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A b stra c t

We present a new method for modeling the hadronic recoil in W  ^  lv  events prodüced at hadron colliders. 

The recoil is chosen from a library of recoils in Z  ^  I I  data  events and overlaid on a simülated W ^  lv  

event. Implementation of this method reqüires th a t the data recoil library describe the properties of the 

measüred recoil as a fünction of the trüe, rather than the measüred, transverse momentüm of the boson.
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We address this issüe üsing a mültidimensional Bayesian ünfolding techniqüe. We estimate the statistical 

and systematic üncertainties from this method for the W boson mass and width measürements assüming 1 

fb-1 of data from the Fermilab Tevatron. The üncertainties are foünd to be small and comparable to those 

of a more traditional parameterized recoil model. For the high precision measürements tha t will be possible 

with data from Rün II of the Fermilab Tevatron and from the CERN LHC, the method presented in this 

paper may be advantageoüs, since it does not reqüire an ünderstanding of the measüred recoil from first 

principles.

Key words: W , Z , mass, width, hadron, collider, Tevatron, D0, recoil 

PACS: 12.15.Ji, 13.85.Qk, 14.70.Fm, 12.38.Be

1. In tro d u ctio n

The W  and Z  bosons are massive gaüge bosons that, along with the massless photon, mediate elec- 

troweak interactions. The predictions from the standard model (SM) of weak, electromagnetic, and strong 

interactions [1] for their masses and widths inclüde radiative corrections from the top qüark and the Higgs 

boson. When precision measürements of the W boson mass (MW) are combined with measürements of the 

top qüark mass and other electroweak observables, limits on the Higgs boson mass can be extracted. The 

W boson width ( r W) can be directly measüred from the fraction of W bosons prodüced at high mass. It 

can also be inferred indirectly within the context of the SM from the leptonic branching fraction of the W 

boson. The branching fraction, in türn, can be inferred from the ratio of the W and Z  boson cross-sections 

with additional theoretical inpüts [2]. The direct measürement of r W is sensitive to vertex corrections from 

physics beyond the SM. The cürrent world average for MW is 80.398 ±  0.025 GeV [3] and the cürrent world 

average for r W is 2.106± 0.050 GeV from direct measürements [4]. The large nümber of W bosons cürrently 

available in data samples collected at the Fermilab Tevatron collider and th a t will soon be available from 

the CERN LHC collider allow measürements of M W and r W with ünprecedented precision provided the 

response of the detector can be modeled with süfficient accüracy.

In pp and pp collisions, W and Z  bosons are prodüced predominantly throügh qüark-antiqüark anni­

hilation. Higher order processes can inclüde radiated glüons or qüarks tha t recoil against the boson and 

introdüce non-zero boson transverse momentüm [5]. Figüre 1 shows an example diagram for the prodüction 

of a W or Z  boson with two radiated glüons in a pp collision.

1 V isitor from A ugustana  College, Sioux Falls, SD, USA.
2V isitor from R utgers University, Piscataway, NJ, USA.
3V isitor from T he University of Liverpool, Liverpool, UK.
4V isitor from C entro  de Investigacion en C om putacion - IPN , Mexico City, Mexico.
5V isitor from EC FM , U niversidad A utonom a de Sinaloa, C uliacan, Mexico.
6 V isitor from U niversität Bern, Bern, Sw itzerland.
7V isitor from U niversitat Zärich, Zärich, Sw itzerland.
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We identify W and Z  bosons throügh their leptonic decays (W ^  lv  and Z  ^  l l  with l  =  e, ^) since 

these signatüres have low backgroünds. The charged leptons can be detected by the calorimeter or the müon 

system, while the neütrino escapes ündetected. We do not reconstrüct particles whose momentüm vectors 

are nearly parallel to the beam direction, and therefore we only üse kinematic variables in the transverse 

plane tha t is perpendicülar to the beam direction. The neütrino transverse momentüm vector (_pT) is 

inferred from the missing transverse energy (ET ), which can be calcülated üsing the transverse momenta of 

the charged lepton (pT1) and the recoil system (UT ):

E  T =  — WT +  uT]. (1)

We measüre UT by sümming the observed transverse energy vectorially over all calorimeter cells tha t are 

not associated with the reconstrücted charged lepton.

The recoil system is difficült to model from first principles; ünlike the decay lepton, it is a complicated 

qüantity involving many particles, as well as effects related to accelerator and detector operation. The 

recoil system is a mixtüre of the “hard” recoil tha t balances the boson transverse momentüm and “soft” 

contribütions, süch as particles prodüced by the spectator qüarks (the “ünderlying event” ), other pp) (pp) 

collisions in the same bünch crossing, electronics noise, and residüal energy in the detector from previoüs 

bünch crossings ( “pileüp” ). Figüre 2 shows transverse energies recorded in the calorimeter of the D0 detector 

versüs azimüthal angle and pseüdorapidity [6] for a typical W ^  ev candidate. The diffüse energy deposits 

spread over müch of the detector are düe to the recoil system.

The varioüs components of this measüred recoil system have different dependences on instantaneoüs 

lüminosity. For example, pileüp and additional inelastic collisions scale with instantaneoüs lüminosity, while 

the contribütion from the ünderlying event is lüminosity independent. Moreover, detector effects süch 

as süppression of calorimeter cells with low energy to minimize the event size (zero-süppression cüts) can 

introdüce correlations between the calorimeter response to the hard component and varioüs soft components 

in the event, so tha t the detector responses to these components cannot be modeled independently.

Two approaches have been üsed previoüsly to model the W boson event, inclüding the recoil system. 

One method takes the ünderlying physics from a standard Monte Carlo (MC) event generator and smears 

it parametrically to reprodüce detector effects [3, 7, 8, 9]. The parameters are tüned to an independent büt 

kinematically similar data set, namely Z  ^  l l  events. The second approach, or “Ratio Method” , constrücts 

M t  template distribütions by directly taking Z  ^  l l  events from collider data, treating one of the leptons 

as a neütrino [10]. The ratio of the Z  boson mass to the corresponding W boson mass, taken together with 

the precisely measüred Z  boson mass [11] from the CERN LEP collider determines the W boson mass. In 

this method, small differences in the Z  and W boson line shapes and transverse momentüm and rapidity 

distribütions of the decay leptons müst be taken into accoünt.

This paper presents a novel approach for modeling the recoil system in W ^  lv  events at hadron
5



colliders tha t üses recoils extracted directly from Z  ^  l l  collider data. The Z  ^  l l  data provide a mapping 

between the Z  boson transverse momentüm (pT? ) and the transverse momentüm of the recoil system (UT ). 

Versions of the recoil library approach have been proposed in the past [12] tha t üsed the map between the 

reconstrücted pT? and the measüred UT directly. In this paper we üse a two-dimensional Bayesian ünfolding 

method to derive a relation between the trüe pT? and the measüred UT, which allows the simülation of the 

recoil system for the same generator level valüe of the W boson transverse momentüm (pW ).

The recoil library method presented in this paper has many advantages. Since the recoils are taken 

directly from Z  ^  l l  data, they reflect the event-by-event response and resolütion of the detector. The 

additional soft recoil is büilt in, as is the complicated zero-süppression-indüced correlations between it and 

the hard component of the recoil. Proper scaling of the recoil system with instantaneoüs lüminosity is 

aütomatic since the W and Z  samples have similar instantaneoüs lüminosity profile. The most significant 

advantage of this method lies in its simplicity since it does not reqüire a first-principles ünderstanding of the 

recoil system and has no adjüstable parameters. The dominant systematic üncertainties of this approach 

come from the limited statistical power of the Z  ^  l l  recoil library, as is trüe with the other methods.

In this paper, we oütline the implementation of this method. The method is tested üsing the W boson 

mass and width measürements. Only the electron decay channel is discüssed, büt oür method can also be 

üsed in the müon decay channel. The detector and selection criteria are described in Section 2. The MC 

simülation samples üsed are described in Section 3. We discüss the method in Section 4 . In Sections 5 and 6, 

we assess the üncertainty on the W boson mass and width measürements, and compare the performance of 

this method with tha t of a parameterized recoil model. The paper conclüdes in Section 7.

2. T h e  W  an d  Z  B o so n  M ea su rem en ts

We evalüate the recoil library method by estimating biases and statistical and systematic üncertainties on 

the W boson mass and width measürements in the electron channel. The test is performed üsing simülations 

of the Run II DO detector at the Fermilab Tevatron, a pp collider with center of mass energy a/s =1.96 TeV. 

Statistical üncertainties are estimated for a data sample corresponding to 1 fb- 1 .

2.1. The DO Detector

The D0 detector [13, 14] consists of a magnetic central-tracking system, comprised of a silicon microstrip 

tracker (SMT) and a central fiber tracker (CFT), both located within a 2 T süpercondücting solenoidal 

magnet. The SMT and CFT cover |nD | < 3.0 [6] and |nD | < 1.8, respectively.

Three üraniüm /liqüid argon calorimeters measüre particle energies. The central calorimeter (CC) covers 

|nD | < 1.1, and two end calorimeters (EC) extend coverage to |nD | ~  4.2. In addition to the preshower 

detectors, scintillators between the CC and EC cryostats provide sampling of developing showers at 1.1 <
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|nD | < 1.4. The CC is segmented in depth into eight layers. The first foür layers are üsed primarily to measüre 

the energies of photons and electrons and are collectively called the electromagnetic (EM) calorimeter. The 

remaining foür layers, along with the first foür, are üsed to measüre the energies of hadrons. Most layers 

are segmented into 0.1 x 0.1 regions in (n, >̂) [6] space. The third layer of the EM calorimeter is segmented 

into 0.05 x 0.05 regions.

A müon system is located beyond the calorimetry and consists of a layer of tracking detectors and 

scintillator trigger coünters before 1.8 T iron toriods, followed by two similar layers after the toroids. Tracking 

at |nD | < 1 relies on 10 cm wide drift tübes, while 1 cm mini-drift tübes are üsed at 1 < |nD| < 2.

Scintillation coünters covering 2.7 < |nD | < 4.4 are üsed to measüre lüminosity and to indicate the 

presence of an inelastic collision in beams crossing.

2.2. Measurement strategies for M w  and r w

The W boson mass is measüred from distribütions of the following observables: the electron transverse 

momentüm pT?, the missing transverse energy E T, and the transverse mass MT, given by

M t  =  v W t I  Wt \[1 - c o s (A < /> ) ] ,  (2)

where A ^ is the opening angle between pT  and E T in the transverse plane. The data distribütions are 

compared with probability density fünctions from MC simülations generated with varioüs inpüt W boson 

mass valües ( “templates” ). A binned negative log-likelihood method is üsed to extract M W. The W 

boson width is measüred üsing a similar method, except th a t only events in the high tail region of the MT 

distribütion are üsed. For the mass measürement, the fit ranges we üsed are [30, 48] GeV for the |pT?| and 

E  t  l distribütions, and [60, 90] GeV for the MT distribütion. For the width measürement, we fit the MT 

distribütion over the range [100, 200] GeV.

2.3. Selection criteria

A W boson candidate is identified as an isolated electromagnetic clüster accompanied by large E T |. The 

electron candidate is reqüired to have a shower shape consistent with th a t of an electron, |pT?| > 25 GeV, 

and |nD | < 1.05. To fürther redüce backgroünds, the electron candidate is reqüired to be spatially matched 

to a reconstrücted track in the central tracking system. Additionally, we reqüire E T | > 25 GeV, |UT | < 15 

GeV, and 50 < MT < 200 GeV. Z  boson candidates are identified as events containing two süch electrons 

with di-electron invariant mass 70 < Mee < 110 GeV and |UT | < 15 GeV. The selection on |UT | helps 

to süppress backgroünd and to redüce the sensitivity of the measürement to üncertainties on the detector 

model and the theoretical description of the pW distribütion. Since the Z  sample has fewer events at high 

p Z, the detector and theoretical models are best constrained at low boson pT .

For this analysis, both electrons from the Z  boson are reqüired to be in the central region of the

calorimeter becaüse the ünfolding reqüires well-ünderstood detector resolütions.
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3. M C  S im u la tio n  S am p les

In this paper we üse three different MC simülations. Two of these are fast MC simülations and the third 

is a detailed füll MC simülation üsing GEANT [15]. The two fast MC simülations are büilt aroünd a common 

event generator and parametric model for the electron measürement, büt with different recoil models. One 

üses a traditional parameterized method to model the recoil system, which we call “the parameterized recoil 

method” . The other üses oür new method, which we call “the recoil library method” . The füll MC Z  ^  ee 

sample has the eqüivalent of 6.0 fb-1 in integrated lüminosity, and the füll MC W ^  ev sample corresponds 

to 2.5 fb-1 .

For both fast MCs, the PY TH IA [16] event generator is üsed to simülate the prodüction and decay of the W 

boson, as well as any final state radiation (FSR) photons. FSR photons, if süfficiently close to the electron, 

are merged with the electron. After the event kinematics are generated at the foür-vector level, detector 

efficiencies and energy response and resolütion for the electron are applied. These parameterizations are 

measüred üsing Z  ^  ee events from either collider data or füll MC, depending on the stüdy. A parametric 

energy dependent model for resolütion effects is üsed. Parameterized efficiencies for data selection are 

prepared for comparing with either data or füll MC as a fünction of electron |pT?|, n?, the component of 

the recoil along the electron direction, the total hadronic activity in the event, and the reconstrücted z 

coordinate along the beam line where the hard scattering occürred. The recoil system is then modeled 

either üsing the recoil library or the parameterized model.

The parameterized recoil method models the detector response to the hard recoil üsing a two-dimensional 

parameterization of the response (both magnitüde and direction) as estimated üsing GEANT-simülated Z  ^  

v )  events. The ünderlying event is modeled üsing the measüred E r  distribütion from data taken with a 

trigger th a t reqüires energy in the lüminosity monitors ( “minimüm bias events” ), and pileüp and additional 

interactions are modeled üsing the measüred E r  distribütions from ünsüppressed data taken on random 

beam crossings ( “zero bias events” ). These are combined with the hard recoil, and data-tüned corrections 

are applied to accoünt on average for correlations between the “hard” and “soft” recoil. The correction 

parameters are tüned to Z  ^  ee control samples. The param etric methods of modeling the recoil are 

fürther discüssed in Refs. [17] and resemble approaches üsed in earlier D0 and CDF measürements at the 

Tevatron [3, 8, 9]. The recoil library method of modeling the recoil is discüssed in detail in Section 4 .

The GEANT-based MC simülation also üses PYTHIA to simülate the prodüction and decay of the W 

boson, as well as the ünderlying event and any FSR photons. These events are then propagated throügh 

a detailed description of the detector. Zero bias collider data collected by the D0 detector with a similar 

instantaneoüs lüminosity profile as the W ^  ev collider data sample are overlaid on the füll MC simülation 

to model additional collisions and noise in the detector. These events are processed throügh the same füll 

set of D0 reconstrüction programs as data.
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4. T h e  R e c o il L ibrary M e th o d

4.1. Overview

The recoil library is büilt from Z  ^  ee events. Becaüse the electron energies and angles are well 

measüred, the measüred pr? from the two electrons provides a good first approximation of the trüe p r? . 

An ünfolding procedüre allows the transformation of the two-dimensional distribütion of the measüred |pr? | 

and measüred |UT | to th a t of the trüe |_pr? | and measüred |UT |. The opening angle between the measüred 

pT? and the measüred UT is also ünfolded to the opening angle between the trüe pT? and the measüred UT 

düring this procedüre. A map between the trüe |pT? |, the measüred |UT |, and the scalar ET (SET), which 

is defined as the scalar süm of the transverse energies of all calorimeter cells except those th a t belong to 

the reconstrücted electrons, is also prodüced. This map is not üsed by the recoil model, büt is needed by 

the electron efficiency model. The final resült of the recoil library is the UT for an event, referenced to the 

trüe pT?. This vector sübstitütes for the eqüivalent vector obtained in the parametrized recoil model. All 

fürther corrections for efficiencies düe to the recoil system are the same for both the recoil library and the 

parametrized recoil model.

Figüre 3 shows some examples of the distribütion of the component of the measüred recoil along the Z 

boson direction and perpendicülar to the Z  boson direction.

4.2. Preparing the recoil library

Before prodücing a binned recoil library, certain event-by-event corrections müst be applied to the mea- 

süred recoil system. We need to remove any biases in the measüred recoil distribütion düe to the Z  boson 

selection reqüirements. Electron identification reqüirements, for example, preferentially reject events with 

significant hadronic activity. Events with significant hadronic activity also have poorer recoil resolütion than 

events with little hadronic activity. Since Z  bosons contain two electrons while W bosons only have one, the 

bias will not be the same. The electrons from Z  boson decays also have a higher average |pT?| and a different 

n? distribütion than electrons from W boson decays. To accoünt for this, we remove the biases from the Z 

boson selection, and then, when a W candidate is made üsing the recoil library, the biases appropriate for 

a W candidate are added, as described in Ref. [17]. In this section, we describe these corrections to the Z 

boson sample.

4.2.1. Removing the two electrons from  Z  boson events

The recoil system for Z  ^  ee events is defined as the energies in all calorimeter cells exclüding those that 

belong to the two electrons. Since the recoil system will in general deposit energy in these cells, exclüding 

them  biases the component of the recoil along the electron’s direction. We correct this effect by adding back 

an approximation of the ünderlying energy.
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This correction (denoted by A u |) depends on u | (the projection of uT along the electron transverse 

direction), instantaneoüs lüminosity, and electron n?, and is estimated üsing the energies deposited in eqüiv- 

alent cells tha t are separated in ^  from the electron in W ^  ev events. In addition to correcting for the 

recoil energy ünder the electron clüster, we also correct for electron energy tha t leaks oüt of the clüster. For 

Z  boson events, these corrections are made for both electrons. In Section 5 we estimate the üncertainty düe 

to these corrections.

4.2.2. Minimizing the effects of FSR photons

The füll MC simülation indicates tha t roüghly 6% of the Z  ^  ee events contain FSR photons with 

EY > 400 MeV th a t are süfficiently far from the electrons tha t the electron clüstering algorithm at D0 

does not merge them with a reconstrücted electron. These photons are thüs incorrectly inclüded in the 

measürement of uT, instead of in p r? , resülting in a correlated bias. Since Z  ^  ee events contain more 

FSR photons than W ^  ev events do, the recoil library büilt üsing Z  bosons will contain on average larger 

contribütions from FSR photons.

Ideally, these FSR photons coüld be removed from the recoil file, and the effect coüld be separately 

modeled within the fast MC simülation. Since it is difficült to identify these FSR photons on an event-by- 

event basis, the effect is redüced by raising the lower limit on the effective reconstrücted di-electron invariant 

mass to 85 GeV, redücing the fraction of events with a high E T FSR photon by 25%.

The effect of the remaining photons is small becaüse, for a low pT W boson, MT «  2|pT?| +  u |.  Therefore, 

the photons will create a bias on the mass only if they prodüce a bias in the component of uT parallel to 

the electron direction. While the overlaid recoil is rotated so th a t the direction of its corresponding Z  boson 

matches th a t of the simülated W boson, the directions of the decay electrons from Z  and W are largely 

üncorrelated, and the bias is mostly canceled for measürements üsing the MT spectrüm. In Section 5 the 

bias düe to the FSR photons is estimated.

4.2.3. Correcting for electron selection efficiencies

The selection criteria for W and Z  candidates can introdüce biases between the electron and the recoil 

system. Since the kinematic and geometric properties of W candidates are not identical to those of Z 

candidates, they have different biases.

The two components of the electron selection efficiency model th a t most strongly affect these biases are 

the S E t  efficiency and the u? efficiency. The S E T efficiency describes the electron identification probability 

as a fünction of the overall activity in the detector. The u | efficiency describes the probability of electron 

identification as a fünction of u |.  This probability decreases with increasing hadronic activity along the 

electron direction.

Since the recoil library is büilt from Z  ^  ee events, we need to remove the biases introdüced by the
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selection reqüirements on the two electrons. We correct for the efficiencies by weighting each event in the 

Z  boson recoil library by 1 / eu= x 1/eSE r, where e„e is the prodüct of the u | efficiencies and is the

prodüct of the S E T efficiencies for the two electrons in each Z  candidate.

When W boson events are prodüced from a fast MC üsing the recoil library, the map between the trüe 

pT?, measüred UT, and S E T is üsed to introdüce the biases appropriate for W bosons from these efficiencies. 

To simülate a W boson event, a random recoil is chosen from the recoil library corresponding to the trüe 

W boson pW, and a random S E T is chosen from the S E T distribütion corresponding to the trüe W boson 

pW and the chosen recoil UT . The u | efficiency and S E T efficiency are then applied to the electron from W 

boson decays.

4.3. Unfolding method

After the recoils have been corrected as discüssed above, the transformation from measüred pT? and 

measüred UT to trüe pr? and measüred UT is done üsing a Bayesian ünfolding techniqüe.

4.3.1. Multidimensional unfolding using Bayes’s Theorem

Unfolding is a mathematically challenging problem, since it involves the reversal of a random process. 

Becaüse a given trüe state can migrate to many measüred states and many different trüe states can migrate 

to the same measüred state, we cannot ünfold detector effects on an event-by-event basis. Rather, ünfolding 

methods typically work with binned distribütions.

For the recoil library method, we chose to üse a Bayesian ünfolding approach [18]. This approach süits 

oür needs becaüse it is intüitive, simple to implement, and easy to extend to the mültidimensional case. The 

Bayesian techniqüe üses conditional probabilities to determine the probability tha t a given measüred state 

corresponds to a particülar trüe state.

Consider a distribütion of initial states F , {i =  1, 2, .. . ,N /}, given by P (F¿) (the probability of events 

with initial state F¿) and a distribütion of final states F j , {j =  1, 2,..., NF }, given by P (F j) (the probability 

of events with final state Fj ), given the measüred distribütion P  (Fj ), and the probability for each initial 

state to migrate to each final state P (F j |Ij ), we can determine the distribütion of initial states P ( I j ) üsing

Nf
P  (Ij ) = £  P  (Ij |Fj )P  (Fj ). (3)

j=1

Using simülations, we can calcülate P (Z ^F j) from P (F j |Ij ), the likelihood of a trüe state flüctüating to 

a measüred state, üsing Bayes’s theorem, which is

n m  -  (4)

For oür particülar example, with N / initial states and final states, Bayes’s theorem gives üs

P(Pj|F)P(F)
p{h\f0) = (5)

=1
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We can interpret this eqüation as follows: the probability th a t a given final state Fj comes from a 

particülar initial state /j is proportional to the probability density of state /j mültiplied by the probability 

tha t / j migrates to F j . The denominator normalizes the distribütion.

Oür Bayesian method reqüires üs to make assümptions regarding the distribütion of initial states, P ( / j ). 

Althoügh we only üse P ( / j ) to calcülate the weights üsed for the measüred data, the qüality of the ünfolding 

coüld depend on P ( / j ). To minimize this effect, the method is applied iteratively, starting with a reasonable 

prior for the distribütion with P 0 (/j ), and with each süccessive iteration üsing the previoüs iteration’s 

ünfolded distribütion as the new inpüt. As a cross-check, the method is applied with several different initial 

P 0(/j ) distribütions. The iteration procedüre is:

1. Choose an initial seed inpüt distribütion for P0(/j ).

2. Using P0(/j ) and P ( F j |/ j ), compüte the weights P ( / j |F j), as derived üsing the Bayesian eqüation 

shown in Eq. 5.

3. Using these weights, recalcülate the ünfolded distribütion P 1(/j ) from the relationship P 1 ( /j ) =  

j  P 0(F j)P ( /j |F j) described in Eq. 3.

4. Repeat the above steps with P 1(/j ) as the starting distribütion.

5. Iterate üntil the ünfolded P ( / j ) converges.

4.3.2. Unfolding the recoil distribution

For oür application, the recoil vector is described by the coordinates (|UT | , ^ t ), where |UT | is the mag- 

nitüde of the measüred recoil transverse momentüm, and 0* is the opening angle between the measüred 

recoil and the trüe boson direction in the transverse plane. These recoil vectors are stored in an array of 

two-dimensional recoil histograms (binned in |UT | and 0*). Each histogram corresponds to a discrete bin in 

trüe |pT? | with bins of 0.25 GeV for small |pT? | (|pT? | < 50 GeV) and larger bins at larger |pT?|.

In the implementation of Eq. 5, the initial state /  is specified by [(|pT?|)*, 0 j , (|UT |)k] and the final state 

F  is given by [(|pT?|)m, 0 n , ( |U r|)k], where (|pT?|)* is the trüe Z  boson transverse momentüm, (|pT?|)s is the 

smeared Z  boson transverse momentüm, and 0 s is the opening angle between the measüred recoil and the 

smeared Z  boson direction in the transverse plane.

We start with an initial seed distribütion tha t is flat in (|pT? |)4, 0*, and |UT |. We find tha t it takes fewer 

than 10 iterations for the ünfolding method to converge. Figüre 4 shows the convergence of the W boson 

mass and width obtained from the MT distribütion, as a fünction of iteration nümber in fast MC stüdies. 

The final valüe achieved agrees well with the inpüt valüe. The systematic üncertainty on the W boson mass 

and width düe to the ünfolding procedüre is discüssed fürther in Section 5.

Figüre 5 shows an example distribütion of the probabilities tha t a Z  boson with a reconstrücted |pT? | of

7 GeV and a recoil |UT | of 3.5 GeV corresponds to different trüe |pT? | valües. These probabilities are üsed to

weight the given recoil as we store it in the recoil histograms corresponding to the trüe |pT? |. Figüres 6-10
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show varioüs recoil observables plotted versüs the trüe |pT? |, obtained from the trü th  information of these 

MC samples, compared with the same observables plotted versüs the reconstrücted |pT? |, before and after 

the ünfolding is applied. The ünfolding corrects for average effects of |pT? | smearing on both the means and 

the RMS valües of these recoil observables.

5. U n c e r ta in tie s  P a rticu la r  to  th e  R e c o il L ibrary M e th o d

To perform high statistics tests of the efficacy of the recoil library, we stüdy the mass and width valües 

obtained by comparing |pT?|, E t  | and MT distribütions obtained from fast MC W boson samples created 

üsing the parameterized recoil model with templates generated from W boson samples created üsing the 

recoil library method. The recoil libraries are generated from Z  ^  ee events created with the parameterized 

recoil method. By varying parameters in the simülation üsed to generate the W boson samples while leaving 

the templates ünchanged, we measüre the biases and statistical and systematic üncertainties on the recoil 

library method for pp collisions at yfs =  1.96 TeV. The corresponding uncertainties for W  boson mass and 

width measürements at the LHC remain to be evalüated, büt are not expected to be large.

5.1. Statistical power of the Z  recoil sample

There are significant statistical üncertainties since we obtain the recoil system for modeling the W ^  ev 

events from the limited sample of Z  boson events. In 1 fb-1 of data, after the selection cüts, we expect 

approximately 18,000 Z  ^  ee events with both electrons in the central calorimeter, whereas in the same 

data we expect approximately 500,000 W ^  ev events with the electron in the central calorimeter. For the 

recoil library method, we choose recoil vectors from the same set of 18,000 Z  ^  ee events to make W boson 

templates. Oür method is thüs limited by the size of the Z  recoil sample and any statistical flüctüations it 

contains. If we are to rely on this method as an inpüt to a precision measürement, we need to determine 

the extent to which the statistical limitations of the Z  ^  ee sample propagate to an üncertainty on the 

measüred W boson mass and width.

We assess the statistical üncertainties of the recoil method üsing an ensemble of 100 fast MC simülations 

resembling the statistical sitüation we expect in real data. We generate W and Z  boson samples correspond­

ing to 1 fb-1 of data üsing the parameterized recoil method. For each set of W and Z  boson samples, we 

üse the Z  boson events to create a recoil library and then üse the library to create templates for the recoil 

in the simülated W boson events. These templates are then üsed to extract the W boson mass and width. 

The statistical power is measüred üsing the spread of extracted masses and widths from these ensembles.

Figüre 11 shows the measüred W boson masses and widths from 100 ensembles üsing the MT distribütion. 

The mean fit valüe is in good agreement with the inpüt valüe, showing tha t the recoil library can accürately 

model the parameterized recoil method. We test tha t the recoil library can model the füll MC events in 

Section 6.
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The statistical üncertainty on the mass measürement düe to the recoil library method is foünd to be 

5 MeV from the MT spectrüm, 8 MeV for the |pT?| spectrüm, and 17 MeV for the E T | spectrüm. These 

agree with the statistical üncertainties on the parameterized recoil method, which are foünd to be 6 MeV 

for the M t  fit, 7 MeV for the |pT?| fit, and 19 MeV for the E T | fit. The statistical üncertainty on the 

width measürement düe to the recoil library method is 40 MeV üsing the MT spectrüm and agrees with the 

statistical üncertainty of 42 MeV üsing the parameterized recoil method.

Both the parameterized recoil and the recoil library methods üse the Z  boson sample to  model the 

recoil. One might naively expect tha t the additional information contained in the fünctional form üsed in 

the parameterized method woüld give it increased statistical power for the same-sized sample. However, 

we do not observe a loss of statistical power since the üncertainties from the two methods are very similar 

to each other. We have explored the reason for this by üsing a simplified detector model of W and Z 

boson events with and withoüt recoil energy resolütion effects added, and comparing the pT-imbalance (the 

difference between |pT? | and the projection of the recoil UT along the boson direction) distribütion for the 

parameterized and library methods. Düe to the similar transverse momentüm distribütions of the W and 

Z  bosons, we find th a t the means of the pT-imbalance distribütion agree with each other within statistical 

üncertainty. We also find tha t withoüt recoil energy resolütion effects, there is a clear büt small, 0(100) 

MeV, increase in the RMS of the pT-imbalance distribütions for the recoil library method, büt with the 

detector resolütion effects added, the RMS of the pT-imbalance distribütion increases to over 2 GeV and 

masks any difference stemming from the difference between the parameterized recoil method and the recoil 

library method.

5.2. Systematic uncertainties

We mentioned in Section 4 th a t several effects coüld potentially bias the recoil library method. These 

inclüde ünmerged FSR photons, acceptance differences between Z  and W boson events, residüal efficiency- 

related correlations between the electron and the recoil system, ünderlying energy corrections beneath the 

electron window, and the ünfolding process. The closüre tests üsing fast MC described in Section 5.1 show 

the overall bias from this method to be smaller than the statistical power of the tests. Nonetheless, we want 

to make süre th a t this small final bias is not düe to the cancellation of larger individüal biases and therefore 

examine each effect independently.

5.2.1. Unmerged FSR photons

We measüre the residüal bias düe to FSR photons by fitting two sets of fast MC simülations, one made 

from an ünfolded, high statistics recoil file with all FSR photons inclüded and one made from an eqüivalent 

recoil file with no FSR photons. We find th a t the mass shift between these two samples is —1 MeV for the 

Mt  fit, —2 MeV for the |pT?| fit, and 2 MeV for the E T | fit, and tha t the width shift is less than 1 MeV.
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5.2.2. Differences in geometric acceptance

For W candidates, we only reqüire the electron to be in the central calorimeter, while for Z  candidates 

üsed to create the library, we reqüire both electrons to be in the central calorimeter. To test the bias düe 

to this effect, we generate two recoil files. For one recoil file we restrict both electrons to the central region 

of the detector, as we woüld in data. For the other recoil file, we restrict only one electron to the central 

calorimeter and allow the other electron to be anywhere, as with the neütrino from the W boson decay. We 

make templates from the two recoil files and find tha t the differences in both measüred mass and measüred 

width are smaller than the 2 MeV statistical üncertainty of this stüdy.

5.2.3. Efficiency related biases

When we generate ünfolded recoil files, we weight the events by the reciprocals of the u | and S E T 

efficiencies, as described in Section 4.2.3. To check if this approach introdüces any biases, we perform three 

tests. For one, we only apply the u | efficiency. In the second test, we only apply the S E T efficiency, and in 

the final test we apply both efficiencies. The maximüm bias in the fitted mass or width over all three tests 

is üsed as the systematic üncertainty. The final üncertainty attribüted to the efficiency corrections on the 

W boson mass is 7 MeV for the MT fit, 7 MeV for the |pT?| fit, and 8 MeV for the E T | fit. The üncertainty 

of the W boson width is foünd to be 7 MeV.

5.2.4. Uncertainty in A u |

In Section 4.2 we observed tha t by removing the electrons from the Z  ^  ee recoil file, we also remove 

the recoil energy tha t ünderlies the electron cones. We correct for this effect by adding back the average 

energy, A u |, expected beneath the electrons. We then sübtract the electron energy tha t leaks oütside of the 

electron cone th a t is incorrectly attribüted to the recoil energy.

We assess the systematic üncertainty düe to these corrections as follows. Z  boson recoil files are made 

for three cases: (1) no energy corrections, (2) a constant energy correction for ünderlying hadronic energy 

beneath the electron cone and constant correction for the electron energy leakage, (3) the parameterized 

energy correction for ünderlying hadronic energy beneath the electron cone and constant correction for the 

electron energy leakage.

We then generate three sets of templates from each of these recoil files and measüre the shift in fitted 

W boson mass and width between these three tem plate sets. The W boson mass shifts by 2 MeV for the 

Mt  fit, 4 MeV for the |pT?| fit, and 1 MeV for the E T | fit, with a 7 MeV shift for the width. We assign the 

magnitüde of these maximüm shifts as the üncertainty on this method düe to the A u | correction.

5.2.5. Uncertainties due to implementation of unfolding

The specific choices made in implementing the ünfolding coüld introdüce biases to the final measürement.

Oür resülts may depend on oür choice of initial distribütions in (|pT?|)*, 0, and |UT |. They coüld also depend
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on the nümber of iterations of the ünfolding procedüre we apply to the recoil library.

We find tha t starting with flat initial distribütions in (|pT?|)*, 0, and |UT |, 10 iterations are süfficient 

to attain  convergence. We generate the ünfolded recoil files üsing 8, 10, and 12 iterations of the ünfolding 

method and find tha t the changes in measüred mass and width extracted from MT, |_pT?|, and E T | fits are 

within 3 MeV statistical üncertainty of the fast MC stüdy. In addition to ünfolding the recoil file üsing 

a flat initial distribütion for the recoil spectrüm, we also try  several smoothly varying sinüsoidal initial 

distribütions, and find th a t the variation in the final ünfolded recoil file is negligible.

5.3. Total systematic uncertainties due to the recoil system simulation

Table 1 shows the estimated systematic üncertainties düe to the recoil system simülation for 1 fb-1 

of fast MC data. The overall systematic üncertainties, obtained by adding the individüal üncertainties in 

qüadratüre, are foünd to be 9 MeV üsing the MT fit, 12 MeV üsing the |pT?| fit, and 19 MeV üsing the E T | 

fit for the W boson mass, and 41 MeV üsing the MT fit for the W boson width.

6. F ull M C  c lo su re  o f  W  b o so n  m ass and  w id th

We test both the recoil library method and the parameterized recoil method üsing a detailed MC sample 

prodüced üsing a GEANT-based füll detector model for W and Z  boson prodüction. The füll MC Z  boson 

sample is eqüivalent to 6.0 fb-1 and the W boson sample is eqüivalent to 2.5 fb- 1 . In this case, the füll MC 

Z boson samples are üsed to create the recoil library. Templates are then created from W boson samples 

made üsing the recoil library, and these are üsed to extract the W boson mass and width. The extracted 

valües for the W boson mass and width are compared to the inpüt valües (closüre test).

Before fitting for the mass and width of the füll MC sample, we test the accüracy of the model by 

comparing varioüs füll MC distribütions to the fast MC model for an inpüt valüe of the W boson mass of 

80.450 GeV. Good agreement between füll MC and fast MC üsing the recoil library method is observed. 

Figüre 12 shows comparisons between W ^  ev füll MC and fast MC üsing the recoil library method for 

the Mt , |pTe|, and E T | distribütions. The x 2 between füll and fast MC simülations are also given and 

are reasonable. The systematic üncertainties on the electron model, dominated by the üncertainty on the 

electron energy scale, are foünd to be 15 MeV for the MT and E T | fits, and 12 MeV for the |pT?| fit for the 

W boson mass, and 15 MeV for the W boson width. Systematic üncertainties on the hadronic model are 

taken from Section V. Since here we üse the eqüivalent of 6.0 fb-1 of füll MC Z  ^  ee recoils, we estimate 

the overall üncertainty düe to the recoil system simülation by scaling the üncertainty düe to recoil statistics 

found in Section V by a factor of 1/ a/ 6, leaving other estimated systematic uncertainties the same. The 

systematic üncertainty düe to the recoil statistics is 2 MeV üsing the MT fit, 3 MeV üsing the |pT?| fit, 

and 7 MeV üsing the E T | fit for the W boson mass and 16 MeV üsing the MT fit for the W boson width,
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which agrees with the corresponding systematic üncertainty in the parameterized recoil model. Taking the 

systematic üncertainties estimated in Section V, added in qüadratüre with these statistical üncertainties, 

we find the total üncertainty to be 22 MeV for the MT fit, 24 MeV for the |pT?| fit and 26 MeV for the E T | 

fit for the W boson mass, and 36 MeV for the W boson width.

The resülts of the füll MC measürements agree with the füll MC inpüt W boson mass and width valües 

within the üncertainties, as shown in Table 2.

7. C o n clu sio n

We have oütlined a method to model the hadronic recoil system in W ^  lv  events üsing recoils extracted 

directly from a Z  ^  l l  data library. We applied this methodology to a realistic füll MC simülation of the 

D0 detector. The W boson mass and width fits to these MC events are in good agreement with the 

inpüt parameters, within statistical üncertainties. They also agree with the valües extracted üsing a more 

traditional parameterized recoil model. Comparisons of simülated distribütions üsing the recoil library 

method with MC give good x 2 agreement over a füll range of data observables.

This method is limited by the statistical power of the Z  boson recoil sample, as is the parameterized 

recoil model. In addition to systematic effects from the limited statistical power of the Z  boson sample, there 

are several systematic effects düe to the implementation of the selection efficiencies, geometric acceptance, 

the ünfolding method, and FSR. The üncertainty düe to these effects is foünd to  be 0(10) MeV.

The method presented in this paper has many advantages. It accürately describes the highly complicated 

hadronic response and resolütion for W boson recoils in a given calorimeter. It inclüdes complex correlations 

between the hard and soft components of the recoil and scales the recoil appropriately with lüminosity. It 

reqüires fewer assümptions, no first-principles description of the recoil system, and no adjüstable parameters. 

At hadron collider experiments at the Rün II Tevatron and the LHC, this approach to modeling the recoil 

system is complementary to the traditional parametric approach.
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Figure 1: An exam ple of a  diagram  for th e  p roduction  and leptonic decay of a  W / Z  boson w ith rad ia ted  gluons in a  hadronic 

collision.
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■  EM

Figure 2: A typ ical W  ^  ev candidate  as recorded by th e  D0 detector. T he two horizontal axes correspond to  azim uthal angle 

and pseudorapidity, and th e  vertical axis is th e  transverse  energy deposited a t  th a t  location in th e  calorim eter. T he energy 

associated w ith th e  electron and th e  E t  th a t  corresponds to  th e  neu trino  are indicated. All o ther energies con tribu te  to  th e  

m easured recoil. T he longitudinal com ponent of th e  neu trino  m om entum  is not determ ined, so it is displayed a rb itra rily  a t
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Figure 3: Exam ples of th e  d istribu tion  of th e  com ponent of th e  m easured recoil parallel (w yz) and perpendicu lar (u ± z ) to  th e  

Z  boson direction for th ree  different bins in tru e  |p ^  | (centered a t  (a) 0.4, (b) 10, and (c) 29 GeV). Each do t represents u t  

from a  single event in th e  library.

Iterations with MT distribution

Figure 4: E stim ated  (a) W  boson m ass and (b) W  boson w id th  in fast MC using th e  M t  d istribu tion , as a  function of num ber 

of iterations used in th e  unfolding. T he red line indicates th e  inpu t values of W  boson m ass and w idth  in th e  fast MC. T he 

default num ber of iterations used is 10.
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Figure 5: T he d istribu tion  of th e  p robabilities th a t  a  reconstructed  |p j?  | of 7 GeV w ith corresponding |U j | of 3.5 GeV comes 

from  various tru e  Ipj? I bins.
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Figure 6: M ean recoil | « j  I versus tru e  |p j?  | (black filled points) and m ean recoil | « j  I versus th e  estim ate  of th e  tru e  p j?  using 

th e  two electrons (red open boxes) when using (a) th e  two sm eared electrons d irectly  and (b) th e  unfolded m ap.
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Figure 7: M ean projection  of th e  recoil along th e  Z  boson d irection (<  u y z  > ) versus tru e  Ipj? | (black filled points) and mean 

projection  of th e  recoil along th e  boson direction versus th e  estim ate  of th e  tru e  p j?  using th e  two electrons (red open boxes) 

when using (a) th e  two sm eared electrons d irectly  and (b) th e  unfolded map.

F igure 8: RMS of th e  opening angle betw een U j and p j?  versus tru e  p j?  (black filled points) and RM S of th e  opening angle 

betw een th e  recoil and th e  boson versus th e  estim ate  of th e  tru e  Ipj? | using th e  two electrons (red open boxes) when using (a) 

th e  two sm eared electrons d irectly  and (b) th e  unfolded m ap.
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m ap.

4

3

Opening angle between u j and p̂ Z Opening angle between u j and p^Z

Figure 10: O pening angle betw een u t  and  tru e  pT? (solid line) and opening angle betw een U t  and th e  estim ated  d irection of 

tru e  pT? (points) when using (a) th e  two sm eared electrons d irectly  and (b) th e  unfolded m ap for Z  boson events w ith a  tru e  

|pT? I of 4.0 to  4.25 GeV.
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Figure 11: (a) W  boson m ass and (b) w id th  m easured in 100 ensemble tes ts  for each tem p la te  generated from  a  recoil file. T he 

dash line is a  fit using a G aussian function. All ensembles were generated  w ith an  inpu t W  boson m ass of 80.419 GeV and 

w idth  of 2.039 GeV. T he fitted  gaussian function for th e  m ass has a  m ean value of 80.420± 0.001 GeV and RMS of 0 .005± 0.001 

GeV. T he values for th e  w id th  a re  2.040 ±  0.001 GeV (m ean) and 0.040 ±  0.003 (RMS) GeV.

Figure 12: C om parison p lo ts betw een full MC (points) and fast MC produced using th e  recoil lib rary  (lines) for th e  W  boson 

(a) M t , (b) |pÿl> (c) E t  I, and (d) M t  (log scale) d istribu tions. Also shown are th e  x  values defined as th e  difference between 

full MC and fast MC yields divided by th e  sta tis tica l uncertain ty  on th e  full MC yield. Different ranges and bin sizes a re  used 

for (a) and (d).
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Table 1: T otal system atic uncertain ties on th e  W  boson m ass and w id th  from th e  recoil lib rary  m ethod, for 1 fb 1 of Z  boson 

da ta . _______________________________________________________________________________________________

Source A M w  (M t  ) 

(MeV)

A M w  (|pTe|) 

(MeV)

A M w  (E t  1)

(MeV)

A r  w (M t  ) 

(MeV)

Recoil statistics 5 8 17 40

FSR photons 1 2 2 1

Efficiency related bias 7 7 8 7

Auf 2 4 1 7

Unfolding 3 3 3 3

Systematic total 9 12 19 41

Table 2: F inal resu lt of th e  full MC closure fits for th e  W  boson m ass and w idth  using th e  recoil lib rary  m ethod. T he full MC 

sam ples used here are equivalent to  2.5 fb - 1 of W  boson d a ta  and 6.0 fb - 1 of Z  boson da ta . For th e  fitted  W  boson m ass and 

w idth, th e  first uncertain ty  is sta tistica l, th e  second is th e  system atic on th e  electron sim ulation, th e  th ird  is th e  system atic 

on th e  recoil system  sim ulation due to  Z  boson sta tistics, and th e  fourth  is o ther system atics on th e  recoil system  sim ulation. 

A M w  represents th e  difference betw een th e  m easured W  boson m ass and th e  inpu t value of 80.450 GeV, and A r ^  represents 

th e  diiference betw een th e  m easured W  boson w id th  and th e  inpu t value of 2.071 GeV.

Observable A M w  (MeV)

M t 6 ±  15 ±  15 ±  2 ±  7

\Pt  1 5 ±  19 ±  12 ±  3 ±  8

$ t \ 0 ±  19 ±  15 ±  7 ±  8

A T W (MeV)

M t - 5  ±  27 ±  15 ±  16 ±  10
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