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Integrals and valuations

THIERRY COQUAND

BAS SPITTERS

We construct a homeomorphism between the compact regular locale of integrals
on a Riesz space and the locale of measures(valuations) on its spectrum. In fact,
we construct two geometric theories and show that they are biinterpretable. The
constructions are elementary and tightly connected to the Riesz space structure.

06D22, 28C05

1 Introduction

The goal of this paper is to give a constructive formulation of the Riesz representation
theorem. The Riesz representation theorem states that there is an isomorphism between
integralsandregular measureson compact spaces. An integral on a compact Hausdorff
spaceX is a positive linear functionalI : C(X) → R (and we shall consider only maps
such thatI (1) = 1). A regular measure can be identified with acontinuous valuation,
where avaluationon X is a mapµ : O(X) → [0,1] which is monotone, ifU ⊆ V
thenµ(U) 6 µ(V), and such thatµ(∅) = 0 andµ(U ∩V) + µ(U ∪V) = µ(U) + µ(V)
andµ(X) = 1. The continuity condition demands thatµ(U) is the sup ofµ(V) for
V well-inside U (i.e. such thatU contains the closure ofV ). An equivalent way to
express this condition is to state thecontinuityproperty: ifVi is a directed family then
µ(

⋃

Vi) = supµ(Vi). A subset isdirected if it is inhabited and every two elements
have a common upper bound. Such continuous valuations extend uniquely to Borel
measures; see [1] for an overview.

From a constructive point of view there is a crucial difference between the two notions.
We will now outline these differences; precise definitions can be found below. The
integral I (f ) of a function f ∈ C(X) is a Dedekind real. Intuitively, this means that
one can compute arbitrary rational approximations. This may not be the case for the
valuationµ(U) of an openU : in general we do not have the property that forr < s,

µ(U) < s∨ r < µ(U).

http://arXiv.org/abs/0808.1522v3
http://www.ams.org/mathscinet/search/mscdoc.html?code=06D22, 28C05


2 Thierry Coquand and Bas Spitters

Constructively the valuationµ(U) is only a lower real, and can be thought of as a
predicater < µ(U) on the rationals. This predicate is downward closed: ifr < µ(U)
and s ≤ r then we haves < µ(U), but in general, givenǫ > 0 we are not given a
way to compute a rationalǫ approximation ofµ(U). Given an integralI we define a
corresponding valuationµI (U) by taking the sup ofI (f ) over all 06 f 6 1 the support
of which is included inU . It is remarkable that foranyvaluationµ one can conversely
find a (unique) integralI such thatµ = µI . So despite the fact that one may not be
able to computeµ(U), it is still possible to compute

∫

fdµ as aDedekind realas the
supremum of

∑

siµ(si < f < si+1)

over all partitionss0 < · · · < sn of the rangef ([a,b]). A priori this supremum will
only be alower real.

As usual in constructive mathematics all structures carry anatural, but implicit, topol-
ogy and all constructions are continuous. To make this structure explicit we start from
a Riesz spaceR and associate three formal spaces to it that are all compact completely
regular: the maximal spectrum Max(R) = X (intuitively, R is then a dense subset
of C(X)), the space of integrals INT(R) and the space of valuations VAL(X). All
three spaces are defined aspropositional geometrical theories. A geometric formula
is one of the formψ ⇒ ϕ, where the formulasψ andϕ are positive,i.e. they are
built up from atomic formulas using only (finite) conjunction, (infinite) disjunction. A
geometric theoryis a theory all of whose axioms are geometric. The main point of
this paper is to define two interpretability maps, showing how to interpret the theory
VAL( X) in the theory INT(R) (intuitively how to define the measure from an integral)
and how to interpret the theory INT(R) in the theory VAL(X) (intuitively how to define
the measure from the integral). The Riesz representation theorem can then be stated
as the fact that these two maps define an homeomorphism between the corresponding
formal spaces VAL(X) and INT(R) where the topology on INT(R) is the weak topol-
ogy. Hence we arrive at a concrete constructive statement ofthe Riesz representation
theorem which is valid in any topos.

The present article is part of our program to apply the logical approach to abstract
algebra [7] to (functional) analysis [5, 9, 22, 6]. It may be seen as a contribution to
Hilbert’s program of logically translating the use of infinitary methods to finitary, or
constructive, ones. It is also continuation of a tradition in topos theory, e.g. [2], but in
a more explicit manner.1 It turns out that our program sometimes gives shorter proofs

1 We avoid the axiom of (countable) choice, and, moreover, we refrain from using the power
set axiom. One may wonder how we treat the set of all real numbers in such a framework. In
fact, we do not use this set at all. We only consider theformal spaceof real numbers.
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of more general results than a direct constructive treatment in the sense of Bishop.
Moreover, the space of valuations does not naturally carry ametric structure and hence
the topological structure, explicit in our presentation, is hidden in Bishop’s treatment
of the Riesz representation theorem. We emphasize, however, that all our resultsare
acceptable by Bishop’s standard. Since we do not construct points, we have no use for
the axiom of choice, not even the countable version which is available to Bishop.

1.1 Formal measure and integration theory

As outlined in [4, 22, 8] a formal theory of measure and integration may be developed
along the following lines.

In a usual set-theoretic foundation of measure theory one considers certain functions
which are defined to be ‘measurable’. Then relative to a measure one identifies
all the functions which are equal almost everywhere and obtains a vector latticeL0

of measurable ‘functions’. Instead, one may consider such avector lattice from the
beginning, abstracting from the set-theoretic foundations. The benefits of this approach
have been emphasized by Kolmogorov, Caratheodory and von Neumann [18]. In the
present article we focus on the theory of integrals defined onformal functions and
valuations defined on formalopens. For a formal treatment of Borel sets we refer
to [8, 4, 21].

The abstract space of functions is captured by a Riesz space (a vector lattice) which
we require to have a strong unit2. An integral is acontinuouslinear functional on the
Riesz space. On the other hand, a measure is typically onlylower semi-continuous.
This suggests that an integral will be a map to theDedekindreals, but that a valuation
will map to thelower reals. The Riesz representation theorem will be presented in the
form of a homeomorphism between the formal space of integrals on a Riesz space and
valuations on the opens of its spectrum. By the Stone-Yosidatheorem any Riesz space
R with strong unit can be densely embedded in the space of continuous functions over
its spectrum Max(R). This can be proved constructively [9]. The integral extends to
this space of continuous functions. In this sense our approach is close to the Daniell
integral.

Alternatively, we could have started from a compact completely regular localeX
and construct the Riesz spaceC(X) of continuous functions on this locale. Then
Max(C(X)) ∼= X. However, we also want to include ‘syntactic’ Riesz spaces such as
the Riesz space of rational piecewise linear functions on [0,1].

2An even weaker requirement would have been to demand that we are given a lattice ordered
Abelian group. Such a group can be extended to a Riesz space over the rationals; e.g. [5].
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1.2 Overview

Section3 contains the statement of the Riesz representation theorem, the main result
of the article. The statement is geometric with joins restricted to countable sets.
This allows us to use logical methods to conclude classically that there has to be a
constructive proof. We construct such a proof in Section4. The proof uses a concrete
theory of non-increasing functions, which we call∆-functions in Section4.4.

1.3 Notation

We use the lettersa,b, f ,g, ... for elements ofR, and the lettersx, y, z, ... for elements
of the lattice Spec(R). We write 1 for the top element of a lattice and 0 for the bottom
element.

2 Preliminaries

2.1 Various kinds of real numbers

We recall some facts about the real numbers; see e.g. [14, D4.7].

Definition 1 A lower realis an inhabited, down-closed, open subset of the rationals.
The collection of lower reals is denoted byRlow . Upper reals are defined similarly and
denotedRup. An interval consists of a pair(L,U) of an upper real and a lower real
such thatL 6 U : if s in L andt in U, thens< t . A Dedekindreal is an interval(L,U)
which is arbitrarily small: for everys< t , eithers∈ L or t ∈ U . The Dedekind reals
will be denoted byR.

The lower reals include+∞. In order to exclude it, we would need to pose a non-
geometric restriction. This issue will not be important in the rest of the paper.

Lower (likewise upper) reals are closed under addition and closed under multiplication
by a positive rational. The lower and upper reals arenot closed under subtraction,
but onecan subtract a lower real from an upper real and obtain an upper real. The
non-strict inequality6 is given by inclusion of subsets. The supremum of an inhabited
set of lower reals is a lower real. The infimum of an inhabited set of upper reals is
an upper real. This is an important motivation for the use of lower (upper) reals: the
supremum of a sequence of rationals need not be a Dedekind real, but it is a lower real.
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In the absence of the powerset operator, the lower reals are better considered as a formal
space rather than a set, but we will not emphasize this point.

In the presence of dependent choice the Dedekind reals coincide with the Cauchy reals.

Lemma 1 Let L be a lower real andU be an upper real.

If L 6 U , then for all rationalp, L + p− U 6 p.

Conversely, ifL + p− U 6 p for some rationalp, thenL 6 U .

The following lemma will be used a number of times below:

Lemma 2 The relationa 6 b + c for lower reals can be stated geometrically in two
equivalent ways:

(1) p< a →
∨

r+s=p(r < b∧ s< c);

(2) r + s< a → r < b∨ s< c.

A similar statement holds for upper reals.

Proof The implication from 1 to 2 is direct. For the implication from 2 to 1 we
observe that ifp < a, then there existsε > 0 such thatp + ε < a. Choose a rational
q < b and a natural numberN such thatp − q − Nε < c. By hypothesis 2, with
premissp + ε < a, we have for everyn, q + nε < b∨ p + ε − (q + nε) < c. Since
the first disjunct holds forn = 0 and the second forn > N + 1, there existsn such
that q + nε < b andp + ε − (q + (n + 1)ε) < c. We can now taker = q + nε and
s = p− q + nε.

The inequality between a lower real and a Dedekind real can also be stated geometri-
cally.

2.2 Logic and topology

In set theory,i.e. in the topos Set, one uses topological spaces to deal with continuity.
However, statements including points of topological spaces are often difficult to gener-
alize to arbitrary toposes. Fortunately, it is often possible to resort to the lattice structure
of the open sets of a topological space. These complete distributive lattices are thus
called ‘pointfree’ spaces, or locales (see [13]). In the topos Set one can often reconstruct
the points from this lattice; to be precise, there is an adjunction between the category
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of topological spaces and the category of locales, which restricts to an equivalence of
categories between compact Hausdorff spaces and compact completely regular locales.
In general, this equivalence is not present in a topos. When generalizing theorems
from the topos Set to an arbitrary topos focusing on locales is often the better choice.
One reason for this is that a locale may be defined by geometrictheory. In logical
terms the locale is its syntactic category, often called theTarski-Lindenbaum algebra
— that is, the poset of provable equivalence classes, ordered by provable entailment.
The correspondence between the locale and the theory is the usual completeness and
consistency link between theories and models. The models ofthe theory correspond to
completely prime filters,i.e. points of the locale presented by the lattice. In this way,
a point x in a topological space defines a model of the corresponding theory: a basic
propositionI is true in the modelx iff x ∈ I . This view leads us to consider theories
as primary objects of study; their models, the points, will be derived concepts. Hence
topology is propositional geometric logic; see e.g. [14, 24].

2.3 Spectrum of a Riesz space

Definition 2 An ordered vector spaceis a vector space with a partial order6 such
that

(1) If x 6 y, then for allz, x + z 6 y + z;

(2) if 0 6 x, then for alla > 0, 0 6 ax.

A Riesz space (or vector lattice)is an ordered vector space where the order structure is a
lattice. An element1 is astrong unitif for all x there existsn such that−n1 6 x 6 n1.

As noted in the introduction Riesz spaces provide an algebraic way to talk continuous
functions on a compact completely regular locale.

We will consider Riesz spaces asQ-vector spaces.

In a Riesz space one definesf + := f ∨ 0, f− := 0∨ (−f ) and |f | := f + + f− and
derives thatf = f + − f− .

The spectrum of a Riesz spaceR is the space of all its representations — Riesz
morphisms fromR to R. It may be presented [9] as the locale which is freely generated
by the collection of tokensD(a), one for eacha in R, subject to the following relations:

1. D(1) = 1;

2. D(a) ∧ D(−a) = 0;
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3. D(a + b) 6 D(a) ∨ D(b);

4. D(a) = 0, if a 6 0;

5. D(a∨ b) = D(a) ∨ D(b);

6. D(a) =
∨

s>0 D(a− s).

As proved in Proposition 2.6 in [5] one can derive the relationsD(a) = D(a+) and
D(a∧ b) = D(a) ∧ D(b) from the ones above. In fact, either of them is equivalent to
the relation 5 given (1-4).

One proves that this locale, Max(R), is compact and completely regular by interpreting
the geometric theory (1-6) in the coherent theory (1-5) by interpretingD(a) in (1-6)
as

∨

s>0 D(a− s) in (1-5); see [5]. In terms of locales this means that the locale is a
retraction of the coherent locale generated by (1-5). The relations for∨ and∧ allow
us to reduce∨∧D(aij ) to D(∨∧ aij ). So the collection ofD(a) actually forms a basis,
rather than only a subbasis, for the locale. We write Spec(R) for the distributive lattice
generated by (1-5).

Theorem 1 [5] The order inSpec(R) is D(a) 6 D(b) iff there existsn such that
a+ 6 nb+ . The order in the localeMax(R) is D(a) 6 D(b) iff for all ε > 0 there
existsn such that(a− ε)+ 6 nb+ .

The order on Spec(R), as opposed to the order on Max(R), is defined geometrically
from the order onR.

Intuitively, the openD(a) in the locale corresponds to the set{σ | â(σ) > 0}, where
â : Max(R) → R is the function defined bŷa(σ) := σ(a) for σ in the locale. In the
presence of the full axiom of choice this can be made precise as it allows us to prove
that the spectrum hasenoughpoints.

Proposition 1 A model m of the geometric theory above, i.e. a point of the spectrum
as a locale, defines a representation

σm(a) := ({r | m |= D(a− r)} , {s | m |= D(s− a)}).

Proof Lemma 1 in [9] proves that this defines a Dedekind cut. By axiom 5σ(a∨b) =

σ(a)∨σ(b). By axioms 2,4D(1− (1− 1
n)) = 1. It follows thatσ(1) = 1. As observed

in [9] a map satisfying these properties is a representation.

The Stone-Yosida representation theorem states that thereis a embedding ofR into the
locale of (Dedekind) real valued continuous functions on its spectrum which is dense
with respect to the sup-norm. The sup-norm is the upper real‖a‖ defined by‖a‖ < λ

iff there existsλ′ < λ such that|a| 6 λ′1. A constructive proof of this theorem can
be found in [9].
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3 Statement of the Riesz-representation theorem

The goal of this section is to state, in Subsection3.4, the Riesz representation theorem
as the existence of a homeomorphism between the formal compact completely regular
spaces of integrals and valuations. Theorem3 contains the proof of the representation
theorem.

3.1 The space of integrals

Let R be a Riesz space with strong unit 1.

Definition 3 A (probability) integralI on a Riesz spaceR is a positive linear functional
— that is, it is a linear map to the Dedekind reals and ifx > 0, then I (x) > 0 — and
such thatI (1) = 1.

An integral is continuous with respect to the sup-norm: if|f | 6 r , then I (|f |) 6 r , by
positivity. By density of the Stone-Yosida embedding, an integral extends uniquely to
a positive linear functional on the space of all continuous real-valued functions on the
spectrum.

We present a geometric theory INT of integrals onR, much like the description of
Stone’s maximal spectrum Max(R) in section2.3. In fact, the geometric theory Max
will have one relation more than the theory INT. This means that INT can be interpreted
in Max, this interpretation defines a frame map from INT to Max, and hence, a locale
map from Max to INT. The locale Max is a sublocale of INT. The inclusion is given
by assigning to a point its Dirac measure:Ix(f ) := f (x).

To wit, subbasic opens of INT, denoted by [p< I (f )], are indexed by rationalp and f
in R. The set of its points will be{I | p< I (f )}. Sincep< I (f ) iff 0 < I (f − p), it is
sufficient to treat basic opens of the form 0< I (f ), written P(f ), whereP is a dummy
symbol. The points in this open are integralsI such that 0< I (f ).

Definition 4 The geometric theory INT is freely generated by symbolsP(f ), f in R,
and relations:

I1 P(1) = 1;

I2 P(f ) ∧ P(−f ) = 0;

I3 P(f + g) 6 P(f ) ∨ P(g);
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I4 P(f ) = 0, if f 6 0;

Cont P(f ) =
∨

s>0 P(f − s).

Lemma 3 The relationP(f ) 6 P(g) if f 6 g holds in INT.

Proof P(f − g + g) 6 P(f − g) ∨ P(g) = 0∨ P(g).

As before one proves that INT is compact completely regular by reducingI1-4+Cont
to I1-4. This result was proved by Coquand [5] who referred to the theoryI1-4 as TOT,
the theory of total orderings on an ordered vector space. We have chosen the present
presentation of INT since it makes compact complete regularity easy to prove.

Lemma 4 The theory INT is equivalent to the theory of normalized positive additive
functionals:

• I (f ) ∈ R;

• I (0) = 0;

• I (f + g) = I (f ) + I (g);

• I (f ) > 0 if f > 0;

• I (1) = 1.

The notation above describes the locale with generators,p < I (f ) and I (f ) < q, for f
in R and p,q rational andI is a dummy symbol, and certain relations. For instance,
the first axiom,I (f ) ∈ R, is a shorthand for the relations:

• [p< I (f )] 6 [p′ < I (f )] if p′ < p;

• [I (f ) < q] 6 [I (f ) < q′] if q< q′ ;

• p< I (f ) =
∨

p′>p p′ < I (f );

• I (f ) < q =
∨

q′>q q′ < I (f );

• 1 = (p< I (f ) ∨ I (f ) < q) if p< q;

• 0 = (q< I (f ) ∧ I (f ) < p) if p< q.

Proof We interpretP(f ) in INT as I (f ) > 0 in the theory of positive additive func-
tionals.

For the converse, we definep< I (f ) asP(f − p) and I (f ) < q asP(q− f ). Then
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(1) −ε < I (f ) if f > 0 andε > 0. Proof: P(f + ε − f ) 6 P(f + ε) ∨ P(−f ) and
P(−f ) = 0.

(2) 1 = s< I (f ) ∨ I (f ) < t , whenevers< t . Proof: P(t − s) = 1.

(3) By Lemma3, if s< I (f ), then t < I (f ) for t < s. Similarly, if I (f ) < s, then
I (f ) < t for s< t .

Combined with the continuity rule, this shows thatI (f ) is a Dedekind cut.

From I3 we haveP(f ) 6 P(1
nf ). Hence, 1− 1

n < I (1) < 1 + 1
n , i.e. I (1) = 1.

Similarly, I (0) < 1
n .

To prove additivity we combine Lemma2 with I3 and obtainI (f + g) 6 I (f ) + I (g).
Conversely, the ruleP(f ) ∧ P(g) 6 P(f + g) can be derived in INT:f = f + g− g, so
P(f ) 6 P(f + g) ∨ P(−g) and the result follows fromP(g) ∧ P(−g) = 0.

Linearity readily follows from additivity, so the points ofINT are integrals and, con-
versely, every integral defines a point.

Usually, one proves that the space of integrals is compact byan appeal to the Alaoglu
theorem. Here we have shown that it is compact by construction. A similar construction
can be carried out for Alaoglu’s theorem for compact locales[17].

3.2 Integrals on positive elements

Instead of starting with a positive linear functional, it will later be convenient to work
with its restriction to the positive elements.

Lemma 5 An integral is fixed by its behavior on the positive elements.As such it is
a functionI : R+ → R+ such thatI (0) = 0 and I (f + g) = I (f ) + I (g) and I (1) = 1.

The theory of these functionals is geometric, we call this theory INTPOS.

Proposition 2 The geometric theories INT and INTPOS are biinterpretable.

Proof To obtain the integral from its positive part we defineI (f ) := I (f +)−I (f−).
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3.3 The space of valuations

Definition 5 A valuationis a mapµ : Spec(R) → R+

low such that

• µ(0) = 0, µ(1) = 1;

• µ(x) + µ(y) = µ(x∨ y) + µ(x∧ y) (the modular law);

• If x 6 y in Spec(R), thenµ(x) 6 µ(y) (µ is monotone);

• µ(D(a)) 6
∨

ε>0µ(D(a− ε)) Scott-continuous.

The theory of valuations is geometric, we call this theory VAL. Using Lemma2 we
can formulate modularity in a way similar to [16]. We have defined the valuation
only on the coherent basis Spec(R) of Max(R), but it extends to the locale itself.
Alternatively, we could have used the same definition but with monotonicity for the
order on Max(R). This gives rise to the same locale of valuations: IfD(a) 6 D(b) in
Max(R), thenD(a− r) 6 D(b) in Spec(R) for all r > 0 and soµ(D(a− r)) 6 µ(D(b)).
By Scott-continuity we getµ(D(a)) 6 µ(D(b)).

This locale coincides with the locale of valuations on the locale Max(R) as defined
by Vickers [25] for an arbitrary locale with the difference that we requireµ(1) = 1.
Vickers [25, Prop.4.1] already pointed out that we can restrict to a baseof the locale
in order to obtain the locale of valuations geometrically from (a presentation) of the
locale.

Classically, the regular measures form a compact Hausdorffspace. Hence, classically,
the locale of valuations on a compact completely regular locale is again compact
completely regular. The homeomorphism in the Riesz representation theorem gives a
constructive proof of this fact.

3.4 Statement of the theorem

We are now ready to define the promised maps between integralsand valuations. We
give a syntactic bi-interpretation between two theories: the definition of the maps will
be geometric, but the reasoning that these maps actually satisfy the required properties
will be intuitionistic. For a general discussion of such techniques see e.g. [24, sec.4.5].

From integrals to valuations

Given an integral on a Riesz space, we construct a valuation on the opens in its spectrum:

µI (D(a)) := sup
{

I (na+ ∧ 1) | n ∈ N}
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In section4.5we prove that this is well-defined, i.e. that it gives the sameanswer when
D(a) = D(b).

From valuations to integrals

In order to define the converse interpretation we introduce some notations. Forf in
R+ define the lower real∆f (r, s) := µ(r < f < s). Let I = (r, s). Write ∆f (Ic) for
the lower real∆f (−∞, r) + ∆f (s,∞) and∆f [I ] for the upperreal 1− ∆f (Ic).

The interpretation of INTPOS in VAL

Iµf := (sup
(si )

∑

si∆f (si , si+1), inf
(si )

∑

si+1∆f [si , si+1])

the (si) range over partitions over a fixed interval [a,b] where a < f < b. As is the
case forµ− this is a disjunction over a concrete countable set: a finite list of strictly
increasing rationals.

Assuming the classical Riesz representation theorem it is easy to show that these are
indeed interpretations and that these maps are each other’sinverses as follows: For any
r > 0 there is anr -approximation by sums

∑

si∆f (si , si+1) and
∑

si+1∆f [si , si+1].
This follows from the usual classical proof of Riesz Theoremand the possibility to
choosesi as continuity points for the function

s 7→ ∆f (−∞, s)

By completeness of propositionalω -logic [15, 20] and the validity of the propositions
in all models, i.e. measures or integrals, of the theory we see that, classically, there
should be a proof in the theory that these are indeed interpretations. We will provide
such a constructive proof in Theorem3. This treatment is different from the classical
one; see e.g. [19]. We take the topological/computational aspects into account by
distinguishing between lower reals and Dedekind reals, moreover we do not use the
extension of a valuation to a measure on the Borel sets. Our result is more general: not
only is it constructive, and hence valid in any topos, but it also abstracts from a lattice
of sets to a general lattice.

4 Proof of the Riesz representation theorem

4.1 Formal simple functions

We define formal simple functions on a distributive latticeL. All index sets in this
section are finite, i.e. have a cardinality. We will use the convention that a capital letter,
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say I , is a subset of the variables indexed by the lower case letters, say (xi). For (xi )
in L we definexI := ∧{xi | i ∈ I}. Following Tarski [23] and Horn and Tarski [12,
Def 1.4] we define the free monoidM(L) such that the relationx + y = x∨ y + x∧ y
holds. As Horn and Tarski prove this is the monoid of formal sums

∑

xi , wherexi in
L, with the following equality:

Lemma 6 [12] We have
∑

i∈I ai =
∑

k>1

∨

K⊂I ,|K|=k aK . Furthermore,
∑

i∈I ai =
∑

j∈J bj iff
∨

K⊂I ,|K|=k aK =
∨

K⊂J,|K|=k bK for all k > 1.

Definition 6 Let M(L) be the monoid of formal sums inL modulo the relation
x + y = x∨ y + x∧ y. We define the pre-order

∑

xi 6
∑

yj iff for all I , xI 6
∨

{yJ | |J| = |I |} .

By Lemma6 6 is an order.

The monoidM(L) satisfies the cancellation property; see [23]. For k > 0, kx 6 0 iff
x = 0. We add positive rational coefficients — that is, define a relation

∑

r ixi 6
∑

sjyj

— by putting all the terms on one denominator. Ifr in Q+ and x 6 y, then rx 6 ry
andx + z 6 y + z. WhenL is a lattice of sets, this coincides with the usual ordering
of simple functions. We writeS+(L) for thepositive simple functionson L.

We write rI :=
∑

i∈I r i . The following is direct.

Lemma 7
∑

r ixi 6
∑

sjyj iff for all I , xI 6
∨

J,rI 6sJ
yJ .

Lemma 8 The relation6 is transitive onS+(L).

Proof Suppose that
∑

r iai 6
∑

sjbj 6
∑

tkck . By Lemma6, for all I , aI 6
∨

J,rI 6sJ
bJ and for allJ, bJ 6

∨

K,sJ6tK cK . So,aI 6
∨

J,K,rI 6sJ,sJ6tK cK .

4.2 Extending valuations to simple functions

We now consider the case whereL is Spec(R). We extendµ to an additive functional
from the formal sums to the lower reals. This extension satisfies the modular law and
hence so does the extension to the simple functions:

Lemma 9 If
∑

r ixi 6
∑

sjyj , thenµ(
∑

r ixi) 6 µ(
∑

sjyj). So,µ is well-defined on
S+(L): if k = l , thenµ(k) = µ(l).
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Proof By bringing all the terms on one denominator we can dispose ofall the scalars.
Hence our goal will be to prove: If

∑

xi 6
∑

yj , thenµ(
∑

xi) 6 µ(
∑

yj). To see this
we have

µ(
∑

xi) = µ(
∑

k>1

∨

|K|=k

xK) 6 µ(
∑

k>1

∨

|K|=k

yK) = µ(
∑

yj).

Consider the dual latticeL′ of Spec(R). We defineµ(¬x) as theupper real 1−
µ(x). This definition is naturally extended to the formal simplefunctions S+(L′):
µ(

∑

si(¬xi)) = (
∑

si) − µ(
∑

sixi). However, we will not be able to define the
valuation of a sum of mixed open and closed elements.

4.3 Simple functions on the spectrum of a Riesz space

We now consider the case whereL is the Boolean algebra freely generated by Spec(R).
Let f be in R. We denote the openD(f − r) by (f > r) andD(r − f ) by (f < r) and
the complement of (f > r) by (f 6 r ) and the complement of (f < r) by (f > r ).

We want to express the pointwise order relation between a positive simple function
and a positive element of the Riesz space considered as continuous functions on the
spectrum Max(R). However, for the sake of geometricity, we use the order of Spec(R)
instead. Hence we are working with a coherent approximationto the pointwise order.

We define the relation
∑

r ixi 6 f as: for all I , xI 6 (rI 6 f ) and the relation
f 6

∑

sjyj as: 1=
∨

J((f 6 sJ) ∧ yJ).

Lemma 10 If a 6 1, thena 6 D(a).

Proof We need to prove that (a 6 0) ∨ ((a 6 1) ∧ D(a)) = 1. We simplify this
statement:

(a> 0) 6 (a 6 1)∧ D(a)

(a> 0) 6 (a 6 1)

(a> 0)∧ (a> 1) = 0

The last statement follows from the hypothesisa 6 1.

When Max(R) is spatial, as is the case in the presence of the axiom of choice, by Stone-
Yosida,f may be interpreted as a continuous function on Max(R) and the order above
corresponds to acoherent approximationof the pointwise ordering of functions when
the simple function

∑

r ixi is interpreted as the linear combination of the characteristic
functions associated to the setsxi .
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Lemma 11 Suppose that
∑

r ixi 6
∑

sjyj and
∑

sjyj 6 f . Then
∑

r ixi 6 f .

Proof We havexI 6
∨

J,rI 6sJ
yJ andyJ 6 (sJ 6 f ). So

xI 6
∨

J,rI 6sJ

(sJ 6 f ) 6
∨

J,rI 6sJ

(rI 6 f ) 6 (rI 6 f ).

Lemma 12 Suppose thatf 6
∑

r ixi and
∑

r ixi 6
∑

sjyj . Then f 6
∑

sjyj .

Proof We have 1=
∨

I ((f 6 rI ) ∧ xI ) andxI 6
∨

J,rI 6sJ
yJ . So

1 =
∨

I

((f 6 rI ) ∧ xI ) =
∨

I

((f 6 rI ) ∧
∨

J(I),rI 6sJ(I )

yJ(I))

6
∨

I

∨

J(I),rI 6sJ(I )

(f 6 sJ(I)) ∧ yJ(I) 6
∨

J

((f 6 sJ) ∧ yJ).

It is clear that if
∑

r ixi 6 f 6 g, then
∑

r ixi 6 g, and if f 6 g 6
∑

r ixi , then
f 6

∑

r ixi .

Lemma 13 If
∑

r ixi 6 f 6
∑

sjyj , then
∑

r ixi 6
∑

sjyj .

Proof We have for allI , xI 6 (rI 6 f ) and 1=
∨

J((f 6 sJ) ∧ yJ). Then

xI 6 (rI 6 f ) = (rI 6 f ) ∧
∨

J

((f 6 sJ) ∧ yJ) 6
∨

J,rI 6sJ

yJ.

Lemma 14 Let 0 6 f 6 b and letsi be a partition of[0,b] . Then
∑

si(si < f < si+1) 6 f 6
∑

si+1(si 6 f 6 si+1).

Proof To prove the first inequality, we writexi := (si < f < si+1). Thexi are disjoint
and

xi 6 (si < f ) 6 (si 6 f ).

To prove the second inequality we writeti := (si 6 f 6 si+1). Then (f 6 si+1)∧yi = yi

and 1=
∨

yi , sinces0, ..., sn is a partition of [0,b].

The following results have a direct proof.
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Lemma 15 If l1 6 f1 and l2 6 f2 , then l1 + l2 6 f1 + f2. Similarly, if f1 6 k1 and
f2 6 k2, then f1 + f2 6 k1 + k2.

The spectrum of a Riesz space is completely regular as the following simple formulation
of the Urysohn’s Lemma shows.

Lemma 16 Let a in R+ andε > 0. ThenD(a− ε) 6 1
ε
(a∧ ε) 6 D(a).

Proof For the first inequality we need to prove thatD(a− ε) 6 (1 6
1
ε
(a∧ ε)). Since

the right hand side is a formal complement this means,D(a− ε)∧ (1> 1
ε
(a∧ ε)) = 0.

Now, (1> 1
ε
(a∧ ε)) = (ε > a) = D(ε− a).

The second inequality follows from Lemma10: 1
ε
(a∧ ε) 6 D(1

ε
(a∧ ε)) = D(a).

4.4 ∆-functions

In this subsection we fixf > 0 in R and a valuationµ. We define the lower real
∆(r, s) = µ(r < f < s) and the upper real∆[r, s] = 1− ∆(−∞, r) − ∆(s,∞) as in
Section3.4. Intuitively, the function∆ represents the functionα(s) = µ(f < s) which
is used in the definition of the integral as a Stieltjes integral

∫

f dµ =
∫

sdα(s). The
functions∆ satisfies:

(1) ∆(0,b) = 1 for someb;

(2) ∆(r, s) 6 1;

(3) ∆(r, s) > 0;

(4) ∆(r, s) + ∆(s, t) = ∆(r, t) − ∆[s];

(5) ∆(r ′, s′) 6 ∆(r, s) wheneverr 6 r ′ < s′ 6 s;

(6) ∆(r, s′) + ∆(r ′, s) = ∆(r, s) + ∆(r ′, s′) wheneverr < r ′ < s′ < s;

(7) ∆(r, s) =
∨

{∆(r ′, s′) | r < r ′ < s′ < s} .

In 4, ∆[s] := ∆[s, s].

We write (r ′, s′) ≪ (r, s) for r < r ′ < s′ < s. As before, we write∆(I ) for ∆(r, s), if
I = (r, s).

Lemma 17 If I ≪ J andp< q, then∆(J) > p or ∆[I ] < q.

Proof Since∆(Ic) + ∆(J) > 1> p + (1− q).
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We now prove ‘a non-increasing function is continuous in a dense set of points’ in a
pointfree way.

Theorem 2 Let N ∈ N and I = (r, s) be an open interval. Then there exists an
interval J ≪ I such that∆[J] < 1

N .

Proof Choose 2N disjoint intervalsI i in I and choose 2N intervalsJi ≪ I i . For each
i , ∆(I i) > 1

2N or ∆[Ji ] < 1
N . It is impossible that the former case occurs all the time,

therefore the latter case occurs at least once.

It follows classically thatµ(r < f 6 s) = infs′>sµ(r < f < s′). The approximations
to this infimum are explicit in the following proposition which assigns a Dedekind real
to ∆. The interpretation of this real is the Stieltjes integral

∫

sdα(s), whereα is a
non-decreasing function connected to∆.

Proposition 3 The pair

(
{

p | p<
∑

si∆(si , si+1)
}

,
{

q |
∑

si+1∆[si , si+1] < q
}

),

wheresi ranges over finite partitions of[0,b] , defines a Dedekind real.

Proof We first prove that the upper and lower cut come arbitrary close: There exists
(si) such that

∑

si+1∆[si , si+1] −
∑

si∆(si , si+1) is small. To wit, givenε > 0, use
Theorem2 to choose a partitionsi of [a,b] such that|si+1−si | < ε and

∑

∆[si ] < ε.
Then

∑

si+1∆[si , si+1] −
∑

si∆(si , si+1)

6
∑

(si+1 − si)∆[si , si+1] +
∑

si(∆[si ] + ∆[si+1])

6 ε
∑

∆[si , si+1] + 2bε

6 ε(1 +
∑

∆[si ]) + 2bε 6 ε(1 + ε) + 2bε.

We now prove that the lower cut is below the upper cut. By Lemma14,

l :=
∑

si(si < f < si+1) 6 f 6
∑

si+1(si 6 f 6 si+1) =: k.

Write yi := (f < si) ∨ (si+1 < f ). By Lemma13, l +
∑

si+1yj 6
∑

si+1 , soµ(l) +

µ(
∑

si+1yj) 6 µ(
∑

si+1). The conclusion,µ(l) 6 µ(k), follows from Lemma1.

The previous proposition contains the essence of Bishop’s profile theorem; see [3]. It
is the crucial step in the proof thatIµ is a function; see Lemma19.
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4.5 Continuous maps

We are now ready to show that the mapsµI andIµ defined above indeed map integrals
to valuations, and vice versa. We need to check that the interpretations of all the axioms
hold.

We first repeat the definition from section3.4:

µI (D(a)) := sup
{

I (na+ ∧ 1) | n ∈ N}

.

We observe thatf 6 D(a) iff there exists n such that f 6 na+ ∧ 1. Hence,
sup{I (na+ ∧ 1) | n ∈ N} = sup{I (f ) | f 6 D(a)} .

The mapµI extends to the positive simple functions:

µI (
∑

r iD(ai)) = sup
{

I (
∑

r i(na+

i ∧ 1)) | n ∈ N}

.

Lemma 18 µI is a valuation.

Proof To prove modularity we observe that

(na∧ 1) + (nb∧ 1) = (n(a∧ b) ∧ 1) + (n(a∨ b) ∧ 1)

and hence

I (na∧ 1) + I (nb∧ 1) = I (n(a∧ b) ∧ 1) + I (n(a∨ b) ∧ 1).

For monotonicity: If f 6 x and x 6 y, then f 6 y. Finally, regularity,µ(D(a)) =

supr>0µ(D(a− r)) is direct.

We generalize the definition ofIµ in section3.4to arbitrary simple positive functions:

Iµ(f ) = (sup
{

µ(l) | l 6 f , l ∈ S+(L)
}

, inf
{

µ(k) | f 6 k, k ∈ S+(L′)
}

).

We will prove that the supremum and the infimum over the restricted sets of simple
functions used in section3.4already form a Dedekind real and hence the two definitions
coincide.

Lemma 19 Iµ is an integral.

Proof To prove thatI maps to the Dedekind reals: Letf ∈ R+ and chooseb > f .
By Proposition3 (sup

∑

si∆(si , si+1), inf
∑

si+1∆[si , si+1]) is a Dedekind real: the
lower cut is below the upper cut and both cuts ‘kiss’.

To prove additivity, by Lemma15, if l1 6 f and l2 6 g, then l1 + l2 6 f + g. Hence
I (f ) + I (g) 6 I (f + g). Conversely, iff 6 k andg 6 l , then f + g 6 k + l and hence
I (f + g) 6 I (f ) + I (g).



Integrals and valuations 19

4.6 Homeomorphism

We prove that there is a homeomorphism between the integralson a Riesz space and
the valuations on the opens of the spectrum.

Theorem 3 [Riesz representation theorem]Let R be a Riesz space with a strong unit.
The theory of valuations on its spectrum is equivalent to thetheory of integrals onR. It
follows that the corresponding compact completely regularlocales are homeomorphic.

Proof That is, we claim thatIµJ = J andµIν = ν .

IµJ(f ) = sup({µJ(l) | l 6 f})

= sup{J(g) | g 6 l 6 f}

> sup{J(f − ε) | ε > 0} = J(f )

For the inequality we observe that for eachε > 0, f −ε 6
∑

n>1
ε

2((n+ 1
2)ε

2 < f ) 6 f .

The other inequality is trivial.

Conversely,

µIν (k) = sup{Iν (f ) | f 6 k}

= sup{ν(l) | l 6 f 6 k}

> sup{ν(l) | l ≪ k} = ν(k)

Wherel ≪ k meansk =
∑

siD(ai) andl =
∑

siD(ai−ε). By the Urysohn Lemma16
there existsf in R such thatl 6 f 6 k. The other inequality is trivial.

5 Related work

Vickers [25] presents another variant of the Riesz representation theorem. His construc-
tion works for locales which are not necessarily compact completely regular. However,
his integrals have their values in the lower (or upper) reals, as opposed to the Dedekind
reals. A locale of valuations was first presented by Heckman [10].

The present homeomorphism has already been applied in anon-commutativecontext
of quantum theory [11] where it provides an isomorphism between quasi-states and
certain valuations. Quasi-states are used in the algebraicfoundations of quantum
mechanics.
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6 Conclusions

The present construction was motivated by Bishop’s bijection between measures and
integrals [3]. Bishop’s forces the measure of a measurable set to be a Dedekind
real. This is somewhat inconvenient in practice since for a measurable functionf the
measure of [f > s] need not be Dedekind in general. We believe that the presenttheory
allows for a smoother development of, at least, the abstractfunctional analytic aspects
of Bishop’s measure theory.

7 Acknowledgements

We would like to thank Alex Simpson, Steve Vickers and the referees for comments
on the presentation of this paper.

References

[1] M Alvarez-Manilla , A Jung, K Keimel , The probabilistic powerdomain
for stably compact spaces, Theoret. Comput. Sci. 328 (2004) 221–244;
doi: 10.1016/j.tcs.2004.06.021.

[2] B Banaschewski, C J Mulvey, A globalisation of the Gelfand duality theorem, Annals
of Pure and Applied Logic 137 (2006) 62–103;doi: 10.1016/j.apal.2005.05.018.

[3] E Bishop, D Bridges, Constructive analysis, volume 279 ofGrundlehren der Mathe-
matischen Wissenschaften, Springer-Verlag (1985).

[4] T Coquand, A note on measures with values in a partially ordered vector space,
Positivity 8 (2004) 395–400;doi:10.1007/s11117-004-7399-0.

[5] T Coquand, About Stone’s Notion of Spectrum, Journal of Pure and Applied Algebra
197 (2005) 141–158;doi: 10.1016/j.jpaa.2004.08.024.

[6] T Coquand, Geometric Hahn-Banach theorem, Math. Proc. Cambridge Philos. Soc.
140 (2006) 313–315;doi: 10.1017/S0305004105008935.

[7] T Coquand, H Lombardi , A logical approach to abstract algebra, Math. Structures
Comput. Sci. 16 (2006) 885–900;doi: 10.1017/S0960129506005627.

[8] T Coquand, E Palmgren, Metric Boolean algebras and constructive measure theory,
Arch. Math. Logic 41 (2002) 687–704;doi: 10.1007/s001530100123.

[9] T Coquand, B Spitters, Formal Topology and Constructive Mathematics: the Gelfand
and Stone-Yosida Representation Theorems, Journal of Universal Computer Science
11 (2005) 1932–1944.

http://dx.doi.org/doi:10.1016/j.tcs.2004.06.021
http://dx.doi.org/doi:10.1016/j.apal.2005.05.018
http://dx.doi.org/doi:10.1007/s11117-004-7399-0
http://dx.doi.org/doi:10.1016/j.jpaa.2004.08.024
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/


Integrals and valuations 21

[10] R Heckmann, Probabilistic power domains, information systems, and locales, from:
“Mathematical Foundations of Programming Semantics VIII,volume 802 of Lecture
Notes in Computer Science”, Springer Verlag (1994) 410–437.

[11] C Heunen, K Landsman, B Spitters, A topos presentation of algebraic quantum
theory(2008); arXiv:0709.4364.

[12] A Horn , A Tarski , Measures in Boolean algebras, Trans. Amer. Math. Soc. 64 (1948);
doi: 10.2307/1990396.

[13] P T Johnstone, Stone Spaces, Cambridge University Press (1982).

[14] P T Johnstone, Sketches of an Elephant: A topos theory compendium, volume 2,
Clarendon Press (2002).

[15] M Makkai , G E Reyes, First order categorical logic, Springer-Verlag, Berlin
(1977)Model-theoretical methods in the theory of topoi andrelated categories, Lecture
Notes in Mathematics, Vol. 611;doi: 10.1016/0001-8708(78)90068-3.

[16] M A Moshier , A Jung, A Logic for Probabilities in Semantics, from: “CSL
’02: Proceedings of the 16th International Workshop and 11th Annual Confer-
ence of the EACSL on Computer Science Logic”, Springer-Verlag (2002) 216–231;
doi:10.1007/3-540-45793-315.

[17] C J Mulvey, J W Pelletier, The dual locale of a seminormed space, Cahiers Topolo-
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Mathematics Department, Eindhoven University of Technology

coquand@chalmers.se, spitters@cs.ru.nl

mailto:coquand@chalmers.se
mailto:spitters@cs.ru.nl

	1 Introduction
	1.1 Formal measure and integration theory
	1.2 Overview
	1.3 Notation

	2 Preliminaries
	2.1 Various kinds of real numbers
	2.2 Logic and topology
	2.3 Spectrum of a Riesz space

	3 Statement of the Riesz-representation theorem
	3.1 The space of integrals
	3.2 Integrals on positive elements
	3.3 The space of valuations
	3.4 Statement of the theorem

	4 Proof of the Riesz representation theorem
	4.1 Formal simple functions
	4.2 Extending valuations to simple functions
	4.3 Simple functions on the spectrum of a Riesz space
	4.4 -functions
	4.5 Continuous maps
	4.6 Homeomorphism

	5 Related work
	6 Conclusions
	7 Acknowledgements
	Bibliography

