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Integrals and valuations

THIERRY COQUAND
BAS SPITTERS

We construct a homeomorphism between the compact regulalelof integrals
on a Riesz space and the locale of measures(valuationsy spattrum. In fact,
we construct two geometric theories and show that they améebpretable. The
constructions are elementary and tightly connected to tegzRspace structure.

06D22, 28C05

1 Introduction

The goal of this paper is to give a constructive formulatibthe Riesz representation
theorem. The Riesz representation theorem states thatistean isomorphism between
integralsandregular measuresn compact spaces. Anintegral on a compact Hausdorff
spaceX is a positive linear functiondl : C(X) — R (and we shall consider only maps
such thati (1) = 1). A regular measure can be identified withantinuous valuation
where avaluationon X is a mapu : O(X) — [0, 1] which is monotone, iU C V
then (V) < u(V), and such that(f) = 0 andu(U NV) + (U U V) = w(U) + (V)
and u(X) = 1. The continuity condition demands thafU) is the sup ofu(V) for

V well-inside U (i.e. such thalJ contains the closure df). An equivalent way to
express this condition is to state tbentinuityproperty: ifV; is a directed family then
w(UJ Vi) = supu(Vi). A subset iddirectedif it is inhabited and every two elements
have a common upper bound. Such continuous valuationscexteiquely to Borel
measures; sed] for an overview.

From a constructive point of view there is a crucial diffesemetween the two notions.
We will now outline these differences; precise definitioms de found below. The
integral I (f) of a functionf € C(X) is aDedekind real Intuitively, this means that
one can compute arbitrary rational approximations. Thig mat be the case for the
valuation(U) of an openU: in general we do not have the property thatfor s,

wU) <svr < u(U).
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Constructively the valuation:(U) is only alower real and can be thought of as a
predicater < p(U) on the rationals. This predicate is downward closed: <f 11(U)
ands < r then we haves < u(U), but in general, giverr > 0 we are not given a
way to compute a rational approximation ofu(U). Given an integral we define a
corresponding valuatiop (U) by taking the sup of(f) over all 0< f < 1 the support
of which is included inU. Itis remarkable that foanyvaluationy, one can conversely
find a (unique) integral such thaty = . So despite the fact that one may not be
able to computg.(U), it is still possible to computg fdu as aDedekind reals the
supremum of

> su(s < f<spa)
over all partitionssy < - -+ < &, of the rangef([a, b]). A priori this supremum will
only be alower real

As usual in constructive mathematics all structures carrgtaral, but implicit, topol-
ogy and all constructions are continuous. To make this tra@xplicit we start from

a Riesz spac® and associate three formal spaces to it that are all compagtletely
regular: the maximal spectrum Ma®( = X (intuitively, R is then a dense subset
of C(X)), the space of integrals INRj and the space of valuations VAX). All
three spaces are defined@spositional geometrical theoriesA geometric formula

is one of the formy) = ¢, where the formulas) and ¢ are positive,.e. they are
built up from atomic formulas using only (finite) conjunatig(infinite) disjunction. A
geometric theorys a theory all of whose axioms are geometric. The main pdint o
this paper is to define two interpretability maps, showing ho interpret the theory
VAL( X) in the theory INTR) (intuitively how to define the measure from an integral)
and how to interpret the theory INR] in the theory VALK) (intuitively how to define
the measure from the integral). The Riesz representatieor¢im can then be stated
as the fact that these two maps define an homeomorphism betheeorresponding
formal spaces VALX) and INTR) where the topology on INR) is the weak topol-
ogy. Hence we arrive at a concrete constructive statemehedRiesz representation
theorem which is valid in any topos.

The present article is part of our program to apply the |dgiggproach to abstract
algebra ¥] to (functional) analysisy, 9, 22, 6]. It may be seen as a contribution to
Hilbert’s program of logically translating the use of infamy methods to finitary, or
constructive, ones. Itis also continuation of a traditinnidpos theory, e.g2], but in

a more explicit mannékr.It turns out that our program sometimes gives shorter proofs

1 We avoid the axiom of (countable) choice, and, moreovergfrain from using the power
set axiom. One may wonder how we treat the set of all real nusribesuch a framework. In
fact, we do not use this set at all. We only considerfdreal spaceof real numbers.
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of more general results than a direct constructive treatrimethe sense of Bishop.
Moreover, the space of valuations does not naturally camngtic structure and hence
the topological structure, explicit in our presentatianhidden in Bishop’s treatment
of the Riesz representation theorem. We emphasize, howtbetrll our resultgare
acceptable by Bishop’s standard. Since we do not constaiicts) we have no use for
the axiom of choice, not even the countable version whickadable to Bishop.

1.1 Formal measure and integration theory

As outlined in B, 22, 8] a formal theory of measure and integration may be developed
along the following lines.

In a usual set-theoretic foundation of measure theory onsiders certain functions
which are defined to be ‘measurable’. Then relative to a nreasne identifies
all the functions which are equal almost everywhere andibta vector latticelg

of measurable ‘functions’. Instead, one may consider sugbctor lattice from the
beginning, abstracting from the set-theoretic foundatiorhe benefits of this approach
have been emphasized by Kolmogorov, Caratheodory and vamaien [L8]. In the
present article we focus on the theory of integrals definedoomal functions and
valuations defined on formapens For a formal treatment of Borel sets we refer
to [8, 4, 21].

The abstract space of functions is captured by a Riesz spagec{or lattice) which
we require to have a strong uhitAn integral is acontinuousinear functional on the
Riesz space. On the other hand, a measure is typicallylonlgr semi-continuous
This suggests that an integral will be a map to Erelekindreals, but that a valuation
will map to thelowerreals. The Riesz representation theorem will be presentttei
form of a homeomorphism between the formal space of integnala Riesz space and
valuations on the opens of its spectrum. By the Stone-Ydkiglarem any Riesz space
R with strong unit can be densely embedded in the space ofreants functions over
its spectrum MaxX®). This can be proved constructivel9]] The integral extends to
this space of continuous functions. In this sense our appr@aclose to the Daniell
integral.

Alternatively, we could have started from a compact congbyetegular localeX
and construct the Riesz spa€%X) of continuous functions on this locale. Then
Max(C(X)) = X. However, we also want to include ‘syntactic’ Riesz spaceh s
the Riesz space of rational piecewise linear functions of][0

2An even weaker requirement would have been to demand thakewggven a lattice ordered
Abelian group. Such a group can be extended to a Riesz spacthevrationals; e.g5].
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1.2 Overview

Section3 contains the statement of the Riesz representation thedhenmain result
of the article. The statement is geometric with joins restd to countable sets.
This allows us to use logical methods to conclude clasgidhbt there has to be a
constructive proof. We construct such a proof in Sectioithe proof uses a concrete
theory of non-increasing functions, which we cAllfunctions in Sectior.4.

1.3 Notation

We use the lettera, b, f, g, ... for elements oR, and the letters, y, z ... for elements
of the lattice Sped). We write 1 for the top element of a lattice and 0 for the bwotto
element.

2 Preliminaries

2.1 Various kinds of real numbers
We recall some facts about the real numbers; see BigDH.7].

Definition 1 A lower realis an inhabited, down-closed, open subset of the rationals.
The collection of lower reals is denoted By, . Upper reals are defined similarly and
denotedRp. Aninterval consists of a paiflL,U) of an upper real and a lower real
suchthat < U: if sinL andt in U, thens < t. A Dedekindreal is an interva(L, U)
which is arbitrarily small: for everg < t, eithers € L ort € U. The Dedekind reals
will be denoted byR .

The lower reals includeoco. In order to exclude it, we would need to pose a non-
geometric restriction. This issue will not be importanthe test of the paper.

Lower (likewise upper) reals are closed under addition dosked under multiplication
by a positive rational. The lower and upper reals o€ closed under subtraction,
but onecan subtract a lower real from an upper real and obtain an updr fEhe
non-strict inequality< is given by inclusion of subsets. The supremum of an inhdbite
set of lower reals is a lower real. The infimum of an inhabitetf upper reals is
an upper real. This is an important motivation for the useowfdr (upper) reals: the
supremum of a sequence of rationals need not be a Dedekintuketis a lower real.
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Inthe absence of the powerset operator, the lower reale#es bonsidered as a formal
space rather than a set, but we will not emphasize this point.

In the presence of dependent choice the Dedekind realsideinith the Cauchy reals.

Lemmal LetL be alower real antll be an upper real.
If L < U, then for all rationap, L +p — U < p.

Conversely, if. + p — U < p for some rationap, thenL < U.
The following lemma will be used a number of times below:

Lemma 2 The relationa < b + ¢ for lower reals can be stated geometrically in two
equivalent ways:

@ p<a—>\/r+s:p(r <bAs<o);
2 r+s<a—r<bvs<ec.

A similar statement holds for upper reals.

Proof The implication from 1 to 2 is direct. For the implication ifno2 to 1 we
observe that ip < a, then there exists > 0 such thaip + ¢ < a. Choose a rational
g < b and a natural numbeX such thatp — q — Ne < ¢. By hypothesis 2, with
premissp + € < a, we have for evern, q+ne < bV p+e¢ —(q+ ne) < c. Since
the first disjunct holds fon = 0 and the second fan > N + 1, there exist1 such
thatg+ne < bandp+¢—(g+ (n+ 1)) < ¢c. We can now take = g+ ns and
S=pPp—Qq-+ne. D

The inequality between a lower real and a Dedekind real camla stated geometri-
cally.

2.2 Logic and topology

In set theoryj.e. in the topos Set, one uses topological spaces to deal witinady.
However, statements including points of topological spae often difficult to gener-
alize to arbitrary toposes. Fortunately, itis often pdssibresort to the lattice structure
of the open sets of a topological space. These completebdisie lattices are thus
called ‘pointfree’ spaces, or locales (s&8]). Inthe topos Set one can often reconstruct
the points from this lattice; to be precise, there is an adtjan between the category
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of topological spaces and the category of locales, whidhicesto an equivalence of
categories between compact Hausdorff spaces and compaptately regular locales.
In general, this equivalence is not present in a topos. Wieerrglizing theorems
from the topos Set to an arbitrary topos focusing on locaesten the better choice.
One reason for this is that a locale may be defined by geomtégimry. In logical
terms the locale is its syntactic category, often calledTdueski-Lindenbaum algebra
— that is, the poset of provable equivalence classes, atdargrovable entailment.
The correspondence between the locale and the theory istlzd completeness and
consistency link between theories and models. The modétedheory correspond to
completely prime filtersi.e. points of the locale presented by the lattice. In this way,
a pointx in a topological space defines a model of the correspondiegyryh a basic
propositionl is true in the modek iff x € |. This view leads us to consider theories
as primary objects of study; their models, the points, wallderived concepts. Hence
topology is propositional geometric logic; see el [24].

2.3 Spectrum of a Riesz space

Definition 2 An ordered vector spads a vector space with a partial order such
that

1) If x

<y, thenforallz, x+z<y+z
(2) ifo<x

, then for alla > 0, 0 < ax.

A Riesz space (or vector latticis)an ordered vector space where the order structure is a
lattice. An element is astrong unitif for all x there exist$) such that-n1 < x < nl.

As noted in the introduction Riesz spaces provide an algelray to talk continuous
functions on a compact completely regular locale.

We will consider Riesz spaces &svector spaces.

In a Riesz space one defings :=f v 0,f~ := 0V (-f) and|f| := f* +f~ and
derives thaf = f+ —f—.

The spectrum of a Riesz spaétis the space of all its representations — Riesz
morphisms fromR to R. It may be presente®] as the locale which is freely generated
by the collection of token®(a), one for eacla in R, subject to the following relations:

1. DQQ)=1;
2. D(@ AD(—a) =0;
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D(a+ b) < D(a) v D(b);

D@ =0,ifa<0;

D(aVv b) =D(a) v D(b);

D@ = Vs oD(@—9).

As proved in Proposition 2.6 irb] one can derive the relationi®(a) = D(a™) and

D(aA b) = D(a) A D(b) from the ones above. In fact, either of them is equivalent to
the relation 5 given (1-4).

o 0k~ w

One proves that this locale, Ma), is compact and completely regular by interpreting
the geometric theory (1-6) in the coherent theory (1-5) ligrpretingD(a) in (1-6)
as\/s.oD(a— 9) in (1-5); see §]. In terms of locales this means that the locale is a
retraction of the coherent locale generated by (1-5). Tlaioas for\ and A allow

us to reducev A D(g;) to D(V A ;). So the collection oD(a) actually forms a basis,
rather than only a subbasis, for the locale. We write SRefe(r the distributive lattice
generated by (1-5).

Theorem 1 [5] The order inSpecR) is D(a) < D(b) iff there existsn such that
a™ < nb". The order in the local®ax(R) is D(a) < D(b) iff for all ¢ > 0 there
existsn such thafa — )™ < nb*.

The order on SpeR), as opposed to the order on MB&X( is defined geometrically
from the order orR.

Intuitively, the openD(a) in the locale corresponds to the det | &(c) > 0}, where
a: Max(R) — R is the function defined by(c) := o(a) for o in the locale. In the
presence of the full axiom of choice this can be made precseadlows us to prove
that the spectrum hasnoughpoints.

Proposition 1 A modelm of the geometric theory above, i.e. a point of the spectrum
as a locale, defines a representation

om(@ = ({r | m[= D@1}, {s| m& D(s— a)}).

Proof Lemma 1in P] proves that this defines a Dedekind cut. By axiom(&V b) =
o(@)Vvo(b). By axioms 2,4D(1— (1— %)) = 1. Itfollows thato(1) = 1. As observed
in [9] a map satisfying these properties is a representation. O

The Stone-Yosida representation theorem states thatith@embedding oR into the
locale of (Dedekind) real valued continuous functions ersjgectrum which is dense
with respect to the sup-norm. The sup-norm is the upper|f@abefined by||al| < A

iff there existsA\’ < X such thatja] < \'1. A constructive proof of this theorem can
be found in PJ.
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3 Statement of the Riesz-representation theorem

The goal of this section is to state, in SubsecBof) the Riesz representation theorem
as the existence of a homeomorphism between the formal airopapletely regular
spaces of integrals and valuations. TheoReoontains the proof of the representation
theorem.

3.1 The space of integrals
Let R be a Riesz space with strong unit 1.

Definition 3 A (probability) integrall on a Riesz spade is a positive linear functional
— that is, it is a linear map to the Dedekind reals angl 3 0, thenl(x) > 0 — and
such that (1) = 1.

An integral is continuous with respect to the sup-normif if< r, thenlI(|f|) <r, by
positivity. By density of the Stone-Yosida embedding, aegmnal extends uniquely to
a positive linear functional on the space of all continuaa-valued functions on the
spectrum.

We present a geometric theory INT of integrals Rnmuch like the description of
Stone’s maximal spectrum MaR) in section2.3. In fact, the geometric theory Max
will have one relation more than the theory INT. This meaas iR T can be interpreted
in Max, this interpretation defines a frame map from INT to Mamd hence, a locale
map from Max to INT. The locale Max is a sublocale of INT. Thelirsion is given
by assigning to a point its Dirac measulg(f) := f(x).

To wit, subbasic opens of INT, denoted gy 1(f)], are indexed by rationgh and f
in R. The set of its points will b1 | p < I(f)}. Sincep < I(f) iff 0 < I(f — p), itis
sufficient to treat basic opens of the form0l (f), written P(f), whereP is a dummy
symbol. The points in this open are integralsuch that 0< I(f).

Definition 4 The geometric theory INT is freely generated by symi{ly, f in R,
and relations:

1 PQ)=1,

12 P(f)AP(—f)=0;

13 P(f +9) <P(f) vP(g);
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14 P(f)=0,iff <O0;
Cont P(f) = s oP(f —9).

Lemma 3 The relationP(f) < P(g) if f < g holds in INT.
Proof P(f —g+g) < P(f —g) Vv P(g) =0V P(g). 0

As before one proves that INT is compact completely regwareducingl1-4+Cont
tol1-4. This result was proved by Coquari] yvho referred to the theoryl-4 as TOT,
the theory of total orderings on an ordered vector space. &\e bhosen the present
presentation of INT since it makes compact complete retjyleasy to prove.

Lemma 4 The theory INT is equivalent to the theory of normalized pesiadditive
functionals:

o I(f) eR;

e 1(0)=0;

o I(f+9)=1(f)+1(9)
o If)>0iff >0;

o I(1)=1.

The notation above describes the locale with generapos,|(f) andI(f) < q, for f
in R andp, g rational andl is a dummy symbol, and certain relations. For instance,
the first axiom,| (f) € R, is a shorthand for the relations:

o [p<I®I<P <I®]if p<p;
o [I(f)<d<[I(f)<dlifa<d;
o p<I(f)=Vypp <I(f);
o I(f) <d=\Vg-qd <I(f);
e 1=(p<I®)VIf)<qgifp<q;
e O=(@<I®BAIH)<pifp<aq.

Proof We interpretP(f) in INT asI(f) > O in the theory of positive additive func-
tionals.

For the converse, we defime< I (f) asP(f — p) andI(f) < gasP(q— f). Then
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(1) —e < I(f)if f > 0 ande > 0. Proof: P(f + ¢ — f) < P(f + ¢) vV P(—f) and
P(—f) = 0.

(2) 1=s<I(f)VI(f) <t,whenevers<t. Proof: P(t —s) = 1.

(3) By Lemmag3, if s < I(f), thent < I(f) for t < s. Similarly, if I(f) < s, then
I(f) <tfors<t.

Combined with the continuity rule, this shows thét) is a Dedekind cut.

From I3 we haveP(f) < P(if). Hence, 1- 2 < I(1) < 1+ %, ie. I(1) = 1.
Similarly, 1(0) < 1.

To prove additivity we combine Lemmawith 13 and obtainl (f + g) < I(f) + 1(g).
Conversely, the rul®(f) A P(g) < P(f + g) can be derived in INTf =f +g—g, so
P(f) < P(f + g) v P(—0) and the result follows fron(g) A P(—g) = 0. O

Linearity readily follows from additivity, so the points ¢XIT are integrals and, con-
versely, every integral defines a point.

Usually, one proves that the space of integrals is compaahkappeal to the Alaoglu
theorem. Here we have shown thatitis compact by constiuctiasimilar construction
can be carried out for Alaoglu’s theorem for compact locfla%.

3.2 Integrals on positive elements

Instead of starting with a positive linear functional, itMater be convenient to work
with its restriction to the positive elements.

Lemma5 An integral is fixed by its behavior on the positive elemes.such it is
a functionl : R™ — R such tha(0) = 0 andI(f +g) = I(f) +1(g) andI(1) = 1.

The theory of these functionals is geometric, we call thitl INTPOS.

Proposition 2 The geometric theories INT and INTPOS are biinterpretable.

Proof To obtain the integral from its positive part we defifg) .= 1(f ") —1(f~). O
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3.3 The space of valuations

Definition 5 A valuationis a mapyu : SpecR) — ngw such that
e u(0)=0,u1)=1;
o u(X)+ u(y) = p(XVy)+ u(XAy) (the modular law),
o If x<yin SpecR), thenu(x) < u(y) (1 is monotone);
e 1(D(@) < V..ou(D(@— ¢€)) Scott-continuous

The theory of valuations is geometric, we call this theoryLVAJsing Lemma2 we
can formulate modularity in a way similar td§]. We have defined the valuation
only on the coherent basis Spec(R) of MAx(but it extends to the locale itself.
Alternatively, we could have used the same definition buhwitonotonicity for the
order on MaxR). This gives rise to the same locale of valuationsD(&) < D(b) in
Max(R), thenD(a—r) < D(b) in SpecR) for all r > 0 and sau(D(a—r)) < u(D(b)).
By Scott-continuity we gef.(D(a)) < u(D(b)).

This locale coincides with the locale of valuations on theale MaxR) as defined
by Vickers p5] for an arbitrary locale with the difference that we requir€l) = 1.
Vickers 25, Prop.4.1] already pointed out that we can restrict to a baskee locale
in order to obtain the locale of valuations geometricallynir (a presentation) of the
locale.

Classically, the regular measures form a compact Haussioeffe. Hence, classically,
the locale of valuations on a compact completely regulaalnés again compact
completely regular. The homeomorphism in the Riesz reptaien theorem gives a
constructive proof of this fact.

3.4 Statement of the theorem

We are now ready to define the promised maps between integrdlsaluations. We
give a syntactic bi-interpretation between two theoridg: definition of the maps will
be geometric, but the reasoning that these maps actualjysdie required properties
will be intuitionistic. For a general discussion of suchheicues see e.g24, sec.4.5].

From integrals to valuations

Given anintegral on a Riesz space, we construct a valuatiimempens in its spectrum:
m(D@) :=sup{l(na” A1)|ne N}
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In section4.5we prove that this is well-defined, i.e. that it gives the sam&wver when
D(a) = D(b).

From valuations to integrals

In order to define the converse interpretation we introdwreesnotations. Fof in
Rt define the lower real\¢(r,s) := u(r < f < '9). Letl = (r,s). Write A¢(I°) for
the lower realAs (—oo, r) + A¢(s, o0) and A¢[1] for the upperreal 1— A¢(I°).

The interpretation of INTPOS in VAL
f = (S(U)pz SLUCIEFW A O PETELYCIEY)
S

the §) range over partitions over a fixed interval, p] wherea < f < b. As is the
case foru_ this is a disjunction over a concrete countable set: a firgteof strictly
increasing rationals.

Assuming the classical Riesz representation theorem #dg o show that these are
indeed interpretations and that these maps are each dther'ses as follows: For any
r > 0 there is arr-approximation by sum$_ sA¢(s,S+1) and > s11A¢[S, S+1]-
This follows from the usual classical proof of Riesz Theorand the possibility to
chooses as continuity points for the function

S Af(—OO, S)

By completeness of propositional-logic [15, 20] and the validity of the propositions
in all models, i.e. measures or integrals, of the theory veetkat, classically, there
should be a proof in the theory that these are indeed intatyes. We will provide
such a constructive proof in Theore3n This treatment is different from the classical
one; see e.g.1P]. We take the topological/computational aspects into antdy
distinguishing between lower reals and Dedekind reals.em@r we do not use the
extension of a valuation to a measure on the Borel sets. Guitiie more general: not
only is it constructive, and hence valid in any topos, butsbabstracts from a lattice
of sets to a general lattice.

4 Proof of the Riesz representation theorem

4.1 Formal simple functions

We define formal simple functions on a distributive lattice All index sets in this
section are finite, i.e. have a cardinality. We will use thevemtion that a capital letter,
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sayl, is a subset of the variables indexed by the lower casedettay &). For ()
in L we definex; := A{X | i € |}. Following Tarski R3] and Horn and Tarskil2,
Def 1.4] we define the free monoild (L) such that the relatiom+y =XV y+ XAy
holds. As Horn and Tarski prove this is the monoid of formahsy _ x;, wherex; in
L, with the following equality:

Lemma 6 [12] We haveZiEI a = Zk>1 VKC|,|K|:kaK' Furthermoreziel q =
>iea B iff Vet jkj=k @& = Vicea = bx forall k > 1.

Definition 6 Let M(L) be the monoid of formal sums ih modulo the relation
X+Yy=XxVy+XxXAYy. We define the pre-order

D x <Y yiffforall 1x < \/{ys | 9] =111}
By Lemma6 < is an order.
The monoidM(L) satisfies the cancellation property; s8] For k > 0, kx < O iff
x = 0. We add positive rational coefficients —that is, defineati@h " rix; < > Sy;
— by putting all the terms on one denominator.rlin Q™ andx <y, thenrx < ry

andx+ z < y+ z. WhenlL is a lattice of sets, this coincides with the usual ordering
of simple functions. We writ&s™ (L) for the positive simple functionsn L.

We writer; := ) ;. ri. The following is direct.
Lemma7 > rix <> sy iffforall 1,x < Vi< Ya-

Lemma 8 The relation< is transitive onS+(L).

Proof Suppose thad_riaq < > sby < > tkc. By Lemmas, for all I, a <
\/J7rI<sJ b; and for allJ, b; < \/K7SJ<tK Cck. So0,q < \/J7K7r|<SLSJ<tK CK . D

4.2 Extending valuations to simple functions

We now consider the case whdrds SpecR). We extendu to an additive functional
from the formal sums to the lower reals. This extension Basithe modular law and
hence so does the extension to the simple functions:

Lemma9 If Y rix <) sy, thenu(3 rix) < p(>_sy;). So,u is well-defined on
ST(L): if k=1, thenu(k) = u(l).
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Proof By bringing all the terms on one denominator we can disposd tife scalars.
Hence our goal will be to prove: [ x < >y, thenu(d - x) < u(>_y;). To see this

we have
pOox) = pO0 V%) < oO- o w) = oW D

k>1 [K|=k k>1 [K|=k

Consider the dual latticé’ of SpecR). We defineu(—x) as theupperreal 1—
u(X). This definition is naturally extended to the formal simfiections St (L'):
w(Oos(=x) = O°s) — w(O_sx). However, we will not be able to define the
valuation of a sum of mixed open and closed elements.

4.3 Simple functions on the spectrum of a Riesz space

We now consider the case whdras the Boolean algebra freely generated by SRec(
Letf be inR. We denote the opeD(f —r) by (f > r) andD(r — f) by (f < r) and
the complement off(> r) by (f < r) and the complement of (< r) by (f > r).

We want to express the pointwise order relation between giy@simple function
and a positive element of the Riesz space considered angouns functions on the
spectrum MaxR). However, for the sake of geometricity, we use the orderpEciR)
instead. Hence we are working with a coherent approximatdhe pointwise order.

We define the relatiod_rix; < f as: for alll, x < (r < f) and the relation
f <> gy ast 1= V,((f < sp) Aya).

Lemma 10 If a< 1, thena < D(a).

Proof We need to prove thata(< 0) vV ((a < 1) AD(@) = 1. We simplify this
statement:

(@>0)<(a<1)AD@

(@>0)<(a<y)

@>0An(@>1)=0

The last statement follows from the hypotheais: 1. O

When MaxR) is spatial, as is the case in the presence of the axiom ofehloy Stone-
Yosida,f may be interpreted as a continuous function on NRvgnd the order above
corresponds to eoherent approximationf the pointwise ordering of functions when
the simple function) _ rix; is interpreted as the linear combination of the charadteris
functions associated to the segs
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Lemma 1l Suppose thap rix < >_ sy, and)_sy; < f. Then) rix <

Proof We havex, < \/J7rI < Yaandy; < (s <f). So
x< \/ m<hH< \/ (<hH<n<h) O

Jn<s Jn<sy

Lemma 12 Suppose that < > rix; andd_rix < >_SYj. Thenf <" sy;.

Proof We have 1= \/,((f < 1) Ax)andx < \/J’rI<SJ y3. So

l_\/((f n)AX) = \/((f mA Vo v)

J(1),n <SJ(|)

\/ \/ (f <simy) Ayagy < \/((f<SJ)/\YJ)-
J

I J(),n <S301)

O
It is clear that if Y rixi < f < g,then) rix < g,andiff < g < > rix, then
f<>onx.
Lemma 13 If S"rix <f <308y, thend rix < Y. sY;.

Proof We have for alll, x; < (1 <f) and 1= \/;((f <) Ays). Then

X <(n<f)=(n< f)A\/((f A<\ v O

Jn<s;

Lemma 14 Let0 < f < b and lets be a partition of0,b]. Then
D osls <f<sia)<f<) suls <f<sn)

Proof To prove the firstinequality, we writg := (5 < f < 541). Thex; are disjoint
and

<(s<f)<(s<h)

To prove the second inequality we write= (5 < f < 5+1). Then € < s11)AY; =
and 1= \/y;, sincesy, ..., &, is a partition of [Qb]. O

The following results have a direct proof.
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Lemma 15 If |1 < fy andl, < fp, thenly + 1, < f1 + fo. Slmllarly, if f1 <k and
fo < ko, thenfy + fo < kg + ko.

The spectrum of a Riesz space is completely regular as tloa/faly simple formulation
of the Urysohn’s Lemma shows.

Lemma 16 Letain R™ ands > 0. ThenD(a— ¢) < %(a/\ €) < D(a).

Proof For the first inequality we need to prove thafa—¢) < (1 < %(a/\ €)). Since
the right hand side is a formal complement this me&{g,— ) A (1 > %(aA g)) =0.
Now, (1> (ane)) = (e > a) = D(c — ).

The second inequality follows from Lemni&: i(ane) < D(i(ane)) =D(@). ©

4.4 A-functions

In this subsection we fix > 0 in R and a valuationu. We define the lower real
A(r,s) = u(r < f < s) and the upper real\[r,s] = 1 — A(—o0,r) — A(S,00) as in
Section3.4. Intuitively, the functionA represents the functiom(s) = u(f < s) which
is used in the definition of the integral as a Stieltjes iraedrfdy = [ sda(s). The
functions A satisfies:

(1) A(O,b) =1 for someb;
(2) A(r,9) < 1;
(3) A(r,s) > 0;
(4) A(r,9) + A(st) = A(r, 1) — A[s];
(5) A(r',s) < A(r,s) whenever <1’ <8 <s;
(6) A(r,s)+ A(r',s9) = A(r,s) + A(r,§) whenever <1’ < d <s;
(M) A(r,9) =V{A{I,S)|r<r <s <s}.
In4, Alg] := Als, 9.

We write (,S) < (r,s) for r <r’ < § < s. As before, we writeA(l) for A(r,s), if
I =(r,9).

Lemmal7 If | < J andp < q, thenA(J) > p or A[l] < g.

Proof SinceA(I)+AQ)>1>p+(1—0). O
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We now prove ‘a non-increasing function is continuous in asgeset of points’ in a
pointfree way.

Theorem 2 Let N € N and| = (r,s) be an open interval. Then there exists an
interval ) < | such thatA[J] < &.

Proof Choose Rl disjoint intervalsl; in | and choose 14 intervalsJ; < |;. For each
i, A(ly) > % or A[J] < % It is impossible that the former case occurs all the time,
therefore the latter case occurs at least once. O

It follows classically thatu(r < f <s) = infg-su(r < f < &). The approximations
to this infimum are explicit in the following proposition wdhi assigns a Dedekind real
to A. The interpretation of this real is the Stieltjes integratla(s), where« is a
non-decreasing function connected4o

Proposition 3 The pair
({p Ip< > sAs, s-+1)} ; {q 1Y snAls, sl < q}),

wheres ranges over finite partitions ¢@, b], defines a Dedekind real.

Proof We first prove that the upper and lower cut come arbitraryecl@here exists
(s) such that)” s+1A[S,S+1] — Y. SA(S,S+1) is small. To wit, givens > 0, use
Theoren2 to choose a partitios of [a, b] such thats; 1 —s| < e and)_ A[s] < e.
Then

ZSHA[S,SH] - ZSA(S7S+1)

< D (51— 8)Als sl + Y s(Als] + Alsa))
< €ZA[S‘,S‘+1] + 2be
< e+ ) A[S]) + 202 <e(1+e) + 2be.

We now prove that the lower cut is below the upper cut. By Lenidja

= s(s <f<sp)<f<D s <f<sp)=k
Writey; == (f < s) V(S41 < ). By Lemmal3, | + > s11y; < > S+1, sopu(l) +
n(>-sy1y;) < (> s+1). The conclusiony(l) < p(K), follows from Lemmal. O

The previous proposition contains the essence of Bishapflg@theorem; seed]. It
is the crucial step in the proof thg} is a function; see Lemm&9.
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4.5 Continuous maps

We are now ready to show that the mapsand|,, defined above indeed map integrals
to valuations, and vice versa. We need to check that thepitations of all the axioms
hold.

We first repeat the definition from secti@m:
i (D@) :=sup{l(na" A1) |ne N}.

We observe thaf < D(a) iff there existsn such thatf < na"™ A 1. Hence,
sup{l(nat A1) | ne N} = sup{I(f) | f < D)} .

The mapy, extends to the positive simple functions:
(3 riD@) = sup{I(>_ri(na* A1) [ne N},
Lemma 18 , is a valuation.

Proof To prove modularity we observe that
(nanl1l)+ (nbAal)y=(n(anb)Al)+ (n(aVvb)Al)
and hence
I(naAl)+I(nbAl)=I(n(@anb)Al)+I(n(avb)Al).

For monotonicity: Iff < x andx <y, thenf < y. Finally, regularity, u(D(a)) =
sup.qu(D(a—r)) is direct. O

We generalize the definition of, in section3.4to arbitrary simple positive functions:
() = (sup{p@) |1 <f,1 € STL)},inf {u(9 | f <k ke STL)}).

We will prove that the supremum and the infimum over the retstli sets of simple
functions used in sectidh4already form a Dedekind real and hence the two definitions
coincide.

Lemma 19 |, is anintegral.

Proof To prove thatl maps to the Dedekind reals: Letc R™ and chooséb > f.
By Proposition3 (sup) | SA(S, S+1),Inf > s11A[S,S41]) is a Dedekind real: the
lower cut is below the upper cut and both cuts ‘kiss’.

To prove additivity, by Lemmas, if 1; < f andl, < g, thenl; + 1, < f + g. Hence
[(f) +1(g) < I(f + g). Conversely, iff <k andg <1, thenf +g<k+1 and hence
I(f +9) <I1(f) +1(9)- O
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4.6 Homeomorphism

We prove that there is a homeomorphism between the integnadsRiesz space and
the valuations on the opens of the spectrum.

Theorem 3 [Riesz representation theorelgt R be a Riesz space with a strong unit.
The theory of valuations on its spectrum is equivalent tatieery of integrals olR. It
follows that the corresponding compact completely reglokeales are homeomorphic.

Proof Thatis, we claimthat,; = J andu, = v.

() = supua) |1 <f})
= sup{J(9) [g<I<f}
> sup{J(f —¢) | e > 0} = J(f)
For the inequality we observe that for eact 0,f —= < 37, 5((n+3)5 < f) <f.

The other inequality is trivial.

Conversely,

(0 = sup{l,(f) | f <k}
= sup{v() |1 <f <Kk}
> sup{v(l) || < k} =v(K)

Wherel < kmeansk = > sD(&) andl = ) sD(a —¢). By the Urysohn Lemm&6
there existd in R such that < f < k. The other inequality is trivial. D

5 Related work

Vickers [25] presents another variant of the Riesz representatiomehecHis construc-
tion works for locales which are not necessarily compactmetely regular. However,
his integrals have their values in the lower (or upper) repposed to the Dedekind
reals. A locale of valuations was first presented by Heckrii@h [

The present homeomorphism has already been applietham-&@ommutativeontext

of quantum theory J1] where it provides an isomorphism between quasi-states and
certain valuations. Quasi-states are used in the algebrvaitdations of quantum
mechanics.
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6 Conclusions

The present construction was motivated by Bishop’s bijechetween measures and
integrals B]. Bishop’s forces the measure of a measurable set to be akidede
real. This is somewhat inconvenient in practice since foreasarable functiof the
measure off[ > s| need not be Dedekind in general. We believe that the préiseaty
allows for a smoother development of, at least, the abdfuactional analytic aspects
of Bishop’s measure theory.
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