities of further improving its performance. These issues
cover the tuning of the Haskell implementation as well as more tightly integrating
the constraint solving phase into the overall analysis. As a result we achieve a
speedup factor of up to 1.36.

The main contributions of this paper are:

– the development and assessment of a function call count analysis, as an
instance of our resource-generic amortised-cost-based resource analysis;

– concrete evidence of enhanced resource bounds due to the data-dependence,
rather than only size-dependence, of our analyses;

– the development of an elaboration module providing interactive resource
bounds phrased in natural-language as opposed to special type annotations;

– and the development and assessment of several improvements to the perfor-
mance of the analysis.

The structure of the paper is as follows. In Section 2 we present a new
call count analysis and apply it to several example programs. In Section 3 we
discuss improvements made to the usability of our analysis. In particular, we
present an elaboration module in Section 3.1, which translates enriched types,
encoding resource consumption, into a human readable, closed-form expression.
Furthermore, we demonstrate how the user can explore the solution space of
the analysis in Section 3.2. In Section 4 we discuss and quantify improvements
made to the performance of the analysis. Section 5 reviews related work. Finally,
Section 6 summarises our results.

2 Call Count Analysis

In this section we use the flexibility of our resource analysis to instantiate a
call count analysis. The goal of this analysis is to determine an upper bound
on the number of function calls made in the program, possibly restricting the
count to explicitly named functions. This metric is of particular interest for
higher-order programs, where determining a bound on the number of calls to a
certain function requires an inter-procedural analysis, since a call one function
may trigger further calls to itself or other functions.

Beyond being of just theoretical interest, call count information is of rele-
vance for example on mobile devices, where the function of interest may be the
transmission of a message, which is charged for by the mobile network provider.
In this scenario the “costs” of a function call are very real and measurable
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in £. For this reason, this particular example has been studied in the Mobius
project [3], where Java bytecode has been analysed in order to deliver such call
count information.

Our cost table for the call count metric therefore features three parameters:
a boolean indicating whether or not calls to built-in functions (like vector op-
erations) should be counted; a list of function identifiers to be ignored; and a
list of function identifiers to be counted exclusively. Note that the latter two
are mutually exclusive, since either all function calls except for the named ones
are counted, or conversely, all function calls are ignored except for calls to the
named functions. These parameters are useful in the above depicted usage sce-
nario, where only certain functions use a chargeable service.

The resulting cost table is relatively simple,1 with almost all entries in the
cost table being zero, except for three: true function applications, built-in func-
tion application and closure creation overhead. Recall that the higher-order
Hume language features under- and over-application, but not a general lambda
abstraction2. We therefore distinguish between calling a true top-level function
and a closure, since those generally have different costs associated with it. For
the call count metric, the cost parameter for the application of closures is zero,
since the actual function called depends on how the closure was created. There-
fore at the time of closure creation, an overhead parameter is added to the cost
of applying the created closure later, which thus accounts for each use of that
closure. As a concrete example, we want to count the number of calls to the add
function in the following definition of sum:

add :: num -> num -> num;

add x y = x + y;

fold :: (num -> num -> num) -> num -> [num] -> num;

fold f n [] = n;

fold f n (x:xs) = fold f (f x n) xs;

sum :: [num] -> num;

sum xs = fold add 0 xs;

Since we count only add, the type of the add closure created by under-application
in the body of sum shows a cost of one per application of the closure. When
folding this closure over a list, a cost proportional to the length of the list will
be inferred. We get as a result the type

ARTHUR3 typing for Call Count add: (list[C<1>:int,#|N]) -(0/0)-> int

which encodes a cost of 1 for each cons-cell of the input list,3 i.e. a bound of n,
where n is the length of the list.
1 See [19] for a detailed cost table featuring 15 entries; the actual implementation has

much more entries, roughly two per syntax construct and built-in operator.
2 However, our prototype implementation also features lambda abstraction directly.
3 The annotated function type A-(x/y)->B means that execution requires at most x

resource units, of which y are free for reuse afterwards. Any constructor followed by
<n> within type A means that up to n resources may be additionally required for
each occurrence of that constructor within the input. Also see Section 3.1.

FOPARA 2009 Preliminary Proceedings 175



Table 1. Results from the Resource Analyses

Program Cost model Analysis (N=10) Cost model Analysis (N=10)
absolute ratio absolute ratio

Call Count Analysis Heap Space Analysis
sum 22 22 1.00 88 88 1.00
zipWith 21 21 1.00 190 192 1.01
repmin 60 60 1.00 179 179 1.00
rbInsert 10 20 2.00 208 294 1.41

WCET Analysis Stack Space Analysis
sum 16926 21711 1.28 34 34 1.00
zipWith 27812 32212 1.16 139 140 1.01
repmin 47512 58759 1.24 81 222 2.74
rbInsert 27425 43087 1.57 82 155 1.89

Table 1 presents analysis results for call counts, heap- and stack-space con-
sumption, and worst-case execution time. The cost model results have been
obtained from an instrumented version of the Hume abstract machine [14]. The
sum example computes the sum over a list of integers, using a higher-order fold
function, as shown above. The zipWith example implements a variant of the
zip function parameterised with the function to apply to each pair of elements
(which is add in the tested code). The repmin example replaces all leaves in
a binary tree by its minimal element, using map and fold functions over trees.
Finally, the rbInsert function inserts an element into a red-black tree, possibly
re-balancing the resulting tree. The test input lists and trees had a size of 10.

The results for heap- and stack-space consumption in Table 1 show generally
good results. The tree-based programs, repmin and rbInsert, deliver poorer
bounds for stack, since our analysis cannot express bounds in terms of the depth
of a data-structure, which would be the accurate bound in this case. This problem
is most pronounced for repmin, which performs 2 tree traversals. The rbInsert
example will be discussed in more detail below. The time bounds are necessarily
less accurate, since the costs for the basic machine instructions are already worst-
case bounds, which we obtained through analysis of the generated machine code
with the aiT tool [11]. In general we aim for bounds within 30% of the observed
costs, which might not be the worst case. We achieve this goal for three of the
four test programs. The results for the call counts show an exact match for the
sum, zipWith and the repmin examples, all of which use higher-order operations.

In the following we take a closer look on the rbInsert example, with the
source code given in Figure 1. This example is directly taken from Okasaki’s text-
book [20]. A red-black tree is a binary search tree, in which nodes are coloured
red or black. With the help of these colours, invariants can be formulated that
guarantee that a tree is roughly balanced. The invariants are that on each path
no red node is followed by another red node, and that the number of black
nodes is the same on all paths. These invariants guarantee that the lengths of
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type num = int 16;

data colour = Red | Black;

data tree = Leaf | Node colour tree num tree;

balance :: colour -> tree -> num -> tree -> tree;

balance Black (Node Red (Node Red a x b) y c) z d =

Node Red (Node Black a x b) y (Node Black c z d);

balance Black (Node Red a x (Node Red b y c)) z d =

Node Red (Node Black a x b) y (Node Black c z d);

balance Black a x (Node Red (Node Red b y c) z d) =

Node Red (Node Black a x b) y (Node Black c z d);

balance Black a x (Node Red b y (Node Red c z d)) =

Node Red (Node Black a x b) y (Node Black c z d);

balance c a x b = Node c a x b;

ins :: num -> tree -> tree;

ins x Leaf = Node Red Leaf x Leaf;

ins x (Node col a y b) = if (x<y)

then balance col (ins x a) y b

else if (x>y)

then balance col a y (ins x b)

else (Node col a y b);

rbInsert :: num -> tree -> tree;

rbInsert x t = case ins x t of

(Node _ a y b) -> Node Black a y b;

Fig. 1. Example rbInsert: insertion into a red-black tree

any two paths in the tree differs by at most a factor of two. This loose balancing
constraint has the benefit that all balancing operations in the tree can be done
locally. The balance function only has to look at the local pattern and restruc-
ture the tree if a red-red violation is found. The rbInsert function in Figure 1
performs the usual binary tree search, finally inserting the node as a red node
in the tree, if it does not already exist in the tree, and balancing all trees in the
path down to the inserted node.

The heap bound for the rbInsert function, inferred by our analysis is:

ARTHUR3 typing for HumeHeapBoxed:

(int,tree[Leaf|Node<10>:colour[Red|Black<18>],#,int,#]) -(20/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

This bound expresses that the total heap consumption of the function is 10n+
18b + 20, where the n is the number of nodes in the tree, and b is the number
of black nodes in the tree. The latter demonstrates how our analysis is able to
produce data-dependent bounds by attaching annotations to constructors of the
input structure. This gives a more precise formula compared to one that only
refers to the size of the input structure. In this example the 18b part of the
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formula reflects the costs of applying the balance function, which restructures
a sub-tree with a black root in the case of a red-red violation. The analysis
assumes a worst-case, where every black node is affected by a balancing opera-
tion. Note that, due to the above invariants, this cannot occur for a well-formed
red-black tree: any insertion into the tree will trigger at most 2 balancing opera-
tions (see [9][Chapter 13]). As expected, capturing these (semantic) constraints
is beyond the power of our type system.

Similarly the upper bound on the number of clock cycles required to compute
the rbInsert function is associated with the black nodes in the input tree:

ARTHUR3 typing for Time:

(int,tree[Leaf|Node<2889>:colour[Red|Black<1901>],#,int,#]) -(2712/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

Finally, the call count analysis for rbInsert yields:

ARTHUR3 typing for Call Count:

(int,tree[Leaf|Node<2>:colour[Red|Black],#,int,#]) -(1/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

This type encodes a bound of 2n+1, where n is the number of nodes. By attaching
costs to the constructors of the input it is possible to distinguish between nodes
and leaves. However, it is currently not possible to express the fact that in the
tree traversal the number of nodes visited on each path is at most log n. In the
extension of the amortised cost based analysis, developed by Campbell [6], such
information on the depth of data structures is available, and his system is able
to infer logarithmic bounds on space consumption for such examples.

3 Usability Improvements

3.1 Elaboration Module

Input dependent bounds on resource usage of programs are only useful if they
easily allow one to distinguish large classes of inputs having roughly the same
resource usage. Consider having a black box for a program that can compute the
precise execution cost for any particular input. Even if this black box computes
very fast, one still needs to examine all inputs one by one in order to determine
the worst case or to establish an overview of the general cost-behaviour. Since
the number of concrete inputs may be large or even infinite, this is generally
infeasible.

The original amortised analysis technique as proposed by Tarjan [24], being
very powerful, may generally produce such a precise “black box” cost oracle. This
is not a hindrance for a manual technique, as the mathematician performing the
method has direct control over the complexity and behaviour of the “black box”
that is created. However, for an automated analysis we must ensure that the
outcome is always simple enough to be understood and useful. The cost bounds
produced by our automated version of the amortised analysis technique are al-
ways simple. Namely, they are linear in the sizes of the input. This restriction
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to linearly dependent bounds is our chosen trade-off to obtain an automated
inference for the amortised analysis.4 This design guarantees that we can easily
divide all possible inputs into large classes having a similar cost. For example,
for a program processing two lists we might learn instantly from the result of
our efficient analysis that the execution cost can be bounded by a constant times
the length of the second list, thereby throwing all inputs which only differ in the
first argument into the same cost class. Furthermore we immediately know the
execution cost for infinitely many such input classes.

We now exploit this even further to produce cost bounds expressed in nat-
ural language. Previously, the cost bound had only been communicated to the
user using type annotations. While these allowed a concise and comprehensive
presentation of the derived bounds, they also required a fair amount of expertise
to understand, despite most derived bounds being actually rather simple. The
new elaboration module helps to interpret the annotated types by ignoring irrel-
evant information, summing up weights in equivalent positions and producing a
commented cost-formula, parameterised over a program’s input.

We now revisit the results for the red-black tree insertion function from
Section 2. We use the option --speak to immediately obtain:

ARTHUR3 typing for HumeHeapBoxed:

(int,tree[Leaf<20>|Node<18>:colour[Red|Black<10>],#,int,#]) -(0/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

Worst-case Heap-units required to call rbInsert in relation to its input:

20*X1 + 18*X2 + 10*X3

where

X1 = number of "Leaf" nodes at 1. position

X2 = number of "Node" nodes at 1. position

X3 = number of "Black" nodes at 1. position

This makes it easy to see that the number of black nodes is significant for the cost
formula. Furthermore the cost formula 20X1 + 18X2 + 10X3 is obviously much
more compact and easy to understand. We are directly told that X1 corresponds
to the number of leaves in the first tree argument (there is only one tree argument
here); that X2 corresponds to the number of all nodes and that X3 corresponds
to the number of black nodes. Note that this bound is inferior to the one shown
in Section 2, and we will address this in the following subsection.

A further simplification implemented in our elaboration module is the recog-
nition of list types and list-like types, i.e. all constructors are single recursive
(e.g. Cons), except for precisely one constructor being non-recursive (e.g. Nil).
In this case it is clear that each element of such a type must have precisely
one such terminating constructor. Therefore the weight attached to the terminal
constructor may be moved outwards.

4 Recent (yet unpublished) research by Hofmann and Hoffmann show how the restric-
tion of the inference to linear bounds may be lifted.
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For example, consider the annotated type of a function that receives a list of
integer lists as its input:5

(list[Nil<1>|Cons<2>:list[Nil<3>|Cons<4>:int,#],#]) -(5/0)-> int]

Worst-case Heap-units required to call foo in relation to its input:

6 + 5*X1 + 4*X2

where

X1 = number of "Cons" nodes at 1. position

X2 = number of "Cons" nodes at 2. position

We see that the cost formula is much simpler than the annotated type, which
features 5 non-zero annotations, whereas the cost formula has only three pa-
rameters. However, this useful simplification naturally incurs a slight loss of
information. The annotated type expresses that 3 resource units are only needed
once the end of the inner list is reached. If the program may sometimes choose
to abort processing a list to the very end, those 3 resource units are not needed.
While our analysis must produce a guarantee on the resource usage for all cases,
this simplification means no quality loss for the bound produced. Nevertheless it
is conceivable that a programmer might sometimes make use of this additional
knowledge about the resource behaviour of the program. However, we believe
that the majority of cases benefit from the simplification.

3.2 Interactive Solution Space Exploration

Programs often admit several possible resource bounds and it is in general not
clear which bound is preferable. For a simple example, we consider the standard
list zipping, such as adding two lists of numerical values. Using a Haskell-style
syntax we have:

zipWith add [ ] [10, 20] = [ ]
zipWith add [1, 2, 3, 4] [10, 20] = [11, 22]
zipWith add [1, 2, 3, 4] [10, 20, 30, 40, 50, 60] = [11, 22, 33, 44]

We immediately see that the resource consumption, be it time or space, de-
pends on the length of the shorter input list. Therefore, we have the following
admissible annotated types for the closure created by zipWith add:

(list[C<6>:int,#|N<2>],list[C<0>:int,#|N<2>]) -(0/0)-> list[C:int,#|N]

Worst-case Heap-units required to call zipWith add in relation to input:

2 + 6*X1

where X1 = number of "C" nodes at 1. position

(list[C<0>:int,#|N<2>],list[C<6>:int,#|N<2>]) -(0/0)-> list[C:int,#|N]

Worst-case Heap-units required to call zipWith add in relation to input:

2 + 6*X1

where X1 = number of "C" nodes at 2. position

5 The output was simplified to ease understanding. Our prototype implementation
requires monomorphisation, so each list type would require unique constructors.
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The first type says that the cost is proportional to six times the length of the
first input list plus two whereas the latter type says that the cost is proportional
to six times the length of the second input list plus two. Both bounds are equally
useful, and it depends on external knowledge which one is preferable.

Our analysis is capable of expressing this choice within the constraints gen-
erated for the program. In fact, if we were to run the prototype analysis on a
program involving the function zipWith, where the input for zipWith is gener-
ated in another part of the analysed program and in such a manner that one
input list is often significantly shorter than the other one, the analysis would
pick the type that admits the overall lower cost bound.

The problem here lies in communicating this choice to the user, when we
analyse function zipWith all on its own. The analysis cannot guess which type
would be preferable to the user, based on the intended use of the function. On
the other hand, the overall meaning of a set of constraints is generally incompre-
hensible to a human due to sheer size, even after extensive simplification. A set of
constraints describes an n-dimensional polytope, where n is the number of input
sizes6, i.e. the number of constructors per position in the input and output plus
two for the annotations on the function arrows. Hence for the simple zipWith
add example, we already have a solution space of (at least) 8 dimensions. So even
the possibility of printing all the vertices of the polytope seems impractical.

We resolve this dilemma through interaction. The analysis first presents a
solution as usual. The user may then increase or decrease the “penalty” attached
to a resource variable in the type. The constraints are then re-solved with an
adjusted objective function, in which the modified penalties may cause another
solution to be produced. This re-solving can be done almost instantaneously,
thanks to the improvements described in Section 4, most notably due to keeping
the pre-solved constraints and solution in memory. The new solution is printed
on the screen again, and the user may then specify another cost variable to
be altered, until the cost bound is satisfactory. Step-by-step, the user can thus
explore the entire solution space for the analysed program.

Note that our implementation of the analysis has always employed a heuristic
that was able to guess the “desired” result for many program examples right
away. However, allowing the user to tweak the solver’s priorities is also a good
way of understanding the overall resource behaviour of a program. So even in
the many cases that are already properly resolved by the heuristic guessing a
suitable objective function, this interaction may offer valuable insights.

Optimising the bound for red-black tree insertion. We again revisit the
red-black tree example from Section 2, this time to show how the interactive
optimisation of the solution works. Invoking our analysis for the heap space

6 Note the solution space generally has a much higher dimension due to the neces-
sary introduction of intermediate variables. Furthermore our experience showed that
eliminating these intermediate variables is either best left to the LP solver, which
is far more efficient at this task, or rather omitted entirely, since the intermediate
variables have actually proven useful for the heuristic to pick a “good” solution.
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metric as before, but adding the command-line option for interaction, we obtain
a prompt after the solution.

ARTHUR3 typing for HumeHeapBoxed:

(int,tree[Leaf<20>|Node<18>:colour[Red|Black<10>],#,int,#]) -(0/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

Worst-case Heap-units required in relation to input:

20*X1 + 18*X2 + 10*X3

where

X1 = number of "Leaf" nodes at 1. position

X2 = number of "Node" nodes at 1. position

X3 = number of "Black" nodes at 1. position

Enter variable for weight adjustment or "label","obj" for more info:

We are unhappy with the high cost associated with the leaves of the tree,
since it seems unreasonable to require such a high cost for processing an empty
leaf. Therefore we ask the analysis to lower this value considerably, by increasing
the penalty of the associated resource variable from 6 to 36.

Enter variable for weight adjustment or "label","obj" for more info: X1

Old objective weight: 6.0 Enter relative weight change: 30

Setting CVar ’351’ to weight ’36.0’ in objective function.

(int,tree[Leaf|Node<10>:colour[Red|Black<18>],#,int,#]) -(20/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

Worst-case Heap-units required in relation to input:

20 + 10*X1 + 18*X2

where

X1 = number of "Node" nodes at 1. position

X2 = number of "Black" nodes at 1. position

This already results in the desired solution. The fixed costs increase from 0
to 20, the costs associated with all leaves drop from 20 to 0, and the cost of each
red node decreases by 8. Since every tree contains at least one leaf, this bound
is clearly better for all inputs.

So here we have an example where the implemented heuristic for choosing
a solution picked unfortunately a clearly inferior one. However, recall that both
solutions represent guaranteed upper bounds on the resource consumption, so it
could be that the first solution was already precise enough. Furthermore, if we
analyse a program that also constructs a red-black tree as input for the rbInsert
function, then the LP-Solver automatically chooses the second solution in order
to minimise the overall cost, which includes the cost of creating the input and
all the potential associated with the input data-structure.

It is important to note that each and every function application will choose
the most appropriate admissible annotated type for the function, albeit each
function is analysed only once. This is achieved by simply copying the constraints
associated with a function for each of its applications, using fresh variable names
throughout. Since the generated LPs are sparse and proven to be easily solvable,

182



this blow-up of constraints is of little concern. More information on this mecha-
nism for resource parametricitry can be found in [18]. This once more illustrates
that the result for analysing a function is the set of all admissible annotations,
rather than any single annotation.

4 Performance Improvements

The combined Hume prototype analyses delegated the solving of the generated
linear programming (LP) problem to the LP-solver lp solve [4], which is available
under the GNU Lesser General Public Licence.

Technically this was done by writing all constraints in a human readable
format to a file and then calling lp solve to solve that file. The solution was
then read via a Unix pipe and also recorded in a text file. This solution had the
advantage that the generated LP was directly tangible. The file contained various
comments, in particular the line and column of the source code that ultimately
had triggered the generation of that particular constraint. This yielded very
high transparency and was very useful in developing and validating the resource
analysis. Furthermore, one could alter the LP by hand for experimentation and
feed it to the solver again without any difficulties.

However, this solution also had several drawbacks, namely:

1. Communicating large data-structures, such as linear programming problems,
via files on the hard-disk of a computer is very slow.

2. Altering the constraints just slightly, requires the full, slow repetition of
transmitting the entire LP and solving it from scratch.

3. Running the analysis requires the user to install and maintain the lp solve
command-line tool separately.

4. lp solve only allows very limited floating point precision when using file com-
munication, causing rounding errors of minor significance.

We have thus added the option of calling the lp solve library, written in C,
directly through the foreign function interface (FFI) of the Glasgow Haskell
Compiler (GHC) [12]. This solution now resolves all of the above issues. The
library is now linked into the combined Hume prototype analyses’ executable
file, producing an easy to use stand-alone tool. Furthermore, eliminating the
first two problems was a direct prerequisite for realising the interactive solution
space exploration described in Section 3.2. Interaction can only work if the time
the user is required to wait between each step is very small. The solver lp solve
supports this by fast incremental solving, where the last solution and the pre-
solved constraints are kept in the memory and can be adjusted for subsequent
solving. Therefore in all program examples examined thus far on our contem-
porary hardware, re-solving the linear program could be done within a fraction
of a second, for example less than 0.02 seconds for the biquad filter program
example, as opposed to 0.418 seconds required for first-time solving as shown in
Table 2.

FOPARA 2009 Preliminary Proceedings 183



Table 2. Run-time for Analysis and for LP-solving

Program Constraints Run-time non-FFI Run-time FFI Speedup
Number Variables Total LP-solve Total LP-solve Total LP-solve

biquad 2956 5756 1.94s 1.335s 1.43s 0.418s 1.36 3.20
cycab 3043 6029 2.81s 2.132s 2.75s 1.385s 1.02 1.54
gravdragdemo 2692 5591 2.16s 1.605s 2.14s 1.065s 1.01 1.51
matmult 21485 36638 104.88s 101.308s 84.17s 21.878s 1.25 4.63
meanshift 8110 15005 11.32s 9.851s 11.01s 6.414s 1.03 1.54
pendulum 1115 2214 0.76s 0.479s 0.67s 0.260s 1.13 1.84

Solving the linear programming problem via the foreign function interface is
therefore the default setting now. However, the previous mechanism of calling
lp solve via the command-line is still available through option --noapisolve,
since this is still quite useful when transparency is desired more than perfor-
mance, which is often the case when studying the combined Hume analysis itself
by applying it to small program examples.

Table 2 summarises the run-times7 of both versions of the combined Hume
resource analysis on some program examples: the non-FFI version using option
--noapisolve, which uses lp solve via the command-line to solve the constraint
set and an FFI version using option --apisolve, which calls the lp solve library
through the foreign-function-interface. For each version we show the total run-
time of the analysis as well as the run-time for just the LP-solving component
(both in seconds). The final two columns show the speedup of the FFI version
over the non-FFI version.

The applications used in Table 2 to compare the run-times of the analysis
are as follows. The biquad application is a biquadratic filter application. The
gravdragdemo application is a simple, textbook satellite tracking program using
a Kalman filter, developed in preparation for the biquad application. The cycab
application is the messaging component of the cycab application. The pendulum
application balances an inverted pendulum on a robot arm with one degree of
freedom. The meanshift computer vision application is a simple lane tracking
program. Finally, matmult is a function for matrix multiplication, which was au-
tomatically generated from low-level, C-like code. The generated program makes
heavy use of higher-order functions and of vectors for modelling the state space,
due to the design of the automatic transformation. This results in a high number
of constraints and therefore in a compute-intensive analysis phase.

We see that the speedup for the LP-solving part is quite impressive (51–
363%). However, one should recall that the command-line version (non-FFI) is
required to build the C data-structures holding the constraint set, whereas in the
library version (FFI), this task is performed by our prototype analysis, delivering

7 The performance measurements in Table 2 have been performed on a 1.73GHz Intel
Pentium M with 2MB cache and 1GB main memory.
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the constraints ready-to-use. This also explains why the overall run-time does
not decrease by the same amount as the time spent on LP solving.

The overall speedup is largely varying for our program examples (1–36%),
but with the overall run-time being just around 1–3 seconds, it is hard to judge
which is the dominating factor in processing. For the large matmult example,
the only one where the analysis is actually working for a noticeable time, the
overall run-time could be reduced by an impressive 25%, or roughly 20 seconds.

We conclude that calling the lp solve library through the FFI is also beneficial
for programs where LP solving actually requires a significant amount of time, in
addition to making interactive solving possible at all, as mentioned earlier.

5 Related Work

Type-based Resource Analysis: Using type inference to statically determine quan-
tifiable costs of a program execution has a long history. Most systems use the
basic type inference engine to separately infer information on resource consump-
tion. In contrast, our analysis uses a tight integration of resource information into
the type, by associating numeric values to constructors in the type. These values
are the factors in a linear formula expressing resource consumption. Another
notable system, which uses such a tight integration of resources into the type
system, is the sized type system by Hughes et al. [17], which attaches bounds
on data structure sizes to types. The main difference to our work is that sized
types express bounds on the size of the underlying data structure, whereas our
weights are factors of the corresponding sizes, which may remain unknown. The
original work was limited to type checking, but subsequent work has developed
inference mechanisms [7,26]. Vasconcelos’ PhD thesis [25] extends these pre-
vious approaches by using abstract interpretation techniques to automatically
infer linear approximations of the sizes of recursive data types and the stack and
heap costs of recursive functions. A combination of sized types and regions is
also being developed by Peña and Segura [21], building on information provided
by ancillary analyses on termination and safe destruction.

Amortised Costs: The concept of amortised costs has first been developed in the
context of complexity analysis by Tarjan [24]. Hofmann and Jost were the first to
develop an automatic amortised analysis for heap consumption [15], exploiting a
difference metric similar to that used by Crary and Weirich [10]. The latter work,
however, only checks bounds, and does not infer them, as we do. Apart from
inference, a notable difference from our work to the work of Tarjan [24] is that
credits are associated on a per-reference basis instead of the pure layout of data
within the memory. Okasaki [20] also noted this as a problem, resorting to the
use of lazy evaluation. In contrast, per-reference credits can be directly applied
to strict evaluation. Hofmann and Jost [16] have extended their method to cover
a comprehensive subset of Java, including imperative updates, inheritance and
type casts. Shkaravaska et al. [22] subsequently considered heap consumption
inference for first-order polymorphic lists, and are currently studying extensions
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to non-linear bounds. Campbell [6] has developed the ideas of depth-based and
temporary credit uses, so giving better results for stack usage.

Other Resource Analyses: Another system that is generic over the resource be-
ing analysed is the COSTA system [2]. Its inference engine is based on abstract
interpretation. In a first phase a set of recurrence relations are generated, which
are solved in a second phase by a recurrence solver that is tailored for the use
of resource analysis and as such produces demonstrably better results than gen-
eral recurrence solvers [1]. Gómez and Liu [13] have constructed an abstract
interpretation of determining time bounds on higher-order programs.

Several recent systems aim specifically at the static prediction of heap space
consumption. Braberman et al. [5] infer polynomial bounds on the live heap usage
for a Java-like language with automatic memory management. However, unlike
our system, they do not cover general recursive methods. Chin et al. [8] present
a heap and stack analysis for a low-level (assembler) language with explicit
(de-)allocation. Their system, like ours, is restricted to linear bounds. Taha’s
work on staged compilation [23] emphasises the distinction between computation
on the development and deployment platforms. In the first stage (development
platform) computations can have arbitrary resource consumption, but in the
second stage no new heap allocations are allowed.

WCET Analysis: Calculating bounds on worst-case execution time (WCET) is
a very active field of research, and we refer to [27] for a detailed survey.

6 Summary

This paper presented extensions and improvements of our amortised cost based
resource analysis for Hume [19]. By instantiating our resource inference to the
new cost metric of call counts, we obtain information on the number of (possibly
specific) function calls in higher-order programs. While initial results from an
early call count analysis where presented in [18], we here give the first discussion
of the analysis itself and assess it for a range of example programs. In particular,
we demonstrate for a standard textbook example of insertion into a red-black
tree that the inferred bounds are in general data-dependent and therefore more
accurate than bounds that are only size-dependent.

Furthermore, we presented improvements of our analysis in terms of usability,
performance, and quality of the bounds. As an important new feature for the
acceptance of our type based analysis, the resource bounds are now translated
into closed-form cost formulae. Based on feedback from developers of Hume code
in interpreting the resource bounds, encoded in annotated types, we consider the
improvement in usability through the elaboration module as the biggest step in
making our analysis available to a wider community. Although this improvement
is the most difficult one to quantify, we believe that such presentation of resource
bounds as closed-form formulae is essential for the acceptance of a type-based
inference approach.

186



We have also reported on significant improvements made to the performance
of the analysis. For the example programs used in this paper, we observe a
speedup factor of up to 1.36, mainly due to a tighter integration of the linear
program solving through the FFI interface provided by GHC.

As future work we plan to investigate whether combining our approach with
a sized-type analysis might also allow the inference of super-linear bounds, while
still using efficient LP-solver technology, possibly multiple times. One challenge
for the analysis will be to capture all future code optimisations that might be
added to the Hume compiler. We are experimenting with approaches where
resource usage is exposed in the form of explicit annotations to a high-level
intermediate form. In this way, we may be able to retain the advantage of close
correlation of the analysis with the source language, while being able to model
a much wider range of compiler optimisation, and still maintain the advantage
of easy resource targeting.

The prototype implementation of our amortised analysis is available on-
line at http://www.embounded.org/software/cost/cost.cgi. Several exam-
ple Hume programs are provided, and arbitrary programs may be submitted
through the web interface.
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Abstract. We present work in progress about our recent reaction time
analysis of Hume box compositions in the presence of free control param-
eters for iteration. Hume is a language for resource-critical systems, in
which asynchronous boxes controlled by a scheduler exchange data via a
static network.
The analysis is carried out by a symbolic simulation in Haskell with an
appropriate encoding for optional availability of wire values, a feature of
Hume to mimic asynchronous execution.
We explain our model for the symbolic execution of Hume programs,
present two realistic examples, and discuss the challenges involved in
the analysis of programs with a free control parameter. We present a
heuristics for simple cases and suggest the use of a loop template in case
that the heuristics fails.

1 Introduction

We present a symbolic timing analysis for compositions of concurrent boxes in
Hume [8], a language for resource-critical systems. Although the current im-
plementation is tailored towards the pecularities of Hume, we believe that the
challenges that we are tackling are of importance to program analysis for a wide
range of systems which consist of components communicating in a restricted
asynchronous fashion. The challenges are component executions based on avail-
ability of data at their inputs and certain patterns, the treatment of unknown
parameters whose actual value decides about program branches taken and num-
bers of iterations, and a timing analysis which accounts for special program
branches.

Hume programs consist of compositions of boxes, which are activated by a
scheduler and exchange data via a static network of wires. Each wire connects
an output port of a box with an input port of another or the same box, and can
buffer at most one data object. If a box cannot release results because one of
the values on the wires has not been consumed yet, these results remain in the
box heap and the box is blocked from execution until the values are released.
If a box is not blocked, it can execute if at least one particular input pattern
matches, thereby arguments from input ports can be ignored, and the availability
of such ignored values is not required for a successful match and box execution.
The patterns are specified in the program part for the box, using the symbol *
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for ignored inputs. Each pattern forms the left-hand side of a purely-functional
computational rule, and when it matches, the values on the input ports are
assigned to program variables and used in the evaluation of the rule’s right-hand
side, which determines the values of the output ports. The programmer can use
the symbol * to specify that no value is produced for a particular output port.
The right-hand side expressions can apply pure functions, which are potentially
recursive, potentially higher-order. The programmer can define her own data
types and constructors which are then associated with individual execution time
costs by an amortised analysis of the box execution [9]. The analysis of Hume
box compositions presented here builds on this amortised analysis, i.e., assumes
that we already can obtain the execution time of each rule of each box. In
particular, we are interested in the execution time for a particular class of tasks,
starting from a set of input events from the environment, involving several box
executions, and finishing with the creation of the last output event.

The paper is organised as follows. In the next section, we describe our model
for the symbolic execution of Hume programs and abstraction of Hume programs
that we want to analyse in Haskell [14]. Section 3 presents two realistic examples,
one in which a box is executed in two different modes, and one in which a box is
executed repeatedly, controlled by an iteration counter passed around. Section
4 discusses the case that the initial values of iteration counters are unknown.
Section 5 suggests a loop template to simplify the analysis. Section 6 discusses
related work and Section 7 concludes.

2 The Model for a Hume Superstep

Several alternative scheduling orders are possible for Hume boxes, e.g., to al-
low for efficient parallelisation. However, any legitimate schedule be consistent
with the denotational Hume semantics. One order which can be easily under-
stood from an operational perspective is the superstep scheduling mechanism.
The idea of a superstep in Hume is similar to that in the bulk-synchronous par-
allel programming (BSP) model [18]: within each superstep each box is executed
at most once and the data that a box produces is not available to the consumer
before the next superstep. It follows that within a superstep any execution order
and any potential parallelisation of box executions leads to the same behaviour.
However, this only holds within a single superstep, and not across several su-
persteps. This means that we can view all box executions within a step as being
semantically independent of each other, i.e., forming part of a function which
maps the system state at the beginning of a superstep to the state at the end.

2.1 Simple Artificial Hume Example

Figure 1 depicts a system with two Hume boxes named A and B and three wires
labeled x, y and z. Without further knowledge of the program for the boxes,
Box B can react to either or both available inputs on y and z and Box A can be
blocked from further execution as long as it wants to release a value onto wire
y but cannot do so because B has not consumed the previous value on y yet.
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Fig. 1. Two Boxes

We model availability of wire values by a Maybe type
constructor in Haskell. Figure 2 shows the instance
of our model for a scheduling cycle of the two box
composition. Because of the superstep semantics as-
sertion of outputs does not have an impact on exe-
cutions in the same step. In the model, this is taken
into account by a distinction into Phase 1 and Phase
2.

Test, Match,
Execute

Phase 1

Outputs
Assert

Phase 2

zHeap,i+1,init

fA,init fA,res

SuperStep i

fB,init
fB,res

yWire,i,init

xHeap,i,init

zWire,i,init

yHeap,i,init

zHeap,i,init

xWire,i,init xWire,i,res

xHeap,i,res

yWire,i,res

zWire,i,res

yHeap,i,res

zHeap,i,res

xWire,i+1,init

xHeap,i+1,init

yWire,i+1,init

zWire,i+1,init

yHeap,i+1,init

Fig. 2. Hume Superstep as a Mapping Between Wire Vectors

We view each scheduling cycle as a function mapping a vector of wire values
onto itself. These values are indexed by the location (Wire/Heap), the schedul-
ing cycle (i / i+1) and the phase (init/res). Each kind of box contributes
to the entire function with a single function for each of the two phases, e.g.
fA,init and fA,res for Box A. Non-consumption of a value is modelled by copy-
ing back the wire value of the init vector to the same wire value of the res
vector, e.g., when Box B does not consume y, function fB,init copies the value
yWire,i,init to yWire,i,res where it tells fA,res not to assert the heap value yHeap,i,res
to yWire,i+1,init. In the purely functional style, the absence of a value on a wire
is expressed by assigning the value Nothing in the model. Note that we do not
need extra state information for keeping track on whether a box is blocked; this
can be deduced from the state of the box heap. However, other issues which we
do not deal with in this paper, like rule reordering to achieve fair merging of
inputs could be regarded by adding information about the current rule ordering
of each box into the wire vector to form a more general state vector.

2.2 Symbolic Analysis

We could now describe the semantics of either functions (init / res) of each
box in Haskell by matching the actual situation of the state of the wires and
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the heaps. This gives us a simulation of the behaviour of the Hume program
including the execution time for a particular set of input data. But, because
we are interested in the worst-case behaviour, we have to take into account all
possible situations, not just a subset. If we only had a few wires carrying values
of limited bitsize, it might be useful to regard the possibility of an exhaustive
simulation, but in our setting this would be practically infeasible. We need to
represent information in a compact form and also regard that the program can
do arbitrary computations on them; this rules out approaches to do the mapping
between wire vectors by a kind of matrix/vector multiplication and looking for
characteristic properties of powers of such matrices (as sequences of supersteps).

We address generality by a complete symbolic setting which can deal with all
possible situations that can occur due to different values of unknown parameters.
However, we apply a restriction on the kind of wire values we can currently
handle, but this restriction is purely a lack of features to construct and destruct
data types in our symbolic language, and we aim to overcome this restriction as
soon as we have found a convenient representation. In particular, in our current
setting wires can only carry natural numbers. We embed these into rational
numbers to use the value -1 to encode an unavailable wire value and to have
the same type for our mathematical expressions in which we need fractions as
coefficients of polynomials, serving as closed forms of recurrence equations. With
this, we can represent iteration counters directly, but for data structures like lists
we can only use a proper abstraction, e.g. the size.

We define symbolic expressions in Haskell by a generalised algebraic data
type (GADT) which we name Sym and which has one parameter, the type of
the expression, e.g. Rational or Bool. Atomic expressions are constants (C) and
variables (V), and expressions can be composed using arithmetic (:+:,:*:,:^:),
comparison (:=:,:<:) and logical (:&:,:|:) operators as well as several other
constructs to build polynomials and logic formulae on them.

data Sym :: * -> * where

C :: !Rational -> Sym Rational

V :: !Var -> Sym Rational

(:+:) :: !(Sym Rational) -> !(Sym Rational) -> Sym Rational

...

(:<:) :: !(Sym Rational) -> !(Sym Rational) -> Sym Bool

...

(:&:) :: !(Sym Bool) -> !(Sym Bool) -> Sym Bool

If :: !(Sym Bool) -> !(Sym Rational) -> !(Sym Rational) -> Sym Rational

...

The question is whether the symbolic treatment of If is sound when dealing
with entire sets of possibilities for values, in some of which the predicate is true
and in others of which it is false. This can easily be understood by viewing these
symbolic expressions as functions from a concrete environment, i.e., in terms
of the values of the variables (V) to boolean or rational values. In a concrete
environment, each predicate is either true or false. E.g., the interpretation I of
an If in an environment ε is defined by:
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I(If cond y n)ε =

{
I(y)ε if I(cond)ε = true
I(n)ε otherwise

Stepping back from the point-wise view by universally quantifying over all
possible environments is equivalent to combining all single results using a set
union. E.g., if we apply a logical and (:&:) then the expression will be true for
the intersection of those environments for which both operand expressions are
true.

We can express the behaviour of a box in both phases in the symbolic setting
by function boxStep, separated for each of the two phases given by the first
argument. The second argument is the static information about the box and
the third argument is the information for the symbolic simulation containing
the wire vector values and the current execution time. The static information
contains a (symbolic) function telling the condition under which at least one of
the input patterns of the box matches, the (symbolic) function and the indices
of the input and output wires. These indices are concrete numbers and can be
used for indexing the wire vector in combination with a combined selector for
heap/wire and first/second phase, e.g. arr!(i,HeapA) means that for wire i
we refer to the value which resides in the box heap before the first phase. We
do not distinguish between different supersteps in the symbolic simulation; the
separation between the phases is enough to warrant independence of the function
applications within each phase.

boxStep :: Ix a => Phase -> BoxInfo a -> TArr a Wire -> TArr a Wire

boxStep Phase_1 (matchesInput,boxFun,inwires,outwires) (arr,time)

= let blockedVars = [ arr!(i,HeapA) | i<-outwires ]

inputs = [ arr!(i,WireA) | i<- inwires ]

blocked = anyAvail blockedVars

runnable = (Not blocked) :&: matchesInput inputs

(outputs, usedInputs, addTime) = boxFun inputs

usedInWire rel = usedInputs!!rel

in (arr // [ ((i,WireB), If (runnable :&: usedInWire rel)

noValue (arr!(i,WireA)))

| (i,rel) <- zip inwires [0..] ]

// [ ((o,HeapB), If runnable v (arr!(o,HeapA)))

| (o,v) <- zip outwires outputs ],

time :+: If blocked (V (Var "Tbl"))

(If (matchesInput inputs) addTime (V (Var "Tma"))))

boxStep Phase_2 (matchesInput,boxFun,inwires,outwires) (arr,time)

= let wireAvail o = (notAvail (arr!(o,HeapB))) :|:

(notAvail (arr!(o,WireB)))

canAssert = foldl (\c o -> c :&: wireAvail o) TT outwires

doAssert o = canAssert :&: avail (arr!(o,HeapB))

in (arr // concat [ [ ((o,WireA), If (doAssert o) (arr!(o,HeapB))

(arr!(o,WireB))),

((o,HeapA), If (doAssert o) noValue

(arr!(o,HeapB))) ]
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| o<-outwires ],

time :+: (V (Var "Tass")))

The function boxFun computes a triple with the abstract values of the out-
puts, the inputs that have been consumed and the execution time depending
on the input situation. This time is only used if the box is actually executed,
otherwise the constant Tbl for attempting to process a blocked box or Tma for
an unsuccessful match.

3 Realistic Examples

We sketch a couple of realistic examples just to give an impression of the advan-
tages of the symbolic simulation. Both examples assume that we know a bound
on the maximum number of scheduling cycles required. Overestimation will not
harm because overrun cycles will occur in the resulting expression guarded by
a predicate which is false. The expressions can be simplified at the end of each
simulation cycle and partially evaluated as soon as concrete data for the vari-
ables are available. Of practical use are especially expressions parameterised in
only a few parameters open for strategic decisions, like the number of objects a
system is supposed to process.

3.1 Sensor control, execution in two different modes

Let us assume we have a Hume box designed for operating a sensor. Because the
time that the sensor requires will be orders of magnitude larger than the execu-
tion time of a box, it makes sense to have a control box for the sensor which is
executed twice; once to process a request which will involve to generate concrete
actions for the sensor, and a second time to fetch the results as far as available.
The time for the sensor then becomes explicit in the application program and it
is it’s responsibility to ensure that the sensor has had enough time or to repeat
the fetching attempt later. The timing analysis sees two different activations of
the box, one for the request and one to fetch the results. The symbolic formula
for the execution time of the entire task will contain the time for both box acti-
vations, in idealised form something like ... :+: V (VAR "prepare actions")
:+: ... :+: V (VAR "fetch results") :+: ....

3.2 Nearest neighbour iteration

Although the Hume expression layer permits sophisticated recursive functions,
using them might not always be desirable. Since box executions are currently
atomic, it is important that their duration is short enough such that the system
can process urgent interrupts quickly. Moving iterations into the coordination
layer, i.e., dedicating each iteration a separate activation of a box would permit
interrupts to be processed between iterations.

The example shown in Figure 3 is an algorithm computing the k nearest
neighbours of an object in two- or three-dimensional space. First, we create a
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Fig. 3. Iterative calculation of nearest neighbours

list of pairs which consist of the index of the other object and the distance to it.
In the first iteration, we are looking for the one with the smallest distance and
move it to the front. Then, we continue successively with the rest of the list and
decrement k by one until it reaches zero. The box which performs the iteration
has among other wires one feedback wire for k and one feedback wire for the
current state of the list of other objects. The box performs a case distinction on
k; as long as it is greater than zero it sends new data into the feedback wire; if
it reaches zero it sends the result list to another box.

The box nextNeighbour is linear in the number of objects, and we iterate
it as often as how many nearest neighbours we would like to use in the calcula-
tion. This number is kept by the loop (noNeighLO/noNeighLI) and initialised by
noNeighIn. The total time will then be a product of the number of objects and
the number of nearest neighbours, i.e., expressed by a non-linear formula. The
task of a single activation of the box nextNeighbour is to take a list currNeighI
(initialised with initNeigh and fed back by currNeighO) with the object posi-
tions in which the first noInsI elements are already the closest neighbours and
permute the remaining elements such that in the result the first (noInsI+1) ele-
ments are the closest neighbours. Since the scheduling of the boxes is transparent
to the Hume program, we need to maintain a counter value for the number of
box iterations which is initialised by noNeighIn, incremented in each iteration
and fed back in the loop noInsO/noInsI. This value, depicted with dashed lines
in Figure 3, plays a major role in the analysis. We show a small part of the Hume
program below: a reduced specification of the box nextNeighbour.
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box nextNeighbour in (...) out(...)

match

(*,*,currNeighI,noNeighLI,noInsI)

-> if noNeighLI>noInsI

then (*, next currNeighI noInsI,noNeighLI, noIns+1)

else (take noInsI currNeighI,*, *, *)

|(noNeighIn,initNeigh,*,*,*)

-> if noNeighIn>0

then (*, next initN 0, noN,1)

else ([],*, *,*);

The type declarations for input and output ports have been abbreviated by
(...). An asterisk (*) denotes, as already mentioned, unavailable data if it appears
at an input position and not generated output at an output position. Two rules
are specified, separated by |. In the example program, the first rule matches if
the first two input ports (appearing at the left-hand side of ->) do not provide
data but the other three do; we name this branch loop because it carries values
between iterations. The three values come from the previous iteration of this
box. The other rule (named init) deals with the first execution of the box when
the first two input ports carry data and the other three do not.

The abstract version which we use for the analysis is shown below. The first
lambda abstraction in the body states when at least one pattern matches, the
second contains functions for the output ports in vectorised form (lists of length
4 combined elementwise according to predicates), conditions when inputs are
consumed ([cond1,cond1,...]) and the time, simplified to whether case [1]
or [2] has occurred.

box_nextNeighbour ins outs

= (\ [noNeighIn,initNeigh,currNeighI,noNeighLI,noInsI]

-> (avail noNeighIn :&: avail initNeigh)

:|: (avail currNeighI :&: avail noNeighLI :&: avail noInsI),

\ [noNeighIn,initNeigh,currNeighI,noNeighLI,noInsI]

-> (let branch1a = [noValue, dc, noNeighLI, noInsI :+: C 1]

branch1b = [dc, noValue, noValue, noValue]

branch2a = [noValue, dc, noNeighIn, C 1]

branch2b = [dc, noValue, noValue, noValue]

branch1 = zipWith (If (noInsI :<: noNeighLI))

branch1a branch1b

branch2 = zipWith (If (C 0 :<: noNeighIn))

branch2a branch2b

in zipWith (If (avail noNeighIn :&: avail initNeigh))

branch2 branch1,

let cond1 = avail noNeighIn :&: avail initNeigh

cond2 = avail currNeighI :&: avail noNeighLI :&: avail noInsI

in [cond1,cond1,cond2,cond2,cond2],

If (avail noNeighIn :&: avail initNeigh)

(V (Var "nextNeighbour[1]"))

(V (Var "nextNeighbour[2]"))),

ins, outs)
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The result of the analysis significantly differs depending on whether the value
for the k (in the program named noNeighIn) is a constant (say C 5) or a variable
(say V (VAR "k")). In the first case, the analysis returns with a concrete number
if the simulation is carried out for enough superstep cycles such that the result
is output. In the second case, the analysis delivers a case distinction for each
potential value of k that can be observed within the given number of supersteps;
i.e., it says in a complicated way: if k = 0 then ... else if k = 1 then ... else
... However, because generating this finite case distinction, even with incremental
simplification after each superstep takes a huge amount of time, it is simpler to
do the analysis for all finite k by a separate simulation. What the user probably
would want is an inductively defined solution in k which can then be turned into
a closed form. This is discussed in the next section.

4 Iterations Depending on an Unknown Control
Parameter

Now, let the system perform repetitions which are controlled by a counter or the
size of a data structure. For simplicity, let us introduce a derived, abstract control
parameter, which is a natural number that is only decremented, always reaches
the value zero and then leads the system to deliver the expected response.

Our heuristics works as follows:

1. Find a function steps : N → N which tells for each value of the control
parameter how many superstep cycles are required, for some small k ∈ N\{0}
in the form ∀n ∈ N, r ∈ {0..k−1} : steps(n · k + r) = a · n + br. This is
motivated by the fact that the system can show a cyclic behaviour already
in the absence of any control parameter, as we observed in several examples,
e.g., a traffic light controller.

2. Perform a symbolic simulation with control parameter ((n+1) · k) as a sym-
bolic expression in the variable n and the constant k for a number of a
scheduling cycles. The heuristic fails if the time is not a polynomial in n;
otherwise we can apply polynomial series summation to gain a polynomial
for the time consumption in case the control parameter is n · k. We can fur-
thermore bound any time for n · k+ r with r < k by (n+ 1) · k, or precisely
gain the additional cost for each r by simulation.

How can we find such a function steps in case it can be represented in this
form? We need two additional user-defined functions working on wire vectors:
one that initialises the start condition for a given number of the control param-
eter and one that tells when the response is output. Then, we simulate with
many different constant values of the control parameter and obtain a table for
the values of function steps at the points 0..m. We interpolate with a set of
reasonable functions, e.g. fk(n) = a · bn/kc + b(n mod k), i.e., we state a linear
constraint system for the coefficients a and bi and try to solve it. We start with
k = 1; if the system does not have a solution increase the value of k successively.
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If the value of k is higher than a reasonable value (e.g., the number of all subsets
of rules in the Hume program) we report a failure. Otherwise we still need to
verify that the function is correct and do this as follows:

1. Verify ∀n ∈ N : step(k · n + k) − step(k · n) = a by simulating over a steps
and verifying that at the last step the control parameter has decreased by
k, when starting with the symbolic value k ·n+ k for the control parameter.

2. Verify ∀n ∈ N, r ∈ {0..k−1} : step(k · n+ r)− step(k · n) = br by simulating
over br steps and verifying that the control parameter has decreased by r
when starting with the symbolic value k · n+ r for the control parameter.

5 Loop Box: A Template for Iterations

The heuristics described in the previous section requires some manual assistance
and has some additional assumptions. It would be useful if we could establish
these assumptions and avoid the need for manual interaction by harnessing the
iteration, much like for-loops are used in structured programming instead of
goto’s. In this section, we present a so-called loop box which can be used to
state iteration at the coordination level explicitly.

result
init

count count’

enter

exit

finalbypass

frBody toBodynext

Hume boxes for loop body

inital value

iterations

Fig. 4. Use of a loop box

Figure 4 sketches the structure of the loop box. It has three input ports
named init, count and frBody and three output ports named final, count’
and toBody. Port count is connected to count’ by a feedback wire and thus
involves the same index in the wire vector. The box is entered with a pair of the
iteration counter and some initial data at the init port. If the counter is zero,
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no iteration takes place and the bypass function is applied. Otherwise the enter
function initialises the iteration counter and initialises the wire to the Hume part
which implements the body. When the body returns a result, the decremented
loop counter is checked: if it is zero the exit function delivers the final result,
otherwise the next function decrements the loop counter and provides the data
for the next entry of the body.

This structure is interesting for analysis because the loop body does not share
any variables in the wire vector with the rest of the Hume program, so it can be
analysed in isolation. If we have an analysis result for the body, we can combine
it to a result of the entire loop.

x
(0,x)

* *

* *

(n+1,x)

*

*

*

n

*

n+1

x

n

* *

0

x

exit x

*

*
next

n x

enter

n x

(a) body bypass (b) loop entry

(c) loop step (d) loop exit

bypass

Fig. 5. Inductive patterns of a loop box

Figure 5 shows the four cases we have to distinguish. If the time for the body
only depends on the iteration counter and not on the other data, then the time
can be given roughly by the following generic formula.

t(n) =

{
tby if n = 0
tenter + n · tnext + texit +

∑n−1
i=0 tbody(i) otherwise

A nested iteration can easily be implemented by using two loop boxes and
connecting toBody/frBody of the outer with init/final of the inner loop box.
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In the analysis, we would substitute the term tbody(i) by the time for the inner
loop, obtaining likely a polynomial of degree 2 in n.

If we did not have a special part of the analysis which deals with loop boxes,
then the abstract version of the outer loop box would look as follows, where
we simplified the cost such that all functions have the same cost V (Var "O").
Since we have no means for encoding tuples, the input pair is represented as two
separate wires which are supposed to be both either available or not. The inner
box would have more wires due to additional tupling to provide the outer loop
counter to the body.

box_outer ins outs

= (\ [n,init,count,frBody]

-> ((avail n :&: avail init) :|:

(avail count :&: avail frBody)),

\ [n,init,count,frBody]

-> let brByPass = [C 0,noValue,noValue,noValue]

brEntry = [noValue,n,n, C 0]

brNext = [noValue,count :+: (C (-1)),

count , frBody]

brExit = [frBody,noValue,noValue,noValue]

sel4 by en ne ex = If (avail n :&: avail init)

(If (C 0 :<: n) en by)

(If (C 0 :<: count) ne ex)

in (zipWith4 sel4 brByPass brEntry brNext brExit,

[avail n :&: avail init,

avail n :&: avail init,

avail count :&: avail frBody,

avail count :&: avail frBody], V (Var "O")),

ins, outs)

The simulation with increasing values for n delivers a series of scheduling
cycles starting with 1, 9, 15, 22, 30, ... which is quadratic in n. Note that the
first difference is 8 before it goes back to 6 and then starts to increment. Exact
interpolation with a quadratic polynomial would thus fail except that the first
point is excluded; in general there might be an entire sequence of initial points
to be excluded. It is also not guaranteed that we will have a cyclic behaviour in
the case of nested loops, such that we can perform a simulation over a constant
number of superstep cycles.

The case distinction in the time formula for the loop box suggests a bottom-
up algebraic approach in this case.

6 Related Work

Compositional cost analysis of functional programs was first considered by Weg-
breit [20]. An important idea was to derive closed-form cost expressions for func-
tions which can then be reused for the analysis of other functions. Le Métayer
used a large extensible library of patterns to find closed forms for recursive cost
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functions in his ACE system [13]. Rosendahl [16] developed an abstract inter-
pretation technique from a step-counting function. Our approach started with
a similar idea of profiling by performing a simulation of the boxes using addi-
tionally abstract program values. However, we have developed this further by
symbolic representation of entire sets of potential program values.

Benzinger [2] developed an analysis prototype for calculating the time com-
plexity of programs generated by the interactive program synthesizer Nuprl.
The user has to specify the parameters in which the complexity has to be ex-
pressed. Simplification and recurrence solving is programmed in Nuprl’s ML and
Mathematica’s functional programming language.

If the analysis results for individual components are to be reused, and these
results differ according to some parameters in which the component is used,
then if we are to obtain a tight timing analysis, it is important to abstract the
result over these parameters [10]. We will therefore normally express the timing
as a symbolic expression. In some cases, it is possible to partition the parameter
space to obtain clusters of component activations for particular ranges, in order
to present a concrete timing value for each range, for example [6]. A variety
of academic and commercial tools exist that can give bounds on worst-case
execution time [21].

Lisper [12] describes a promising approach that uses parametric integer pro-
gramming to automatically deal with parameters such as the ones that describe
numbers of iterations in a flow graph, provided they are linear. Coffman et al. [4]
have similarly derived polynomial time bounds for nested loop programs.

There has been relatively little work on compositional analysis. Reistad and
Gifford [15] calculate execution time (not guaranteed worst-case execution times)
as symbolic expressions in terms of abstract values of the input data, e.g., its
size. Compositional verification of real-time systems is done by H̊akansson and
Pettersson [7], who apply model-checking without calculation of abstract pro-
gram values to distinguish cases in the compositional verification of real-time
systems. We are not aware of other related work computing situation-dependent
time in a compositional fashion.

In the concurrent programming language Toc [11], the programmer specifies
the time of each task. This provides abstract information similar to the infor-
mation we have for our boxes, that needs to be verified within each task and
that can be used for derivation of an earliest-deadline first schedule. The main
difference to our approach is that we distinguish different execution times for
different branches in each box.

This paper builds on our previous work presented at the ERCIM/DECOS
workshop [9]. In the further development we took much benefit from approaches
applying polynomial size functions and their extensions. Kesteren et al. [19]
have suggested a restriction to polynomial size functions and to increase the
degree of the class of polynomials as long as the test fails. Shkaravska et al. [17]
show how to approximate multivalued size functions by a family of piecewise
polynomials. Another work aiming for upper bounds where exact approximation
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is inconvenient is the Java bytecode analysis by Albert et al. [1] implemented in
Ciao Prolog.

7 Conclusions

We have seen that symbolic simulation can up to a certain degree be applied
successfully for the analysis of Hume box compositions. If the required number
of superstep cycles is known it advance and constant, the main task is a good
simplification of the symbolic expressions. If we know a relation between a control
parameter and the number of cycles, we can use this to create a table for a series
of parameter values of interest. The situation gets tricky when we are aiming for
a general solution in control parameters; but possible in certain circumstances.

The use of Haskell as a prototyping language for the abstract behaviour of
Hume boxes permits manual assistance by exposing the control parameter and
other symbolic information of interest to the analysis.

In the case of nested iterations the analysis becomes difficult. We recommend
structured programming at the coordination level, using templates of known be-
haviour to implement iterative patterns. Then, the analysis of the Hume program
can be carried out really compositionally, in a bottom-up fashion along the com-
position of the templates.

We are also investigating dependent types for size verification of inductively
defined specification, e.g., the size preservation of quicksort [3]. Related work
was done by Danielsson [5] who applied the dependently typed language Agda
for timing verification at the level of functional expressions. However, the proofs
required inside a dependently typed framework will, for a considerable time,
require even more manual interaction than we did here.
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