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πN-Scattering in Kadyshevsky
Formalism
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Chapter 1

Introduction

When we consider all subatomic particles, excluding the gauge bosons, i.e.
the force carrying particles, and the not-yet observed Higgs particle, we divide
them into three groups: the leptons, the mesons and the baryons. The par-
ticles in the last two groups together are called hadrons. The three names of
the groups originate from the Greek words: leptos, mesos and barys, mean-
ing small, intermediate and heavy. These names refer to the mass of the
first (and lightest) particles of these groups that were discovered (such as
the electron (lepton) and the proton (baryon)). Later, when other members
were discovered, these names were not appropriate anymore. For instance
the τ -lepton (1777 MeV/c2) is much heavier then the proton (938 MeV/c2).
Nevertheless, these names are still used for reasons we will soon encounter.
This part of the thesis is about the strong interaction between mesons and
baryons and in particular pions and nucleons (a nucleon is a proton or a
neutron).

The study of strong meson-baryon interactions has a long history that
goes back to the year 1935 in which Yukawa predicted the existence of mesons
as carriers of the strong nuclear force [1]. After the discovery of the first
mesons (the charged pions) by Powell and collaborators in 1947 [2], Yukawa
was awarded the Nobel prize in 1949 1.

A lot of new particles were discovered and the categorization of them led
Gell-Mann and Ne’eman to propose their Eightfold way [3]. Collections of
particles form representations of a mathematical group: SUf (3) (f stands for
flavour) and the elements of the fundamental representation are called quarks.
It got Gell-mann the Nobel prize in 1969. These quarks are considered as the
elementary building blocks of matter. In the view of quarks a meson consists
of a quark and an anti-quark and a baryon of three quarks.

1Powell got the Nobel prize in 1950.

3
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Because of the ∆++ problem - it seemed that this particle had a to-
tally symmetric ground state wave function, which is forbidden by the Pauli-
exclusion principle - quarks were assigned an additional degree of freedom:
colour. This led to the development of a theory describing the interaction
between the quarks and therefore also describing the nuclear force in which
the force carriers are gluons [4]. This theory is called: Quantum Chromody-
namics (QCD). It got Gross, Wilczek and Politzer the Nobel prize in 2004.
Despite its successes, as for instance asymptotic freedom (at very short dis-
tances quarks are free) and confinement (a quark can never be isolated), it
has a major difficulty. Due to its perturbative character it can not be ap-
plied at low energies and it is therefore not capable of the describing hadron
scattering processes in a simple way.

In order to be able to describe hadron scattering processes effective the-
ories based on the idea of Yukawa can be used. For instance in baryon-
baryon scattering or in nucleon-nucleon scattering specifically, the baryons
are treated as the effective elementary particles and the mesons are the force
carrying particles, which are being exchanged. Already since the seventies
the Nijmegen group has, successfully, constructed models describing such in-
teractions based on this idea. The Nijmegen models are considered to be one
of the best in the world [5]. For a complete list of the Nijmegen models and
articles see [6].

In light of QCD baryons and mesons are colourless and therefore mesons
are the only reasonable option to be used as exchanged particles in baryon-
baryon scattering in order to describe the strong force at medium and long
range r & 1fm. Also there are several models that form a bridge between
the hadron phenomenology on the one hand and the QCD basis on the other
hand. Main idea in this is to describe the coupling constants used in phe-
nomenological models by means of the QCD based models. Examples of
these models are for instance QCD sum rules [7]. Furthermore, we would
like to mention the Quark Pair Creation (QPC) 3P0 model [8, 9] where the
mesons and baryons are represented by their constituent quarks. This model
is supported by the so-called Flux-Tube model [10]: a lattice QCD based
model in which the quarks and flux-tubes are the basic degrees of freedom.

Recently, the Nijmegen group broadened its horizon by including besides
the baryon-baryon models also meson-baryon models [11]. The work in this
(part of the) thesis can be regarded as an extension of [11], since we also
consider meson-baryon scattering or pion-nucleon, more specifically. The
reason for considering pion-nucleon scattering is, besides the interest in its
own, that there is a large amount of experimental data. Also using SUf (3)
symmetry the extension to other meson-baryon systems is easily made. Last
but not least we would like to mention the connection to photo-production
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models.
Compared to [11] our focus is more on the theoretical background. For

instance we formally include what is called ”pair suppression”, whereas this
was assumed in [11]. Pair suppression comes down to the suppression of
negative energy contributions. For the first time, at least to our knowledge,
we incorporate pair suppression in a covariant and frame independent way.
This may particularly be interesting for relativistic many body theories. In
order to have this covariant and frame independent pair suppression, we
use the Kadyshevsky formalism. This formalism covariantly, though frame
dependently 2, separates positive and negative energy contributions. It is
introduced and discussed in chapter 2.

Problems may arise in the comparison of results in the Kadyshevsky and
the Feynman formalism, when couplings containing derivatives and/or higher
spin fields are used. This seeming problem is discussed and solved in chapter
3. The Kadyshevsky formalism is applied to the pion-nucleon system in
chapter 4, starting with the meson exchange processes. This is continued in
chapter 5, which deals with the baryon sector. Here, also pair suppression is
properly introduced and incorporated. In chapter 6 we use the helicity basis
and the partial wave expansion to solve the integral equation (see section 2.4
and 6.2) and to introduce the experimental observable phase-shifts.

1.1 Conventions and Units

Throughout this thesis we will use ~ = c = 1. For the metric we use gµν =
diag(1,−1,−1,−1). As far as the definition of the gamma- and the Pauli
spin- matrices we use the convention of [12]. In all other cases we explicitly
mention what convention we use.

1.2 Meson-Baryon Scattering Kinematics

We consider the pion-nucleon or more general the (pseudo) scalar meson-
baryon reactions

Mi(q) +Bi(p, s)→Mf (q
′) +Bf (p

′, s′) . (1.1)

where M stands for a meson and B is a baryon. For the four momentum of
the baryons and mesons we take, respectively

pµc = (Ec,pc) , where Ec =
√

p2
c +M2

c ,

qµc = (Ec,qc) , where Ec =
√

q2
c +m2

c . (1.2)

2By frame dependent we mean: dependent on a vector nµ (see chapter 2).
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Here, c stands for either the initial state i or the final state f . In some cases
we find it useful to use the definitions (1.2) for the intermediate meson-baryon
states n.

In chapter 2 we will introduce the four vector nµ and quasi particles with
initial and final state momenta nκ and nκ′, respectively. Therefore, the usual
overall four-momentum conservation is generally replaced by

p+ q + κ n = p′ + q′ + κ′ n . (1.3)

As (1.3) and (1.1) make clear a ”prime” notation is used to indicate final
state momenta; no prime means initial state momenta. We will maintain
this notation (also for the energies) throughout this thesis, unless indicated
otherwise.

Furthermore we find it useful to introduce the Mandelstam variables in
the Kadyshevsky formalism

spq = (p+ q)2 , sp′q′ = (p′ + q′)2 ,

tp′p = (p′ − p)2 , tq′q = (q′ − q)2 ,

up′q = (p′ − q)2 , upq′ = (p− q′)2 , (1.4)

where spq and sp′q′ etc, are only identical for κ′ = κ = 0. These Mandelstam
variables satisfy the relation

2
√
sp′q′spq + tp′p + tq′q + upq′ + up′q = 2

(

M2
f +M2

i +m2
f +m2

i

)

. (1.5)

The total and relative four-momenta of the initial, final, and intermediate
channel (c = i, f, n) are defined by

Pc = pc + qc , kc = µc,2 pc − µc,1 qc , (1.6)

where the weights satisfy µc,1 + µc,2 = 1. We choose the weights to be

µc,1 =
Ec

Ec + Ec
,

µc,2 =
Ec

Ec + Ec
. (1.7)

Since in the Kadyshevsky formalism all particles are on their mass shell, the
choice (1.7) means that always k0

c = 0.
In the center-of-mass (CM) system p = −q and p′ = −q′, therefore

Pi = (W,0) , Pf = (W ′,0) ,

ki = (0,p) , kf = (0,p′) , (1.8)
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where W = E + E and W ′ = E ′ + E ′. Furthermore we take nµ = (1,0).
Also we take as the scattering plane the xz-plane, where the 3-momentum

of the initial baryon is oriented in the positive z-direction. This is indicated
in figure 1.1 and will be of importance in chapter 6.

ẑ

ŷ

x̂

θ

~p

~p′
~q

Figure 1.1: The xz scattering plane in the CM system

In the CM system the unpolarized differential cross section is defined to
be

(

dσ

dΩ

)

CM

=
|p′|
2|p|

∑

∣

∣

∣

∣

Mfi

8π
√
s

∣

∣

∣

∣

2

, (1.9)

where the amplitude Mfi is defined in section 2.3 and the sum is over the
spin components of the final baryon.
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Chapter 2

Kadyshevsky Formalism

In the canonical treatment scattering and decay processes are usually de-
scribed using the Dyson formula for the S-matrix in the interaction picture,
defined in many textbooks as for instance [12, 13]. From this S-matrix Feyn-
man rules are obtained, which are considered as the building blocks of the
theoretical description of particle scattering and decay processes. Equiva-
lently, Kadyshevsky developed an alternative formalism starting from the
same S-matrix [14, 15, 16, 17], which leads to the so called Kadyshevsky
rules.

The difference between both formalisms lies in the treatment of the Time
Ordered Product (TOP). In the Feynman formalism the TOP leads to a
covariant propagator and intermediate particles go off the mass shell. In the
Kadyshevsky formalism the Heaviside step functions of the TOP are replaced
by ones with a covariant argument and as a whole they are considered as quasi
particle propagators. As a result all (intermediate) particles are on the mass
shell and the number of diagrams is increased (1→ n! at order n) as in old-
fashioned perturbation theory. Four momentum conservation at the vertices
is only guaranteed when the quasi particles are included.

2.1 S-Matrix

As mentioned before the S-matrix is defined in many textbooks, like for
instance [12, 13], as

S = T

[

exp

(

−i
∫

d4xHI(x)

)]

. (2.1)

9
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However, to discuss the Kadyshevsky formalism we use an equivalent form
for the S-matrix

S = 1 +
∞
∑

n=1

(−i)n
∫ ∞

−∞

d4x1 . . . d
4xn θ(x

0
1 − x0

2) . . . θ(x
0
n−1 − x0

n)

×HI(x1) . . .HI(xn) . (2.2)

Next, a time like vector nµ is introduced in the Heaviside step function (or
θ-function).

n2 = 1 , n0 > 0

θ(x0) → θ[n · x] . (2.3)

This will not cause any effect on the S-matrix. Assuming that the S-matrix
defined in (2.2) is Lorentz-invariant, and realizing that the S-matrix contain-
ing this vectors nµ is identical to (2.2) in the frame where nµ = (1,0), it
follows that they are equivalent in all frames because the expression in (2.2)
is manifest Lorentz-invariant.

That the introduction of the nµ-vector (2.3) does not cause any effect can
also be seen by looking at the difference θ[n(x− y)]− θ(x0 − y0). Key point
is that this difference is unequal to zero in a region outside the light-cone,
where the S-matrix does not have a meaning anyway. Consider the surface
n · (x− y) = 0 in the following

(x− y)2 = (x0 − y0)2 − |~x− ~y|2

=
1

n2
0

(~n · (~x− ~y))2 − |~x− ~y|2 (2.4)

Now, 0 ≤ (~n ·(~x−~y))2 ≤ |~n|2.|~x−~y|2. Considering those limits in (2.4) yields

(x− y)2 ≥ −|~x− ~y|2 < 0

(x− y)2 ≤ |~n|2
n2

0

|~x− ~y|2 − |~x− ~y|2 =
−1

1 + |~n|2 |~x− ~y|
2 < 0 . (2.5)

From this we see that n · (x−y) = 0 is a surface outside the light cone, hence
the difference θ[n(x− y)]− θ(x0 − y0) is also a region outside the light-cone,
marked by an arced area in figure 2.1

As a next step the θ-function is written as a Fourier integral which can
best be understood considering the reverse order

i

2π

∫

dκ1
e−iκ1n·(x−y)

κ1 + iε
=

{

n · x < n · y → 0

n · x > n · y → − i
2π

∮

dκ1
e−iκ1n·(x−y)

κ1+iε
= 1

= θ[n · (x− y)] , (2.6)
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II

IV

IV

IIII

III

III

x0 − y0

|x− y|

nµ

Figure 2.1: Light-cone. The dashed lines mark the points n · (x− y) = 0. In
the regions I and II: (x−y)2 > 0, and in the regions III and IV: (x−y)2 < 0.

-iε

(+)

(−)

Figure 2.2: Closing the integral
∫

dκ1
e−iκ1n·(x−y)

κ1+iε

where the closing of the integral to make it a cauchy contour integral is
schematically exposed in figure 2.2. Momentum space is enlarged by also
including nκ, representing the momentum of a so-called quasi particle. The
Fourier integral in (2.6) represents therefore the propagation of a quasi par-
ticle in a Kadyshevsky diagram.

2.2 Wick Expansion

Although we have not yet said anything about the interaction Hamiltonian
we assume, for the moment, that it is just minus the interaction Lagrangian:
HI = −LI 1. We will have a closer look on this matter in chapter 3.

1Of course we should say interaction Lagrangian/Hamiltonian density. This is and will
be omitted for convenience throughout this thesis, unless indicated otherwise.
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The interaction Lagrangian is always our staring point. Since it is a prod-
uct of fields, also, via the interaction Hamiltonian, the S-matrix will contain a
product of fields. In Feynman theory this product, together with the product
of θ-functions, is rewritten in terms TOPs, which lead to Feynman propaga-
tors ∆F using Wick’s theorem for TOPs.

In Kadyshevsky formalism this can not be done, because the θ-functions
are used as quasi-particle propagators. Instead we will use Wick’s theorem
for ordinary products which states that such a product can be rewritten
in terms of Normal Ordered Products (NOP) of (contracted) fields (see for
instance [18])

A1A2 . . . An = N(A1A2 . . . An) +N(A1A2 . . . An) +N(A1A2A3 . . . An) + . . .

+N(A1A2A3A4 . . . An) + . . . , (2.7)

where the symbol means a contraction of fields. These contractions need

to be taken out of the NOP in the following way

N(A1A2A3 . . .) = (−1)nAN(A1A3A2 . . .) ,

N(A1A2 . . .) = A1A2N(. . .) , (2.8)

where nA = 1(0) in case of fermions (bosons). These contractions are vacuum
expectation values of fields. This becomes clear when we look at the following
example for hermitean scalar fields

φ(x)φ(y) =

∫

d3pd3k

(2π)64EpEk

[

a(p)a(k)e−ipxe−iky + a(p)a†(k)e−ipxeiky

+a†(p)a(k)eipxe−iky + a†(p)a†(k)eipxeiky
]

,

N [φ(x)φ(y)] =

∫

d3pd3k

(2π)64EpEk

[

a(p)a(k)e−ipxe−iky + a†(k)a(p)e−ipxeiky

+a†(p)a(k)eipxe−iky + a†(p)a†(k)eipxeiky
]

,

φ(x)φ(y) = N [φ(x)φ(y)] +

∫

d3pd3k

(2π)64EpEk

[

a(p), a†(k)
]

e−ipxeiky

= N [φ(x)φ(y)] + 〈0|φ(x)φ(y)|0〉 . (2.9)

Comparing this with (2.7) and (2.8) we see that

A1A2 = 〈0|A1A2|0〉 . (2.10)
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In (2.9) we already used the commutation relation of the creation and anni-
hilation operators given in (2.44).

These vacuum states are called Wightman functions. The ones used in
this thesis are exposed below in (2.11)

〈0|φ(x)φ(y)|0〉 = ∆(+)(x− y) ,
〈0|ψ(x)ψ̄(y)|0〉 = S(+)(x− y) = Λ(1/2)(∂) ∆(+)(x− y) ,
〈0|ψ̄(x)ψ(y)|0〉 = S(−)(x− y) = −Λ(1/2)(−∂) ∆(+)(x− y) ,
〈0|φµ(x)φν(y)|0〉 = ∆(+)

µν (x− y) = Λ(1)
µν (∂) ∆(+)(x− y) ,

〈0|ψµ(x)ψ̄ν(y)|0〉 = S(+)
µν (x− y) = Λ(3/2)

µν (∂) ∆(+)(x− y) ,
〈0|ψ̄ν(x)ψµ(y)|0〉 = S(−)

µν (x− y) = −Λ(3/2)
µν (−∂) ∆(+)(x− y) , (2.11)

where ∆+(x− y) is defined in (D.1) and

Λ(1/2)
µν (∂) = (i∂/+M) ,

Λ(1)
µν (∂) =

(

−gµν −
∂µ∂ν
M2

)

,

Λ(3/2)
µν (∂) = − (i∂/+M)

(

gµν −
1

3
γµγν +

2∂µ∂ν
3M2

+
1

3M

(

i∂/µγν − γµi∂/ν
)

)

. (2.12)

In momentum space these functions (2.11) lead to

∆(+)(P ) = θ(P 0)δ(P 2 −M2) ,

S(+)(P ) = Λ(1/2)(P ) θ(P 0)δ(P 2 −M2) ,

S(−)(P ) = Λ(1/2)(−P ) θ(P 0)δ(P 2 −M2) ,

∆(+)
µν (P ) = Λ(1)

µν (P ) θ(P 0)δ(P 2 −M2) ,

S(+)
µν (P ) = Λ(3/2)

µν (P ) θ(P 0)δ(P 2 −M2) ,

S(−)
µν (P ) = Λ(3/2)

µν (−P ) θ(P 0)δ(P 2 −M2) . (2.13)

These are the functions we use in the Kadyshevsky rules (section 2.3). As
can be seen from (2.11) and (2.13) we have removed the minus signs from the
S(−)-functions. We come back to this point when discussing the Kadyshevsky
rules in the next section (section 2.3)

2.3 Kadyshevsky Rules

In the previous sections (sections 2.1 and 2.2) we have discussed the basic
ingredients of the S-matrix in Kadyshevsky formalism. Its elements can, just
as in Feynman theory, be represented by diagrams: Kadyshevsky diagrams.
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Since the basic starting points are the same as in Feynman theory we
take a general Feynman diagram and give the Kadyshevsky rules from there
on to construct the amplitude Mfi. Here, we define the amplitude as

Sfi = δfi − i(2π)2δ4 (Pf − Pi) Mfi , (2.14)

where Pf/i is the sum of the final/initial momenta.

Kadyshevsky Rules:

1) Arbitrarily number the vertices of the diagram.

2) Connect the vertices with a quasi particle line, assigned to it a momentum
nκs. Attach to vertex 1 an incoming initial quasi particle with momentum
nκ and attach to vertex n an outgoing final quasi particle with momentum
nκ′ 2.

3) Orient each internal momentum such that it leaves a vertex with a lower
number than the vertex it enters. If two fermion lines with opposite momen-
tum direction come together in one vertex assign a + symbol to one line and
a − to the other. Each possibility to do this yields a different Kadyshevsky
diagram.

4) Assign to each internal quasi particle line a propagator 1
κs+iε

.

5) Assign to all other internal lines the appropriate Wightman function of
(2.13). Assign to a fermion line with a ± symbol: S(±)(P ) (see 3)).

6) Impose momentum conservation at the vertices, including the quasi par-
ticle lines.

7) Integrate over the internal quasi momenta:
∫∞

−∞
dκs.

8) Integrate over those internal momenta not fixed by momentum conserva-
tion at the vertices:

∫∞

−∞
d4P
(2π)3

.

9) Include a − sign for every fermion loop.

2Obviously these quasi particles may not appear as initial or final states, since they
are not physical particles. However, since we use Kadyshevsky diagrams as input for an
integral equation (see section 2.4) we allow for external quasi particles.
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10) A factor minus between two graphs that differ only by the interchange of
two identical external fermions (just as in Feynman theory, see for instance
[12]).

11) Repeat the various steps for all different numberings in 1.

It is clear from 3) and 11) that one Feynman diagram leads to several
Kadyshevsky diagrams. Generally, one Feynman diagram leads to n! Kady-
shevsky diagrams, where n is the number of vertices (or; the order). Espe-
cially for higher order diagrams this leads to a dramatic increase of labour.
Fortunately, we will only consider second order diagrams.

A few remarks need to be made about these rules as far as the choice
of definition is concerned. In 3) we have followed [14] to orient the internal
momenta. Furthermore we have chosen to use the integral representation
of the θ-function as in (2.6) instead of its complex conjugate. Since the θ-
function is real, this is also a proper representation, originally used in the
papers of Kadyshevsky. To understand why we have chosen to deviate from
the original approach, consider the S-matrix (2.2), again.

In each order Sn there is a factor (−i)n already in the definition. In that
specific order there are (n−1) θ-functions, each containing a factor i from the
integral representation (2.6). Therefore, every Sn will, regardless the order,
contain a factor (−i). Hence, the amplitude Mfi, defined in (2.14), will not
contain overall factors of i, anymore.

As mentioned before the momentum space S(−)(P )-functions used in the
Kadyshevsky rules (2.13) differ from their coordinate space analogs defined
in (2.11) by an overall minus sign. The reason for that is twofold. In many
cases the Wightman functions S(−)(x− y), including the overall minus sign,
appear in combination with the NOP: N(ψψ̄) = −N(ψ̄ψ). Therefore, the
minus signs cancel. In all other cases the Wightman functions S(−)(x − y)
appear in fermion loops and are therefore responsible for the fermion loop
minus sign in 9), since every fermion loop will contain an odd number of
S(−)(x−y) functions. We stress that this method of defining the Kadyshevsky
rules for fermions differs from the original one in [16].

Although it is tempting to demonstrate the Kadyshevsky rules here, we
postpone that to chapter 3.
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2.4 Integral Equation

To describe complete two body scattering processes use can be made of the
Bethe-Salpeter (BS) equation [19], which is a fully relativistic two particle
scattering integral equation. It needs to be mentioned, however, that it is by
definition unsolvable, since the input of the integral equation is already an
infinite set of amplitudes. This will become clear in section 2.4.1. Therefore,
approximations have to be made as far as the input is concerned. In [11] are,
besides this fact, other approximations made in the BS equation to come
to a three dimensional integral equation, which, then, is used to solve the
problem.

The integral equation in Kadyshevsky formalism [15] is also by defini-
tion unsolvable in the same way as the BS equation. This we will see in
section 2.4.2. However, the Kadyshevsky integral equation is a three dimen-
sional integral equation, which comes about in a natural way, without any
approximation . In the following two subsections we are going to discuss the
BS equation (section 2.4.1) and the Kadyshevsky integral equation (section
2.4.2). This to see the difference between them clearly.

2.4.1 Bethe-Salpeter Equation

To understand how the Bethe-Salpeter equation comes about we imagine to
have the following interaction Hamiltonian

LI(x) = g ψ̄ψ · φ1 + g φaφb · φ1 = −HI(x) , (2.15)

where we use subscripts a and b to indicate outgoing and incoming scalar
fields, respectively. The interaction Hamiltonian (2.15) serves as basic ingre-
dient of the S-matrix as used in Feynman theory (2.1). When we consider
πN -scattering up to the fourth order, the relevant contributions are S(2) and
S(4)

S(2) =
(−i)2

2!

∫

d4x1d
4x2 T [HI(x1)HI(x2)] ,

= −g2

∫

d4x1d
4x2N [ψ̄(x1)ψ(x1)φa(x2)φb(x2)]T [φ1(x1)φ1(x2)] ,
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S(4) =
(−i)4

4!

∫

d4x1d
4x2d

4x3d
4x4 T [HI(x1)HI(x2)HI(x3)HI(x4)] ,

= g4

∫

d4x1d
4x2d

4x3d
4x4N [ψ̄(x1)ψ(x3)φa(x2)φb(x4)]T [φ1(x1)φ1(x2)]

× T [φ1(x3)φ1(x4)]T [ψ(x1)ψ̄(x3)]T [φc(x2)φd(x4)] + . . . .

(2.16)

The ellipsis indicate those terms that also appear when the TOP is fully
expanded, using Wick’s theorem. They are not exposed because they do not
contain a product πN Feynman propagators (∆F (x − y;m2

π) and SF (x −
y;M2

N)); they are said to be πN -irreducible.
Performing all integrals, collecting all factors of i and (2π) and sandwich-

ing between initial and final πN states, the contributions up to fourth order
are

S4, fi(p
′q′; pq) = S

(2)
fi + S

(4)
fi

= −i(2π)4δ4(Pf − Pi)Mfi(p
′q′; pq)

−i(2π)4δ4(Pf − Pi)
∫

d4P Mf (p
′q′; pcqc)

[

i

(2π)4
∆F (qc)SF (pc)

]

×Mi(pcqc; pq) + . . . , (2.17)

where the internal momenta qc and pc are expressible in terms of incom-
ing/outgoing momenta and the loop momentum P . In (2.17) one has to
realize that for instance Mf (p

′q′; pcqc) does not contain a final state spinor u.
A similar thing accounts for Mi(pcqc; pq), which does not contain an initial
state spinor.

In order to generate all terms, equation (2.17) becomes an integral equa-
tion, where the first term M(p′q′; pq) is the driving term. Those terms that
are pion-nucleon irreducible indicated in (2.16) by the ellipsis, as mentioned
before, are also put in the driving term.

Taking these consideration into account, the BS equation reads (see also
figure 2.3)

Mfi(p
′q′; pq) = M irr

fi (p′q′; pq)

+
∑

n

∫

d4Pn M
irr
f (p′q′;Pn)G(Pn)Mi(Pn; pq) ,

G(Pn) =
i

(2π)4
∆F (Pn)SF (Pn) , (2.18)
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M = M irr + M irr G M

Figure 2.3: Bethe-Salpeter equation

3 where the sum in (2.18) stand for all intermediate meson-baryon channels.

As mentioned before the driving term in (2.18) contains the set of all
pion-nucleon irreducible diagrams. Since this set is infinite, the BS equation
is unsolvable by definition.

Similar to the remarks aboutMf (p
′q′; pcqc) in the text below (2.17), (2.18)

is strictly speaking not correct. This is because the first term on the rhs of
(2.18) contains an initial and final state spinor, whereas this same expression
M irr in the second term on the rhs of (2.18) does not. This accounts for
the whole iteration. A simple way out is to consider (2.18) as an operator
equation (so, no initial and final state spinors) or to consider only initial or
final states.

An even better solution is to split the fermion propagator in a positive and
negative energy contribution and include their spinors, present in the pro-
jection operator of the propagator, in Mf (p

′q′; pcqc) and Mi(pcqc; pq). Then
(2.18) becomes schematically

M++ = M irr
++ +M irr

+−G−M−+ +M irr
++G+M++ , (2.19)

where a ”+” stands for a u spinor and a ”−” for a v spinor. This is what
is done in [11], where also the boson propagator is split in positive and
negative energy contributions. In [11] only positive energy contributions are
considered motivated by the assumption of pair suppression.

2.4.2 Kadyshevsky Integral Equation

In Kadyshevsky formalism we use the S-matrix as exposed in (2.2). Using the
same interaction Hamiltonian as in (2.15) the relevant S-matrix contributions

3Obviously, ∆F and SF in (2.18) do not have the same argument. The notation is
merely meant to indicate that Pn is the only free variable over which the integral runs.
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up to fourth order are

S(2) = (−i)2

∫

d4x1d
4x2 θ[n(x1 − x2)]HI(x1)HI(x2)

= −g2

∫

d4x1d
4x2N [ψ̄(x1)ψ(x1)φa(x2)φb(x2)]

×
[

θ[n(x1 − x2)]〈0|φ1(x1)φ1(x2)|0〉

+ θ[n(x2 − x1)]〈0|φ1(x2)φ1(x1)|0〉
]

,

S(4) = (−i)4

∫

d4x1d
4x2d

4x3d
4x4 θ[n(x1 − x2)]θ[n(x2 − x3)]θ[n(x3 − x4)]

×HI(x1)HI(x2)HI(x3)HI(x4)

= g4

∫

d4x1d
4x2d

4x3d
4x4N [ψ̄(x1)ψ(x3)φa(x2)φb(x4)]

×
[

θ[n(x1 − x2)]〈0|φ1(x1)φ1(x2)|0〉

+θ[n(x2 − x1)]〈0|φ1(x2)φ1(x1)|0〉]

× θ[n(x2 − x3)]〈0|ψ(x1)ψ̄(x3)|0〉〈0|φc(x2)φd(x4)|0〉

×
[

θ[n(x3 − x4)]〈0|φ1(x3)φ1(x4)|0〉

+θ[n(x4 − x3)]〈0|φ1(x4)φ1(x3)|0〉] + . . . . (2.20)

Again, the ellipsis indicate terms that are πN -irreducible, but now in the
sense of the Kadyshevsky propagators ∆(+)(x− y;m2

π) and S(+)(x− y;M2
N)

in which the orientation is also important (see figure 2.4).

Performing all integrals, collecting all factors of i and (2π) and sandwich-
ing between initial and final πN states, again, the contributions up to fourth
order are

S4(p
′q′; pq) = S(2) + S(4) = −i(2π)4δ4(Pf − Pi)M00(p

′q′; pq)

−i(2π)4δ4(Pf − Pi)
∫

d4P dκ M0κ(p
′q′; pnqn)

×
[

1

(2π)3

1

κ+ iε
∆(+)(qn)S

(+)(pn)

]

Mκ0(pnqn; pq) + . . . .

(2.21)
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M = M irr + M irr
G′
κ

M

Figure 2.4: Kadyshevsky integral equation

As in the previous section we have the problem with the initial and final
state spinors in the second term on the rhs of (2.21). In this situation the
problem is easily cured because of the definition of S(+)(pn) in (2.13) (and
(2.12))

S(+)(pn) = Λ(1/2)(pn) θ(p
0
n)δ(p

2
n −M2) ,

=
∑

sn

u(pnsn)ū(pnsn) θ(p
0
n)δ(p

2
n −M2) , (2.22)

where we include the spinors in M0κ(p
′q′; pnqn) and Mκ0(pnqn; pq).

The step to the integral equation which generates all terms is similar to
what is described before (text below (2.17)) making the Kadyshevsky integral
equation also unsolvable by definition. Taking (2.22) into account we get

M(p′q′; pq) = M irr
00 (p′q′; pq)

+
∑

n

∫

d4Pn dκ M
irr
0κ (p′q′;Pn)G

′
κ(Pn)Mκ0(Pn; pq) ,

G′
κ(Pn) =

1

(2π)3

1

κ+ iε
∆(+)
π (Pn)∆

(+)
N (Pn) . (2.23)

From (2.23) and figure 2.4 we see that the intermediate amplitude M irr
0κ

contains an ”external” quasi particle. This is the reason we have included
external quasi particles in the Kadyshevsky rules (section 2.3).

To really get the three dimensional integral equation we write (2.23) as
an integral over all internal momenta at the cost of a δ-function representing
momentum conservation

M(p′q′; pq) = M irr
00 (p′q′; pq) +

∫

d4pnd
4qn dκ M

irr
0κ (p′q′; pnqn)

×
[

1

(2π)3

1

κ+ iε
∆(+)
π (qn)∆

(+)
N (pn)

]

Mκ0(pnqn; pq)

× δ4(pn + qn + nκ− p− q) , (2.24)

Introducing the total and relative momenta as in (1.6) the integration vari-
ables are changed to

∫

d4pnd
4qn =

∫

d4Pnd
4kn. Using also the CM system
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(see section 1.2) several integrals in (2.24) can be performed

δ4(pn + qn + nκ− p− q) = δ4(Pn + nκ− Pi) cm→ δ(~Pn)δ(κ− (P 0
i − P 0

n)) ,

∆(+)
π (qn)∆

(+)
N (pn) = θ(q0

n)δ(q
2
n −m2)θ(p0

n)δ(p
2
n −M2)

=
1

4EnEn
δ(q0

n − En)δ(p0
n − En)

=
1

4EnEn
δ
(

P 0
n − (En + En)

)

δ
(

k0
n

)

, (2.25)

in such a way that (2.24) becomes

M(W ′ p′;W p) = M irr
00 (W ′ p′;W p) +

∫

d3knM
irr
0κ (W ′ p′;Wn kn)

× 1

(2π)3

1

4EnEn
1

W −Wn + iε
Mκ0(Wn kn;W p) . (2.26)

Although there are still κ-labels in (2.26), obviously they are fixed by the
κ-integration as a result of the first line of (2.25).

As can be seen from (2.20) and the text below it, we have called in-
termediate negative energy states (∆(−)(x − y;m2

π) and S(−)(x − y;M2
N))

πN -irreducible and put them in M irr
κκ′ , but in principle they could also par-

ticipate in the integral equation in the same way as the second term on the
rhs of (2.19). However, using pair suppression in the way we do in chapter
5, these terms vanish.

Having discussed both integral equations we can look at the difference
between them. As far as the difference in dimensionality of both integral
equations is concerned we consider the πN reducible part of S(4) in (2.16),
again. The exposed TOPs can be decomposed in their Kadyshevsky compo-
nents (θ(x− y), ∆

(+)
1 (x− y), etc.). A contribution is

T [φ1(x1)φ1(x2)]T [φ1(x3)φ1(x4)]T [ψ(x1)ψ̄(x3)]T [φc(x2)φd(x4)]

= θ(x1 − x2)θ(x2 − x4)θ(x4 − x3)θ(x1 − x3)

×∆
(+)
1 (x1 − x2)∆

(+)
cd (x2 − x4)∆

(+)
1 (x4 − x3)S

(+)(x1 − x3) + . . . .

(2.27)

Now, every TOP in (2.27) contains a four dimensional momentum integral.
Since there is four momentum conservation at the vertices, only one four-
dimensional integral will be left: the one over the loop momentum.

In Kadyshevsky formalism the product of a θ-function and a ∆(+)-function
(or a S(±)) also contains a four-dimensional integral: one for the θ-function
(2.6) and three for the ∆(+)-function. By the same argument of momentum
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conservation only the integrals of one such product is left. In the above
example (2.27) this is for instance the integral of θ(x1 − x3)S

(+)(x1 − x3).
This θ-function, however is superfluous by means of the product of the other
θ-functions in (2.27). Therefore there is only the three dimensional integral
(the one of S(+)(x1− x3)) left. Although this is just a fourth order example,
it is the main reason why the Kadyshevsky integral is a three dimensional
integral equation.

When we consider the πN reducible part of S(4) in (2.16) again, and
compare it with the one in (2.20) 4 we see that if we decompose the TOP
of (2.16) in its Kadyshevsky components we get many more terms than the
four exposed in (2.20). This means that in Kadyshevsky formalism more
terms are incorporated in the driving term M irr per order as compared to
Feynman formalism or to put it in a different way: per order the reducible
parts in both formalisms produce different terms .

2.4.3 n-independence of Kadyshevsky Integral Equa-
tion

When generating Kadyshevsky diagrams to random order using the Kady-
shevsky integral equation as exposed in (2.23) the (full) amplitude is identical
to the one obtained in Feynman formalism when the external quasi particle
momenta are put to zero. It is therefore n-independent, i.e. frame indepen-
dent.

Since an approximation is used to solve the Kadyshevsky integral equa-
tion, namely tree level diagrams as driving terms, it is not clear whether the
full amplitude remains to be n-independent when the external quasi particle
momenta are put to zero.

In examining the n-dependence of the amplitude we write (2.23) schemat-
ically as

M00 = M irr
00 +

∫

dκ M irr
0κ G′

κ Mκ0 , (2.28)

Since n2 = 1, only variations in a space-like direction are unrestricted, i.e.
n · δn = 0 [20]. We therefore introduce the projection operator

Pαβ = gαβ − nαnβ , (2.29)

from which it follows that nαP
αβ = 0. The n-dependence of the amplitude

4As mentioned before πN reducibility has different meaning in both formalisms
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can now be studied

Pαβ ∂

∂nβ
M00 = Pαβ ∂M

irr
00

∂nβ

+Pαβ

∫

dκ

[

∂M irr
0κ

∂nβ
G′
κ Mκ0 +M irr

0κ G′
κ

∂Mκ0

∂nβ

]

. (2.30)

If both Kadyshevsky contributions are considered at second order in M00,
then it is n-independent, since it yields the Feynman expression. As far as
the second term in (2.30) is concerned we observe the following

∂M irr
0κ

∂nβ
∝ κf(κ) ,

∂Mκ0

∂nβ
∝ κg(κ) , (2.31)

where f(κ) and g(κ) are functions that do not contain poles or zero’s at
κ = 0. Therefore, the integral in (2.30) is of the form

∫

dκ κ h(κ)G′
κ . (2.32)

When performing the integral we decompose the G′
κ as follows

G′
κ ∝

1

κ+ iε
= P

1

κ
− iπδ(κ) . (2.33)

As far as the δ(κ)-part of (2.33) is concerned we immediately see that it
gives zero when used in the integral (2.32). For the Principle valued integral,
indicated in figure 2.5 by I, we close the integral by connecting the end point
(κ = ±∞) via a (huge) semi-circle in the upper half, complex κ-plane (line
II in figure 2.5) and by connecting the points around zero via a small semi
circle also in the upper half plane (line III in figure 2.5). Since every single
(tree level) amplitude is proportional to 1/(κ + A + iε), where κ is related
to the momentum of the incoming or outgoing quasi particle and A some
positive or negative number, the poles will always be in the lower half plane
and not within the contour. Therefore, the contour integral is zero.

Since we have added integrals (II and III in figure 2.5) we need to know
what their contributions are. The easiest part is integral III. Its contribution
is half the residue at κ = 0 and since the only remaining integrand part h(κ)
in (2.32) does not contain a pole at zero it is zero.

If we want the contribution of integral II to be zero, than the integrand
should at least be of order O( 1

κ2 ). Unfortunately, this is not (always) the case
as we will see in chapters 4 and 5. To this end we introduce a phenomeno-
logical ”form factor”

F (κ) =

(

Λ2
κ

Λ2
κ − κ2 − iǫ(κ)ε

)Nκ

, (2.34)
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ℜ(κ)

ℑ(κ)

I I

II

III

Figure 2.5: Principle value integral

where Λκ is large and Nκ is some positive integer. In (2.34) ε is real, positive,
though small and ǫ(κ) = θ(κ)− θ(−κ).

The effect of the function F (κ) (2.34) on the original integrand in (2.32) is
little, since for large Λκ it is close to unity. However, including this function
in the integrand makes sure that it is at least of order O( 1

κ2 ) so that integral
II gives zero contribution. The −iǫ(κ)ε part ensures that there are no poles
on or within the closed contour, since they are always in the lower half plane
(indicated by the dots in figure 2.5).

2.5 Second Quantization

When discussing the Kadyshevsky rules in section 2.3 and the Kadyshevsky
integral equation in section 2.4.2 we allowed for quasi particles to occur in
the initial and final state. In order to do this properly a new theory needs to
be set up containing quasi particle creation and annihilation operators. It is
set up in such a way that external quasi particles occur in the S-matrix as
trivial exponentials so that when the external quasi momenta are taken to
be zero the Feynman expression is obtained. We, therefore, require that the
vacuum expectation value of the quasi particles is the θ-function

〈0|χ(nx)χ̄(nx′)|0〉 = θ[n(x− x′)] , (2.35)

and that a quasi field operator acting on a state with quasi momentum (n)κ
only yields a trivial exponential

χ(nx)|κ〉 = e−iκnx ,

〈κ|χ̄(nx) = eiκnx . (2.36)
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Assuming that a state with quasi momentum (n)κ is created in the usual
way

a†(κ)|0〉 = |κ〉 ,
〈0|a(κ) = 〈κ| , (2.37)

we have from the requirements (2.35) and (2.36) the following momentum
expansion of the fields

χ(nx) =
i

2π

∫

dκ

κ+ iε
e−iκnxa(κ) ,

χ̄(nx′) =
i

2π

∫

dκ

κ+ iε
eiκnx

′

a†(κ) , (2.38)

and the fundamental commutation relation of the creation and annihilation
operators

[

a(κ), a†(κ′)
]

= −i2πκδ(κ− κ′) . (2.39)

From this commutator (2.39) it is clear that the quasi particle is not a physical
particle nor a ghost.

Now that we have set up the second quantization for the quasi particles
we need to include them in the S-matrix. This is done by redefining it

S = 1 +
∑

n=1

(−i)n
∫

d4x1 . . . d
4xnH̃I(x1) . . . H̃I(xn) , (2.40)

where

H̃I(x) ≡ HI(x)χ̄(nx)χ(nx) . (2.41)

In this sense contraction of the quasi fields causes propagation of this field
between vertices, just as in the Feynman formalism. Those quasi particles
that are not contracted are used to annihilate external quasi particles from
the vacuum.

S(2)(p′s′q′nκ′; psqnκ) =

= (−i)2

∫

d4x1d
4x2〈πNχ|H̃I(x1)H̃I(x2)|πNχ〉

= (−i)2

∫

d4x1d
4x2〈0|b(p′s′)a(q′)a(κ′)

×
[

χ̄(nx1)HI(x1)χ(nx1)χ̄(nx2)HI(x2)χ(nx2)

]

a†(κ)a†(q)b†(ps)|0〉

= (−i)2

∫

d4x1d
4x2 e

inκ′x1e−inκx2

×〈0|b(p′s′)a(q′)HI(x1)θ[n(x1 − x2)]HI(x2)a
†(q)b†(ps)|0〉 . (2.42)
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For the π and N fields we use the well-known momentum expansion

φ(x) =

∫

d3l

(2π)32El

[

a(l)e−ilx + a†(l)eilx
]

,

ψ(x) =
∑

r

∫

d3k

(2π)32Ek

[

b(k, r)u(k, r)e−ikx + d†(k, r)v(k, r)eikx
]

, (2.43)

where the creation and annihilation operators satisfy the following (anti-)
commutation relations

[a(k), a†(l)] = (2π)3 2Ek δ
3(k − l) ,

{b(k, s), b†(l, r)} = (2π)3 2Ek δsrδ
3(k − l) = {d(k, s), d†(l, r)} . (2.44)

Putting κ′ = κ = 0 in (2.42) we see that we get the second order in the
S-matrix expansion for πN -scattering as in Feynman formalism. Of course
this is what we required from the beginning: external quasi particle momenta
only occur in the S-matrix as exponentials.

So, we know now how to include the external quasi particles in the S-
matrix and therefore we also know what their effect is on amplitudes. For
practical purposes we will not use the S-matrix as in (2.40), but keep the
above in mind. In those cases where the (possible) inclusion of external
quasi fields is less trivial we will make some comments.



Chapter 3

Treatment General
Interactions: TU and GJ
method

In the previous chapter we have discussed the Kadyshevsky rules (section 2.3)
so we know now how to construct amplitudes. When we consider a general
interaction Lagrangian containing for instance derivatives on fields or higher
spin fields and apply the Kadyshevsky rules straightforward, it seems that
there arise problems when comparing the Feynman and the Kadyshevsky
results and when analyzing the n-dependence, i.e. the frame dependence.
We illustrate this in section 3.1 with an example. In sections 3.2 and 3.4
we discuss two different methods how these problems can be overcome: the
Takahashi and Umezawa (TU) method [21, 22, 23] and the Gross and Jackiw
(GJ) method [20]. These methods are applied to the example in section 3.5
and we show that the final results in the Feynman formalism and in the
Kadyshevsky formalism are not only the same, but also frame independent.
We stress here that both methods (TU and GJ) yield the same result. In
section 3.3 we make some remarks on the Haag theorem [24]. Since it is
properly introduced in that specific section, there are no further comments
at this point. The main results of this chapter are summarized in section 3.6.

3.1 Example: Part I

As mentioned in the introduction we are going show an example to illus-
trate seeming problems. In order to do so we take the vector extension of
interaction Lagrangian (2.15)

LI = g φai
←→
∂µφb · φµ + g ψ̄γµψ · φµ , (3.1)

27



28 CHAPTER 3. GENERAL INTERACTIONS

where φµ is a massive vector boson and the indices a and b indicate the

outgoing and incoming scalars, again. For the derivative
←→
∂µ =

−→
∂µ −

←−
∂µ.

We consider vector meson exchange in the Feynman formalism (section
3.1.1) as well as in the Kadyshevsky formalism (section 3.1.2). Actually,
the interaction Lagrangian in (3.1) is a simplified version of the one used in
[11] (see also chapter 4). This, because it is merely used to illustrate some
problems.

3.1.1 Feynman Approach

The Feynman diagram for (simplified) vector meson exchange is shown in
figure 3.1 For the various components of the diagrams we take the following

P

p p′

q q′

Figure 3.1: Vector meson exchange in Feynman formalism.

functions

Dµν =

(

−gµν +
P µP ν

M2
V

)

1

P 2 −M2
V + iε

,

Γψ̄ψµ = γµ ,

Γφφµ = (q′ + q)µ , (3.2)

where we obtained the vertex functions via LI = −HI → −Γ.
Following [12] for the definition of the Feynman rules we get the following

amplitude

− iMfi = ū(p′s′)
(

−ig Γψ̄ψµ

)

u(ps) iDµν(P )
(

−ig Γφφν
)

,

⇒Mfi = −g2 [ū(p′s′)γµu(ps)]

(

gµν − P µP ν

M2
V

)

1

P 2 −M2
V + iε

(q′ + q)ν ,

(3.3)

where P = 1
2
(p′ − p− q′ + q) = ∆t. After some (Dirac) algebra we find

Mfi = −g2ū(p′s′)

[

2Q/+
(Mf −Mi)

M2
V

(m2
f −m2

i )

]

u(ps)
1

t−M2
V + iε

, (3.4)

where Q = 1
2
(q′ + q) and t is defined in (1.4) with κ′ = κ = 0.
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3.1.2 Kadyshevsky Approach

The Kadyshevsky diagrams for the (simplified) vector meson exchange are
shown in figure 3.2. The vertex functions are the same as in Feynman theory

Pa ↓ κ1

p p′

q q′

(a)

κ

κ′

Pb ↑ κ1

p p′

q q′

(b)κ

κ′

Figure 3.2: Vector meson exchange in Kadyshevsky formalism.

(3.2). Applying the Kadyshevsky rules as given in section 2.3 straightforward
we get the following amplitudes

M
(a,b)
κ′κ = −g2

∫

dκ1

κ1 + iε
[ū(p′s′)γµu(ps)]

(

gµν −
P µ
a,bP

ν
a,b

M2
V

)

× θ(P 0
a,b)δ(P

2
a,b −M2

V ) (q′ + q)ν , (3.5)

where Pa,b = ±∆t +
1
2
(κ′ + κ)n− nκ1 (here a corresponds to the + sign and

b to the − sign). For the κ1 integration we consider the δ-function in (3.5)

(a) : δ(P 2
a −M2

V ) =
1

|κ+
1 − κ−1 |

(

δ(κ1 − κ+
1 ) + δ(κ1 − κ−1 )

)

,

κ±1 = ∆t · n+
1

2
(κ′ + κ)± At ,

(b) : δ(P 2
b −M2

V ) =
1

|κ+
1 − κ−1 |

(

δ(κ1 − κ+
1 ) + δ(κ1 − κ−1 )

)

,

κ±1 = −∆t · n+
1

2
(κ′ + κ)± At , (3.6)

where At =
√

(n ·∆t)2 −∆2
t +M2

V . In both cases θ(P 0
a,b) selects the κ−1

solution. Therefore,

Pa = ∆t − (∆t · n)n+ Atn ,

Pb = −∆t + (∆t · n)n+ Atn . (3.7)
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With these expressions we find for the amplitudes

M
(a)
κ′κ = −g2 ū(p′s′)

[

2Q/− 1

M2
V

(

(Mf −Mi) +
1

2
n/(κ′ − κ)− (∆t · n− At)n/

)

×
(

1

4
(sp′q′ − spq) +

1

4
(upq′ − up′q)− (m2

f −m2
i )

− 2(∆t · n− At)n ·Q
)]

u(ps)

× 1

2At

1

∆t · n+ 1
2
(κ′ + κ)− At + iε

,

M
(b)
κ′κ = −g2 ū(p′s′)

[

2Q/− 1

M2
V

(

(Mf −Mi) +
1

2
n/(κ′ − κ)− (∆t · n+ At)n/

)

×
(

1

4
(sp′q′ − spq) +

1

4
(upq′ − up′q)− (m2

f −m2
i )

− 2(∆t · n+ At)n ·Q
)]

u(ps)

× 1

2At

1

−∆t · n+ 1
2
(κ′ + κ)− At + iε

. (3.8)

Adding the two together and putting κ′ = κ = 0 we should get back the
Feynman expression (3.4)

M00 = M
(a)
00 +M

(b)
00

= −g2ū(p′s′)

[

2Q/+
(Mf −Mi)

M2
V

(m2
f −m2

i )

]

u(ps)
1

t−M2
V + iε

−g2ū(p′s′) [n/]u(ps)
2Q · n
M2

V

. (3.9)

Similar discrepancies are obtained when couplings containing higher spin
fields (s ≥1) are used. Therefore, it seems that the Kadyshevsky formalism
does not yield the same results in these cases as the Feynman formalism
when κ′ and κ are put to zero. Since the real difference between Feynman
formalism and Kadyshevsky formalism lies in the treatment of the TOP or
θ-function also the difference in results should find its origin in this treatment.

In Feynman formalism derivatives are taken out of the TOP in order to
get Feynman functions, which may yield extra terms. This is also the case
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in the above example 1

T [φµ(x)φν(y)] = −
[

gµν +
∂µ∂ν

M2
V

]

i∆F (x− y)− iδµ0 δ
ν
0

M2
V

δ4(x− y) ,

Sfi = (−i)2g2

∫

d4xd4y
[

ψ̄γµψ
]

x
T [φµ(x)φν(y)]

[

φa
←→
i∂νφb

]

y
,

⇒Mextra = −g2ū(p′s′) [n/]u(ps)
2Q · n
M2

V

. (3.10)

2 If we include the extra term of (3.10) on the Feynman side we see that both
formalisms yield the same result. So, that is cured.

Although we have exact equivalence between the two formalisms, the re-
sult, though covariant, is still n-dependent, i.e. frame-dependent. Of course
this is not what we want. As it will turn out there is another source of extra
terms exactly cancelling for instance the one that pops-up in our example
((3.9), (3.10)). There are two methods for getting these extra terms can-
celling the one in (3.9) and (3.10): ones is more fundamental, which we will
discuss in section 3.2 and one is more systematic and pragmatic, which we
will discuss in section 3.4.

3.2 Takahashi & Umezawa Method

In order to find the second source of extra terms we deal with a set of local
fields Φα(x) in the Heisenberg and the Interaction representation, henceforth
referred to as H.R. and I.R., respectively. In [12] (Ch 17) the relation between
the fields in these two representations is, as in quantum mechanics, assumed
to be

Φα(x) = U−1(t) Φα(x) U(t) , (3.11)

where the boldfaced fields are the fields in the H.R.
A covariant formulation of (3.11) was given by Tomonaga and Schwinger

[25, 26]

Φα(x) = U−1[σ] Φα(x) U [σ] , (3.12)

where σ is a space-like surface to which we will come back later.

1Of course that is why we have chosen such an example.
2If we include the nµ-vector in the θ-function of the TOP, which would not make a

difference as we have seen before, then we can make the replacement δµ
0 → nµ. This, to

make the result more general.
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According to the Haag theorem [24] such a unitary operator does not exist
for theories with a non-trivial S-matrix. Therefore, we will not use (3.11) or
(3.12). Also, in [12] it is explicitly mentioned that theories with couplings
containing derivatives (and higher spin fields) are excluded and those theories
are precisely the theories we are interested in. In order to be able to treat
those theories we rely on the method of Takahashi and Umezawa [21, 22, 23],
although it should be mentioned that a specific example of this theory was
already given by Yang and Feldman [27]. We will describe this method in
this section.

In doing so we start with the interaction Lagrangian, the fields of which
are in the H.R.

LI = LI
(

Φα(x), ∂µΦα(x), . . .

)

. (3.13)

From the interaction Lagrangian the equations of motion can be deduced

Λαβ(∂) Φβ(x) = Jα(x) ,

where Jα(x) =
∂LI

∂Φα(x)
− ∂µ

∂LI
∂ (∂µΦα(x))

+ . . . . (3.14)

The fields in the I.R. Φα(x) are assumed to satisfy the free field equations

Λαβ(∂) Φβ(x) = 0 , (3.15)

and the (anti-) commutation relations

[

Φα(x),Φβ(y)

]

±

= iRαβ(∂) ∆(x− y) . (3.16)

3 Solutions to the equations (3.14) and (3.15) are the Yang-Feldman (YF)
[27] equations

Φα(x) = Φα(x) +

∫

d4y Rαβ(∂) ∆G(x− y)Jβ(y) , (3.17)

where ∆G(x) satisfies

(

� +m2
)

∆G(x− y) = δ(x− y) . (3.18)

3 For scalars: Φα(x) = φα(x), and Λαβ(∂) =
(

� +m2
)

δαβ , Rαβ = δαβ .
For spin-1/2 fermions: Φα(x) = ψα(x), and Λαβ(∂) = (i∂/−M)αβ , Rαβ(∂) =
(i∂/+M)αβ . Etc. Unless mentioned otherwise ∂ means partial derivation with respect
to x (∂x).
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It can taken to be a linear combination of ∆ret, ∆adv, ∆̄ and −∆F , which
are all solutions to (3.18). For the definitions of such propagators we refer
to appendix D.

By introducing the vectors Da(x) and jα;a(x)

Da(x) ≡ (1, ∂µ1 , ∂µ1∂µ2 , . . .) ,

jα;a(x) ≡
(

− ∂LI
∂Φα(x)

, − ∂LI
∂ (∂µ1Φα(x))

, − ∂LI
∂ (∂µ1∂µ2Φα(x))

, . . .

)

, (3.19)

we can rewrite (3.17) as

Φα(x) = Φα(x)−
∫

d4y Rαβ(∂) Da(y) ∆ret(x− y) · jβ;a(y) . (3.20)

Here, we have chosen ∆G = ∆ret.

x

t

x

σ

Figure 3.3: In the left figure the spatial component x is a point on the surface
t, forming the vector (t,x). In the right figure x is not a point on the surface
σ

Next, we introduce a free auxiliary field Φα(x, σ), where σ is again a space-
like surface and x does not necessarily lie on σ. This concept is illustrated
in figure 3.3. We pose that it has the following form

Φα(x, σ) ≡ Φα(x) +

∫ σ

−∞

d4y Rαβ(∂)Da(y) ∆(x− y) · jβ;a(y) , (3.21)

4 Although this equation (3.21) comes out of the blue, we are going to make
a consistency check later.

4What is meant, here, is that the coordinates defining the surface σ form the upper
bound of the integrals over y.
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First, we combine (3.21) with (3.20) to come to

Φα(x) = Φα(x/σ) +
1

2

∫

d4y

[

Rαβ(∂)Da(y), ǫ(x− y)
]

∆(x− y) · jβ;a(y) ,

(3.22)

where x/σ means x on σ. This equation will be used to express the fields in
the H.R. in terms of fields in the I.R.

From (3.21) we see that Φα(x,−∞) ≡ Φα(x). Furthermore, we impose
that Φα(x, σ) and Φα(x) satisfy the same commutation relation, since they
are both free. This means that there exists an unitary operator connecting
the two in the following way

Φα(x, σ) = U−1[σ] Φα(x) U [σ] . (3.23)

From this (3.23) it is easily proven that both fields indeed satisfy the same
commutation relation

[Φα(x, σ),Φβ(y, σ)] = U−1[σ] Φα(x) U [σ]U−1[σ] Φβ(y) U [σ]

−U−1[σ] Φβ(y) U [σ]U−1[σ] Φα(x) U [σ]

= U−1[σ] [Φα(x),Φβ(y)] U [σ] = iRαβ(∂) ∆(x− y) ,
(3.24)

where the σ in the first line of (3.24) is for both Φα(x, σ) and Φβ(y, σ) the
same.

Complementary to what is in [21, 22, 23] we explicitly show that the unitary
operator mentioned in (3.23) is not any operator but the one connected to
the S-matrix. We, therefore, consider in- and out-fields. Their relation to
the fields in the H.R. is very similar to (3.17)

Φα(x) = Φin,α(x) +

∫

d4y Rαβ(∂) ∆ret(x− y) Jβ(y)

= Φout,α(x) +

∫

d4y Rαβ(∂) ∆adv(x− y) Jβ(y) , (3.25)

from which it can be deduced that

Φout,α(x)− Φin,α(x) = −
∫ ∞

−∞

d4y Rαβ(∂) ∆(x− y) Jβ(y) ,

=

∫ ∞

−∞

d4y Da(y) Rαβ(∂) ∆(x− y) jβ,a(y) . (3.26)
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Equation (3.25) makes clear that the choice of the Green function determines
the choice of the free field (in- or out-field) to be used. In this light we make
the following identification: Φα(x,−∞) ≡ Φin,α(x), since we have used the
retarded Green function (text below (3.20)). With (3.25) and (3.26) we can
also relate the out-field with the auxiliary field (3.21)

Φα(x, σ) = Φin,α(x) +

∫ σ

−∞

d4y Rαβ(∂) Da(y) ∆(x− y) · jβ;a(y) ,

Φα(x,∞) = Φin,α(x) +

∫ ∞

−∞

d4y Rαβ(∂) Da(y) ∆(x− y) · jβ;a(y) ,

= Φout,α(x) , (3.27)

These identifications we can use in (3.23) in order to relate Φα,in(x) and
Φα,out(x)

Φin,α(x) = U−1[−∞] Φα(x) U [−∞] ,

Φout,α(x) = U−1[∞] Φα(x) U [∞] ,

⇒ Φα,in(x) = U−1[−∞]U [∞] Φα,out(x) U
−1[∞]U [−∞] . (3.28)

Obviously, the operator connecting the in- and out-fields is the S-matrix
(Φin,α(x) = SΦout,αS

−1 [12]), from which we know its form (2.1). The con-
nection between U [σ] and the S-matrix is easily made

U [σ] = T

[

exp

(

−i
∫ σ

−∞

d4xHI(x)

)]

,

U [∞] = S , U [−∞] = 1 . (3.29)

To make the connection with the interaction Hamiltonian we have to realize
that the unitary operator in (3.24) is the time evolution operator and satisfies
the Tomonaga-Schwinger equation

i
δU [σ]

δσ(x)
= HI(x;n)U [σ] . (3.30)

Here, the interaction Hamiltonian will in general depend on the vector nµ(x)
locally normal to the surface σ(x), i.e. nµ(x)dσµ = 0. It is hermitean because
of the unitarity of U [σ]. Then, from (3.23) and (3.30) one gets that

i
δΦα(x, σ)

δσ(y)
= U−1[σ]

[

Φα(x),HI(y;n)

]

U [σ] . (3.31)

On the other hand, varying (3.21) with respect to σ(y) gives

i
δΦα(x, σ)

δσ(y)
= i Da(y) Rαβ(∂) ∆(x− y) · jβ;a(y) . (3.32)
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Comparing (3.31) and (3.32) gives the relation
[

Φα(x),HI(y;n)

]

= i U [σ]

[

Da(y) Rαβ(∂) ∆(x− y) · jβ;a(y)

]

U−1[σ] .

(3.33)

This is the fundamental equation by which the interaction Hamiltonian must
be determined.

In (3.21) we started with an equation that came out of the blue, though
it had some nice features. In proceeding we posed that Φα(x, σ) satisfies
the same (anti-) commutation relation as Φα(x). This is not so strange
since they are both free fields. Having posed this we could show that the
unitary operator U [σ] connecting the two fields is on its turn connected to
the S-matrix (3.29). Furthermore, we were able to construct the interaction
Hamiltonian (3.33). Having obtained the interaction Hamiltonian we can use
it in the unitary operator U [σ] (3.29) and starting from (3.23) we proof in
appendix A that equation (3.21) is indeed correct. In this way we have made
a consistency check. The proof (appendix A) is not present in the original
work of Takahashi and Umezawa.

In appendix B we also proof the relation between (3.21) and (3.23). There,
the auxiliary field is introduced as (3.21) and we use the framework of Bo-
goliubov and collaborators [28, 29, 30], to which we refer to as BMP theory,
to proof (3.23).

From (3.33) one can see that the interaction Hamiltonian will not only
contain terms of order g, but also higher order terms. In our specific example
of section 3.1, which continues in section 3.5, we will see that the g2 terms in
the interaction Hamiltonian is responsible for the cancellation. In this light
we would also like to mention the specific example of scalar electrodynamics
as described in [31], section 6-1-4. There the interaction Hamiltonian also
contains a term of order g2, which has the same purpose as in our case.
The method described in [31] is not generally applicable, whereas the above
described method is.

3.3 Remarks on the Haag Theorem

Here, we take a closer look at equation (3.12). This in light of the Haag
theorem [24], which states that if there is an unitary operator connecting
two representations at some time (as in (3.12)) both fields are free fields.
This would lead to a triviality, which is not a preferable situation.

The question is whether we really have (3.12). In order to answer that
question we look at (3.23) of the previous section (section 3.2). By assuming
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this equation we were in the end able to proof (3.21) (see appendix A)

Φα(x, σ) = U−1[σ] Φα(x) U [σ] ,

⇒ Φα(x, σ) = Φα(x) +

∫ σ

−∞

d4y Rαβ(∂) Da(y) ∆(x− y) · jβ;a(y) , (3.34)

that is, if U [σ] satisfies that Tomonaga-Schwinger equation (3.30).
Now, we start with (3.20) and turn the argument around

Φα(x) = Φα(x) +

∫ ∞

−∞

d4y Da(y) Rαβ(∂) θ[n(x− y)]∆(x− y) · jβ;a(y)

= Φα(x) +

∫ ∞

−∞

d4y θ[n(x− y)] Da(y) Rαβ(∂) ∆(x− y) · jβ;a(y)

+

∫ ∞

−∞

d4y [Da(y) Rαβ(∂), θ[n(x− y)]] ∆(x− y) · jβ;a(y) ,

⇒ Φα(x) = U−1[σ] Φα(x) U [σ]|x/σ

+
1

2

∫ ∞

−∞

d4y [Da(y) Rαβ(∂), ǫ(x− y)] ∆(x− y) · jβ;a(y) .

(3.35)

5 The above is different from what is exposed in [12] (ch 17.2). The difference
is the commutator part of (3.35) and this term is non-zero for theories with
couplings containing derivatives and higher spin fields, carefully excluded in
the treatment of [12]. Therefore (3.35) could be seen as an extension of what
is written in [12].

Returning to Haag’s theorem we see that if the last term in (3.35) is absent
there is an unitary operator connecting Φα(x) and Φα(x) and therefore they
are both free fields in the sense of the Haag theorem. Such theories can then
be considered as trivial, although they can still be useful as effective theories.

In our application we use various interaction Lagrangians (for an overview
see section 4.1) to be used in order to describe the various exchange and
resonance processes. Whether or not the non-vanishing commutator part in
(3.35) is present depends on the process under consideration. In the vector
meson exchange diagrams (section 4.2.2) and in the spin-3/2 exchange and
resonance diagrams (section 5.4 and 5.5.3) those commutator parts are non-
vanishing. If we include pair suppression in the way we do in chapter 5 also
in the spin-1/2 exchange and resonance diagrams the commutator parts will

5We have included the nµ-vector in the first line of (3.35), which causes no effect in
the same line of reasoning as in section 2.1 . The reason for this inclusion is that we can
keep the surface σ general, though space-like.
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be non-vanishing. So, if we take the model as a whole (all diagrams) then it
is most certainly not trivial in the sense of the Haag theorem.

The already mentioned BMP theory is a Lehmann-Symanzik-Zimmermann
(LSZ) [32] inspired S-matrix theory, constructed to avoid the use of an uni-
tary operator as a mediator between fields in the H.R and the I.R.

3.4 Gross & Jackiw Method: Frame Depen-

dence Analysis

As mentioned before we discuss in this section a more systematic and prag-
matic way to find the second source of extra terms developed by Gross and
Jackiw [20]. The main idea is to define the theory to be Lorentz invariant
and n-independent. In practice this means: analyse the S-matrix for its n-
dependence and, if necessary, introduce new contributions in order to make
it n-independent.

In section 3.4.1 we describe and extend the original method of Gross and
Jackiw and in section 3.4.2 we discuss its Kadyshevsky analog.

3.4.1 GJ Method in Feynman Formalism

In Feynman theory the S-matrix is defined as in (2.1). The main ingredient
of this S-matrix is the TOP, which is then expanded using Wick’s theorem in
terms of TOPs of two fields only, although these TOPs may include (multiple)
derivatives. Introducing the nµ in the TOP in order to make it more general,
it reads

T [A(x)B(x)] = θ[n(x− y)]A(x)B(y) + θ[n(y − x)]B(y)A(x) . (3.36)

6 The essence of the Gross and Jackiw method [20] is to define a different
TOP: the T ∗ product, which is by definition n-independent

T ∗(x, y) = T (x, y;n) + τ(x, y;n) , (3.37)

where T (x, y;n) is defined in (3.36).
In analyzing the n-dependence we consider variations δnµ in the same

way as in section 2.4.3

Pαβ δ

δnβ
T ∗(x, y) = Pαβ δ

δnβ
T (x, y;n) + Pαβ δ

δnβ
τ(x, y;n) ≡ 0 . (3.38)

6Here, we assume that A(x) and B(y) are boson fields. This is not important for the
following discussion.
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In our applications we are interested in second order contributions to
πN -scattering. Therefore, we analyze the n-dependence of the TOP of two
interaction Hamiltonians, where we take it to be just HI = −LI

Pαβ δ

δnβ
T (x, y;n) = Pαβ(x− y)βδ [n · (x− y)] [HI(x),HI(y)] . (3.39)

In general one has for equal time commutation relations

δ(x0 − y0) [HI(x),HI(y)] =
[

C + Si∂i +Qij∂i∂j + . . .
]

δ4(x− y) .
(3.40)

where the ellipsis stand for higher order derivatives. We will only consider
(and encounter) up to quadratic derivatives. The Si and Qij terms in (3.40)
are known in the literature as Schwinger terms.

According to [20] equation (3.40) can be generalized to

δ[n(x− y)] [HI(x),HI(y)] =
[

C(n) + PαβSα(n)∂β

+PαβP µνQαµ(n)∂β∂ν + . . .
]

δ4(x− y) .
(3.41)

It should be mentioned that in [20] only the first two terms on the rhs of
(3.41) are considered.

Choosing nµ = (1,0) we see that (3.40) and (3.41) indeed coincide. The
expansion (3.41) we use via (3.39) in (3.38)

Pαβ δ

δnβ
T ∗(x, y) =

= Pαβ(x− y)β
[

C(n) + P µνSµ(n)∂ν + P µνP ρδQµρ(n)∂ν∂δ
]

δ4(x− y)

+Pαβ δ

δnβ
τ(x, y;n)

= −PαβSβ(n)δ4(x− y)− PαβP µν
(

Qβµ(n) +Qµβ(n)
)

∂νδ
4(x− y)

+Pαβ δ

δnβ
τ(x, y;n) = 0 . (3.42)

Here, we have used the fact that the TOP and therefore also the T ∗ product
appears in the S-matrix as an integrand (2.1). We are therefore allowed to
use partial integration for the Sα(n) and Qαβ(n) terms. As far as the C(n)
term is concerned, it disappears because (x − y)βδ

4(x − y) is always zero.
Furthermore, we have used the fact that Pαβ is a projection operator.

From (3.42) we find the extra terms

τ(x− y;n) =

∫ n

dn′β
[

Sβ(n
′) + P µν

(

Qβµ(n
′) +Qµβ(n

′)
)

∂ν

]

δ4(x− y) .

(3.43)
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In principle the rhs of (3.43) can also contain a constant term, i.e. indepen-
dent of nµ. But since we are looking for nµ-dependent terms only, this term
is irrelevant.

3.4.2 GJ in Kadyshevsky formalism

Here, we discuss the Kadyshevsky analog of the Gross and Jackiw method.
Before going into the details, a few points need to be taken into consideration.
First of all, in Kadyshevsky formalism one may allow for external quasi
particles, which are nµ-dependent by definition. However, we are not looking
for these terms. Therefore, we always have to take κ′ = κ = 0.

A second drawback is that if look at the individual Kadyshevsky con-
tributions, these contribution have different features then the sum of these
contributions. As far as the sum is concerned we can use similar steps as in
the previous section and on this basis we assign features to the individual
contributions, which they in the strict sense do not have.

In Kadyshevsky formalism we use the S-matrix as exposed in (2.2). In
this form the S-matrix consists of a product of θ-functions and fields. As
in the previous section (section 3.4.1), the essence lies in the product of two
fields. To this end we define the R-product

R [A(x)B(x)] = θ[n(x− y)]A(x)B(y) . (3.44)

Similar to before we introduce a new R-product: the R∗-product, which is
n-independent

R∗(x, y) = R(x, y;n) + ρ(x, y;n) ,

Pαβ δ

δnβ
R∗(x, y) = Pαβ δ

δnβ
R(x, y;n) + Pαβ δ

δnβ
ρ(x, y;n) ≡ 0 . (3.45)

Unfortunately, one can not expand the ordinary product of fields at equal
times in a similar fashion as (3.40). This becomes clear when we look at the
following example

φ(x)φ(y)|0 = N [φ(x)φ(y)] |0 + ∆(+)(x− y)|0 ,

φ̇(x)φ(y)|0 = N
[

φ̇(x)φ(y)
]

|0 −
i

2
δ3(x− y) . (3.46)

However, one should not forget that in Kadyshevsky formalism there are
multiple contributions at a given order, which are added in the end (see
section 2.3). Besides the contribution in (3.46) one should also consider the
contribution

− φ(y)φ(x)|0 = −N [φ(x)φ(y)] |0 −∆(−)(x− y)|0 ,

−φ(y)φ̇(x)|0 = −N
[

φ̇(x)φ(y)
]

|0 −
i

2
δ3(x− y) . (3.47)
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So, if we take the sum then such an expansion is possible, because ∆(+)(x−
y)|0 = ∆(−)(x − y)|0. Of course this is obvious since if we add (3.46) and
(3.47) we exactly get (3.40), with C = 0 and C = −i, respectively.

The expansions for the product of two interaction Hamiltonians is

δ(x0 − y0)HI(x)HI(y) =
1

2

[

C + Si∂i +Qij∂i∂j
]

δ4(x− y) + . . . ,

−δ(x0 − y0)HI(y)HI(x) =
1

2

[

C + Si∂i +Qij∂i∂j
]

δ4(x− y) + . . . ,

(3.48)

where the ellipsis indicate terms that can not be written as (derivatives acting
on) δ-functions. However, these terms vanish when both contributions in
(3.48) are added in the end, as mentioned before.

Just as in (3.41) we want to generalize (3.48) by including the vector nµ.
In (3.41) this was possible, because the commutator in (3.40) is a causal func-
tion. Unfortunately, the product of interaction Hamiltonians contains ∆(±)

propagators, as can be seen in the first lines of (3.46) and (3.47), which are
non-causal functions. Therefore, a generalization as in (3.41) is not possible.

To solve this we call on the fact again that in the end we add both
contributions, which does yield a causal function. Therefore, we pose the
generalization of (3.48) to be

δ[n(x− y)]HI(x)HI(y) =
1

2

[

C(n) + PαβSα(n)∂β

PαβP µνQαµ∂ν∂β

]

δ4(x− y) ,

−δ[n(x− y)]HI(y)HI(x) =
1

2

[

C(n) + PαβSα(n)∂β

PαβP µνQαµ∂ν∂β

]

δ4(x− y) . (3.49)

Following the same steps as in the previous section ((3.42) and the text below)
we find for the summed ρ-functions exactly the same as we have found for
τ -function (3.43).

Then, similarly as in the Feynman formalism, the introduction of the
R∗-product in the Kadyshevsky formalism yields a covariant and frame in-
dependent S-matrix, and S(Kadyshevky) = S(Feynman) for on-shell initial
and final states.
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3.5 Example: Part II

Having described two methods of getting the second source of extra terms
(section 3.2 and 3.4) we are going to apply them here to the example of
section 3.1. We start in section 3.5.1 by applying the Takahashi and Umezawa
method and in section 3.5.2 we apply the Gross and Jackiw method.

3.5.1 Takahahsi & Umezawa Solution

Starting with the interaction Lagrangian (3.1) we get, according to (3.19),
the following currents

jφa,a = (−g i∂µφb · φµ, ig φb · φµ) ,
jφb,a

= (g i∂µφa · φµ,−ig φa · φµ) ,
jψ,a = (−g γµψ · φµ, 0) ,

jφµ,a =
(

−g φa
←→
i∂µφb − g ψ̄γµψ, 0

)

. (3.50)

Using (3.22) we can express the fields in the H.R. in terms of fields in the
I.R., i.e. free fields

φa(x) = φa(x/σ) ,

φb(x) = φb(x/σ) ,

∂µφa(x) = [∂µφa(x, σ)]x/σ +
1

2

∫

d4y
[

∂xµ∂
y
ν , ǫ(x− y)

]

∆(x− y) (igφb · φν)y
= [∂µφa(x, σ)]x/σ + ignµφb n · φ ,

∂µφb(x) = [∂µφb(x, σ)]x/σ +
1

2

∫

d4y
[

∂xµ∂
y
ν , ǫ(x− y)

]

∆(x− y) (−igφa · φν)y
= [∂µφb(x, σ)]x/σ − ignµφa n · φ ,

ψ(x) = ψ(x/σ) ,

φµ(x) = φµ(x/σ) +
1

2

∫

d4y

[(

−gµν − ∂µ∂ν

M2
V

)

, ǫ(x− y)
]

∆(x− y)

×
(

−gφa
←→
i∂νφb − gψ̄γνψ

)

y

= φµ(x/σ)− g nµ

M2
V

(

φan ·
←→
i∂ φb + ψ̄n/ψ

)

. (3.51)

As can be seen from (3.22) the first term on the rhs is a free field and the
second term contains the current expressed in terms of fields in the H.R.,
which on their turn are expanded similarly. Therefore, one gets coupled
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equations. In solving these equations we assumed that the coupling constant
is small and therefore considered only terms up to first order in the coupling
constant in the expansion of the fields in the H.R. Practically speaking, the
currents on the rhs of (3.51) are expressed in terms of free fields.

These expansions (3.51) are used in the commutation relation of the fields
with the interaction Hamiltonian (3.33)

[φa(x),HI(y)] = iU [σ]∆(x− y)
[

−g i∂µφb · φµ + g
←−
i∂µφb · φµ

]

y
U−1[σ]

= i∆(x− y)
[

−g ←→i∂µφb · φµ

+
g2

M2
V

n · ←→i∂ φb
(

φan ·
←→
i∂ φb + ψ̄n/ψ

)

− g2 φa(n · φ)2

]

y

[ψ(x),HI(y)] = iU [σ](i∂/+M)∆(x− y) [−g γµψ · φµ]y U−1[σ]

= i(i∂/+M)∆(x− y)

×
[

−g γµψ · φµ +
g2

M2
V

n/ψ
(

φan ·
←→
i∂ φb + ψ̄n/ψ

)

]

y

,

[φµ(x),HI(y)] = iU [σ]

(

−gµν − ∂µ∂ν

M2
V

)

∆(x− y)

×
[

−g φa
←→
i∂νφb − g ψ̄γνψ

]

y
U−1[σ]

= i

(

−gµν − ∂µ∂ν

M2
V

)

∆(x− y)
[

−g φa
←→
i∂νφb − g ψ̄γνψ

− g2 nν φ
2
an · φ− g2 nν φ

2
bn · φ

]

y
. (3.52)

As stated below (3.33) these are the fundamental equations from which the
interaction Hamiltonian can be determined

HI = −g φa
←→
i∂µφb · φµ − g ψ̄γµψ · φµ −

g2

2
φ2
a(n · φ)2 − g2

2
φ2
b(n · φ)2

+
g2

2M2
V

[

ψ̄n/ψ
]2

+
g2

M2
V

[

ψ̄n/ψ
]

[

φan ·
←→
i∂ φb

]

+
g2

2M2
V

[

φan ·
←→
i∂ φb

]2

+O(g3) . . . . (3.53)

If equation (3.51) was solved completely, then the rhs of (3.51) would contain
higher orders in the coupling constant and therefore also the interaction
Hamiltonian (3.53). These terms are indicated by the ellipsis.

If we want to include the external quasi fields as in section 2.5, then the
easy way to do this is to apply (2.41) straightforwardly. However, since we
want to derive the interaction Hamiltonian from the interaction Lagrangian
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we would have to include a χ̄(x)χ(x) pair in (3.1) similar to (2.41). This
would mean that the terms of order g2 in (3.53) are quartic in the quasi field,
where two of them can be contracted

χ̄(x)χ(x)χ̄(x)χ(x) = χ̄(x)θ[n(x− x)]χ(x) . (3.54)

Defining the θ-function to be 1 in its origin we assure that all terms in the
interaction Hamiltonian (3.53) relevant to πN -scattering are quadratic in the
external quasi fields, even higher order terms in the coupling constant.

The only term of order g2 in (3.53) that gives a contribution to the first
order in the S-matrix describing πN -scattering is the second term on the
second line in the rhs of (3.53). Its contribution to the first order in the
S-matrix is

S
(1)
fi = −i

∫

d4xHI(x) =
−ig2

M2
V

∫

d4x
[

ψ̄n/ψ
]

[

φan ·
←→
i∂ φb

]

x

=
−ig2

M2
V

ū(p′s′)n/u(ps)n · (q′ + q) ,

⇒Mcanc = g2 ū(p′s′)n/u(ps)
2n ·Q
M2

V

. (3.55)

Indeed we see that this term (3.55) cancels the extra term in (3.9).

3.5.2 Gross & Jackiw Solution

Here we apply the method of Gross and Jackiw as discussed in section 3.4
(or section 3.4.1, to be more specific).

As section 3.4.1 makes clear we need to determine the ”covariantized”
equal time commutator of interaction Hamiltonians

δ[n(x− y)] [HI(x),HI(y)] =

= g2 δ[n(x− y)]
[

φa(x)i
←→
∂µφb(x) · φµ(x) + ψ̄(x)γµψ(x) · φµ(x),

φa(y)i
←→
∂ν φb(y) · φν(y) + ψ̄(y)γνψ(y) · φν(y)

]

,

(3.56)

where the different elements are calculated to be

δ[n(x− y)] [φµ(x), φν(y)] =
1

M2
V

(nµP να + nνP µα) i∂αδ
4(x− y) ,

δ[n(x− y)]
[

i∂µφ(x), i∂νφ
†(y)

]

= − (nµPνα + nνPµα) i∂
αδ4(x− y) ,

δ[n(x− y)]
{

ψ(x), ψ̄(y)
}

= n/δ4(x− y) ,
δ[n(x− y)]

[

i∂µφ(x), φ†(y)
]

= nµδ
4(x− y) . (3.57)
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Using these elements (3.56) becomes

δ[n(x− y)] [HI(x),HI(y)]

=

{

1

M2
V

(

[ψn/ψ]x

[

φa
←→
i∂µφb

]

y
+ [ψnµψ]x

[

φan ·
←→
i∂ φb

]

y

+
[

φan ·
←→
i∂ φb

]

x
[ψnµψ]y +

[

φa
←→
i∂µφb

]

x
[ψn/ψ]y

+ [ψn/ψ]y [ψγµψ]x + [ψγµψ]y [ψn/ψ]x

+
[

φan ·
←→
i∂ φb

]

y

[

φa
←→
i∂µφb

]

x
+
[

φa
←→
i∂µφb

]

y

[

φan ·
←→
i∂ φb

]

x

)

+ φa(y)n · φ(x)φa(x)φµ(y) + φa(y)φµ(x)φa(x)n · φ(y)

+ [φbn · φ]x [φbφµ]y + [φbφµ]x [φbn · φ]y

}

P µρi∂ρδ
4(x− y) . (3.58)

Comparing this with (3.41) we see that the terms between curly brackets
coincide with −iSα(n). In calculating (3.58) we have neglected the C(n)
terms, since they do not give a contribution (see (3.42)) and as far as the
Qαβ(n) terms are concerned, they are absent. Therefore, the τ -function,
representing the compensating terms, becomes by means of (3.43) and (3.58)

τ(x− y;n) = ig2

[

1

M2
V

(

2 [ψn/ψ]
[

φan ·
←→
i∂ φb

]

+ [ψn/ψ]2 +
[

φan ·
←→
i∂ φb

]2
)

+φ2
a(n · φ)2 + φ2

b(n · φ)2

]

δ4(x− y) . (3.59)

Its contribution to πN -scattering S-matrix and amplitude is

S(2)
canc =

(−i)2

2!

∫

d4xd4y
2ig2

M2
V

[ψn/ψ]
[

φan ·
←→
i∂ φb)

]

δ4(x− y) ,

Mcanc = g2 ū(p′s′)n/u(ps)
2n ·Q
M2

V

, (3.60)

which is the same expression as the amplitude derived from the Takahashi-
Umezawa scheme in (3.55).

3.5.3 P̄ Approach

From the forgoing sections we have seen that if we add all contributions,
results in the Feynman formalism and in the Kadyshevsky formalism are the
same (of course we need to put κ′ = κ = 0). Also, section 3.1 taught us that
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if we bring out the derivatives out of the TOP in Feynman formalism not only
do we get Feynman functions, but also the n-dependent contact terms cancel
out. Unfortunately, this is not the case in Kadyshevsky formalism. There,
all n-dependent contact terms cancel out after adding up the amplitudes. So,
when calculating an amplitude according to the Kadyshevsky rules in section
2.3 one always has to keep in mind the contributions as described in section
3.2 and 3.4. For practical purposes this is not very convenient.

Inspired by the Feynman procedure we could also do the same in Kady-
shevsky formalism, namely let the derivatives not only act on the vector
meson propagator 7 but also on the quasi particle propagator (θ-function).
In doing so, we know that all contact terms cancel out; just as in Feynman
formalism.

We show the above in formula form.

θ[n(x− y)]∂µx∂νx∆(+)(x− y) + θ[n(y − x)]∂µx∂νx∆(+)(y − x)
= ∂µx∂

ν
xθ[n(x− y)]∆(+)(x− y) + ∂µx∂

ν
xθ[n(y − x)]∆(+)(y − x)

+inµnνδ4(x− y)

=
i

2π

∫

dκ1

κ1 + iε

∫

d4P

(2π)3
θ(P 0)δ(P 2 −M2

V )∂µx∂
ν
x

×
(

e−iκ1n(x−y)e−iP (x−y) + eiκ1n(x−y)eiP (x−y)
)

+ inµnνδ4(x− y)

=
i

2π

∫

dκ1

κ1 + iε

∫

d4P

(2π)3
θ(P 0)δ(P 2 −M2

V )
(

−P̄µP̄ν
)

×
(

e−iκ1n(x−y)e−iP (x−y) + eiκ1n(x−y)eiP (x−y)
)

+inµnνδ4(x− y) , (3.61)

where P̄ = P + nκ1. In this way the second order in the S-matrix becomes

S
(2)
fi = −g2

∫

d4xd4y [ū(p′s′)γµu(ps)] (q
′ + q)ν e

−ix(q−q′)eiy(p
′−p)

× i

2π

∫

dκ1

κ1 + iε

∫

d4P

(2π)3
θ(P 0)δ(P 2 −M2

V )

(

−gµν +
P̄ µP̄ ν

M2
V

)

×
(

e−iκ1n(x−y)e−iP (x−y)einκ
′x−inκy + eiκ1n(x−y)eiP (x−y)e−inκx+inκ

′y
)

+ig2

∫

d4x [ū(p′s′)n/u(ps)]n · (q′ + q) e−ix(q−q
′−p′+p−nκ′+nκ) . (3.62)

We see that the second term on the rhs of (3.62) brings about an amplitude,
which is exactly the same as in (3.9) and (3.10) and is to be cancelled by
(3.55) and (3.60).

7With ’propagator’ we mean the ∆+(x−y) and not the Feynman propagator ∆F (x−y).
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Performing the various integrals correctly we get

(a) ⇒
{

κ1 = ∆t · n− At + 1
2
(κ′ + κ)

P̄ = ∆t +
1
2
(κ′ + κ)n

(b) ⇒
{

κ1 = −∆t · n− At + 1
2
(κ′ + κ)

P̄ = −∆t +
1
2
(κ′ + κ)n

. (3.63)

This yields for the invariant amplitudes

M
(a)
κ′κ = −g2 ū(p′s′)

[

2Q/+
1

M2
V

(

(Mf −Mi) +
1

2
(κ′ − κ)n/+ n/κ̄

)

×
(

(

m2
f −m2

i

)

+
1

4
(spq − sp′q′ + up′q − upq′)− 2κ̄Q · n

)]

u(ps)

× 1

2At

1

∆t · n+ κ̄− At + iε
,

M
(b)
κ′κ = −g2 ū(p′s′)

[

2Q/+
1

M2
V

(

(Mf −Mi) +
1

2
(κ′ − κ)n/− n/κ̄

)

×
(

(

m2
f −m2

i

)

+
1

4
(spq − sp′q′ + up′q − upq′) + 2κ̄Q · n

)]

u(ps)

× 1

2At

1

−∆t · n+ κ̄− At + iε

M = M
(a)
00 +M

(b)
00

= −g2ū(p′s′)

[

2Q/+
(Mf −Mi)

M2
V

(

m2
f −m2

i

)

]

u(ps)
1

t−M2
V + iε

,

(3.64)

where κ̄ = 1
2
(κ′ + κ). As before we get back the Feynman expression for the

amplitude if we add both amplitudes obtained in Kadyshevsky formalism
and put κ′ = κ = 0. The big advantage of this procedure is that we do not
need to worry about the contribution n-dependent contact terms because
they cancelled out when introducing P̄ .

It should be noticed however that the P̄ -method is only possible when
both Kadyshevsky contributions at second order are added. This becomes
clear when looking at the first two lines of (3.61): Letting the derivatives
also act on the θ-function gives compensating terms for the ∆(+)(x− y)-part
and for the ∆(−)(x − y)-part. Only when added together they combine to
the δ4(x− y)-part.

Also it becomes clear from (3.61) that at least two derivatives are needed
to generate the δ4(x− y)-part. Therefore, when there is only one derivative,
for instance in the case of baryon exchange (so, no derivatives in coupling
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only in the propagator) at second order, the δ4(x−y)-part is not present and
it is not necessary to use the P̄ -method. In these cases it does not matter for
the summed diagrams whether or not the P̄ -method is used, however for the
individual diagrams it does make a difference. This ambiguity is absent in
Feynman theory, there derivatives are always taken out of the TOP (which
is similar to the P̄ -method, as discussed above) in order to come to Feynman
propagators.

3.6 Conclusion

We end this chapter by summarizing the main results. In section 3.1 we have
shown that it seems that the Kadyshevsky formalism gives different results
than the Feynman formalism, particularly for couplings containing deriva-
tives and/or higher spin fields. This seems very odd since both formalisms
can be deduced from the same S-matrix ((2.1), (2.2)).

When taking a closer look it turns out that extra terms in Kadyshevsky
formalism are also present in Feynman formalism. Hence, both formalisms
yield the same result. Unfortunately, this result, though covariant, is frame-
dependent. After a systematic analysis of this n-dependence, the n-dependent
terms can be removed pragmatically by using the method of Gross & Jackiw,
described in section 3.4. The important idea behind this is that a covariant
and frame-independent theory is defined and therefore starting point.

A more fundamental method to remove the extra, n-dependent terms is
developed by Takahashi and Umezawa, which is described in section 3.2.
Here, the interaction Hamiltonian contains orders of g2, which gives a non-
vanishing contribution in the first order of the S-matrix. This contribution
cancels exactly the unwanted n-dependent terms. Also, we have introduced
and discussed the P̄ -method and we have shown in appendix B the use of
BMP theory in light of the TU method.

We stress that both methods: GJ and TU give the same results. In the
Kadyshevsky and the Feynman formalism the final results are therefore not
only the same, but also covariant and frame-independent. This is shown in
section 3.5.



Chapter 4

Application: Pion-Nucleon
Scattering

In the previous chapters (chapter 2 and 3) we have presented the Kady-
shevsky formalism in great detail. Now, we are going to apply it to the
pion-nucleon system, although we present it in such a way that it can easily
be extended to other meson-baryon systems. The isospin factors are not in-
cluded in our treatment; we are only concerned about the Lorentz and Dirac
structure. For the details about the isospin factors we refer to [11].

In section 4.1 we describe the ingredients of the model by discussing the
exchanged particles at tree level and the interaction Lagrangian densities
that describe the vertices. The meson exchange processes are discussed in
section 4.2. The discussion of the baryon exchange processes (including pair
suppression) is postponed to chapter 5.

4.1 Ingredients

The ingredients of the model are tree level, exchange amplitudes as mentioned
before. These amplitudes serve as input for the integral equation. Very
similar to what is done in [11] we consider for the amplitudes the exchanged
particles as in table 4.1. Graphically, this is shown in figure 4.1.

Contrary to [11] we do not consider the exchange of the tensor mesons,
since their contribution is small. The inclusion of them can be regarded as
an extension of this work.

For the description of the amplitudes we need the interaction Lagrangians

49
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Channel Exchanged particle
t f0, σ, P, ρ
u N,N∗, S11,∆33

s N,N∗, S11,∆33

Table 4.1: Exchanged particles in the various channels

t : f0, σ, P, ρ u : N,N∗,∆ s : N,N∗,∆

Figure 4.1: Tree level amplitudes as input for integral equation. The inclusion
of the quasi particle lines is schematically. Therefore, the diagrams represent
either the (a) or the (b) diagram.

• Triple meson vertices

LSPP = gPPS φP,aφP,b · φS , (4.1a)

LV PP = gV PP

(

φai
↔

∂µφb

)

φµ , (4.1b)

where S, V, P stand for scalar, vector and pseudo scalar to indicate the
various mesons.

• Meson-baryon vertices

LSNN = gS ψ̄ψ · φS , (4.2a)

LV NN = gV ψ̄γµψ φµ − fV
2MV

i∂µ
(

ψ̄σµνψ
)

· φν , (4.2b)

LPV =
fPV
mπ

ψ̄γ5γµψ · ∂µφP , (4.2c)

LV =
fV
mπ

ψ̄γµψ · ∂µφP , (4.2d)

where σµν = 1
2
[γµ, γν ]. The coupling constants fV of (4.2b) and (4.2d)

do not necessarily coincide.
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We have chosen (4.2b) in such a way that the vector meson couples to
a current, which may contain a derivative. This is a bit different from
[11, 33], where the derivative acts on the vector meson. In Feynman
theory this does not make a difference, however it does in Kadyshevsky
formalism, because of the presence of the quasi particles.

Equation (4.2c) is used to describe the exchange (u, s-channel) of the
nucleon and Roper (N∗) and (4.2d) is used for the S11 exchange. This,
because of their intrinsic parities. Note, that we could also have chosen
the pseudo scalar and scalar couplings for these exchanges. However,
since the interactions (4.2c) and (4.2d) are also used in [11] and in
chiral symmetry based models, we use these interactions.

• πN∆33 vertex

LπN∆ = ggi ǫ
µναβ

(

∂µΨ̄ν

)

γ5γαψ (∂βφ) + ggi ǫ
µναβψ̄γ5γα (∂µΨν) (∂βφ) ,

(4.3)

The use of this interaction Lagrangian differs from the one used in [11].
We will come back to this in section 5.4.

An other important ingredient of the model is the use of form factors. We
postpone the discussion of them to chapter 6.

4.2 Meson Exchange

Here, we proceed with the discussion of the meson exchange processes. In this
section we give the amplitudes for meson-baryon scattering or pion-nucleon
scattering, specifically, meaning that we take equal initial and final states
(Mf = Mi = M and mf = mi = m, where M and m are the masses of the
nucleon and pion, respectively). The results for general meson-baryon initial
and final states are presented in appendix C.

4.2.1 Scalar Meson Exchange

For the description of the scalar meson exchange processes at tree level,
graphically shown in figure 4.2, we use the interaction Lagrangians (4.1a)
and (4.2a), which lead to the vertices

ΓPPS = gPSS ,

ΓS = gS . (4.4)
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κ1
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q

p
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p′

Pb

κ

κ′

κ1

(b)

Figure 4.2: Scalar meson exchange

Applying the Kadyshevsky rules as discussed in section 2.3, the ampli-
tudes read

Ma,b
κ′κ = gPSSgS

∫

dκ1

κ1 + iε
[ū(p′s′)u(ps)] θ(P 0)δ(P 2 −M2) , (4.5)

The κ1-integral is discussed in (3.6) and (3.7). We, therefore, give the results
immediately

M
(a)
κ′κ = gPSSgS [ū(p′s′)u(ps)]

1

2At
· 1

∆t · n+ κ̄− At + iε
,

M
(b)
κ′κ = gPSSgS [ū(p′s′)u(ps)]

1

2At
· 1

−∆t · n+ κ̄− At + iε
, (4.6)

where κ̄ (text below (3.64)), ∆t (text below (3.3)) and At (text below (3.6))
are already defined.

Adding the two together and putting κ′ = κ = 0 we get

M00 = gPSSgS [ū(p′s′)u(ps)]
1

t−M2
S + iε

, (4.7)

which is Feynman result [11].
In section 2.4.3 we discussed the n-dependence of the Kadyshevsky inte-

gral equation. In order to do that we need to know the n-dependence of the
amplitude (2.30)

M
(a+b)
0κ = M

(a)
0κ +M

(b)
0κ ,

= gPSSgS [ū(p′s′)u(ps)]
At − κ

2

At

1

(∆t · n)2 − (κ
2
− At)2 + iε

,

∂Ma+b
0κ

∂nβ
= κ gPSSgS [ū(p′s′)u(ps)]

×n ·∆t(∆t)β
2A3

t

(n ·∆t)
2 − 3A2

t − κ2

4
+ 2κAt

(

(n ·∆t)2 −
(

At − κ
2

)2
+ iε

)2 . (4.8)
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If we would only consider scalar meson exchange in the Kadyshevsky inte-
gral equation (2.23) the integrand would be of the form (2.32), where h(κ)
would by itself be of order O( 1

κ2 ) as can be seen from (4.8). Therefore, the
phenomenological ”form factor” (2.34) would not be needed.

Since there is no propagator as far as Pomeron exchange is concerned, the
Kadyshevsky amplitude is the same as the Feynman amplitude for Pomeron
exchange [11]

Mκ′κ =
gPPPgP
M

[ū(p′s′)u(p)] . (4.9)

4.2.2 Vector Meson Exchange

In order to describe vector meson exchange at tree level we use the interaction
Lagrangians as in (4.1b) and (4.2b). From these interaction Lagrangians we
distillate the vertices

ΓµV PP = gV PP (q′ + q)
µ
,

ΓµV NN = gV γ
µ +

fV
2MV

(p′ − p)α σαµ . (4.10)

The Kadyshevsky diagrams representing vector meson exchange are already
exposed in figure 3.2. Applying the Kadyshevsky rules of section 2.3 and
chapter 3 we obtain the following amplitudes

M
(a)
κ′κ = −gV PP ū(p′s′)

[

2gVQ/−
2gV
M2

V

P̄/aP̄a ·Q+
fV

2MV

(

(

p/′ − p/
) (

q/′ + q/
)

− (p′ − p) · (q′ + q)− 1

M2
V

(

(

p/′ − p/
)

P̄/a − (p′ − p) · P̄a
)

×P̄a · (q′ + q)

)]

u(ps)
1

2At

1

∆t · n+ κ̄− At + iε
,

M
(b)
κ′κ = −gV PP ū(p′s′)

[

2gVQ/−
2gV
M2

V

P̄/bP̄b ·Q+
fV

2MV

(

(

p/′ − p/
) (

q/′ + q/
)

− (p′ − p) · (q′ + q)− 1

M2
V

(

(

p/′ − p/
)

P̄/b − (p′ − p) · P̄b
)

×P̄b · (q′ + q)

)]

u(ps)
1

2At

1

−∆t · n+ κ̄− At + iε
, (4.11)
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which lead, after some (Dirac) algebra, to

M
(a)
κ′κ = −gV PP ū(p′s′)

[

2gVQ/

− gV
M2

V

κ′n/

(

1

4
(sp′q′ − spq + upq′ − up′q) + 2κ̄Q · n

)

+
fV

2MV

(

4MQ/+
1

2
(upq′ + up′q)−

1

2
(sp′q′ + spq)

− 1

M2
V

(

M2 +m2 − 1

2

(

1

2
(tp′p + tq′q) + upq′ + spq

)

+2Mn/κ′ +
1

4
(κ′ − κ)2 − (p′ + p) · nκ̄

)

×
(

1

4
(sp′q′ − spq) +

1

4
(upq′ − up′q) + 2κ̄n ·Q

))]

u(ps)

× 1

2At

1

∆t · n+ κ̄− At + iε
,

M
(b)
κ′κ = −gV PP ū(p′s′)

[

2gVQ/

+
gV
M2

V

κn/

(

1

4
(sp′q′ − spq + upq′ − up′q)− 2κ̄Q · n

)

+
fV

2MV

(

4MQ/+
1

2
(upq′ + up′q)−

1

2
(sp′q′ + spq)

− 1

M2
V

(

M2 +m2 − 1

2

(

1

2
(tp′p + tq′q) + upq′ + spq

)

−2Mn/κ+
1

4
(κ′ − κ)2

+ (p′ + p) · nκ̄
)

×
(

1

4
(sp′q′ − spq) +

1

4
(upq′ − up′q)− 2κ̄n ·Q

))]

u(ps)

× 1

2At

1

−∆t · n+ κ̄− At + iε
. (4.12)

The sum of the two in the limit of κ′ = κ = 0 yields

M00 = −gV PP ū(p′s′)

[

2gVQ/+
fV

2MV

(

(u− s) + 4MQ/
)

]

u(ps)

× 1

t−M2
V + iε

, (4.13)

which is, again, the Feynman result [11].
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Just as in the previous section (section 4.2.1) we study the n-dependence
of the amplitude. This, in light of the n-dependence of the Kadyshevsky
integral equation (see section 2.4.3).

M
(a+b)
0κ = M

(a)
0κ +M

(b)
0κ ,

= −gV PP ū(ps)

[

2gVQ/+
fV

2MV

(

4MQ/+
1

2
(upq′ + up′q)

−1

2
(sp′q′ + spq)

)]

u(ps)
At − κ

2

At

1

(∆t · n)2 −
(

At − κ
2

)2
+ iε

−gV fV κ
2M3

V

ū(ps)

[

1

2
(p′ + p) · n(Q · n)κ

(

At −
κ

2

)

+
1

8
(p′ + p) · n (sp′q′ − spq + upq′ − up′q) ∆t · n

−n ·Q
(

M2 +m2 − 1

2

(

1

2
(tp′p + tq′q) + upq′ + spq

)

+
κ2

4

)

×∆t · n
]

u(ps)
1

At

1

(∆t · n)2 − (κ
2
− At)2 + iε

+
gV PPκ

M2
V

ū(p′s′)

[

n/

(

gV +
fVM

MV

)(

1

4
(sp′q′ − spq + upq′ − up′q)

+ κn ·Q
)]

u(ps)
1

2At

1

∆t · n+ κ
2
− At + iε

. (4.14)

Differentiating this with respect to nα in the same way as in (4.8) we know
that the result will contain an overall factor of κ. This can be seen as follows:
The first term in (4.14) is very similar to M

(a+b)
0κ in (4.8). Therefore, the

overall factor of κ when differentiating with respect to nα is obvious. All
other terms in (4.14) contain already an overall factor of κ, which does not
change when differentiating.

As can be seen from (4.14) the numerator is of higher degree in κ then
the denominator. Therefore, the function h(κ) in (2.32) will not be of order
O( 1

κ2 ) and the ”form factor” (2.34) is necessary.
In (4.12) as well as in (4.6) we have taken u and ū spinors. The reason

behind this is pair suppression which we will discuss in the next chapter
(chapter 5).
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Chapter 5

Baryon Exchange and Pair
Suppression

In this chapter we deal with the baryon exchange sector of the model. We
construct tree level amplitudes for baryon exchange and resonance or, to put
it in other words, u- and s-channel baryon exchange diagrams.

In [11] pair suppression is assumed by considering positive states in the
integral equation only (see text below (2.19)). Here, we implement pair
suppression formally. This is done by discussing the formalism in section 5.1
and applying it in sections 5.2, 5.3 and 5.4, where we have distinguished for
various couplings. The amplitudes are calculated in 5.5.

5.1 Pair Suppression Formalism

To understand the idea of pair suppression at low energy, picture a general
meson-baryon (MB) vertex in terms of their constituent quarks as in the QPC
model (see figure 5.1). As stated in [34] every time a quark - anti-quark (qq̄)
pair is created from the vacuum the vertex is damped. This idea is supported
by [35] whose author considers a vertex creating a baryon - anti-baryon (BB̄)
pair in a large N , SU(N) theory 1. Such a vertex is comparable to figure
5.1(b), but now N−1 pairs need to be created. It is claimed in [35] that such
vertices are indeed suppressed. Although it is questionable whether N = 3
is really large, we assume that pair suppression holds for SU(F )(3) theories
at low energy.

Now, one could imagine that this principle should also apply for the
creation of a meson - anti-meson (MM̄) pair and therefore pair suppression

1In a SU(N) theory a baryon is represented as a qN state, whereas a meson is always
a qq̄ state, independent of N .
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(a) (b)

Figure 5.1: (a) MMM (MBB) vertex and (b) MBB̄ vertex

should be implemented in the meson exchange sector (chapter 4). For the
reason why we have not done this one should look again at figure 5.1 and
consider the large N , SU(N) theory again. For the creation of a MM̄ pair
at the vertex only one extra qq̄ pair needs to be created instead of the N − 1
pairs in the BB̄ case and is therefore much likelier to happen. Going back to
the real SU(F )(3) the difference is only one qq̄ pair, nevertheless we assume
that a MM̄ pair creation is not suppressed.

Also from physical point of view it is nonsense to imply pair suppression
in the meson sector. In order to see this one has to realize that an anti-
meson is also a meson. So, assuming pair suppression in the meson sector
means that a triple meson (MMM) vertex is suppressed, which makes it
impossible to consider meson exchange in meson-baryon scattering as we
did in chapter 4. From figure 5.1(a) we see that the MMM vertex is of
the same order (in number of qq̄ creations, as compared to figure 5.1(b)) as
the meson-baryon-baryon (MBB) vertex in SU(F )(3). So, suppressing the
MMM vertex means that we should also suppress the MBB vertex and no
description of MB-scattering in terms of MB vertices is possible at all!

This does not mean, however, that there is no pair suppression what so
ever in the meson sector of chapter 4. As can be seen from the amplitudes
(4.6) and (4.12) we only considered MBB vertices in figure 4.2 and 3.2,
whereas also MBB̄ vertices could have been included. The latter vertices
are suppressed as discussed above. We will come back to this later.

Since we suppressed the MBB̄ vertex it means that pair suppression
should also be active in the Vector Meson Dominance (VMD) [36] model de-
scribing nucleon Compton scattering (γN → γN). From electron Compton
scattering it is well-know that the Thomson limit is exclusively due to the
negative energy electron states (see for instance section 3-9 of [37]). How-
ever, since the nucleon is composite it may well be that the negative energy
contribution is produced by only one of the constituents [38] and it is not
necessary to create an entire anti-baryon.

The suppression of negative energy states may harm the causality and
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Lorentz invariance condition. Therefore, the question may arise whether
it is possible to include pair suppression and still maintain causality and
Lorentz invariance. The following example shows that it should in principle
be possible: Imagine an infinitely dense medium where all anti-nucleon states
are filled, i.e. the Fermi energy of the anti-nucleons p̄F = ∞, and that for
nucleons pF = 0. An example would be an anti-neutron star of infinite
density. Then, in such an example pair production in πN -scattering is Pauli-
blocked, because all anti-nucleon states are filled. Denoting the ground-state
by |Ω〉, one has, see e.g. [39],

SF (x− y) = −i〈Ω|T [ψ(x)ψ̄(y)]|Ω〉 ,
which gives in momentum space [39]

SF (p; pF , p̄F ) =
p/+M

2Ep

{

1− nF (p)

p0 − Ep + iε
+

nF (p)

p0 − Ep − iε

− 1− n̄F (p)

p0 + Ep − iε
− n̄F (p)

p0 + Ep + iε

}

.

At zero temperature T = 0 the non-interacting fermion functions nF , n̄F are
defined by

nF =

{

1, |p| < pF
0, |p| > pF

, n̄F =

{

1, |p| < p̄F
0, |p| > p̄F

.

In the medium sketched above, clearly nF (p) = 0 and n̄F (p) = 1, which
leads to a propagator Sret(p; 0,∞). This propagator is causal and Lorentz
invariant.

The above (academic) example may perhaps convince a sceptical reader
that a perfect relativistic model with ’absolute pair suppression’ is feasible
indeed.

As far as our results are concerned we refer to section 5.5, where we
will see that intermediate baryon states are represented by retarded (-like)
propagators, which have the nice feature to be causal and n-independent. We,
therefore, have a theory that is relativistic and yet it does contain (absolute)
pair suppression.

5.1.1 Equations of Motion

Consider a Lagrangian containing not only the free fermion part, but also a
(simple) coupling between fermions and a scalar

L = Lfree + LI

= ψ̄

(

i

2

−→
∂/ − i

2

←−
∂/ −M

)

ψ + g ψ̄Γψ · φ (5.1)
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The Euler-Lagrange equation for the fermion part reads

(i∂/−M)ψ = −gΓψ · φ (5.2)

In order to incorporate pair suppression we pose that the transitions between
positive and negative energy fermion states vanish in the interaction part
of (5.1), i.e. ψ(+)Γψ(−) = ψ(−)Γψ(+) = 0. So, we impose absolute pair
suppression. From now on, when we speak of pair suppression we mean
absolute pair suppression, unless it is mentioned otherwise. Of course it is
in principle possible to allow for some pair production. This can be done for
instance by not eliminating the terms ψ(+)Γψ(−) and ψ(−)Γψ(+) in (5.1), but
allowing them with some small coupling g′ ≪ g. This, however, makes the
situation much more difficult.

Since half of the term on the rhs of (5.2) finds its origin in such vanished
terms, it is reduced by a factor 2 by the pair suppression condition.

Making the split up ψ = ψ(+)+ψ(−), which is invariant under orthochronous
Lorentz transformations, in (5.2) we assume both parts are independent, so
that we have

(i∂/−M)ψ(+) = −g
2

Γψ(+) · φ , (5.3a)

(i∂/−M)ψ(−) = −g
2

Γψ(−) · φ . (5.3b)

One might wonder why we did not consider independent positive and
negative energy fields from the start in (5.1). Although this would not cause
any trouble in the interaction part (LI) it will in the free part. The quantum
condition in such a situation would be

{

ψ(±)(x), π(±)(y)
}

= iδ3(x− y). This
is in conflict with the important relations between the positive and negative
energy components

{

ψ(+)(x), ψ(+)(y)
}

= (i∂/+M) ∆+(x− y) ,
{

ψ(−)(x), ψ(−)(y)
}

= − (i∂/+M) ∆−(x− y) , (5.4)

which we do need. Therefore we do not make the split up in the Lagrangian,
but in the equations of motion.

The assumption that both parts ψ(+) and ψ(−) are independent means
that besides the anti-commutation relations in (5.4) all others are zero.

In order to incorporate pair suppression in the meson sector (see chapter

4) the only thing to do is to exclude the transitions ψ(+)Γψ(−) and ψ(−)Γψ(+)

in the interaction Lagrangians (4.4) and (4.10). By doing so, only u and ū
spinors will contribute. Therefore, only these spinors are present in (4.6) and
(4.12).
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For baryon exchange and resonance diagrams the implications of pair
suppression are less trivial. We, therefore, discuss how pair suppression can
be implemented in these situation in the following sections.

5.1.2 Takahashi Umezawa Scheme for Pair Suppres-
sion

In order to obtain the interaction Hamiltonian in case of pair suppression we
set up the theory very similar to the Takahashi-Umezawa scheme presented
in section 3.2. Since we only make the split-up in the fermion fields, the
scalar fields are unaffected and therefore not included in this section.

We start with defining the currents

jψ(±),a(x) =



− ∂LI
∂ψ(±)(x)

,− ∂LI
∂
(

∂µψ
(±)
)

(x)



 . (5.5)

Solutions to the equations of motion resulting from a general (interaction)
Lagrangian are the YF equations

ψ(±)(x) = ψ(±)(x) +
1

2

∫

d4y Da(y) (i∂/+M) θ[n(x− y)]

×∆(x− y) · jψ(±),a(y) . (5.6)

Here, we have chosen to use the retarded Green functions again, this, in order
to be close to the treatment in section 3.2.

Furthermore, we introduce the auxiliary fields

ψ(±)(x, σ) = ψ(±)(x)

∓i
∫ σ

−∞

d4yDa(y) (i∂/+M) ∆±(x− y) · jψ(±),a(y) . (5.7)

Combining these two equations ((5.6) and (5.7)) we get

ψ(±)(x) = ψ(±)(x/σ)

+
1

4

∫

d4y

[

Da(y) (i∂/+M) , ǫ(x− y)
]

∆(x− y) · jψ(±),a(y)

± i
2

∫

d4y θ[n(x− y)]Da(y) (i∂/+M) ∆(1)(x− y) · jψ(±),a(y) .

(5.8)
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The factor 1/2 in (5.6) is essential. This becomes clear when we decompose
∆±(x−y) = ±i

2
∆(x−y)+ 1

2
∆(1)(x−y) in (5.7). The first part (∆) combines

with (5.6) to the second term on the rhs of (5.8) and the second part (∆(1))
gives a new contribution to ψ(±) as compared to (3.22). We see that if we add
ψ(+) and ψ(−) we get back (3.22), again. This makes the factor 1/2 difference
in the first part of (5.8) as compared to (3.22) easier to understand.

As in section 3.2 we pose that ψ(±)(x) and ψ(±)(x, σ) satisfy the same
commutation relation, since they satisfy the same EoM. The unitary opera-
tor connecting the two is related to the S-matrix by the same arguments as
used in (3.27)-(3.29) and therefore satisfies the Tomanaga-Schwinger equa-
tion (3.30). Similar to the steps (3.31)-(3.33) we get the commutators of the
different fields with the interaction Hamiltonian

[

ψ(±)(x),HI(y;n)

]

=

= U [σ]
[

Da(y)(±) (i∂/+M) ∆±(x− y) · jψ(±),a(y)
]

U−1[σ] , (5.9)

from which the interaction Hamiltonian can be deduced. In section 3.2 we
were able, once the interaction Hamiltonian was known, to proof that (3.21)
was indeed correct (see appendix A). Since the main ingredient of the proof
are the commutation relations of the free fields with the interaction Hamilto-
nian (in terms of free fields) (A.5), it is not hard to realize that ∆± appears
in (5.7).

Having discussed the formalism to implement pair suppression, now, we
are going to apply it.

5.2 (Pseudo) Scalar Coupling

In the (pseudo) scalar sector of the theory including pair suppression we start
with the following interaction Lagrangian

LI = gψ(+)Γψ(+) · φ+ gψ(−)Γψ(−) · φ , (5.10)

2 where Γ = 1 or Γ = iγ5. We will not use the specific forms for Γ until the
discussion of the amplitudes in section 5.5. This, in order to be as general as
possible.

From (5.10) we deduce the currents according to (5.5)

jψ(±),a =
(

−g Γψ(±) · φ, 0
)

,

jφ,a =
(

−gψ(+)Γψ(+) − gψ(−)Γψ(−), 0
)

. (5.11)

2We note that this interaction Lagrangian (5.10) is charge invariant.
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The fields in the H.R. can be expressed in terms of fields in the I.R. using
(5.8)

ψ(±)(x) = ψ(±)(x/σ)∓ ig

2

∫

d4y θ[n(x− y)] (i∂/+M) ∆(1)(x− y)

× Γψ(±)(y) · φ(y) , (5.12a)

φ(x) = φ(x/σ) +
1

2

∫

d4y [Da(y), ǫ(x− y)] ∆(x− y) · jφ,a(y)

= φ(x/σ) . (5.12b)

Equation (5.12a) was found by assuming that the coupling constant is small
and considering only contributions up to order g, just as in (3.51) and the
text below it.

With the expressions (5.12a) and (5.12b) and the definition of the com-
mutator of the (fermion) fields with the interaction Hamiltonian (5.9) we
get

[

ψ(+)(x),HI(y;n)
]

= −g (i∂/+M) ∆+(x− y)Γψ(+)(y) · φ(y)

+
ig2

2
(i∂/+M) ∆+(x− y)

∫

d4z Γ θ[n(y − z)]

×
(

i∂/y +M
)

∆(1)(y − z) Γψ(+)(z) · φ(z)φ(y) ,
[

ψ(−)(x),HI(y;n)
]

= g (i∂/+M) ∆−(x− y)Γψ(−)(y) · φ(y)

+
ig2

2
(i∂/+M) ∆−(x− y)

∫

d4z Γ θ[n(y − z)]

×
(

i∂/y +M
)

∆(1)(y − z) Γψ(−)(z) · φ(z)φ(y) .

(5.13)

Here, we have not included the commutator of the scalar field φ with the
interaction Hamiltonian, because (5.13) already contains enough information
to get the interaction Hamiltonian

HI(x;n) =

= −g ψ(+)Γψ(+) · φ− g ψ(−)Γψ(−) · φ

+
ig2

2

∫

d4y
[

ψ(+) Γφ
]

x
θ[n(x− y)] (i∂/x +M) ∆(1)(x− y)

[

Γψ(+)φ
]

y

−ig
2

2

∫

d4y
[

ψ(−) Γφ
]

x
θ[n(x− y)] (i∂/x +M) ∆(1)(x− y)

[

Γψ(−)φ
]

y
.

(5.14)
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In (5.14) we see that the interaction Hamiltonian contains terms proportional
to ∆(1)(x − y) which are of order O(g2). These terms will be essential to
get covariant and n-independent S-matrix elements and amplitudes at order
O(g2).

If we would include external quasi fields in interaction Lagrangian (5.10),
then the terms of order g2 in the interaction Hamiltonian (5.14) would be
quartic in the quasi field. As in (3.54) two quasi fields can be contracted

χ̄(x)χ(x)χ̄(y)χ(y) = χ̄(x)θ[n(x− y)]χ(y) . (5.15)

So, the terms of order g2 get an additional factor θ[n(x − y)]. However,
since these terms already contain such a factor, we make the identification
θ[n(x−y)]θ[n(x−y)]→ θ[n(x−y)]. Therefore, all relevant πN terms in (5.14)
are quadratic in the external quasi field, just as we want. This argument is
valid for all couplings.

5.3 (Pseudo) Vector Coupling

Here, we repeat the steps of the previous section (section 5.2) but now in the
case of (pseudo) vector coupling. The interaction Lagrangian reads

LI =
f

mπ

ψ(+)Γµψ
(+) · ∂µφ+

f

mπ

ψ(−)Γµψ
(−) · ∂µφ , (5.16)

where Γµ = γµ or Γµ = γ5γµ. From (5.16) we deduce the currents

jψ(±),a =

(

− f

mπ

Γµψ
(±) · ∂µφ, 0

)

,

jφ,a =

(

0,− f

mπ

ψ(+)Γµψ
(+) − f

mπ

ψ(−)Γµψ
(−)

)

. (5.17)

The fields in the H.R. are expressed in terms of fields in the I.R. as follows

ψ(±)(x) = ψ(±)(x/σ)∓ if

2mπ

∫

d4yθ[n(x− y)] (i∂/+M) ∆(1)(x− y)

× Γµψ
(±)(y) · ∂µφ(y) , (5.18a)

φ(x) = φ(x/σ) , (5.18b)

∂µφ(x) = [∂µφ(x, σ)]x/σ −
f

mπ

nµ ψ(+)(x)n · Γψ(+)(x)

− f

mπ

nµ ψ(−)(x)n · Γψ(−)(x) . (5.18c)
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The commutators of the different fields with the interaction Hamiltonian are
[

ψ(+)(x),HI(y;n)
]

=

=
f

mπ

(i∂/+M) ∆+(x− y)
[

− Γµψ
(+) · ∂µφ

+
f

mπ

n · Γψ(+) ψ(+)n · Γψ(+) +
f

mπ

n · Γψ(+) ψ(−)n · Γψ(−)

]

y

+
if 2

2m2
π

(i∂/+M) ∆+(x− y)
∫

d4z Γµ θ[n(y − z)]

×
(

i∂/y +M
)

∆(1)(y − z) Γν ψ
(+)(z) · ∂νφ(z)∂µφ(y) ,

[

ψ(−)(x),HI(y;n)
]

=

= − f

mπ

(i∂/+M) ∆−(x− y)
[

− Γµψ
(−) · ∂µφ

+
f

mπ

n · Γψ(−) ψ(+)n · Γψ(+) +
f

mπ

n · Γψ(−) ψ(−)n · Γψ(−)

]

y

− if 2

2m2
π

(i∂/+M) ∆−(x− y)
∫

d4z Γµ θ[n(y − z)]

×
(

i∂/y +M
)

∆(1)(y − z) Γν ψ
(−)(z) · ∂νφ(z)∂µφ(y) ,

(5.19)

from these equations we deduce the interaction Hamiltonian

HI(x;n) = − f

mπ

ψ(+)Γµψ
(+) · ∂µφ− f

mπ

ψ(−)Γµψ
(−) · ∂µφ

+
f 2

2m2
π

[

ψ(+) n · Γψ(+)
]2

+
f 2

2m2
π

[

ψ(−) n · Γψ(−)
]2

+
f 2

m2
π

[

ψ(+) n · Γψ(+)
] [

ψ(−) n · Γψ(−)
]

+
if 2

2m2
π

∫

d4y
[

ψ(+)Γµ∂
µφ
]

x
θ[n(x− y)] (i∂/+M)

×∆(1)(x− y)
[

Γνψ
(+)∂νφ

]

y

− if 2

2m2
π

∫

d4y
[

ψ(−)Γµ∂
µφ
]

x
θ[n(x− y)] (i∂/+M)

×∆(1)(x− y)
[

Γνψ
(−)∂νφ

]

y
. (5.20)
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As in (5.14) there are also terms proportional to ∆(1)(x − y) quadratic in
the coupling constant. Also, (5.20) contains contact terms, but they do not
contribute to πN -scattering.

5.4 πN∆33 Coupling

At this point we deviated from [11] as far as the interaction Lagrangian is
concerned. For the description of the coupling of the ∆33, which is a spin-3/2
field, to πN we follow [40] by using the interaction Lagrangian

LI = ggi ǫ
µναβ

(

∂µΨ
(+)
ν

)

γ5γαψ
(+) (∂βφ)

+ggi ǫ
µναβψ(+)γ5γα

(

∂µΨ
(+)
ν

)

(∂βφ)

+ggi ǫ
µναβ

(

∂µΨ
(−)
ν

)

γ5γαψ
(−) (∂βφ)

+ggi ǫ
µναβψ(−)γ5γα

(

∂µΨ
(−)
ν

)

(∂βφ) . (5.21)

Here, Ψµ represents the spin-3/2 ∆33 field. As is mentioned in [40, 41] the
Ψµ field does not only contain spin-3/2 components but also spin-1/2 com-
ponents. By using the interaction Lagrangian as in (5.21) it is assured that
only the spin-3/2 components of the ∆33 field couple.

From (5.21) we deduce the currents

jφ,a(x) =

[

0, − ggi ǫµναβ
(

∂µΨ
(+)
ν

)

γ5γαψ
(+)

−ggi ǫµναβψ(+)γ5γα

(

∂µΨ
(+)
ν

)

− ggi ǫµναβ
(

∂µΨ
(−)
ν

)

γ5γαψ
(−)

−ggi ǫµναβψ(−)γ5γα

(

∂µΨ
(−)
ν

)]

jψ(±),a(x) =
[

−ggi ǫµναβγ5γα

(

∂µΨ
(+)
ν

)

(∂βφ) , 0
]

j
Ψ

(±)
ν ,a

(x) =
[

0,−ggi ǫµναβγ5γαψ
(+) (∂βφ)

]

. (5.22)

To avoid lengthy equations we express the commutators of the various fields
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with the interaction Hamiltonian in terms of fields in the H.R. (5.9)

[

φ(x),HI(y;n)

]

=

= U [σ]i∆(x− y)
←−
∂yβ

[

−ggi ǫµναβ
(

∂µΨ
(+)
ν

)

γ5γαψ
(+)

−ggi ǫµναβψ(+)γ5γα

(

∂µΨ
(+)
ν

)

− ggi ǫµναβ
(

∂µΨ
(−)
ν

)

γ5γαψ
(−)

−ggi ǫµναβψ(−)γ5γα

(

∂µΨ
(−)
ν

)]

y
U−1[σ] ,

[

ψ±(x),HI(y;n)

]

=

= U [σ](±) (i∂/x +M) ∆±(x− y)
[

−ggi ǫµναβγ5γαψ
(+) (∂βφ)

]

y
U−1[σ] ,

[

Ψ±
µ (x),HI(y;n)

]

=

= U [σ](±) (i∂/x +M∆) (−)

×
(

gµν −
1

3
γµγν +

2∂µ∂ν
3M2

∆

− 1

3M2
∆

(γµi∂ν − i∂µγν)
)

∆±(x− y)←−∂yρ

×
(

−ggi ǫµναβγ5γαψ
(+) (∂βφ)

)

y
U−1[σ] , (5.23)

where the fields in the H.R. are expressed in terms of fields in the I.R. using
(5.8)

ψ(±)(x) = ψ(±)(x/σ)± i

2

∫

d4y θ[n(x− y)](i∂/+M)∆(1)(x− y)

× ggi ǫµναβγ5γα

[

(

∂µΨ
(±)
ν

)

(∂βφ)
]

y
,

∂ρφ(x) =

= [∂ρφ(x, σ)]x/σ

−ggi ǫµναβnρ
(

∂µΨ
(+)
ν

)

γ5γαψ
(+)nβ − ggi ǫµναβnρψ(+)γ5γα

(

∂µΨ
(+)
ν

)

nβ

−ggi ǫµναβnρ
(

∂µΨ
(−)
ν

)

γ5γαψ
(−)nβ − ggi ǫµναβnρψ(−)γ5γα

(

∂µΨ
(−)
ν

)

nβ ,
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∂ρΨ
(±)
µ (x) =

[

∂ρΨ
(±)
µ (x, σ)

]

x/σ

+
ggi
2

[

(i∂/x +M∆)nρnγ + n/ (i∂ρnγ + nρi∂γ)− 2n/nρnγn · i∂
]

×
(

gµν −
1

3
γµγν

)

ǫρναβγ5γαψ
(±) (∂βφ)

∓iggi
2

∫

d4yθ[n(x− y)] (i∂/x +M∆)

[

gµν −
1

3
γµγν

]

× ∂ρ∂γ∆(1)(x− y)
[

ǫρναβγ5γαψ
(±) (∂βφ)

]

y
. (5.24)

Here, we have already used that ∂ρΨ
(±)
µ (x) always appears in combination

with ǫρµαβ. Therefore, we have eliminated terms that are symmetric in ρ and
µ.

With these ingredients we can construct the interaction Hamiltonian.
Because it contains a lot of terms we only focus on those terms that contribute
to πN -scattering

HI(x;n) =

= −ggi ǫµναβ
(

∂µΨ
(+)
ν

)

γ5γαψ
(+) (∂βφ)− ggi ǫµναβψ(+)γ5γα

(

∂µΨ
(+)
ν

)

(∂βφ)

−ggi ǫµναβ
(

∂µΨ
(−)
ν

)

γ5γαψ
(−) (∂βφ)− ggi ǫµναβψ(−)γ5γα

(

∂µΨ
(−)
ν

)

(∂βφ)

−
g2
gi

2
ǫµναβψ(+)γ5γα (∂βφ)

[

(i∂/x +M∆)nµnµ′ + n/ (i∂µnµ′ + nµi∂µ′)

− 2n/nµnµ′n · i∂
](

gνν′ −
1

3
γνγν′

)

ǫµ
′ν′α′β′

γ5γα′ψ(+) (∂β′φ)

−
g2
gi

2
ǫµναβψ(−)γ5γα (∂βφ)

[

(i∂/x +M∆)nµnµ′ + n/ (i∂µnµ′ + nµi∂µ′)

− 2n/nµnµ′n · i∂
](

gνν′ −
1

3
γνγν′

)

ǫµ
′ν′α′β′

γ5γα′ψ(−) (∂β′φ)

+
ig2
gi

2

∫

d4y
[

ǫµναβψ(+)γ5γα (∂βφ)
]

x
θ[n(x− y)] (i∂/x +M∆)

×
(

gνν′ −
1

3
γνγν′

)

∂µ∂µ′∆
(1)(x− y)

[

ǫµ
′ν′α′β′

γ5γα′ψ(+) (∂β′φ)
]

y
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−
ig2
gi

2

∫

d4y
[

ǫµναβψ(−)γ5γα (∂βφ)
]

x
θ[n(x− y)] (i∂/x +M∆)

×
(

gνν′ −
1

3
γνγν′

)

∂µ∂µ′∆
(1)(x− y)

[

ǫµ
′ν′α′β′

γ5γα′ψ(−) (∂β′φ)
]

y
.

(5.25)

5.5 S-Matrix Elements and Amplitudes

Since the Kadyshevsky rules as presented in section 2.3 do not contain pair
suppression, we are going to derive the amplitudes from the S-matrix (2.2).
The basic ingredients, namely the interaction Hamiltonians, we have con-
structed in the previous sections (section 5.2, 5.3 and 5.4) for different cou-
plings. As in chapter 4 we also consider in this section equal initial and final
states, i.e. πN (MB) scattering. For the results for general MB initial and
final states we refer to appendix C

5.5.1 (Pseudo) Scalar Coupling

For the pseudo scalar coupling case we collect all g2 contributions to the
S-matrix (see (5.14))

S(2) = (−i)2

∫

d4xd4y θ[n(x− y)]HI(x)HI(y)

= −g2

∫

d4xd4y θ[n(x− y)]
[

ψ(+) Γφ
]

x
(i∂/+M)

×∆+(x− y)
[

Γψ(+)φ
]

y
,

S(1) = (−i)
∫

d4xHI(x)

=
g2

2

∫

d4xd4y
[

ψ(+) Γφ
]

x
θ[n(x− y)] (i∂/x +M)

×∆(1)(x− y)
[

Γψ(+)φ
]

y
, (5.26)

which need to be added

S(2) + S(1) = −ig
2

2

∫

d4xd4y
[

ψ(+) Γφ
]

x
θ[n(x− y)] (i∂/+M)

×∆(x− y)
[

Γψ(+)φ
]

y
. (5.27)
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We see here that indeed the ∆(1)(x−y) propagator in the interaction Hamil-
tonian (5.14) is crucial, since it combines with the ∆(+)(x − y) propagator
(5.26) to form a ∆(x−y) propagator (5.27). Together with the θ[n(x−y)] in
(5.27) we recognize the causal retarded (-like) character as we already men-
tioned in the section 5.1. The S-matrix element is therefore covariant and if
we analyze its n-dependence as in section 2.4.3 and section 3.4 we would see
that it is n-independent (for vanishing external quasi momenta, of course).

Also we notice that the initial and final states are still positive energy
states. We started with a separation of positive and negative energy states
in section 5.1 and after the whole procedure this is still valid for the end-
states. However, we have to notice that in an intermediate state, negative
energy propagates via the ∆(x − y) propagator, but this is also the case in
our example of the infinite dense anti-nucleon star of section 5.1. Moreover,
in [11] pair suppression is assumed by only considering positive energy end-
states, and this is what we have achieved formally.

All the above observations are also valid in the case of (pseudo) vector
coupling and the πN∆33 coupling of section 5.5.2 and section 5.5.3, respec-
tively as we will see.

The last important observation is that in (5.27) it does not matter whether
the derivative just acts on the ∆(x− y) propagator or also on the θ[n(x− y)]
function. Therefore, the P̄ -method of section 3.5.3 can be applied, although
it is not really necessary. This situation is contrary to ordinary baryon ex-
change, where the P̄ method can only be applied for the summed diagrams,
as explained in section 3.5.3.

The summed S-matrix elements (5.27) lead to baryon exchange and resonance
Kadyshevsky diagrams, which are exposed in figure 5.2. We are going to treat
them separately.

q

p

p’

q’

P

κ

κ′

κ1

(a)

q

p

q’

p’

P

κ κ′

κ1

(b)

Figure 5.2: Baryon exchange (a) and resonance (b) diagrams

The amplitude for the (pseudo) scalar baryon exchange and resonance re-



5.5. S-MATRIX ELEMENTS AND AMPLITUDES 71

sulting from the S-matrix in (5.27) are

Mκ′κ(u) =
g2

2

∫

dκ1

κ1 + iε
ū(p′s′)

[

Γ (P/u +MB) Γ

]

u(ps)∆(Pu) ,

Mκ′κ(s) =
g2

2

∫

dκ1

κ1 + iε
ū(p′s′)

[

Γ (P/s +MB) Γ

]

u(ps)∆(Ps) . (5.28)

Here Pi = ∆i + nκ̄− nκ1 and ∆(Pi) = ǫ(P 0
i )δ(P 2

i −M2
B) (i = u, s). The ∆i

stand for

∆u =
1

2
(p′ + p− q′ − q) ,

∆s =
1

2
(p′ + p+ q′ + q) . (5.29)

After expanding the δ(P 2
i −M2

B)-function the κ1 integral can be performed,
just as in (3.6)

δ(P 2
i −M2

B) =
1

|κ+
1 − κ−1 |

(

δ(κ1 − κ+
1 ) + δ(κ1 − κ−1 )

)

,

κ±1 = ∆i · n+ κ̄± Ai . (5.30)

The ǫ(P 0
i ) selects both solutions with a relative minus sign

1

2Ai

[

∆/i − (∆i · n− Ai)n/+MB

∆i · n+ κ̄− Ai + iε
− ∆/i − (∆i · n+ Ai)n/+MB

∆i · n+ κ̄+ Ai + iε

]

= (∆/i +MB + κ̄n/)
1

2Ai

[

1

∆i · n+ κ̄− Ai + iε
− 1

∆i · n+ κ̄+ Ai + iε

]

=
∆/i +MB + κ̄n/

(∆i · n+ κ̄)2 − A2
i + iε

. (5.31)

This yields for the amplitudes

MS
κ′κ(u) =

g2
S

2
ū(p′s′) [M +MB −Q/+ κ̄n/]u(ps)

1

(∆u · n+ κ̄)2 − A2
u + iε

,

MPS
κ′κ (u) =

g2
PS

2
ū(p′s′) [M −MB −Q/+ κ̄n/]u(ps)

1

(∆u · n+ κ̄)2 − A2
u + iε

,

MS
κ′κ(s) =

g2
S

2
ū(p′s′) [M +MB +Q/+ κ̄n/]u(ps)

1

(∆s · n+ κ̄)2 − A2
s + iε

,

MPS
κ′κ (s) =

g2
PS

2
ū(p′s′) [M −MB +Q/+ κ̄n/]u(ps)

1

(∆s · n+ κ̄)2 − A2
s + iε

,

(5.32)
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where S and PS stand for scalar and pseudo scalar, respectively. Taking the
limit of κ′ = κ = 0 in (5.32) we get

MS
00(u) =

g2
S

2
ū(p′s′) [M +MB −Q/]u(ps)

1

u−M2
B + iε

,

MPS
00 (u) =

g2
PS

2
ū(p′s′) [M −MB −Q/]u(ps)

1

u−M2
B + iε

,

MS
00(s) =

g2
S

2
ū(p′s′) [M +MB +Q/]u(ps)

1

s−M2
B + iε

,

MPS
00 (s) =

g2
PS

2
ū(p′s′) [M −MB +Q/]u(ps)

1

s−M2
B + iε

, (5.33)

which is a factor 1/2 of the result in [11]. This factor is because of the fact
that we only took the positive energy contribution. This difference can easily
be intercepted by considering an interaction Lagrangian as in (5.10) scaled
by a factor of

√
2. We stress here that although we have included absolute

pair suppression formally, we still get a factor 1/2 of the usual Feynman
expression.

In order to study the n-dependence of the amplitudes (see section 2.4.3)
we take a closer look at the denominators in (5.32)

(∆i · n+ κ̄)2 − A2
s = ∆2

i −M2
B + 2∆i · nκ̄+ κ̄2 . (5.34)

From this we conclude that all n-dependent terms in (5.32) are proportional
to κ̄, therefore differentiating (5.32) with respect to nα will yield a result
linear proportional to κ. If we would only consider (P)S baryon exchange or
resonance in the Kadyshevsky integral equation, then we indeed would have
a situation as in (2.32). Looking at the powers of κ, κ′ in (5.32) we see that
h(κ) in (2.32) will be of the order O( 1

κ2 ) and the phenomenological ”form
factor” (2.34) would not be necessary.

5.5.2 (Pseudo) Vector Coupling

The g2 contributions of (pseudo) vector coupling in the second and first order
of the S-matrix are

S(2) = (−i)2

∫

d4xd4y θ[n(x− y)]HI(x)HI(y)

= − f 2

m2
π

∫

d4xd4y θ[n(x− y)]
[

ψ(+)Γµ (∂µφ)
]

x
(i∂/+M)

×∆+(x− y)
[

Γνψ
(+) (∂νφ)

]

y
,
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S(1) = (−i)
∫

d4xHI(x)

=
f 2

2m2
π

∫

d4xd4y
[

ψ(+)Γµ (∂µφ)
]

x
θ[n(x− y)] (i∂/+M)

×∆(1)(x− y)
[

Γνψ
(+) (∂νφ)

]

y
. (5.35)

Adding the two together

S(2) + S(1) = − if 2

2m2
π

∫

d4xd4y θ[n(x− y)]
[

ψ(+)Γµ (∂µφ)
]

x
(i∂/+M)

×∆(x− y)
[

Γνψ
(+) (∂νφ)

]

y
, (5.36)

leads again to a covariant, n-independent result (κ′ = κ = 0). See the text
below (5.27) about this issue and other important observations.

The two Kadyshevsky diagrams resulting from (5.36) are the same as
shown in figure 5.2. The amplitudes that go with them, in case of (pseudo)
vector coupling, are

Mκ′κ(u) =
f 2

2m2
π

∫

dκ1

κ1 + iε
ū(p′s′)

[

(Γ · q) (P/u +MB) (Γ · q′)
]

u(ps)∆(Pu) ,

Mκ′κ(s) =
f 2

2m2
π

∫

dκ1

κ1 + iε
ū(p′s′)

[

(Γ · q′) (P/s +MB) (Γ · q)
]

u(ps)∆(Ps) ,

(5.37)

where Pi and ∆(Pi) are defined below (5.28). As far as the κ1 integration is
concerned we take similar steps as in (5.30) and (5.31).

After some (Dirac) algebra the amplitudes in (5.37) become

MV
κ′κ(u) =

f 2
V

2m2
π

ū(p′s′)

[

− (M −MB)

(

−M2 +
1

2
(up′q + upq′) + 2MQ/

−1

2
(κ′ − κ) (p′ − p) · n+

1

2
(κ′ − κ) [n/,Q/]− 1

2
(κ′ − κ)2

)

−1

2

(

upq′ −M2
)

(

Q/+
1

2
(κ′ − κ)n/

)

−1

2

(

up′q −M2
)

(

Q/− 1

2
(κ′ − κ)n/

)

+κ̄

(

−(p′ − p) · n Q/ + 2Q · n Q/+M2n/− n/

2
(up′q + upq′)

)]

u(p)

× 1

(∆u · n+ κ̄)2 − A2
u + iε

,
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MPV
κ′κ (u) =

f 2
PV

2m2
π

ū(p′s′)

[

− (M +MB)

(

−M2 +
1

2
(up′q + upq′) + 2MQ/

−1

2
(κ′ − κ) (p′ − p) · n+

1

2
(κ′ − κ) [n/,Q/]− 1

2
(κ′ − κ)2

)

−1

2

(

upq′ −M2
)

(

Q/+
1

2
(κ′ − κ)n/

)

−1

2

(

up′q −M2
)

(

Q/− 1

2
(κ′ − κ)n/

)

+κ̄

(

−(p′ − p) · n Q/ + 2Q · n Q/+M2n/− n/

2
(up′q + upq′)

)]

u(p)

× 1

(∆u · n+ κ̄)2 − A2
u + iε

,

MV
κ′κ(s) =

f 2
V

2m2
π

ū(p′s′)

[

− (M −MB)

(

−M2 +
1

2
(sp′q′ + spq)− 2MQ/

−1

2
(κ′ − κ) (p′ − p) · n− 1

2
(κ′ − κ) [n/,Q/]− 1

2
(κ′ − κ)2

)

+
1

2

(

sp′q′ −M2
)

(

Q/+
1

2
(κ′ − κ)n/

)

+
1

2

(

spq −M2
)

(

Q/− 1

2
(κ′ − κ)n/

)

+κ̄

(

(p′ − p) · n Q/ + 2Q · n Q/+M2 n/ − n/

2
(sp′q′ + spq)

)]

u(p)

× 1

(∆s · n+ κ̄)2 − A2
s + iε

,

MPV
κ′κ (s) =

f 2
PV

2m2
π

ū(p′s′)

[

− (M +MB)

(

−M2 +
1

2
(sp′q′ + spq)− 2MQ/

−1

2
(κ′ − κ) (p′ − p) · n− 1

2
(κ′ − κ) [n/,Q/]− 1

2
(κ′ − κ)2

)

+
1

2

(

sp′q′ −M2
)

(

Q/+
1

2
(κ′ − κ)n/

)

+
1

2

(

spq −M2
)

(

Q/− 1

2
(κ′ − κ)n/

)

+κ̄

(

(p′ − p) · n Q/ + 2Q · n Q/+M2 n/ − n/

2
(sp′q′ + spq)

)]

u(p)

× 1

(∆s · n+ κ̄)2 − A2
s + iε

. (5.38)
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Here, (P)V stands for (pseudo) vector. Taking the limit κ′ = κ = 0

MV
00(u) =

f 2
V

2m2
π

ū(p′s′)

[

− (M −MB)
(

−M2 + u+ 2MQ/
)

−
(

u−M2
)

Q/

]

u(p)
1

u−M2
B + iε

,

MPV
00 (u) =

f 2
PV

2m2
π

ū(p′s′)

[

− (M +MB)
(

−M2 + u+ 2MQ/
)

−
(

u−M2
)

Q/

]

u(p)
1

u−M2
B + iε

,

MV
00(s) =

f 2
V

2m2
π

ū(p′s′)

[

− (M −MB)
(

−M2 + s− 2MQ/
)

+
(

s−M2
)

Q/

]

u(p)
1

s−M2
B + iε

,

MPV
00 (s) =

f 2
PV

2m2
π

ū(p′s′)

[

− (M +MB)
(

−M2 + s− 2MQ/
)

+
(

s−M2
)

Q/

]

u(p)
1

s−M2
B + iε

, (5.39)

where we, again, get factor 1/2 from the result in [11] for the same reason as
mentioned in section 5.5.1.

Studying the n-dependence of the amplitudes (5.38) in light of the n-
dependence of the Kadyshevsky integral equation as before (see section 2.4.3),
we see that, again, all n-dependent terms in (5.38) are linear proportional to
either κ or κ′. Therefore, when we would only consider (P)V baryon exchange
or resonance in the Kadyshevsky integral equation, we would, again, find our-
self in a similar situation as in (2.32), when studying the n-dependence. How-
ever, looking at the powers of κ and κ′ in (5.38) we notice that the function
h(κ) in (2.32) is of higher order then O( 1

κ2 ). Therefore, the phenomenological
”form factor” (2.34) would be necessary.

5.5.3 πN∆33 Coupling

As far as the πN∆33 coupling is concerned we find the following g2
gi contri-

bution in the second and first order of the S-matrix from (5.25)

S(2) = (−i)2

∫

d4xd4y θ[n(x− y)]HI(x)HI(y)
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= −g2
gi

∫

d4xd4y θ[n(x− y)]
[

ǫµναβψ(+)γ5γα∂βφ
]

x
∂xµ∂

y
µ′ (i∂/+M∆)

× Λνν′∆
+(x− y)

[

ǫµ
′ν′α′β′

γ5γα′ψ(+)∂β′φ
]

y
,

S(1) = (−i)
∫

d4xHI(x)

=
g2
gi

2

∫

d4xd4y
[

ǫµναβψ(+)γ5γα∂βφ
]

x
θ[n(x− y)]∂µ∂µ′ (i∂/+M∆)

×
(

gνν′ −
1

3
γνγν′

)

∆(1)(x− y)
[

ǫµ
′ν′α′β′

γ5γα′ψ(+)∂β′φ
]

y

+
ig2
gi

2

[

ǫµναβψ(+)γ5γα∂βφ
]

[

(i∂/+M∆)nµnµ′ + n/ (nµi∂µ′ + i∂µnµ′)

− 2n/nµnµ′n · i∂
](

gνν′ −
1

3
γνγν′

)

[

ǫµ
′ν′α′β′

γ5γα′ψ(+)∂β′φ
]

,

(5.40)

where

Λµν = −
[

gµν −
1

3
γµγν +

2∂µ∂ν
3M2

− 1

3M∆

(γµi∂ν − γνi∂µ)
]

. (5.41)

Because of the anti-symmetric property of the epsilon tensor all derivative
terms in (5.41) do not contribute.

Upon addition of the two contributions in (5.40) we find

S(2) + S(1) =

= −
ig2
gi

2

∫

d4xd4y
[

ǫµναβψ(+)γ5γα∂βφ
]

x
∂µ∂µ′ (i∂/+M∆)

(

gνν′ −
1

3
γνγν′

)

× θ[n(x− y)]∆(x− y)
[

ǫµ
′ν′α′β′

γ5γα′ψ(+)∂β′φ
]

y
. (5.42)

Again, we have a similar situation for the S-matrix element as in section 5.5.1.
Therefore, we refer for the discussion of (5.42) to the text below (5.27).

A difference of this S-matrix element as compared of those of the forgoing
sections (sections 5.5.1 and 5.5.2) is that the derivatives do not only act on
the ∆(x−y) propagator in (5.42), but also on the θ[n(x−y)]. Therefore, the
P̄ method of section 3.5.3 can be applied. Of course this is obvious since this
method was introduced in order to incorporate terms like the second term
on the rhs of S(1) in (5.40).
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As in the previous sections (sections 5.5.1 and 5.5.2) two amplitudes arise
from this S-matrix: ∆33 exchange and resonance, whose the Kadyshevsky
diagrams are shown in figure 5.2. The amplitudes are

Mκ′κ(u) = −
g2
gi

2

∫

dκ1

κ1 + iε
ǫµναβū(p′s′)γαγ5qβ

(

P̄u
)

µ

(

P̄u
)

µ′

(

P̄/u +M∆

)

×
(

gνν′ −
1

3
γνγν′

)

∆(Pu) ǫ
µ′ν′α′β′

γα′γ5q
′
β′u(ps) ,

Mκ′κ(s) = −
g2
gi

2

∫

dκ1

κ1 + iε
ǫµναβū(p′s′)γαγ5q

′
β

(

P̄s
)

µ

(

P̄s
)

µ′

(

P̄/s +M∆

)

×
(

gνν′ −
1

3
γνγν′

)

∆(Ps) ǫ
µ′ν′α′β′

γα′γ5qβ′u(ps) , (5.43)

where P̄i = Pi + nκ1, i = u, s (see section 3.5.3). Pi and ∆(Pi) are as before.
Performing the κ1 integral is in this situation even simpler then in the

previous cases (section 5.5.1 and 5.5.2). As can be seen from (5.30) the ∆(Pi)
in (5.43) selects two solutions for κ1 (with a relative minus sign, due to ǫ(P 0

i )),
which only need to be applied to the quasi scalar propagator 1/(κ1+iε). This,
because the P̄i is κ1-independent

1

2Ai

[

1

∆i · n+ κ̄− Ai + iε
− 1

∆i · n+ κ̄+ Ai + iε

]

=
1

(∆i · n+ κ̄)2 − A2
i + iε

. (5.44)

Contracting all the indices in (5.43) the amplitudes become

Mκ′κ(u) = −
g2
gi

2
ū(p′s′)

[

(

P̄/u +M∆

)

(

P̄ 2
u (q′ · q)− 1

3
P̄ 2
uq/q/

′ − 1

3
P̄/uq/

(

P̄u · q′
)

+
1

3
P̄/uq/

′
(

P̄u · q
)

− 2

3

(

P̄u · q′
) (

P̄u · q
)

)]

u(ps)

× 1

(∆u · n+ κ̄)2 − A2
u + iε

,

Mκ′κ(s) = −
g2
gi

2
ū(p′s′)

[

(

P̄/s +M∆

)

(

P̄ 2
s (q′ · q)− 1

3
P̄ 2
s q/

′q/− 1

3
P̄/sq/

′
(

P̄s · q
)

+
1

3
P̄/sq/

(

P̄s · q′
)

− 2

3

(

P̄s · q′
) (

P̄s · q
)

)]

u(ps)

× 1

(∆s · n+ κ̄)2 − A2
s + iε

, (5.45)
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which leads, after some (Dirac) algebra, to

Mκ′κ(u) = −
g2
gi

2
ū(p′s′)

[

1

2
P̄ 2
u (M +M∆ −Q/+ κ̄n/) (2m2 − tq′q)

−1

3
P̄ 2
u

(

(M +M∆) q/q/′ +
1

2

(

upq′ −M2
)

q/

+
1

2

(

spq + tq′q −M2 − 4m2
)

q/′ + κ̄n/q/q/′
)

− 1

12

(

P̄ 2
u q/+

M∆

2

(

spq −M2 − 2m2
)

− M∆

2
q/′q/+M∆κ̄n/q/

)(

− 4m2

+sp′q′ − upq′ + tq′q − 2κ̄(p′ − p) · n+ 4κ̄n ·Q−
(

κ′2 − κ2
)

)

+
1

12

(

P̄ 2
u q/

′ +
M∆

2

(

M2 − upq′
)

− M∆

2
q/q/′ +M∆κ̄n/q/

′

)(

− 4m2

+spq − up′q + tq′q + 2κ̄(p′ − p) · n+ 4κ̄n ·Q+
(

κ′2 − κ2
)

)

− 1

24

(

M +M∆ −Q/+ κ̄n/

)(

− 4m2 + sp′q′ − upq′ + tq′q

−2κ̄(p′ − p) · n+ 4κ̄n ·Q−
(

κ′2 − κ2
)

)(

− 4m2 + spq

−up′q + tq′q + 2κ̄(p′ − p) · n+ 4κ̄n ·Q+
(

κ′2 − κ2
)

)]

u(ps)

× 1

(∆u · n+ κ̄)2 − A2
u + iε

,

Mκ′κ(s) = −
g2
gi

2
ū(p′s′)

[

1

2
P̄ 2
s (M +M∆ +Q/+ κ̄n/) (2m2 − tq′q)

−1

3
P̄ 2
s

(

(M +M∆) q/′q/− 1

2

(

spq −M2
)

q/′

− 1

2

(

upq′ + tq′q −M2 − 4m2
)

q/+ κ̄n/q/′q/

)

− 1

12

(

P̄ 2
s q/

′ +
M∆

2

(

M2 + 2m2 − upq′
)

+
M∆

2
q/q/′ +M∆κ̄n/q/

′

)(

4m2

+spq − up′q − tq′q + 2κ̄(p′ − p) · n+ 4κ̄n ·Q+
(

κ′2 − κ2
)

)
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+
1

12

(

P̄ 2
s q/+

M∆

2

(

spq −M2
)

+
M∆

2
q/′q/+M∆κ̄n/q/

)(

4m2

+sp′q′ − upq′ − tq′q − 2κ̄(p′ − p) · n+ 4κ̄n ·Q−
(

κ′2 − κ2
)

)

− 1

24

(

M +M∆ +Q/+ κ̄n/

)(

4m2 + sp′q′ − upq′ − tq′q

− 2κ̄(p′ − p) · n+ 4κ̄n ·Q−
(

κ′2 − κ2
)

)(

4m2 + spq

− up′q − tq′q + 2κ̄(p′ − p) · n+ 4κ̄n ·Q+
(

κ′2 − κ2
)

)]

u(ps)

× 1

(∆s · n+ κ̄)2 − A2
s + iε

, (5.46)

where

P̄ 2
u =

1

2
(up′q + upq′)−

1

4
(κ′ − κ)2 + 2κ̄∆u · n+ κ̄2 ,

P̄ 2
s =

1

2
(sp′q′ + spq)−

1

4
(κ′ − κ)2 + 2κ̄∆s · n+ κ̄2 , (5.47)

and

q/′ = Q/− 1

2
n/(κ′ − κ) ,

q/ = Q/+
1

2
n/(κ′ − κ) ,

q/′q/ = −2MQ/+
1

2
(sp′q′ + spq)−M2 − 1

2
(κ′ − κ)(p′ − p) · n

+
1

2
(κ′ − κ) [Q/, n/]− 1

2
(κ′ − κ)2 ,

q/q/′ = 2MQ/+
1

2
(up′q + upq′)−M2 − 1

2
(κ′ − κ)(p′ − p) · n

−1

2
(κ′ − κ) [Q/, n/]− 1

2
(κ′ − κ)2 ,

n/q/′ = Mn/− (n · p′)− 1

2
[Q/, n/] + n ·Q− 1

2
(κ′ − κ) ,

n/q/ = −Mn/+ (n · p′)− 1

2
[Q/, n/] + n ·Q+

1

2
(κ′ − κ) ,

n/q/′q/ = −M2n/+
1

2
(sp′q′ + spq)n/−

1

2
(κ′ − κ)n · (p′ − p)n/

+ (κ′ − κ) (n ·Q)n/− (κ′ − κ)Q/− 2n · (p′ − p)Q/− 1

2
(κ′ − κ)2n/ ,
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n/q/q/′ = −M2n/+
1

2
(up′q + upq′)n/−

1

2
(κ′ − κ)n · (p′ − p)n/

− (κ′ − κ) (n ·Q)n/+ (κ′ − κ)Q/+ 2n · (p′ − p)Q/− 1

2
(κ′ − κ)2n/ .

(5.48)

Taking the limit κ′ = κ = 0 yields

M00(u) = −
g2
gi

2
ū(p′s′)

[

u

2
(M +M∆ −Q/) (2m2 − t)

− u

3

(

(M +M∆)
(

2MQ/+ u−M2
)

−m2Q/

)

− 1

6

(

uQ/+M∆

(

MQ/−m2
)

)(

M2 −m2 − u
)

+
1

6

(

uQ/+M∆

(

M2 − u−MQ/
)

)(

M2 −m2 − u
)

−1

6

(

M +M∆ −Q/
)(

M2 −m2 − u
)2
]

u(ps)

× 1

u−M2
∆ + iε

,

M00(s) = −
g2
gi

2
ū(p′s′)

[

s

2
(M +M∆ +Q/) (2m2 − t)

− s

3

(

(M +M∆)
(

−2MQ/+ s−M2
)

+m2Q/

)

− 1

6

(

sQ/+M∆

(

MQ/+m2
)

)(

s−M2 +m2

)

+
1

6

(

sQ/+M∆

(

s−M2 −MQ/
)

)(

s−M2 +m2

)

− 1

6

(

M +M∆ +Q/

)(

s−M2 +m2

)2
]

u(ps)

× 1

s−M2
∆ + iε

. (5.49)

Considering only the ∆33 exchange and resonance in the Kadyshevsky inte-
gral equation and study its n-dependence, we see from (5.46) and (5.48) that
we have a similar situation as in the previous section (section 5.5.2): all n-
dependent terms in (5.46) and (5.48) are either proportional to κ or to κ′ and
therefore (2.32) applies. The function h(κ) is such that the phenomenological
”form factor” (2.34) is necessary.
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5.6 Conclusion and Discussion

At the end of this chapter we conclude and discuss the main results. We
started with formally implementing absolute pair suppression by excluding
ψ(±)Γψ(∓) transitions in the interaction Lagrangian. After a whole procedure
of getting the interaction Hamiltonian this feature is still present in the am-
plitudes, where the ūv, v̄u contributions are zero. This is a particularly nice
for the Kadyshevsky integral equation as we have discussed in section 2.4.2.

It should be noticed that still negative energy propagates inside an am-
plitude via the ∆-propagator. However, this is also the case in [11] and in
the example of the infinite dense anti-neutron star.

From the S-matrix elements and the amplitudes we see that they are
causal, covariant and n-independent. Moreover, the amplitudes are just a
factor 1/2 of the usual Feynman expressions. This could be intercepted by
rescaling the coupling constant in the interaction Lagrangian.

We have seen that it is particularly convenient to use the Kadyshevsky for-
malism. Since positive and negative energy contributions are separated it is
much easier to implement pair suppression and to analyze the n-dependence.
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Chapter 6

Partial Wave Expansion

In elastic scattering processes important observables are the phase-shifts. In
this chapter we introduce the phase-shifts by introducing the partial wave
expansion, which is particularly convenient for solving the Kadyshevsky in-
tegral equation (2.26). By also using the helicity basis we’re able to link
the amplitudes obtained in the previous sections (section 4 and 5) to the
phase-shifts.

6.1 Amplitudes and Invariants

In Feynman formalism the most general form of the parity-conserving am-
plitude describing πN -scattering is [42, 43]

Mfi = ū(p′s′)

[

A+BQ/

]

u(ps) , (6.1)

where the invariants A and B are functions of the Mandelstam variable t, u
and s. However, in Kadyshevsky formalism there’s an extra variable nµ.
Therefore the number of invariants is doubled. Following the procedure of
[43] we can construct an extra vector and tensor term

Mκ′κ = ū(p′s′)

[

A+BQ/+ A′n/+B′ [n/,Q/]

]

u(ps) . (6.2)

In Kadyshevsky formalism the invariants A,B,A′ and B′ are not only func-
tions of the Mandelstam variables (1.4), but also of κ and κ′. The contribu-
tion of the invariants to the various exchange processes is given in appendix
C.

In proceeding we don’t keep nµ general, but choose it to be [15, 17]

nµ =
(p+ q)µ
√
spq

=
(p′ + q′)µ
√
sp′q′

. (6.3)

83
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With this choice, nµ is not an independent variable anymore and the number
of invariants is reduced to two, again. This is made explicit as follows

ū(p′s′) [n/]u(ps) =
1

√
sp′q′ +

√
spq

ū(p′s′) [Mf +Mi + 2Q/]u(ps) ,

ū(p′s′)

[

[n/,Q/]

]

u(ps) = 0 . (6.4)

As a result of the choice (6.3) the invariants A and B in (6.2) receive contri-
butions from the invariant A′. We, therefore, redefine the amplitude

Mκ′κ = ū(p′s′)

[

A′′ +B′′Q/

]

u(ps) ,

A′′ = A+
1

√
sp′q′ +

√
spq

(Mf +Mi)A
′ ,

B′′ = B +
2

√
sp′q′ +

√
spq

A′ . (6.5)

Besides the invariants A′′ and B′′, we also introduce the invariants F and
G very similar to [42] 1

Mκ′κ = χ†(s′)

[

F +G (σ · p̂′) (σ · p̂)

]

χ(s) , (6.6)

since we will use the helicity basis. Here, χ(s) is a helicity state vector. In [11]
this expansion was used in combination with the expansion of the amplitude
in Pauli spinor space. The connection between the two are also given there.

In order to see the connection between the invariants A′′, B′′ and F,G we
express the operators 1 and Q/ sandwiched between initial and final state u
spinors in terms of initial and final state χ vectors

ū(p′s′) u(ps) =
√

(E ′ +Mf )(E +Mi)

χ′ †(s′)

[

1− σ · p′ σ · p
(E ′ +Mf )(E +Mi)

]

χ(s) ,

ū(p′s′) Q/ u(ps) =
√

(E ′ +Mf )(E +Mi) χ
′ †(s′)

[

1

2
[(W ′ −Mf ) + (W −Mi)]

+
1

2
[(W ′ +Mf ) + (W +Mi)]

σ · p′ σ · p
(E ′ +Mf )(E +Mi)

]

χ(s) ,

(6.7)

1The difference is a normalization factor.
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from this we deduce that

F =
√

(E ′ +Mf )(E +Mi)

{

A′′ +
1

2
[(W ′ −Mf ) + (W −Mi)] B

′′

}

,

G =
√

(E ′ −Mf )(E −Mi)

{

− A′′ +
1

2
[(W ′ +Mf ) + (W +Mi)] B

′′

}

.

(6.8)

6.2 Helicity Amplitudes and Partial Waves

In this section we want to link the invariants A′′ and B′′ to experimental
observable phase-shifts. This is done by using the helicity basis and the
partial wave expansion. The procedure is based on [44] and similar to [33].

The helicity amplitude in terms of the invariants F and G (see (6.6)) is

Mκ′κ(λf , λi) = Cλf ,λi
(θ, φ)

[

F + 4λfλiG

]

, (6.9)

where

Cλf ,λi
(θ, φ) = χ†

λf
(p̂′) · χλi

(p̂) = D
1/2∗
λiλf

(φ, θ,−φ) ,

C±1/2,±1/2(θ, φ) = cos θ/2 ,

C±1/2,∓1/2(θ, φ) = ∓e±iφ sin θ/2 . (6.10)

Here, DJ
mm′(α, β, γ) are the Wigner D-matrices [44] and the angles θ and

φ are defined as the polar angles of the CM-momentum p′ in a coordinate
system that has p along the positive z-axis. In the following we take as the
scattering plane the xz-plane, i.e. φ = 0 (see figure 1.1). Furthermore, we
introduce the functions f1,2 by

F =
f1

4π
, G =

f2

4π
. (6.11)

Then, with these settings the helicity amplitude (6.9) is

Mκ′κ(λf , λi) =
1

4π
d

1/2
λiλf

(θ)

(

f1 + 4λfλif2

)

, (6.12)

Using the explicit forms of the Wigner d-matrices as in (6.10) we see that we
have the following relations between the various helicity amplitudes

Mκ′κ(1/2, 1/2) = Mκ′κ(−1/2,−1/2) ,

Mκ′κ(−1/2, 1/2) = −Mκ′κ(1/2,−1/2) . (6.13)
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Next, we make the partial wave expansion of the helicity amplitudes in
the CM-frame very similar to [42] 2

Mκ′κ(λfλi) = (4π)−1
∑

J

(2J + 1)MJ
κ′κ(λfλi) D

J∗
λi,λf

(φ, θ,−φ) ,

= (4π)−1ei(λi−λf )φ
∑

J

(2J + 1)MJ
κ′κ(λfλi) d

J
λi,λf

(θ) , (6.14)

Because of the properties of the Wigner d-matrices the partial wave equiv-
alent of (6.13) is

MJ
κ′κ(1/2, 1/2) = MJ

κ′κ(−1/2,−1/2) ,

MJ
κ′κ(−1/2, 1/2) = MJ

κ′κ(1/2,−1/2) . (6.15)

Using the partial wave expansion as in (6.14) we obtain the Kadyshevsky
integral equation (2.26) in the partial wave basis. Here, we just show the
result; for the details we refer to [33]

MJ
00(λfλi) = M irr J

00 (λfλi) +
∑

λn

∫ ∞

0

k2
ndkn M

irr J
0κ (λfλn)

×G′
κ (Wn;W ) MJ

κ0(λnλi) . (6.16)

As mentioned in the text below (2.26), the κ-label is fixed after integration.
Because of the summation over the intermediate helicity states the partial

wave Kadyshevsky integral equation (6.16) is a coupled integral equation. It
can be decoupled using the combinations f(J−1/2)+ and f(J+1/2)− defined by

(

fL+

f(L+1)−

)

=

(

+1 +1
+1 −1

) (

MJ(+1/2 1/2)
MJ(−1/2 1/2)

)

, (6.17)

here we introduced L ≡ J − 1/2 3.
In (6.17) and in the following we omit the subscript 00 for the final am-

plitudes where κ and κ′ are put to zero.
A similar expansion as (6.17) holds for M irr J

κ′κ (λfλi), therefore the decou-
pling can easily be seen by adding and subtracting (6.16) for MJ(1/2 1/2)
and MJ(−1/2 1/2), and using (6.15). What one gets is

fL±(W ′,W ) = f irrL±(W ′,W ) +

∫ ∞

0

k2
ndkn f

irr
L±(W ′,Wn)

×G (W ′,Wn) fL±(Wn,W ) . (6.18)

2The difference is again a normalization factor. We use the same normalization as [11]
and [33].

3The labels L+ and (L+ 1)− in (6.17) and their relation to total angular momentum
J come from parity arguments as is best explained in [44].
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The two-particle unitarity relation for the partial-wave helicity states
reads [42]

i
[

MJ(λfλi)−MJ∗(λiλf )
]

= 2
∑

λn

k MJ∗(λfλn)M
J(λiλn) , (6.19)

In a similar manner as for the partial wave Kadyshevsky integral equa-
tion (6.16), also the unitarity relation (6.19) decouples for the combinations
(6.17). One gets

ImfL±(W ) = k f ∗
L±(W )fL±(W ) , (6.20)

which allows for the introduction of the elastic phase-shifts

fL±(W ) =
1

k
eiδL±(W ) sin δL±(W ) . (6.21)

From (6.21) we see that once we have found the invariants fL±(W ) by solving
the partial wave Kadyshevsky integral equation (6.16) we can determine the
phase-shifts. Now, we must find a relation between the invariants fL±(W )
and the invariants f1,2. This is done by considering (6.12) and (6.14) again
for the helicities λf , λi = 1/2 ,±1/2. Using the formulas

(J + 1/2)dJ1/2 1/2(θ) = cos θ/2
(

P ′
J+1/2(cos θ)− P ′

J−1/2(cos θ)
)

,

(J + 1/2)dJ−1/2 1/2(θ) = sin θ/2
(

P ′
J+1/2(cos θ) + P ′

J−1/2(cos θ)
)

, (6.22)

where PL(cos θ) are Legendre polynomials, and the relations (6.15) one de-
rives

f1 ± f2 = 2
∑

J

(

P ′
J+1/2 ∓ P ′

J−1/2

)

MJ(±1/2, 1/2) . (6.23)

Solving for f1,2 we get

f1 =
∑

J

[(

MJ(1/2, 1/2) +MJ(−1/2, 1/2)

)

P ′
J+1/2

−
(

MJ(1/2, 1/2)−MJ(−1/2, 1/2)

)

P ′
J−1/2

]

,

f2 =
∑

J

[(

MJ(1/2, 1/2)−MJ(−1/2, 1/2)

)

P ′
J+1/2

−
(

MJ(1/2, 1/2) +MJ(−1/2, 1/2)

)

P ′
J−1/2

]

. (6.24)

From the combinations in (6.24) we recognize the partial wave amplitudes fL±
from (6.17) and writing again J = L+ 1/2 one gets the following expansion
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in terms of derivatives of the Legendre polynomials

f1 =
∑

L=0

[

fL+P
′
L+1(x)− f(L+1)−(x)P ′

L

]

= f0+ +
∑

L=1

[

fL+P
′
L+1 − fL−P ′

L−1

]

,

f2 =
∑

L=1

[fL− − fL+]P ′
L . (6.25)

Using the orthogonality relations of the Legendre polynomials (6.25) can be
inverted to find that

fL± =
1

2

∫ +1

−1

dx [PL(x)f1 + PL±1(x)f2]

= f1,L + f2,L±1 , (6.26)

where x = cos θ. With (6.26) the (partial wave projections of the) invariants
f1,2 are related to the invariants fL±, from which the phase-shifts can be
deduced.

6.3 Partial Wave Projection

Via the equations (6.26), (6.11) and (6.8), the partial waves fL± can be
traced back to the partial wave projection of the invariant amplitudes A′′

and B′′, which means that we are looking for the partial wave projections of
the invariants A,B,A′, B′.

Before doing so we include form factors in the same way as in [11]. As
mentioned there, they are needed to regulate the high energy behavior and
to take into account the extended size of the mesons and baryons. We take
them to be

F (Λ) = e
−(kf−ki)

2

Λ2 for t-channel ,

F (Λ) = e
−(k

2
f +k

2
i )

Λ2 for u, s-channel . (6.27)

The partial wave projection includes an integration over cos θ = x. We,
therefore, investigate the x-dependence of the invariants. Main concern is the
propagators. We want to write them in the form 1/(z±x), which is especially
difficult for the propagators in the t-channel, because of the square root in
At. We therefore use the identity

1

ω(ω + a)
=

1

ω2 − a2
+

2a

π

∫ ∞

0

dλ

λ2 + a2

[

1

ω2 + λ2
− 1

ω2 − a2

]

, (6.28)
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which holds for ω, a ∈ R. With this identity we write the propagators as

1

2At

1

∆t · n+ κ̄− At + iε
= − 1

2p′p

[

1

2
+

∆t · n+ κ̄

π

∫

dλ

fλ(κ̄)

]

1

zt(κ̄)− x

+
1

2p′p

∆t · n+ κ̄

π

∫

dλ

fλ(κ̄)

1

zt,λ − x
,

1

2At

1

−∆t · n+ κ̄− At + iε
= − 1

2p′p

[

1

2
− ∆t · n− κ̄

π

∫

dλ

fλ(−κ̄)

]

× 1

zt(−κ̄)− x

− 1

2p′p

∆t · n− κ̄
π

∫

dλ

fλ(−κ̄)
1

zt,λ − x
,

1

(κ̄+ ∆u · n)2 − A2
u

= − 1

2p′p

1

zu(κ̄) + x
, (6.29)

where p′p = |p′||p| and

fλ(κ̄) = λ2 + (∆t · n)2 + κ̄2 + 2κ̄∆t · n ,

zi(κ̄) =
1

2p′p

[

p′ + p+M2 − κ̄2 − 2κ̄∆0
i − (∆0

i )
2
]

,

zt,λ =
1

2p′p

[

p′ + p+M2 + λ2
]

. (6.30)

The invariants are expanded in polynomials of x, like

j±(t) =
[

Xj(±) + xY j(±)
]

D(1)(±∆t, n, κ̄)

=
1

2p′p

[(

Xj
1(±) + xY j

1 (±)

)

F (Λt)

zt(±κ̄)− x

+

(

Xj
2(±) + xY j

2 (±)

)

F (Λt)

zt,λ − x

]

,

j(u) =
1

2p′p

(

Xj + xY j + x2Zj

)

F (Λu)

zu(κ̄) + x
,

j(s) =

(

Xj + xY j + x2Zj

)

F (Λs)
1
4
(W ′ +W + κ′ + κ)2 −M2

B

, (6.31)

where j is an element of the set (A,B,A′, B′). Furthermore, there are the
relations in the t-channel

Xj
1(±) = −

[

1

2
+
±∆0

t + κ̄

π

∫

dλ

fλ(±κ̄)

]

Xj(±) ,

Xj
2(±) =

±∆0
t + κ̄

π

∫

dλ

fλ(±κ̄)
Xj(±) . (6.32)
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The coefficients Xj, Y j and Zj can easily be extracted from the invariants
and they are given for the various exchange processes in appendix C.

With the partial wave projection

jL(i) =
1

2

∫ 1

−1

dxPL(x) j(i) , (6.33)

where i = t, u, s, we find the partial wave projections of the invariants

j±L (t) =
1

2p′p

[(

Xj
1(±) + zt(±κ̄)Y j

1 (±)

)

UL(Λt, zt(±κ̄))

+

(

Xj
2(±) + zt,λY

j
2 (±)

)

UL(Λt, zt,λ)

−Y j
1 (±)RL(Λt, zt(±κ̄))− Y j

2 (±)RL(Λt, zt,λ)
]

jL(u) =
(−1)L

2p′p

[(

Xj − zu(κ̄)Y j + z2
u(κ̄)Z

j

)

UL(Λu, zu(κ̄))

−
(

−Y j + zu(κ̄)Z
j

)

RL(Λu, zu(κ̄))

−ZjSL(Λu, zu(κ̄))

]

jL(s) =

[

Xj δL,0 +
1

3
Y j δL,1 +

1

3

(

2

5
δL,2 + δL,0

)

Zj

]

× F (Λs)
1
4
(W ′ +W + κ′ + κ)2 −M2

B

, (6.34)

where

UL(Λ, z) =
1

2

∫ 1

−1

dx
PL(x)F (Λ)

z − x ,

RL(Λ, z) =
1

2

∫ 1

−1

dxPL(x)F (Λ) ,

SL(Λ, z) =
1

2

∫ 1

−1

dx xPL(x)F (Λ) . (6.35)
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Appendix A

Proof of the form of Φα(x, σ)

Here, we prove that

Φα(x, σ) = Φα(x) +

∫ σ

∞

d4y Da(y)Rαβ∆(x− y)ja,β(y) . (A.1)

The proof is divided in several steps. We start in section A.1 and A.2 with
scalar fields and no derivatives in the interaction Lagrangian. Section A.1
gives a proof up to second order and section A.2 the proof up to all orders.

We extend the proof by including multiple derivatives in the interaction
Lagrangian in section A.3 and make a generalization to other types of fields
in A.4.

A.1 2nd Order

As mentioned before we consider scalar fields and no derivatives in the inter-
action Lagrangian. Therefore we proof that

φ(x, σ) = φ(x) +

∫ σ

−∞

d4y∆(x− y)j(y) , (A.2)

is valid up to second order in the coupling constant.
Imagine we have a scalar self interaction of a general form

LI(x) = −HI(x) = gφn(x) , (A.3)

We define a quantity j(x), which is the derivative of the interaction Hamil-
tonian with respect to the scalar field.

j(x) ≡ ∂HI

∂φ
= −ngφn−1(x) , (A.4)
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Although we have a form of the interaction Hamiltonian in (A.3) it is merely
meant to demonstrate the following essential equation

[φ(x),HI(y)] = −ngφn−1(y)i∆(x− y) = i∆(x− y)j(y) . (A.5)

The last important ingredient is the expansion of the evolution operator up
to order g2

U [σ] = 1− i
∫ σ

−∞

d4x′HI(x
′)

−
∫ σ

−∞

∫ σ

−∞

d4x′d4y′ θ(σx′ − σy′)HI(x
′)HI(y

′) ,

U−1[σ] = 1 + i

∫ σ

−∞

d4x′HI(x
′)

−
∫ σ

−∞

∫ σ

−∞

d4x′d4y′ θ(σy′ − σx′)HI(x
′)HI(y

′) . (A.6)

To proof (A.2) we start with

φ(x, σ) = U−1[σ]φ(x)U [σ]

= φ(x)− i
∫ σ

−∞

d4x′ φ(x)HI(x
′) + i

∫ σ

−∞

d4x′HI(x
′)φ(x)

−
∫ σ

−∞

∫ σ

−∞

d4x′d4y′ θ[σx′ − σy′ ]φ(x)HI(x
′)HI(y

′)

−
∫ σ

−∞

∫ σ

−∞

d4x′d4y′ θ[σy′ − σx′ ]HI(x
′)HI(y

′)φ(x)

+

∫ σ

−∞

∫ σ

−∞

d4x′d4y′HI(x
′)φ(x)HI(y

′)

= φ(x)− i
∫ σ

−∞

d4x′
[

φ(x),HI(x
′)
]

−
∫ σ

−∞

∫ σ

−∞

d4x′d4y′ θ[σx′ − σy′ ]
[

φ(x),HI(x
′)
]

HI(y
′)

−
∫ σ

−∞

∫ σ

−∞

d4x′d4y′ θ[σy′ − σx′ ]HI(x
′)
[

HI(y
′), φ(x)

]

. (A.7)

Here, we have brought φ(x) between the interaction Hamiltonians, such that
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several contributions cancel. What is left are the commutators

φ(x, σ) = φ(x) +

∫ σ

−∞

d4x′∆(x− x′)j(x′)

−i
∫ σ

−∞

d4x′
∫ σx′

−∞

d4y′∆(x− x′)j(x′)HI(y
′)

+i

∫ σ

−∞

d4x′
∫ σx′

−∞

d4y′∆(x− x′)HI(y
′)j(x′) ,

= φ(x) +

∫ σ

−∞

d4x′∆(x− x′)U−1[σx′ ]j(x
′)U [σx′ ]

= φ(x) +

∫ σ

−∞

d4x′∆(x− x′)j(x′) , (A.8)

which is what we wanted to proof up to second order in the coupling constant.

Although in principle we have defined j(x) in (A.4) in a different way
then in section 3.2, we see by (A.3) that they are equivalent in this example.

A.2 All Orders

In this section we proof (A.2) to all orders. In order to do so we will need
the expansion of the U operator and its inverse

U [σ] = 1 +
∞
∑

n=1

(−i)n
∫ σ

−∞

d4x1 . . . d
4xn θ(σ1 − σ2) . . . θ(σn−1 − σn)

×HI(x1) . . .HI(xn) ,

=
∞
∑

n=0

Un[σ] , U0[σ] = 1 ,

U−1[σ] = 1 +
∞
∑

n=1

in
∫ σ

−∞

d4x1 . . . d
4xn θ(σn − σn−1) . . . θ(σ2 − σ1)

×HI(x1) . . .HI(xn) ,

=
∞
∑

n=0

U−1
n [σ] , U−1

0 [σ] = 1 . (A.9)
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Again we start from φ(x, σ) = U−1[σ]φ(x)U [σ]. Consider now the 2mth

order. In the end we need to sum over all m

U−1[σ]φ(x)U [σ] = U−1
0 φ(x)U2m + U−1

1 φ(x)U2m−1 +

. . .+ U−1
m φ(x)Um + . . .

+U−1
2m−1 φ(x)U1 + U−1

2m φ(x)U0 . (A.10)

1 Bring every φ(x) in the middle of the interaction Hamiltonians at the cost
of commutators

∗ φ(x)HI(x1) . . .HI(x2m) =

= HI(x1) . . .HI(xm−1)φ(x)HI(xm+1) . . .HI(x2m)

+
[

φ(x),HI(x1) . . .HI(xm)
]

HI(xm+1) . . .HI(x2m)

∗ HI(x1)φ(x)HI(x2) . . .HI(x2m) =

= HI(x1) . . .HI(xm−1)φ(x)HI(xm+1) . . .HI(x2m)

+HI(x1)
[

φ(x),HI(x2) . . .HI(xm)
]

HI(xm+1) . . .HI(x2m)

. . .

∗ HI(x1) . . .HI(x2m−1)φ(x)HI(x2m) =

= HI(x1) . . .HI(xm−1)φ(x)HI(xm+1) . . .HI(x2m)

+HI(x1) . . .HI(xm)
[

HI(xm+1) . . .HI(x2m−1), φ(x)
]

HI(x2m)

∗ HI(x1) . . .HI(x2m)φ(x) =

= HI(x1) . . .HI(xm−1)φ(x)HI(xm+1) . . .HI(x2m)

+HI(x1) . . .HI(xm)
[

HI(xm+1) . . .HI(x2m), φ(x)
]

. (A.11)

Next, we concentrate on the HI(x1) . . .HI(xm−1)φ(x)HI(xm+1) . . .HI(x2m)
part (, which we call in the following formula �), since it is present in every
term. The factors of i and the θ-functions will cause these factors to cancel

(−i)2m θ(σ1 − σ2)θ(σ2 − σ3)θ(σ3 − σ4) . . .�

+(−i)2m−2 θ(σ2 − σ3)θ(σ3 − σ4) . . .�

+(−i)2m−4θ(σ2 − σ1) θ(σ3 − σ4) . . .�

. . .

+(i)2m−4 . . . θ(σ2m−2 − σ2m−3) θ(σ2m−1 − σ2m)�

+(i)2m−2 . . . θ(σ2m−2 − σ2m−3)θ(σ2m−1 − σ2m−2) �

1Since m is an integer, 2m is even. This is chosen for convenience.
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+(i)2m . . . θ(σ2m−2 − σ2m−3)θ(σ2m−1 − σ2m−2)θ(σ2m − σ2m−1)� .

(A.12)

To see this cancellation explicitly we use the rule θ(1 − 2) = 1 − θ(2 − 1).
Applying this to the first θ-function of the first line of (A.12) we see that the
”1” cancels the second line. In the remaining term we apply the mentioned
formula to the θ-function containing σ2 and σ3. The ”1” will cancel the third
line etc. In the end all terms will cancel as mentioned before.

Now, we will focus on the commutator part

∗
[

φ(x),HI(x1) . . .HI(xm)
]

HI(xm+1) . . .HI(x2m)

= i∆(x− x1)j(x1)HI(x2) . . .HI(x2m)

+i∆(x− x2)HI(x1)j(x2)HI(x3) . . .HI(x2m)

+ . . .+ i∆(x− xm)HI(x1) . . .HI(xm−1)j(xm)HI(xm+1) . . .HI(x2m)

∗ HI(x1)
[

φ(x),HI(x2) . . .HI(xm)
]

HI(xm+1) . . .HI(x2m)

= i∆(x− x2)HI(x1)j(x2)HI(x3) . . .HI(x2m)

+i∆(x− x3)HI(x1)HI(x2)j(x3)HI(x4) . . .HI(x2m)

+ . . .+ i∆(x− xm)HI(x1) . . .HI(xm−1)j(xm)HI(xm+1) . . .HI(x2m)

. . .

∗ HI(x1) . . .HI(xm)
[

HI(xm+1) . . .HI(x2m−1), φ(x)
]

HI(x2m)

= −i∆(x− xm+1)HI(x1) . . .HI(xm)j(xm+1)HI(xm+2) . . .HI(x2m)

−i∆(x− xm+2)HI(x1) . . .HI(xm+1)j(xm+2)HI(xm+3) . . .HI(x2m)

+ . . .+ i∆(x− x2m−1)HI(x1) . . .HI(x2m−2)j(x2m−1)HI(x2m)

∗ HI(x1) . . .HI(xm)
[

HI(xm+1) . . .HI(x2m), φ(x)
]

= −i∆(x− xm+1)HI(x1) . . .HI(xm)j(xm+1)HI(xm+2) . . .HI(x2m)

−i∆(x− xm+2)HI(x1) . . .HI(xm+1)j(xm+2)HI(xm+3) . . .HI(x2m)

+ . . .+ i∆(x− x2m)HI(x1) . . .HI(x2m−1)j(x2m) . (A.13)

From this equation we can see that certain terms will combine. But to
demonstrate how, we rewrite these combinations. First, we take a term that
stands on its own (and include factors of i and the θ-functions)

(−i)2m

∫ σ

−∞

d4x1 . . . d
4x2m θ(σ1 − σ2) . . . θ(σ2m−1 − σ2m)

× i∆(x− x1)j(x1)HI(x2) . . .HI(x2m)
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= (−i)2m−1

∫ σ

−∞

d4y

∫ σy

−∞

d4x2 . . . d
4x2m θ(σ2 − σ3) . . . θ(σ2m−1 − σ2m)

×∆(x− y)j(y)HI(x2) . . .HI(x2m)

=

∫ σ

−∞

d4y U−1
0 [σy] ∆(x− y)j(y) U2m−1[σy] . (A.14)

Now we combine the following 2 terms

(−i)2m

∫ σ

−∞

d4x1 . . . d
4x2m θ(σ1 − σ2)θ(σ2 − σ3) . . . θ(σ2m−1 − σ2m)

× i∆(x− x2)HI(x1)j(x2)HI(x3) . . .HI(x2m)

+(−i)2m−2

∫ σ

−∞

d4x1 . . . d
4x2m θ(σ2 − σ3) . . . θ(σ2m−1 − σ2m)

× i∆(x− x2)HI(x1)j(x2)HI(x3) . . .HI(x2m)

= (−i)2m−2i

∫ σ

−∞

d4x1 . . . d
4x2m θ(σ2 − σ1)HI(x1) ∆(x− x2)j(x2)

× θ(σ2 − σ3) . . . θ(σ2m−1 − σ2m)HI(x3) . . .HI(x2m)

=

∫ σ

−∞

d4y U−1
1 [σy] ∆(x− y)j(y) U2m−2[σy] . (A.15)

So far, we have picked certain contributions to demonstrate how they combine
and/or can be rewritten. Now, we make it general by picking k contributions

(−i)2m

∫ σ

−∞

d4x1 . . . d
4x2m θ(σ1 − σ2)θ(σ2 − σ3) . . . θ(σ2m−1 − σ2m)

×i∆(x− xk)HI(x1) . . .HI(xk−1)j(xk)HI(xk+1) . . .HI(x2m)

+i(−i)2m−1

∫ σ

−∞

d4x1 . . . d
4x2m θ(σ2 − σ3) . . . θ(σ2m−1 − σ2m)

×i∆(x− xk)HI(x1) . . .HI(xk−1)j(xk)HI(xk+1) . . .HI(x2m)

+ . . .

+(i)k−2(−i)2m−k+2

∫ σ

−∞

d4x1 . . . d
4x2m θ(σk−2 − σk−3) . . . θ(σ2 − σ1)

×i∆(x− xk)HI(x1) . . .HI(xk−1)j(xk)HI(xk+1) . . .HI(x2m)

×θ(σk−1 − σk) . . . θ(σ2m−1 − σ2m)
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+(i)k−1(−i)2m−k+1

∫ σ

−∞

d4x1 . . . d
4x2m θ(σk−1 − σk−2) . . . θ(σ2 − σ1)

×i∆(x− xk)HI(x1) . . .HI(xk−1)j(xk)HI(xk+1) . . .HI(x2m)

×θ(σk − σk+1) . . . θ(σ2m−1 − σ2m)

= (i)k−1(−i)2m−k

∫ σ

−∞

d4x1 . . . d
4x2m

×θ(σ2 − σ1) . . . θ(σk − σk−1) θ(σk − σk+1) . . . θ(σ2m−1 − σ2m)

×∆(x− xk)HI(x1) . . .HI(xk−1)j(xk)HI(xk+1) . . .HI(x2m)

=

∫ σ

−∞

d4y U−1
k−1[σy] ∆(x− y)j(y) U2m−k[σy] . (A.16)

Summing over all k (1 ≤ k ≤ 2m), the total 2mth order contribution is

∫ σ

−∞

d4y U−1
0 [σy]∆(x− y)j(y)U2m−1[σy]

+

∫ σ

−∞

d4y U−1
1 [σy]∆(x− y)j(y)U2m−2[σy]

+ . . .

+

∫ σ

−∞

d4y U−1
2m−2[σy]∆(x− y)j(y)U1[σy]

+

∫ σ

−∞

d4y U−1
2m−1[σy]∆(x− y)j(y)U0[σy] . (A.17)

Summing over all m we see that

φ(x, σ) = U−1[σ]φ(x)U [σ]

= φ(x) +

∫ σ

−∞

d4y∆(x− y)U−1[σy]j(y)U [σy]

= φ(x) +

∫ σ

−∞

d4y∆(x− y)j(y) , (A.18)

where the first term on the rhs of the last line of (A.18) comes from combining
the first terms in the expansions of U and its inverse.

A.3 Including derivatives

So far, we have not considered interaction Lagrangians including derivatives.
To include this situation in the proof is not very difficult. The main step is
to adjust (A.5). Because the ∆-propagator appearing in the formula to be
proven (A.2) comes from this formula (A.5)
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So, let us start with the following interaction Lagrangian

LI = gψ̄γµψ · ∂µφ ,

HI = −gψ̄γµψ · ∂µφ+
g2

2

[

ψ̄n/ψ
]2

. (A.19)

The commutator of φ with this interaction Hamiltonian (A.19) is

[φ,HI(y)] = −ig
[

ψ̄γµψ
]

y
∂µy∆(x− y) . (A.20)

Introducing the vectors ja(x) and Da very similar to (3.19)

ja ≡
(

∂HI

∂φ
,

∂HI

∂(∂µφ), . . .

)

,

Da ≡ (1, ∂µ, . . .) , (A.21)

then (A.20) can be rewritten as follows

[φ,HI(y)] = iDa(y)∆(x− y) · ja(y) . (A.22)

Here we have used only one derivative in (A.19) to come to (A.22). But al-
ready from the definitions of ja and Da it can be seen that (A.22) is generally
valid, so also for cases where the interaction Lagrangian includes multiple
factors of derivatives. Using (A.22) for interaction Lagrangians including
derivatives (A.18) becomes

φ(x, σ) = φ(x) +

∫ σ

−∞

d4yDa(y)∆(x− y) · ja(y) , (A.23)

where ja(y) is the same as in section 3.2.

A.4 Other Types of Fields

In addition to the previous section there are two remarks: First of all we
were considering scalar fields only and second we have not considered the
g2 in the interaction Hamiltonian (A.19), since it is not effecting the scalar
sector.

Adjusting (A.23) to other types of fields goes again with adjusting the
commutator of the field with the interaction Hamiltonian, as we saw already
in the previous section. To illustrate this we imagine interaction Lagrangian
(A.19) again, where we now focus on the fermion field. The commutator
with the interaction Hamiltonian is

[ψ(x),HI(y)] = i (i∂/+M) ∆(x− y)
[

−gγµψ · ∂µφ+ g2n/ψψ̄n/ψ
]

y

= iDa(y) (i∂/+M) ∆(x− y) · ja(y) , (A.24)
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Looking at (A.18) we see that we need to transform ja(y)

U−1[σ]ja(y)U [σ] = U−1[σ]
[

−gγµψ · ∂µφ+ g2n/ψψ̄n/ψ
]

y
U [σ]

= gγµψ(y)
[

−U−1[σ]∂µφU [σ] + g2n/ψψ̄n/ψ
]

y

= −gγµψ(y)∂µφ(y) = ja(y) , (A.25)

and therefore

ψ(x, σ) = ψ(x) +

∫ σ

−∞

d4yDa(y) (i∂/+M) ∆(x− y) · ja(y) . (A.26)

It is not difficult to generalize this. Imagine that

[Φα(x),Φβ(y)]± = iRαβ∆(x− y) , (A.27)

then

Φα(x, σ) = Φα(x) +

∫ σ

−∞

d4yDa(y)Rαβ∆(x− y) · ja,β(y) , (A.28)

which is the equation to be proven.
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Appendix B

BMP Theory

According to Haag’s theorem [24] in general there does not exist an unitary
transformation which relates the fields in the I.R. and the fields in the H.R.
On the other hand there is no objection against the existence of an unitary
U [σ] relating the TU-auxiliary fields and the fields in the I.R. (3.23)

Φα(x, σ) = U−1[σ] Φα(x) U [σ] . (B.1)

In section 3.2 we have made a consistency check to show that (3.23) is in-
deed valid. Here, we follow the framework of Bogoliubov and collaborators
[28, 29, 30], to which we refer to as the BMP theory, to proof (3.23) in a
straightforward way (see section B.3).

The BMP theory was originally constructed to bypass the use of an uni-
tary operator U as a mediator between the fields in the H.R. and in the
I.R.

B.1 Set-up

In the description of the BMP theory we will only consider scalar fields.
By the assumption of asymptotic completeness the S-matrix is taken to be
a functional of the asymptotic fields φas,ρ(x), where as = in, out. In the
following we use in-fields, i.e. φρ(x) = φin,ρ(x)

S = 1 +
∞
∑

n=1

∫

d4x1 . . . d
4xn Sn(x1α1, . . . , xnαn) ·

× : φα1(x1) . . . φαn(xn) : . (B.2)

103
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Here, concepts like unitarity and the stability of the vacuum, i.e. 〈0|S|0〉 = 1,
and the 1-particle states, i.e. 〈0|S|1〉 = 0 are assumed. Unitarity S† S = 1
gives upon functional differentiation

δS†

δφρ(x)
S = −S† δS

δφρ(x)
, (B.3)

and a similar relation starting from S S† = 1. The Heisenberg current, i.e.
the current in the H.R., is defined as 1

Jρ(x) = −iS† δS

δφρ(x)
. (B.4)

We note that for a hermitean field φρ(x) the current is also hermitean, due
to the relation (B.3). Microcausality takes the form, see [29], chapter 17 2,

δJρ(x)

δφλ(y)
= 0 , for x ≤ y . (B.5)

Now, if the S-matrix is of the form as we know it

S = T

[

exp

(

− i
∫

d4x HI(x)

)]

, (B.6)

where HI(x) is a (local) function of the asymptotic field φα(x), which is
defined even when φα(x) does not satisfy the free field equation, then the
microcausility condition (B.5) is satisfied

δ

δφβ(y)

{

S† δS

δφα(x)

}

= 0 for x ≤ y . (B.7)

This illustrates that the notion of microcausality is reflected in the expression
of the S-matrix as the Time-Ordered exponential. See [29] for the details on
this point of view. Furthermore, it follows from (B.4) and (B.6) that

Jρ(x) = −∂HI(x)

∂φρ(x)
. (B.8)

It can be shown that with the current (B.4) the asymptotic fields φin/out,ρ(x)
satisfy (3.26).

1Note that in [30] the out-field is used. Then

Jρ(x) = i
δS

δφρ(x)
S† .

Also, we take a minus sign in the definition of the current.
2 Here x ≤ y means either (x− y)2 ≥ 0 and x0 < y0 or (x− y)2 < 0. So, the point x is

in the past of or is spacelike separated from the point y.
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B.2 Correspondence with LSZ Theory

Lehmann, Symanzik, and Zimmermann (LSZ) [32] formulated an asymptotic
condition utilizing the notion of weak convergence in the Hilbert space of
state vectors. See e.g. [12] for an detailed exposition of the LSZ-formalism.
Here, the field in the H.R. φ(x) and the asymptotic fields φas satisfy the
equations

(� +m2)φ(x) = J(x) , (� +m2)φas(x) = 0 . (B.9)

and their relation is given by the YF equations (3.17).
The correspondence is obtained by the identification

Jρ(x) = −iS† δS

δφρ(x)
≡
(

� +m2
)

φρ(x) . (B.10)

Also, we want to show the locality properties assumed in the LSZ theory.

Functionally differentiating the current (B.4) and using the unitarity condi-
tion (B.3) gives the equations

δJρ(x)

δφσ(y)
= −iS† δ2S

δφσ(y)δφρ(x)
− iJσ(y) Jρ(x) , (B.11a)

δJσ(y)

δφρ(x)
= −iS† δ2S

δφρ(x)δφσ(y)
− iJρ(x) Jσ(y) , (B.11b)

which yield upon subtraction

δJρ(x)

δφσ(y)
− δJσ(y)

δφρ(x)
= i

[

Jρ(x) ,Jσ(y)

]

. (B.12)

Note that for space-like separations, i.e. (x−y)2 < 0, the current commutator
vanishes, by means of the microcausality condition (B.5). Moreover, the
application of this microcausality condition to equation (B.11b) for x 6= y
gives the following important relation

H2(xρ, yσ) ≡ S† δ2S

δφρ(x)δφσ(y)
= −T

[

Jρ(x)Jσ(y)

]

. (B.13)

It follows that for all x and y

H2(xρ, yσ) = −T
[

Jρ(x)Jσ(y)

]

+ iΛρσ(x, y) , (B.14)

where Λρσ is a quasi-local operator

Λρσ(x, y) = Λσρ(y, x) = 0 if x 6= y , (B.15)
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which is hermitean if φρ(x) is hermitean.

Substitution of (B.13) into equation (B.11a) gives

δJρ(x)

δφσ(y)
= iθ(x0 − y0)

[

Jρ(x),Jσ(y)

]

+ Λρσ(x, y) . (B.16)

Above, the local commutivity of the currents has been shown to follow
from microcausality. Using the YF equations (3.25) one can show that for
space-like separations the fields in the H.R. commute with the currents and
among themselves

[

φρ(x),Jσ(y)

]

= 0 for (x− y)2 < 0 , (B.17a)

[

φρ(x),φσ(y)

]

= 0 for (x− y)2 < 0 . (B.17b)

This can be done as follows: Since the S-operator is an expansion in asymp-
totic fields, so is J(x) by means of its definition in terms of this S-operator.
Now, from the commutation relations of the asymptotic fields one has

[

φρ(x),Jσ(y)

]

= i

∫

d4x′ ∆(x− x′) δJσ(y)
δφρ(x′)

. (B.18)

Using (B.16) and (B.18) one gets with the YF equation (3.25) that
[

φρ(x),Jσ(y)

]

=

= −
∫

d4x′
(

θ(x′0 − y0)θ(x0 − x′0)− θ(y0 − x′0)θ(x′0 − x0)

)

∆(x− x′)

×
[

Jρ(x
′),Jσ(y)

]

+ i

∫

d4x′ ∆(x− x′)Λρσ(x
′, y) . (B.19)

Since Λρσ(x
′, y) in the last term on the rhs of (B.19) is only non-zero for

x′ = y, we see that this last term vanishes for space-like separations, because
of the properties of ∆(x− y). As far as the remaining terms are concerned,
they vanish in the special case x0 = y0. This can be seen as follows: By
means of the θ-functions the only possible point of interest is x′0 = x0 = y0.
Now, ∆(x − x′) vanishes in this point, as well as [Jρ(x

′),Jσ(y)] (see (B.12)
and the text below). Because of Lorentz invariance (B.19) vanishes for all
(x − y)2 < 0, as was claimed (B.17a). Similarly one can prove the second
commutator (B.17b) to vanish for space-like separations.

With (B.12) (and the text below it), (B.17a) and (B.17b) we have shown
the locality properties as assumed in LSZ formalism.
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B.3 Application to Takahashi-Umezawa scheme

In appendix A we proved (3.21) from (3.23) provided that the unitary opera-
tor is the time evolution operator connected to the S-matrix (see section 3.2).
Here, we do exactly the opposite. Introducing the auxiliary field, similar to
(3.21), by

φ(x, σ) ≡ φ(x)−
∫ σ

−∞

d4x′ ∆(x− x′) J(x′) , (B.20)

we prove that

[

φ(x, σ), φ(y, σ)

]

=

[

φ(x), φ(y)

]

= i∆(x− y) . (B.21)

Using (B.20) gives

[

φ(x, σ), φ(y, σ)

]

−
[

φ(x), φ(y)

]

= −
∫ σ

−∞

d4y′ ∆(y − y′)
[

φ(x),J(y′)

]

+

∫ σ

−∞

d4x′ ∆(x− x′)
[

φ(y),J(x′)

]

+

∫ σ

−∞

∫ σ

−∞

d4x′d4y′ ∆(x− x′)∆(y − y′)
[

J(x′),J(y′)

]

. (B.22)

Now, we use (B.12) and (B.18) to rewrite (B.22)

[

φ(x, σ), φ(y, σ)

]

−
[

φ(x), φ(y)

]

= −i
∫ σ

−∞

d4y′
∫ ∞

−∞

d4x′∆(x− x′)∆(y − y′)δJ(y′)

δφ(x′)

+i

∫ σ

−∞

d4x′
∫ ∞

−∞

d4y′ ∆(x− x′)∆(y − y′)δJ(x′)

δφ(y′)

−i
∫ σ

−∞

d4x′
∫ σ

−∞

d4y′ ∆(x− x′)∆(y − y′)
(

δJ(x′)

δφ(y′)
− δJ(y′)

δφ(x′)

)

= 0 . (B.23)

Cancellation takes place in (B.23) when the second integral of the first two
term on the rhs in (B.23) is split up:

∫∞

−∞
=
∫ σ

−∞
+
∫∞

σ
. The remaining terms

are zero because of the microcausility condition (B.5).
This justifies the existence of a unitary operator U [σ] such that

φ(x, σ) = U−1[σ] φ(x) U [σ] . (B.24)
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In section 3.2 we have already shown that this U -operator is connected to
the S-matrix and satisfies the Tomonaga-Schwinger equation (3.30). Fol-
lowing the steps in section 3.2, the interaction Hamiltonian can be obtained
(3.33). Therefore, the interaction Hamiltonian can also be deduced using
BMP theory.



Appendix C

Kadyshevsky Amplitudes and
Invariants

C.1 Meson Exchange

Scalar Meson Exchange, diagram (a)

M
(a)
κ′,κ = gPPSgS [ū(p′)u(p)]D(1)(∆t, n, κ̄) , (C.1)

where D(1)(∆t, n, κ̄) = 1
2At
· 1

∆t·n+κ̄−At+iε

AS = gPPSgS D
(1)(∆t, n, κ̄) . (C.2)

XA
S = gPPSgS . (C.3)

Scalar Meson Exchange, diagram (b)

M
(b)
κ′,κ = gPPSgS [ū(p′s′)u(p)]D(1)(−∆t, n, κ̄) . (C.4)

AS = gPPSgS D
(1)(−∆t, n, κ̄) . (C.5)

XA
S = gPPSgS . (C.6)

109
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Pomeron Exchange

Mκ′κ =
gPPPgP
M

[ū(p′s′)u(p)] . (C.7)

AP =
gPPPgP
M

. (C.8)

The partial wave projection is obtained by applying (6.33) straightforward

Vector Meson Exchange, diagram (a)

M
(a)
κ′,κ = −gV PP ū(p′s′)

[

2gVQ/−
gV
M2

V

((Mf −Mi) + κ′n/)

×
(

1

4
(sp′q′ − spq + upq′ − up′q)−

(

m2
f −m2

i

)

+ 2κ̄n ·Q
)

+
fV

2MV

(

2(Mf +Mi)Q/+
1

2
(upq′ + up′q)−

1

2
(sp′q′ + spq)

)

− fV
2M3

V

(

1

2

(

M2
f +M2

i

)

+
1

2

(

m2
f +m2

i

)

− 1

2

(

1

2
(tp′p + tq′q) + upq′ + spq

)

+ (Mf +Mi)κ
′n/+

1

4
(κ′ − κ)2 − (p′ + p) · nκ̄

)

×
(

1

4
(sp′q′ − spq) +

1

4
(upq′ − up′q)−

(

m2
f −m2

i

)

+ 2κ̄n ·Q
)]

u(ps)

×D(1)(∆t, n, κ̄) . (C.9)

AV = −gV PP
[

− gV
M2

V

(Mf −Mi)

(

1

4
(sp′q′ − spq + upq′ − up′q)−

(

m2
f −m2

i

)

+ 2κ̄n ·Q
)

+
fV

4MV

(upq′ + up′q − sp′q′ − spq)−
fV

2M3
V

(

1

2

(

M2
f +M2

i

)

+
1

2

(

m2
f +m2

i

)

− 1

2

(

1

2
(tp′p + tq′q) + upq′ + spq

)

+
1

4
(κ′ − κ)2

− (p′ + p) · nκ̄
)(

1

4
(sp′q′ − spq) +

1

4
(upq′ − up′q)−

(

m2
f −m2

i

)

+ 2κ̄n ·Q
)]

D(1)(∆t, n, κ̄) ,
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BV = −2gV PP

[

gV +
fV

2MV

(Mf +Mi)

]

D(1)(∆t, n, κ̄) ,

A′
V =

gV PPκ
′

M2
V

[

gV +
fV

2MV

(Mf +Mi)

](

1

4
(sp′q′ − spq + upq′ − up′q)

−
(

m2
f −m2

i

)

+ 2κ̄n ·Q
)

D(1)(∆t, n, κ̄) . (C.10)

XA
V = −gV PP

[

− gV
M2

V

(Mf −Mi)

(

1

4
(E ′ + E ′)2 − 1

4
(E + E)2 − 1

4

(

M2
f −M2

i

)

−3

4

(

m2
f −m2

i

)

+
1

2
(E ′E − EE ′) + κ̄(E ′ + E)

)

+
fV

4MV

(

M2
f +M2

i

+m2
f +m2

i − 2 (E ′E + EE ′)− (E ′ + E ′)2 − (E + E)2
)

− fV
4M3

V

(

M2
f

+M2
i +m2

f +m2
i +

1

2
(κ′ − κ)2 − 1

2

(

M2
f + 3M2

i + 3m2
f +m2

i

−2E ′E − 2E ′E − 4E ′E + (E + E)2)− 2 (E ′ + E) κ̄

)

×
(

1

4
(E ′ + E ′)2 − 1

4
(E + E)2 − 1

4

(

M2
f −M2

i

)

− 3

4

(

m2
f −m2

i

)

+
1

2
(E ′E − EE ′) + κ̄(E ′ + E)

)]

,

Y A
V = −gV PP fV p

′p

MV

[

1 +
1

4M2
V

(

(E ′ + E ′)2 − (E + E)2 −
(

M2
f −M2

i

)

− 3
(

m2
f −m2

i

)

+ 2 (E ′E − EE ′) + 4κ̄(E ′ + E)
)]

,

XB
V = −2gV PP

[

gV +
fV

2MV

(Mf +Mi)

]

,

XA′

V =
gV PPκ

′

4M2
V

[

gV +
fV

2MV

(Mf +Mi)

]

(

(E ′ + E ′)2 − (E + E)2

−
(

M2
f −M2

i

)

− 3
(

m2
f −m2

i

)

+ 2 (E ′E − EE ′) + 4κ̄(E ′ + E)
)

.

(C.11)
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Vector Meson Exchange, diagram (b)

M
(b)
κ′,κ = −gV PP ū(p′s′)

[

2gVQ/−
gV
M2

V

((Mf −Mi)− κn/)

×
(

1

4
(sp′q′ − spq + upq′ − up′q)−

(

m2
f −m2

i

)

− 2κ̄n ·Q
)

+
fV

2MV

(

2(Mf +Mi)Q/+
1

2
(upq′ + up′q)−

1

2
(sp′q′ + spq)

)

− fV
2M3

V

(

1

2

(

M2
f +M2

i

)

+
1

2

(

m2
f +m2

i

)

− 1

2

(

1

2
(tp′p + tq′q) + upq′ + spq

)

− (Mf +Mi)κn/+
1

4
(κ′ − κ)2

+ (p′ + p) · nκ̄
)

×
(

1

4
(sp′q′ − spq + upq′ − up′q)−

(

m2
f −m2

i

)

− 2κ̄n ·Q
)]

u(ps)

×D(1)(−∆t, n, κ̄) . (C.12)

AV = −gV PP
[

− gV
M2

V

(Mf −Mi)

(

1

4
(sp′q′ − spq + upq′ − up′q)−

(

m2
f −m2

i

)

− 2κ̄n ·Q
)

+
fV

4MV

(upq′ + up′q − sp′q′ − spq)−
fV

2M3
V

(

1

2

(

M2
f +M2

i

)

+
1

2

(

m2
f +m2

i

)

− 1

2

(

1

2
(tp′p + tq′q) + upq′ + spq

)

+
1

4
(κ′ − κ)2

+ (p′ + p) · nκ̄
)(

1

4
(sp′q′ − spq) +

1

4
(upq′ − up′q)−

(

m2
f −m2

i

)

− 2κ̄n ·Q
)]

D(1)(−∆t, n, κ̄) ,

BV = −2gV PP

[

gV +
fV

2MV

(Mf +Mi)

]

D(1)(−∆t, n, κ̄) ,

A′
V = −gV PPκ

M2
V

[

gV +
fV

2MV

(Mf +Mi)

](

1

4
(sp′q′ − spq + upq′ − up′q)

−
(

m2
f −m2

i

)

− 2κ̄n ·Q
)

D(1)(−∆t, n, κ̄) . (C.13)
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XA
V = −gV PP

[

− gV
M2

V

(Mf −Mi)

(

1

4
(E ′ + E ′)2 − 1

4
(E + E)2 − 1

4

(

M2
f −M2

i

)

−3

4

(

m2
f −m2

i

)

+
1

2
(E ′E − EE ′)− κ̄(E ′ + E)

)

+
fV

4MV

(

M2
f +M2

i

+m2
f +m2

i − 2 (E ′E + EE ′)− (E ′ + E ′)2 − (E + E)2
)

− fV
4M3

V

(

M2
f

+M2
i +m2

f +m2
i +

1

2
(κ′ − κ)2 − 1

2

(

M2
f + 3M2

i + 3m2
f +m2

i

−2E ′E − 2E ′E − 4E ′E + (E + E)2)+ 2 (E ′ + E) κ̄

)

×
(

1

4
(E ′ + E ′)2 − 1

4
(E + E)2 − 1

4

(

M2
f −M2

i

)

− 3

4

(

m2
f −m2

i

)

+
1

2
(E ′E − EE ′)− κ̄(E ′ + E)

)]

,

Y A
V = −gV PP fV p

′p

MV

[

1 +
1

4M2
V

(

(E ′ + E ′)2 − (E + E)2 −
(

M2
f −M2

i

)

− 3
(

m2
f −m2

i

)

+ 2 (E ′E − EE ′)− 4κ̄(E ′ + E)
)]

,

XB
V = −2gV PP

[

gV +
fV

2MV

(Mf +Mi)

]

,

XA′

V = −gV PPκ
4M2

V

[

gV +
fV

2MV

(Mf +Mi)

]

(

(E ′ + E ′)2 − (E + E)2

−
(

M2
f −M2

i

)

− 3
(

m2
f −m2

i

)

+ 2 (E ′E − EE ′)− 4κ̄(E ′ + E)
)

.

(C.14)

C.2 Baryon Exchange/Resonance

Baryon Exchange, Scalar coupling

MS
κ′,κ =

g2
S

2
ū(p′s′)

[

1

2
(Mf +Mi) +MB −Q/+ n/κ̄

]

u(ps)D(2) (∆u, n, κ̄) ,

(C.15)

where the denominator function is D(2) (∆i, n, κ̄) =
[

(κ̄+ ∆i · n)2 − A2
i

]−1
,
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i = u, s.

AS =
g2
S

2

[

1

2
(Mf +Mi) +MB

]

D(2) (∆u, n, κ̄) ,

BS = −g
2
S

2
D(2) (∆u, n, κ̄) ,

A′
S =

g2
S

2
κ̄ D(2) (∆u, n, κ̄) . (C.16)

XA
S = −g

2
S

2

[

1

2
(Mf +Mi) +MB

]

,

XB
S =

g2
S

2
,

XA′

S = −g
2
S

2
κ̄ . (C.17)

Baryon Exchange, Pseudo Scalar coupling

The expressions for baryon exchange with pseudo scalar coupling are the
same as (C.15)-(C.17) with the substitution MB → −MB.

Baryon Resonance, Scalar coupling

MS
κ′,κ =

g2
S

2
ū(p′s′)

[

1

2
(Mf +Mi) +MB +Q/+ n/κ̄

]

u(ps)D(2) (∆s, n, κ̄) .

(C.18)

AS =
g2
S

2

[

1

2
(Mf +Mi) +MB

]

D(2) (∆s, n, κ̄) ,

BS =
g2
S

2
D(2) (∆s, n, κ̄) ,

A′
S =

g2
S

2
κ̄ D(2) (∆s, n, κ̄) . (C.19)

XA
S = −g

2
S

2

[

1

2
(Mf +Mi) +MB

]

,

XB
S = −g

2
S

2
,

XA′

S = −g
2
S

2
κ̄ . (C.20)
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Baryon Resonance, Pseudo Scalar coupling

The expressions for baryon resonance with pseudo scalar coupling are the
same as (C.18)-(C.20) with the substitution MB → −MB.

Baryon Exchange Vector coupling

MV
κ′,κ =

f 2
V

2m2
π

ū(p′s′)

[

−
(

1

2
(Mf +Mi)−MB

)

×
(

−1

2

(

M2
f +M2

i

)

+
1

2
(up′q + upq′) + (Mf +Mi)Q/

−1

2
(κ′ − κ) (p′ − p) · n+

1

2
(κ′ − κ) [n/,Q/]− 1

2
(κ′ − κ)2

)

−1

2

(

upq′ −M2
i

)

(

1

2
(Mf −Mi) +Q/+

1

2
(κ′ − κ)n/

)

−1

2

(

up′q −M2
f

)

(

−1

2
(Mf −Mi) +Q/− 1

2
(κ′ − κ)n/

)

+κ̄

(

−1

2
(Mf −Mi) (p′ − p) · n − (p′ − p) · n Q/ + 2Q · n Q/

− 1

2
(Mf −Mi) (κ′ − κ) +

1

2
(Mf −Mi) [n/,Q/]

+
1

2

(

M2
f +M2

i

)

n/− 1

2
(up′q + upq′)n/

)]

ui(p)D
(2) (∆u, n, κ̄) .

(C.21)

AV =
f 2
V

2m2
π

[

−
(

1

2
(Mf +Mi)−MB

)(

−1

2

(

M2
f +M2

i

)

+
1

2
(up′q + upq′)

− 1

2
(κ′ − κ)(p′ − p) · n− 1

2
(κ′ − κ)2

)

− κ̄

2
(Mf −Mi)

× (p′ − p) · n+
1

4

(

up′q − upq′ −M2
f +M2

i

)

(Mf −Mi)

− κ̄
2

(Mf −Mi) (κ′ − κ)
]

D(2) (∆u, n, κ̄) ,

BV =
f 2
V

2m2
π

[

−
(

1

2
(Mf +Mi)−MB

)

(Mf +Mi) +
1

2

(

M2
f +M2

i

− up′q − upq′
)

− κ̄(p′ − p) · n+ 2κ̄n ·Q
]

D(2) (∆u, n, κ̄) ,
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A′
V =

f 2
V

4m2
π

[

(

M2
i − upq′

)

κ′ +
(

M2
f − up′q

)

κ

]

D(2) (∆u, n, κ̄) ,

B′
V = − f 2

V

4m2
π

[

κ′Mi − κMf − (κ′ − κ)MB

]

D(2) (∆u, n, κ̄) . (C.22)

XA
V = − f 2

V

2m2
π

[

−
(

1

2
(Mf +Mi)−MB

)(

1

2

(

m2
f +m2

i

)

− E ′E − EE ′

− 1

2
(κ′ − κ) (E ′ − E)− 1

2
(κ′ − κ)2

)

− κ̄

2
(Mf −Mi)

× (E ′ − E)− 1

4

(

m2
f −m2

i + 2E ′E − 2EE ′
)

(Mf −Mi)

− κ̄
2

(Mf −Mi) (κ′ − κ)
]

,

Y A
V =

f 2
V p

′p

m2
π

[

1

2
(Mf +Mi)−MB

]

,

XB
V =

f 2
V

2m2
π

[(

1

2
(Mf +Mi)−MB

)

(Mf +Mi) +
1

2

(

m2
f +m2

i

− 2E ′E − 2EE ′
)

+ κ̄ (E ′ − E) · n− κ̄ (E ′ + E)
]

,

Y B
V =

f 2
V p

′p

m2
π

,

XA′

V =
f 2
V

4m2
π

[

κ′
(

m2
f − 2EE ′

)

+ κ
(

m2
i − 2E ′E

)]

,

Y A′

V =
f 2
V κ̄ p

′p

m2
π

,

XB′

V =
f 2
V

4m2
π

[κ′Mi − κMf − (κ′ − κ)MB] . (C.23)

Baryon Exchange, Pseudo Vector coupling

The expressions for baryon exchange with pseudo vector coupling are the
same as (C.21)-(C.23) with the substitution MB → −MB.
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Baryon Resonance, Vector coupling

MV
κ′,κ =

f 2
V

m2
π

ū(p′s′)

[

−
(

1

2
(Mf +Mi)−MB

)

×
(

−1

2

(

M2
f +M2

i

)

+
1

2
(sp′q′ + spq)− (Mf +Mi)Q/

−1

2
(κ′ − κ) (p′ − p) · n− 1

2
(κ′ − κ) [n/,Q/]− 1

2
(κ′ − κ)2

)

+
1

2

(

sp′q′ −M2
f

)

(

1

2
(Mf −Mi) +Q/+

1

2
(κ′ − κ)n/

)

+
1

2

(

spq −M2
i

)

(

−1

2
(Mf −Mi) +Q/− 1

2
(κ′ − κ)n/

)

+κ̄

(

−1

2
(Mf −Mi) (p′ − p) · n + (p′ − p) · n Q/ + 2Q · n Q/

− 1

2
(Mf −Mi) (κ′ − κ)− 1

2
(Mf −Mi) [n/,Q/]

+
1

2

(

M2
f +M2

i

)

n/− 1

2
(sp′q′ + spq)n/

)]

ui(p)D
(2) (∆s, n, κ̄) .

(C.24)

AV =
f 2
V

2m2
π

[

−
(

1

2
(Mf +Mi)−MB

)(

1

2
(sp′q′ + spq)−

1

2

(

M2
f +M2

i

)

− 1

2
(κ′ − κ)(p′ − p) · n− 1

2
(κ′ − κ)2

)

− κ̄

2
(Mf −Mi)

× (p′ − p) · n+
1

4

(

sp′q′ − spq −M2
f +M2

i

)

(Mf −Mi)

− κ̄
2

(Mf −Mi) (κ′ − κ)
]

D(2) (∆s, n, κ̄) ,

BV =
f 2
V

2m2
π

[(

1

2
(Mf +Mi)−MB

)

(Mf +Mi) +
1

2

(

sp′q′ + spq

−M2
f −M2

i

)

+ κ̄(p′ − p) · n+ 2κ̄n ·Q
]

D(2) (∆s, n, κ̄) ,

A′
V =

f 2
V

4m2
π

[

(

M2
i − spq

)

κ′ +
(

M2
f − sp′q′

)

κ

]

D(2) (∆s, n, κ̄) ,

B′
V =

f 2
V

4m2
π

[

κ′Mi − κMf − (κ′ − κ)MB

]

D(2) (∆s, n, κ̄) . (C.25)
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XA
V = − f 2

V

2m2
π

[

−1

2

(

1

2
(Mf +Mi)−MB

)(

(E ′ + E ′)2
+ (E + E)2

−
(

M2
f +M2

i

)

− 1

2
(κ′ − κ) (E ′ − E)− 1

2
(κ′ − κ)2

)

− κ̄

2
(Mf −Mi) (E ′ − E) +

1

4

(

(E ′ + E ′)2 − (E + E)2

−M2
f +M2

i

)

(Mf −Mi)−
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2
(Mf −Mi) (κ′ − κ)

]

,

XB
V = − f 2

V

2m2
π

[(

1

2
(Mf +Mi)−MB

)

(Mf +Mi) +
1

2
(E ′ + E ′)2

+
1

2
(E + E)2 − 1

2

(

M2
f +M2

i

)

+ κ̄ (E ′ − E) + κ̄ (E ′ + E)
]

,

XA′

V = − f 2
V

4m2
π

[

(

M2
i − (E + E)2)κ′ +

(

M2
f − (E ′ + E ′)2

)

κ
]

,

XB′

V = − f 2
V

4m2
π

[

κ′Mi − κMf − (κ′ − κ)MB

]

. (C.26)

Baryon Resonance, Pseudo Vector coupling

The expressions for baryon resonance with pseudo vector coupling are the
same as (C.24)-(C.26) with the substitution MB → −MB.

3
2

+
Baryon Exchange, Gauge invariant coupling

Mκ′,κ = −
g2
gi

2
ū(p′s′)

[

1

2
P̄ 2
u

(

1

2
(Mf +Mi) +M∆ −Q/+ κ̄n/

)

(

m2
f +m2

i − tq′q
)

−1

3
P̄ 2
u

((

1

2
(Mf +Mi) +M∆

)

q/q/′ +
1

2

(

upq′ −M2
i

)

q/

+
1

2

(

spq + tq′q −M2
i −m2

f − 3m2
i

)

q/′ + κ̄n/q/q/′
)

− 1

12

((

P̄ 2
u +

M∆

2
(Mf −Mi)

)

q/+
M∆

2

(

spq −M2
i − 2m2

i

)

−M∆

2
q/′q/+M∆κ̄n/q/

)

(

P̄u · q′
)
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+
1

12

((

P̄ 2
u +

M∆

2
(Mf −Mi)

)

q/′ +
M∆

2

(

M2
i − upq′

)

−M∆

2
q/q/′ +M∆κ̄n/q/

′

)

(

P̄u · q
)

− 1

24

(

1

2
(Mf +Mi) +M∆ −Q/+ κ̄n/

)

(

P̄u · q′
) (

P̄u · q
)

]

u(ps)

×D(2) (∆u, n, κ̄) . (C.27)

Here, P̄ 2
u is defined in (5.47). All the expressions for the slashed terms (i.e.

q/, q/′, etc.), can be found in (C.68). Furthermore

P̄u · q′ =

(

−M2
f +M2

i − 3m2
f −m2

i + sp′q′ − upq′ + tq′q − 2κ̄(p′ − p) · n

+4κ̄n ·Q−
(

κ′2 − κ2
)

)

,

P̄u · q′ =

(

M2
f −M2

i −m2
f − 3m2

i + spq − up′q + tq′q + 2κ̄(p′ − p) · n

+4κ̄n ·Q+
(

κ′2 − κ2
)

)

. (C.28)

A∆ = −
g2
gi

2

{

1

2
P̄ 2
u

[

1

2
(Mf +Mi) +M∆

]

(m2
f +m2

i − tq′q)

−1

3
P̄ 2
u

[(

1

2
(Mf +Mi) +M∆

)(

1

2
(up′q + upq′)−

1

2

(

M2
f +M2

i

)

−1

2
(κ′ − κ)(p′ − p) · n− 1

2
(κ′ − κ)2

)

+
1

4

(

upq′ −M2
i

)

× (Mf −Mi)−
1

4

(

spq + tq′q −M2
i −m2

f − 3m2
i

)

(Mf −Mi)

− κ̄ (Mf −Mi)n ·Q
]

− 1

12

[

1

2

(

P̄ 2
u +

M∆

2
(Mf −Mi)

)

(Mf −Mi) +
1

2
M∆

×
(

spq −M2
i − 2m2

i

)

− 1

2
M∆

(

1

2
(sp′q′ + spq)−

1

2

(

M2
f +M2

i

)

−1

2
(κ′ − κ)(p′ − p) · n− 1

2
(κ′ − κ)2

)

+ κ̄M∆

(

n · p′ + n ·Q

+
1

2
(κ′ − κ)

)]

(

P̄u · q′
)
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− 1

12

[

1

2

(

P̄ 2
u +

M∆

2
(Mf −Mi)

)

(Mf −Mi)−
1

2
M∆

(

M2
i − upq′

)

+
1

2
M∆

(

1

2
(up′q + upq′)−

1

2

(

M2
f +M2

i

)

−1

2
(κ′ − κ)(p′ − p) · n− 1

2
(κ′ − κ)2

)

− κ̄M∆

(

− n · p′ + n ·Q

−1

2
(κ′ − κ)

)]

(

P̄u · q
)

− 1

24

[

1

2
(Mf +Mi) +M∆

]

(

P̄u · q′
) (

P̄u · q
)

}

D(2) (∆u, n, κ̄) . (C.29)

B∆ = −
g2
gi

2

{

−1

2
P̄ 2
u

(

m2
f +m2

i − tq′q
)

−1

3
P̄ 2
u

[(

1

2
(Mf +Mi) +M∆

)

(Mf +Mi) +
1

2

(

upq′ −M2
i

)

+
1

2

(

spq + tq′q −M2
i −m2

f − 3m2
i

)

+ 2κ̄(p′ − p) · n

+
1

2

(

κ′2 − κ2
)

]

− 1

12

(

P̄ 2
u +M∆Mf

) (

P̄u · q′
)

+
1

12

(

P̄ 2
u −M∆Mi

) (

P̄u · q
)

+
1

24

(

P̄u · q′
) (

P̄u · q
)

}

D(2) (∆u, n, κ̄) . (C.30)

A′
∆ = −

g2
gi

2

{

κ̄

2
P̄ 2
u

(

m2
f +m2

i − tq′q
)

−1

3
P̄ 2
u

[

1

4
(κ′ − κ)

(

upq′ −M2
i

)

− 1

4
(κ′ − κ)

(

spq + tq′q −M2
i

−m2
f − 3m2

i

)

+ κ̄

(

−1

2

(

M2
f +M2

i

)

+
1

2
(up′q + upq′)

− 1

2
(κ′ − κ)(p′ − p) · n− (κ′ − κ)Q · n− 1

2
(κ′ − κ)2

)]

− 1

24

[

(κ′ − κ)P̄ 2
u −M∆ (κMf + κ′Mi)

] [

sp′q′ + spq − up′q − upq′

+ 2tq′q − 4m2
f − 4m2

i + 8κ̄n ·Q
]

+
κ̄

24

(

P̄u · q′
) (

P̄u · q
)

}

D(2) (∆u, n, κ̄) . (C.31)
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B′
∆ =

g2
gi

12

{

P̄ 2
u

[

Miκ
′ −Mfκ+M∆ (κ′ − κ)

]

+
M∆κ

′

4

(

P̄u · q′
)

−M∆κ

4

(

P̄u · q
)

}

D(2) (∆u, n, κ̄) . (C.32)

XA
∆ =

g2
gi

2

{

(

P̄ 2
u

)

CM

[

1

2
(Mf +Mi) +M∆

]

E ′E

−1

3

(

P̄ 2
u

)

CM
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1

2
(Mf +Mi) +M∆

)(

1

2

(

M2
f +M2

i +m2
f +m2

i

−2E ′E − 2E ′E)− 1

2

(

M2
f +M2

i

)

− 1

2
(κ′ − κ) (E ′ − E)

−1

2
(κ′ − κ)2

)

+
1

4

(

m2
f − 2EE ′

)

(Mf −Mi)−
1

4

(
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− 2E ′E −M2
i − 2m2

i

)

(Mf −Mi)−
1

2
κ̄ (Mf −Mi) (E ′ + E)

]

− 1
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[

1

2

(

(

P̄ 2
u

)
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+
M∆

2
(Mf −Mi)

)
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1

2
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−M2
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(E ′ + E ′)2
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)
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E ′ +
1

2
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+
1

2
(κ′ − κ)
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(
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)
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− 1

12

[
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(
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)
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(
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1

2
M∆

(

1

2

(
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−1

2
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)

− κ̄M∆
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−E ′ +
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2
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)
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, (C.33)

where
(

P̄ 2
u

)

CM
=

[

1

2

(

M2
f +M2

i +m2
f +m2

i − 2E ′E − 2E ′E
)

+ κ′κ

+ κ̄ (E ′ + E − E ′ − E)
]
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(

P̄u · q′
)
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. (C.34)
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∆ = −
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where P̄ 2
s is defined in (5.47) and the slashed terms are as, before, defined in

(C.68). The inner products in (C.45) are
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C.3 Useful relations

C.3.1 Feynman

In Feynman formalism the following relations are quit useful

2(q′ · q) = m2
f +m2

i − t ,
2(p′ · p) = M2

f +M2
i − t ,

2(p′ · q′) = s−M2
f −m2

f ,

2(p · q) = s−M2
i −m2

i ,

2(p · q′) = M2
i +m2

f − u ,
2(p′ · q) = M2

f +m2
i − u . (C.63)

s+ u+ t = M2
f +M2

i +m2
f +m2

i . (C.64)
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C.3.2 Kadyshevsky

In Kadyshevsky formalism there are similar relations

2(q′ · q) = m2
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Chapter 7

Introduction

This part of the thesis is about the quantization of higher spin (1 ≤ j ≤ 2)
fields and their propagators. Besides the interest in their own, the physical
interest in these various fields comes from very different areas in (high energy)
physics. The massive spin-1 field is extremely important in the electro-weak
part of the Standard Model and in phenomenological One-Boson-Exchange
(OBE) models. Needless to mention the physical interest in the photon.

As far as the spin-3/2 field is concerned, ever since the pioneering work
of [45] and [46] it has been considered by many authors for several reasons.
The spin-3/2 field plays a significant role in low energy hadron scattering,
where it appears as a resonance. Also in supergravity (for a review see [47])
and superstring theory the spin-3/2 field plays an important role, since it
appears in these theories as a massless gravitino. Besides the role it plays in
the tensor-force in OBE-models the spin-2 field mainly appears in (super-)
gravity and string theories as the massless graviton.

The quantization of such fields can roughly be divided in three areas: free
field quantization, the quantization of the system where it is coupled to (an)
auxiliary field(s) and the quantization of an interacting field. The latter area
in the spin-3/2 case is known to have problems and inconsistencies (see for
instance [48], [49] and [41]). Although very interesting, in this part we will
focus our attention on the first two areas.

In chapter 8 we start with the quantization of the massive, free fields.
We do this for all spin cases (j = 1, 3/2, 2) at the same time using Dirac’s
prescription [50]. The inclusion of the spin-1 field case is merely meant
to demonstrate Dirac’s procedure in a simple case and to have a complete
description of higher spin field quantization.

The free spin-3/2 field quantization is in the same line as in references
[51, 52, 40, 53]. In [51] the massless free spin-3/2 field was quantized in the
transverse gauge. The authors of [52, 40] quantize the massive free theory,
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which is also what we do. We will follow Dirac’s prescription straightfor-
wardly by first determining all Lagrange multipliers and constraints. After-
wards the Dirac bracket (Db) is introduced and we calculate the equal time
anti commutation (ETAC) relations among all components of the field. In
both [52] and [40, 53] the step to the Dirac bracket is made earlier, without
determining all Lagrange multipliers and constraints. In [52] it is mentioned
that this involves ”technical difficulties and much labor” and in [40, 53] the
focus is on the number of constraints and therefore not so much on their
specific forms. As a result [52] and [40, 53] both calculate only the ETAC
relations between the spatial components of the spin-3/2 field, whereas we
obtain them all.

A Dirac constraint analysis of the free spin-2 field can be found for in-
stance in [54, 55, 56]. In these references the massless ([54, 55]) case and
massive ([56]) case is considered. We stress, however, that our description
of the quantization not only differs from [56] in the sense that the nature of
one of the obtained constraints is different, which we will discuss below, also
we obtain all constraints and Lagrange multipliers by applying Dirac’s pro-
cedure straightforward. We present a full analysis of the constrained system.
After introducing the Dirac bracket (Db) we give all equal time commutation
(ETC) relations between the various components of the spin-2 field.

Having quantized the free theories properly we make use of a free field
expansion identity and with these ingredients we obtain the propagators. We
notice that they are not explicitly covariant, as is mentioned for instance in
[57] for general cases j ≥ 1.

To cure this problem we are inspired by [58] and allow for auxiliary fields in
the free Lagrangian in chapter 9. To be more specific we couple the gauge
conditions of the massless cases to auxiliary fields and also allow for mass
terms of these auxiliary fields, with which free (gauge) parameters are intro-
duced. As in for instance [58], we obtain a covariant vector field propagator,
independently of the choice of the parameter.

In the spin-3/2 case several systems of a spin-3/2 field coupled to auxiliary
fields are considered in [59, 60, 61]. In [60, 61] are for several of such sys-
tems four dimensional commutation relations obtained. In the only massive
case which the authors of [61] consider, two auxiliary fields are introduced
to couple (indirectly) to the constraint equations 1 of a spin-3/2 field. The
authors of [59] use the Lagrange multiplier 2 method, where this multiplier

1i∂ψ = 0 is a constraint in the sense that it reduces the number of degrees of freedom
of a general ψµ field. It is not a constraint in the sense of Dirac, since it is a dynamical
equation.

2These Lagrange multipliers are the ones used in the original sense and are therefore
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is coupled to the covariant gauge condition of the massless spin-3/2 field in
the Rarita-Schwinger (RS) framework (to be defined below). They notice
that the Lagrange multiplier has to be a spinor and in this sense it can also
be viewed as an auxiliary field. We follow the same line by coupling our
auxiliary field to the above mentioned gauge condition. In [59] the quan-
tization is performed outside the RS framework in order to circumvent the
appearance of singularities. We remain within the RS framework and deal
with these singularities relying on Dirac’s method. Therefore we stay in line
with the considerations of chapter 8. A covariant propagator is obtained for
one specific choice of the parameter (b = 0). This propagator is the same as
the one obtained in [59]. We notice that also in [62] a covariant propagator
is obtained, but these authors make use of two spin-1/2 fields.

Coupled systems of spin-2 and auxiliary fields were for various reasons
considered in for instance [63, 64, 65, 66, 67]. In [64] an auxiliary boson field
is coupled to the ”De Donder” gauge condition in the Lagrangian which also
contains Faddeev-Popov ghosts. In [65] an auxiliary field is coupled to the
divergence of the tensor field in such a way that the auxiliary field can be
viewed as a Lagrange multiplier. These authors mention that if an other
auxiliary field is introduced, coupled to the trace of the tensor field in order
to get the other spin-2 condition, four dimensional commutation relations for
the tensor field can not be written down. We present a description in which
this is possible relying on Dirac’s procedure. Also in the tensor field case we
obtain a covariant propagator, independently of the choice of the parameter.
Most probably a similar procedure of coupling gauge conditions to auxiliary
fields in order to obtain a covariant propagator is also applicable for even
higher spin (j > 2) fields.

Having obtained all the various covariant propagators we discuss several
choices of the parameters (if possible) and the massless limits of these prop-
agators. We show that the propagators do not only have a smooth massless
limit but that they also connect to the ones obtained in the massless case
(including (an) auxiliary field(s)).

When coupled to conserved currents we see that it is possible to obtain the
correct massless spin-j propagators carrying only the helicities λ = ±jz. This
does not require a choice of the parameter in the spin-1 case, but in the spin-
3/2 and in the spin-2 case we have to make the choices b = 0 3 and c = ±∞.
As far as these last two cases is concerned, it is a different situation then
taking the massive propagator, couple it to conserved currents and putting
the mass to zero as noticed in [68] and [69], respectively. A discussion on the

different then the ones used in Dirac’s formalism.
3This choice we already made in order to obtain a covariant propagator.
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latter matter in (anti)-de Sitter spaces can be found in [70, 71, 72]. We stress
however, that in the spin-3/2 and the spin-2 case this limit is only smooth if
the massive propagator contains ghosts.



Chapter 8

Free Fields

As mentioned in the introduction we deal with the free theories in this chap-
ter. We start in section 8.1 with the Lagrangians and the equations of motion
that can be deduced from them. We explicitly quantize the theories in section
8.2 and calculate the propagators in section 8.3.

8.1 Equations of Motion

As a starting point we take the Lagrangian for free, massive fields (j =
1, 3/2, 2). In case of the spin-3/2 there is, according to [53, 73, 74, 75,
76], a class of Lagrangians describing the particularities of a spin-3/2 field.
Also in the spin-2 case several authors ([65, 77, 78, 79]) describe a class of
Lagrangians (with one or more free parameters) which give the correct Euler-
Lagrange equations for a spin-2 field. By taking this spin-2 field to be real
and symmetric from the outset only one parameter remains

L1 = −1

2
(∂µAν∂

µAν − ∂µAν∂νAµ) +
1

2
M2

1A
µAµ , (8.1a)

L3/2,A = ψ̄µ
[

(i∂/−M3/2)gµν + A(γµi∂ν + γνi∂µ) +Bγµi∂/γν

+ CM3/2γµγν

]

ψν , (8.1b)

L2,A =
1

4
∂αhµν∂αhµν −

1

2
∂µh

µν∂αhαν −
1

4
B ∂νh

β
β∂

νhαα

−1

2
A∂αh

αβ∂βh
ν
ν −

1

4
M2

2h
µνhµν +

1

4
CM2

2h
µ
µh

ν
ν , (8.1c)
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where B = 1
2
(3A2 + 2A+ 1), C = 3A2 + 3A+ 1 and A 6= −1

2
, but arbitrary

otherwise. We improperly1 refer to (8.1b) as the RS case.
Since we do not need to be so general we choose A = −1 and end-up with

a particular spin-3/2 Lagrangian also used in [47, 51, 52, 40, 53, 61] and in
case of the spin-2 field we get the well-know Fierz-Pauli Lagrangian [45] also
used in for instance [80, 81, 82]

L3/2 = −1

2
ǫµνρσψ̄µγ5γρ (∂σψν) +

1

2
ǫµνρσ

(

∂σψ̄µ
)

γ5γρψν

−M3/2ψ̄µσ
µνψν , (8.2a)

L2 =
1

4
∂αhµν∂αhµν −

1

2
∂µh

µν∂αhαν −
1

4
∂νh

β
β∂

νhαα +
1

2
∂αh

αβ∂βh
ν
ν

−1

4
M2

2h
µνhµν +

1

4
M2

2h
µ
µh

ν
ν . (8.2b)

Although we have picked particular Lagrangians we can always go back to
the general case by redefining the fields in the following sense

ψ′
µ = Oα

µ(A)ψα , Oα
µ(A) = gαµ − A+1

2
γµγ

α ,
h′µν = Oαβ

µν (A)hαβ , Oαβ
µν (A) = 1

2

(

gαµg
β
ν + gβµg

α
ν − (A+ 1)gµνg

αβ
)

.
(8.3)

The transformation in the first line of (8.3) was also mentioned in [53]. Re-
quiring that the transformation matrices in (8.3) are non-singular (detO 6= 0)
gives again the constraint A 6= −1

2
.

The Euler-Lagrange equations following from the free field Lagrangians
lead to the correct equations of motion (EoM)

(� +M2
1 )Aµ = 0 , ∂ · A = 0 ,

(i∂/−M3/2)ψµ = 0 , γ · ψ = 0 , i∂ · ψ = 0 ,

(� +M2
2 )hµν = 0 , ∂µh

µν = 0 , hµµ = 0 . (8.4)

The massless versions of the Lagrangians L1, L3/2 and L2
2 exhibit a gauge

freedom: they are invariant under the transformations Aµ → Aµ′ = Aµ+∂µΛ,
ψµ → ψ′

µ = ψµ + ∂µǫ and hµν → hµν ′ = hµν + ∂µην + ∂νηµ as well as
hµν → hµν ′ = hµν + ∂µ∂νΛ, respectively. Here, Λ, ǫ and ηµ are scalar, spinor
and vector fields, respectively.

In the spin-1 case a popular gauge is the Lorentz gauge ∂·A = 0. Imposing
this gauge conditions automatically ensures the EoM �Aµ = 0 and puts the

1Although the authors of [46] mention a general class, they expose one specific La-
grangian which would correspond to the choice A = − 1

3
2The massless version of (8.2b) is the linearized Einstein-Hilbert Lagrangian discussed

in many textbooks as for instance [83]
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constraint �Λ = 0. This last constraint is used to eliminate the residual
helicity state λ = 0.

A popular gauge in the spin-3/2 case is the covariant gauge γ · ψ = 0,
which causes similar effects, namely the correct EoM i∂/ψ = 0 and i∂ ·ψ = 0
and the constraint i∂/ǫ = 0. Since the ǫ-field is a free spinor, it is used to
transform away the helicity states λ = ±1/2 of the free ψµ field.

Since the spin-2 Lagrangian has two symmetries, two gauge conditions
need to be imposed. The gauge conditions hαα = 0 and ∂αh

αβ = 0 give the
correct EoM. From the effects these gauge conditions have on the auxiliary
fields (�ηµ = 0, ∂ · η = 0 and �Λ = 0) we see that these equations describe
a massless spin-1 field and a massless spin-0 field. Therefore these fields can
be used to ensure that the tensor field hµν only has λ = ±2 helicity states.

In our case the mass terms in the Lagrangian break the gauge symmetry.
Although, the correct EoM (8.4) are obtained the freedom in the choice of
the field can not be exploited to transform away helicity states. Therefore,
the massive fields contain all helicity states.

8.2 Quantization

For the quantization of our systems we use Dirac’s Hamilton method for
constrained systems [50]. In case of the (real) vector and tensor fields the
accompanying canonical momenta are defined in the usual way. Since we
use complex fields in case of the spin-3/2 field we consider ψµ and ψ†

µ as
independent fields being elements of a Grassmann algebra. For the definition
of the accompanying canonical momenta we rely on [84]. Although, the
authors of [84] use spin-1/2 fields, the prescription for the canonical momenta
does not change. The canonical momenta are defined as

πνa =
∂rL
∂ψ̇a,ν

, πνa
‡ =

∂rL
∂ψ̇∗

a,ν

, (8.5)

where r means that the differentiation is performed from right to left. We
use the ‡-notation to distinguish the canonical momentum coming from the
complex conjugate field from the one coming form the original field, since
they need not (and in fact will not) be the same.

Using this prescription (8.5) we obtain the canonical momenta from our
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Lagrangians (8.1a), (8.2a) and (8.2b)

π0
1 = 0 , πn1 = −Ȧn + ∂nA0 ,

π0
3/2 = 0 , π0

3/2
‡
= 0 ,

πn3/2 = i
2
ψ†
kσ

kn , πn3/2
‡ = i

2
σnkψk ,

π00
2 = −1

2
∂nh

n0 , π0m
2 = −∂nhnm + 1

2
∂mh00

πnm2 = 1
2
ḣnm − 1

2
gnmḣkk + 1

2
gnm∂kh

k0 , + 1
2
∂mhnn ,

(8.6)

from which the velocities can be deduced

Ȧn = −πn1 + ∂nA0 ,

ḣnm = 2πnm2 − gnmπ2
k
k +

1

2
gnm∂kh

k0 ,

ḣkk = −π2
k
k +

3

2
∂kh

k0 , (8.7)

and the constraint equations. These constraints are called primary con-
straints

θ0
1 = π0

1 ,

θ0
3/2 = π0

3/2 , θ0
3/2

‡
= π0

3/2
‡
,

θn3/2 = πn3/2 − i
2
ψ†
kσ

kn , θn3/2
‡ = πn3/2

‡ − i
2
σnkψk ,

θ00
2 = π00

2 + 1
2
∂nh

n0 , θ0m
2 = π0m

2 + ∂nh
nm − 1

2
∂mh00 − 1

2
∂mhnn ,

(8.8)

and they vanish in the weak sense, to which we will come back below.
If we want these constraints to remain zero we impose the time derivative

of these constraints to be zero. We find it most easily to define the time
derivative via the Poisson bracket (Pb) θ̇ = {θ,H}P +∂θ/∂t 3. We, therefore,
need the Hamiltonians.

In constructing the Hamiltonians we need to explain the concept of strong
and weak equations: a strong equation is, as opposed to a weak equation,
an equation that remains to be valid when the relevant quantities (p,q,q̇)
are varied independently by a small quantity of order ǫ (see [50]). Dirac has
shown [50] that the Hamiltonian obtained in the usual way is a weak equation

3In practice it will turn out that the constraints are not explicitly dependent on time t
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4 and does not give the correct EoM. This can be repaired by adding the pri-
mary constraints (8.8) to the Hamiltonian by means of Lagrange multipliers
in order to make it a so-called strong equation. What we get is

Hw =

∫

d3x Hw(x) =

∫

d3x

(

∑

i

πiq̇i − L
)

,

H1,S = −1

2
πn1π1,n + πn1∂nA0 +

1

2
∂mAn∂

mAn − 1

2
∂mAn∂

nAm

−1

2
M2

1A
0A0 −

1

2
M2

1A
nAn + λ1,0θ

0
1 ,

H3/2,S =
1

2
ǫµνρkψ̄µγ5γρ (∂kψν)−

1

2
ǫµνρk

(

∂kψ̄µ
)

γ5γρψν +M3/2ψ̄µσ
µνψν

+λ3/2,0θ
0
3/2 + λ3/2,nθ

n
3/2 + λ‡3/2,0θ

0
3/2

‡
+ λ‡3/2,nθ

n
3/2

‡ ,

H2,S = πnm2 π2,nm −
1

2
π2

n
nπ2

m
m +

1

2
π2

n
n∂

mhm0 −
1

2
∂khn0∂khn0

−1

4
∂khnm∂khnm +

1

8
∂nh

n0∂mhm0 +
1

2
∂nh

nm∂khkm

+
1

2
∂mh

00∂mhnn +
1

4
∂mh

n
n∂

mhkk −
1

2
∂nh

nm∂mh00

−1

2
∂nh

nm∂mh
k
k +

1

2
M2

2h
n0hn0 +

1

4
M2

2h
nmhnm

−1

2
M2

2h
00hmm −

1

4
M2

2h
n
nh

m
m + λ2,00θ

00
2 + λ2,0mθ

0m
2 . (8.9)

For the definition of the Pb we rely on [51] and [84]. There, it is defined as

{E(x), F (y)}P =

[

∂rE(x)

∂qa(x)

∂lF (y)

∂pa(y)
− (−1)nEnF

∂rF (y)

∂qa(y)

∂lE(x)

∂pa(x)

]

δ3(x− y) ,

(8.10)

where nE, nF is 0 (1) in case E(x), F (x) is even (odd). With this form of the
Pb (8.10) we already anticipate that bosons satisfy commutation relations
and fermions anti-commutation relations in a quantum theory.

Now, we can impose the time derivatives of the constraints (8.8) to be
zero using (8.9) and (8.10)

{

θ0
1(x), H1,S

}

P
= ∂nπ

n
1 +M2

1A
0 = 0 ≡ Φ0

1(x) , (8.11a)

4In constructing the usual Hamiltonian explicit use can be made of the constraints,
since these are also weak equations
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{

θ0
3/2(x), H3/2,S

}

P
= ǫµ0ρk

(

∂kψ̄µ
)

γ5γρ −M3/2ψ̄µσ
µ0 = 0

≡ −Φ0
3/2

‡
(x) , (8.11b)

{

θ0
3/2

‡
(x), H3/2,S

}

P
= −ǫµ0ρkγ0γ5γρ (∂kψµ) +M3/2γ

0σ0µψµ = 0

≡ −Φ0
3/2(x) , (8.11c)

{

θn3/2(x), H3/2,S

}

P
= ǫµnρk

(

∂kψ̄µ
)

γ5γρ −M3/2ψ̄µσ
µn

+iλ‡3/2,kσ
kn = 0 , (8.11d)

{

θn3/2
‡(x), H3/2,S

}

P
= −ǫµnρkγ0γ5γρ (∂kψµ) +M3/2γ

0σnµψµ

+iσnkλ3/2,k = 0 , (8.11e)

{

θ00
2 (x), H2,S

}

P
=

1

2

[(

∂k∂k +M2
2

)

hmm − ∂n∂mhnm
]

= 0

≡ 1

2
Φ0

2(x) , (8.11f)
{

θ0m
2 (x), H2,T ot

}

P
= 2∂kπ

km
2 −

(

∂k∂k +M2
2

)

h0m = 0

≡ Φm
2 (x) . (8.11g)

5 In two cases ((8.11d) and (8.11e)) Lagrange multipliers are determined. In
all other cases new constraints are obtained. These are called secondary con-
straints. We also impose the time derivatives of these secondary constraints
to be zero

{

Φ0
1(x), H1,S

}

P
= M2

1 (∂nA
n + λ0

1) = 0 , (8.12a)

{

Φ0
3/2(x), H3/2,S

}

P
= σnki∂nλ3/2,k +M3/2γ

kλ3/2,k = 0 , (8.12b)
{

Φ0
3/2

‡
(x), H3/2,S

}

P
= i∂kλ

‡

3/2,nσ
nk +M3/2λ

‡

3/2,kγ
k = 0 , (8.12c)

{

Φ0
2(x), H2,S

}

P
= −2∂n∂mπ

nm
2 −M2π2

n
n +

(

∂k∂k +
3

2
M2

2

)

∂nhn0

= 0 ≡ −Φ
(1)
2 (x) , (8.12d)

{Φm
2 (x), H2,S}P = −M2

2

[

λ0m
2 + ∂kh

km − ∂mh00 − ∂mhnn
]

= 0 . (8.12e)

The first line (8.12a) determines the Lagrange multiplier λ0
1. Since this was

the only Lagrange multiplier in the spin-1 case all Lagrange multipliers of

5If Φ is a constraint, then so is aΦ. The constants in front of the constraints in (8.11)
are chosen for convenience and have no physical meaning.
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this case are determined and therefore all constraints are said to be second
class constraints.

In a situation where all constraints are second class every constraint has
at least one non-vanishing Pb with another constraint. If there is a constraint
that has non-vanishing Pb’s with all other constraints, this constraint is said
to be first class. In such a situation there is also an undetermined Lagrange
multiplier.

Equation (8.12e) determines the Lagrange multiplier λ0m
2 and equation (8.12d)

brings about yet another (tertiary) constraint. Its vanishing time derivative
yields

{

Φ
(1)
2 (x), H2,S

}

P
= M2

2

[(

2∂k∂k +
3

2
M2

2

)

h00 +

(

3

2
∂k∂k +M2

2

)

hnn

− 3

2
∂n∂mh

nm − 2∂nλ
n0
2

]

= 0 . (8.13)

We see that we have in the spin-3/2 case as well as in the spin-2 case two
equations involving the same Lagrange multipliers. In the spin-3/2 case these
are (8.11e) and (8.12b) for λ3/2,k and (8.11d) and (8.12c) for λ‡3/2,k. In the

spin-2 case these are (8.12e) and (8.13) for λn0
2 . Combining these equations

for consistency, and using Φ0
3/2, Φ0

3/2
‡

as well as Φ0
2 as weakly vanishing

constraints, yields the last constraints

Φ
(1)
3/2 = γ0ψ0 + γkψk , (8.14a)

Φ
(1)
3/2

‡
= −ψ†

0γ
0 + ψ†

kγ
k , (8.14b)

Φ
(2)
2 = h0

0 + hnn , (8.14c)

It is important to note that these constraints are only obtained when com-
bining other results, as describes above. This is not done in [56]. Therefore

these authors do not find Φ
(2)
2 , leaving θ00

2 as a first class constraint. Imposing
vanishing time derivatives of these constraints ((8.14a)-(8.14c))

{

Φ
(1)
3/2(x), H3/2,S

}

P
= −γ0λ3/2,0 − γkλ3/2,k = 0 ,

{

Φ
(1)
3/2

‡
(x), H3/2,S

}

P
= λ‡3/2,0γ

0 − λ‡3/2,kγk = 0 ,

{

Φ
(2)
2 (x), H2,S

}

P
= λ00

2 − π2
k
k +

3

2
∂kh

k0 = 0 , (8.15)
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determines the last Lagrange multipliers λ3/2,0, λ
‡

3/2,0 and λ00
2 .

In the massless spin-1 case the vanishing of the time-derivative of Φ0
1(x)

would automatically be satisfied as can be seen from (8.12a). In this case λ0
1

would not be determined which means that both constraints are first class.

We notice that in combining the equations that involve λ3/2,k ((8.11e),

(8.12b)) and λ‡3/2,k ((8.11d), (8.12c)) we obtain the constraints Φ
(1)
3/2 and Φ

(1)
3/2

‡

being proportional to M2
3/2. This means that in the massless case these

equations are already consistent with each other and that λ3/2,0 and λ‡3/2,0
can not be determined leaving θ0

3/2 and θ0
3/2

‡
to be a first class constraint

([51])6.

The situation in the massless spin-2 case is even more clear. From (8.12e)

and (8.13) it is evident that the time derivatives of Φm
2 and Φ

(1)
2 will already

be zero and that λ0k
2 can not be determined. Therefore Φ

(2)
2 will not be

obtained from which λ00
2 also can not be determined, leaving θ00

2 and θ0n
2 to

be first class constraints ([54, 55]) 7.

The fact that there are first class constraints (or undetermined Lagrange
multipliers) in the massless cases is a reflection of the gauge symmetry. In the
spin-1 and the spin-3/2 case only one Lagrange multiplier is undetermined
meaning there is only one gauge symmetry (of course the massless spin-3/2
action is also invariant under the hermitian gauge transformation, that is why
λ‡3/2,k is also undetermined). In the massless spin-2 case, however, there are
two Lagrange multipliers undetermined, meaning that there are two gauge
symmetries as we have mentioned before.

In the massive cases all Lagrange multipliers can be determined, which means
that all constraints are second class. Therefore every constraint has at least
one non-vanishing Pb with another constraint. The complete set of con-

6In this case also ∂nθ
n
3/2

and ∂nθ
n
3/2

‡ become first class.
7Actually all constraints become first class.
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straints (primary, secondary, . . . ) is

θ0
1 = π0

1 , Φ0
1 = ∂nπ

n
1 +M2

1A
0 ,

θ0
3/2 = π0

3/2 , θ0
3/2

‡
= π0‡ ,

Φ
(1)
3/2 = γ · ψ , Φ

(1)
3/2

‡
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0γ
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kγ
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2
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− 1
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2 = 2∂n∂mπ

nm
2 +M2

2π2
n
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−
(

∂k∂k + 3
2
M2
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)

∂nhn0 ,

(8.16)

We want to make linear combinations of constraints in order to reduce the
number of non-vanishing Pb among these constraints. In the end we will ar-
rive at a situation where every constraint has only one non-vanishing Pb with
another constraint. Therefore, we make the following linear combinations

θ̃n3/2 = θn3/2 − θ0
3/2γ0γ

n = πn3/2 − π0
3/2γ0γ

n − i

2
ψ†
kσ
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‡
= πn3/2

‡ + γnγ0π‡

3/2,0 −
i

2
σnkψk ,

Φ̃0‡
3/2 = Φ0

3/2
‡
+ θ̃m‡

3/2

(

−←−∂ m +
i

2
M3/2γm

)

= −∂mπm3/2 +
i

2
M3/2π

m
3/2γm + ∂mπ

0
3/2γ0γ

m − 3i

2
M3/2π

0
3/2γ0

− i
2
∂kψ

†
mσ

mk − 1

2
M3/2ψ

†
kγ

k ,

Φ̃n
2 = Φn

2 − 2∂nθ00
2 = 2∂kπ

kn
2 − 2∂nπ00

2 −
(

∂k∂k +M2
2

)

h0n − ∂n∂kh0k ,

Φ̃0
2 = Φ0

2 + 2∂nθ
n0
2 = 2∂nπ

0n
2 + ∂n∂mh

nm − ∂k∂kh00 +M2
2h

k
k ,
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Φ̃
(1)
2 = Φ

(1)
2 − (2∂k∂k + 3M2

2 )θ00
2 − 2∂nΦ̃

n
2

= −2∂n∂mπ
nm
2 +M2

2π2
k
k + 2∂k∂kπ

00
2 − 3M2

2π
00
2 +

(

2∂k∂k −M2
2

)

∂nh
0n .

(8.17)

The remaining non-vanishing Pb’s are

{

θ0
1(x),Φ

0
1(y)

}

P
= −M2

1 δ
3(x− y) ,

{

θ̃n3/2(x), θ̃
m‡

3/2(y)
}

P
= −iσmnδ3(x− y) ,

{

Φ̃0
3/2(x), Φ̃

0‡
3/2(y)

}

P
= −3i

2
M2

3/2δ
3(x− y) ,

{

θ0
3/2(x),Φ

(1)
3/2

‡
(y)
}

P
= γ0δ3(x− y) ,

{

θ00
2 (x),Φ

(2)
2 (y)

}

P
= −δ3(x− y) ,

{

Φ̃0
2(x), Φ̃

(1)
2 (y)

}

P
= 3M4

2 δ
3(x− y) ,

{

θ0n
2 (x), Φ̃m

2 (y)
}

P
= M2

2 g
nm δ3(x− y) . (8.18)

In a proper (quantum) theory we want the constraint to vanish. Although,
here, they vanish in the weak sense there still exist non-vanishing Pb relations
among them. This means in a quantum theory that ETC and ETAC rela-
tions exist among the constraints. We, therefore, introduce the new Pb à la
Dirac [50]: The Dirac bracket (Db), such that the Db among the constraints
vanishes

{E(x), F (y)}D = {E(x), F (y)}P −
∫

d3zzd
3z2 {E(x), θa(z1)}P

×Cab(z1 − z2) {θb(z2), F (y)}P , (8.19)

where the inverse functions Cab(z1 − z2) are defined as follows

∫

d3z {θa(x), θc(z)}P Ccb(z − y) = δabδ
3(x− y) , (8.20)

and can be deduced from (8.18).

The ETC and ETAC relations are obtained by multiplying the Db by a
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factor of i 8. What we get is

[

A0(x), An(y)
]

0
=

i∂n

M2
1

δ3(x− y) ,
[

Ȧ0(x), A0(y)
]

0
= − i

M2
1

∂n∂n δ
3(x− y) ,

[

Ȧn(x), Am(y)
]

0
= i

(

gnm +
∂n∂m

M2
1

)

δ3(x− y) ,

{

ψ0(x), ψ0†(y)
}

0
= − 2

3M2
3/2

∇2 δ3(x− y) ,

{

ψ0(x), ψm†(y)
}

0
=

1

M3/2

[

2

3M3/2

(

iγk∂k
)

γ0i∂m +
1

3

(

iγk∂k
)

γ0γm

+ γ0i∂m
]

δ3(x− y) ,
{

ψn(x), ψ0†(y)
}

0
=

1

M3/2

[

2

3M3/2

(

iγk∂k
)

i∂nγ0 +
1

3
γnγ0

(

iγk∂k
)

+ i∂nγ0

]

× δ3(x− y) ,

{

ψn(x), ψm†(y)
}

0
= −

[

gnm − 1

3
γnγm +

2

3M2
3/2

∂n∂m +
1

3M3/2

(

γni∂m

− i∂nγm
)]

δ3(x− y) ,

[

h00(x), h0l(y)
]

0
=

4i

3M4
2

∂j∂j∂
lδ3(x− y) ,

[

h0m(x), hkl(y)
]

0
=
−i
M2

2

[

4

3M2
∂m∂k∂l − 2

3
∂mgkl + ∂kgml + ∂lgmk

]

× δ3(x− y) ,
[

ḣ00(x), h00(y)
]

0
= − 4i

3M4
2

∂i∂i∂
j∂jδ

3(x− y) ,
[

ḣ0m(x), h0l(y)
]

0
=

i

M2
2

[

4

3M2
2

∂m∂l ∂j∂j +
1

3
∂m∂l + ∂j∂jg

ml

]

δ3(x− y) ,

8Of course, this is not the only step to be made when passing to a quantum theory.
Also the fields should be regarded as state operators, etc.
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[

ḣ00(x), hkl(y)
]

0
=

i

M2
2

[

4

3M2
2

∂k∂l ∂j∂j + 2∂k∂l − 2

3
∂j∂jg

kl

]

δ3(x− y) ,
[

ḣnm(x), hkl(y)
]

0
= i

[

−gnkgml − gnlgmk +
2

3
gnmgkl

− 1

M2
2

(

∂n∂kgml + ∂m∂kgnl + ∂n∂lgmk + ∂m∂lgnk
)

+
2

3M2
2

(

∂n∂mgkl + gnm∂k∂l
)

− 4

3M2
2

∂n∂m∂k∂l
]

× δ3(x− y) . (8.21)

This concludes the quantization of free, massive higher spin (j = 1, 3/2, 2)
fields. As a final remark we notice that the ET(A)C relations in (8.21)
amongst the various components of the spin-3/2, spin-2 field and their ve-
locities are independent of the choice of the parameter A in (8.1).

8.3 Propagators

Having quantized the free fields in the previous section (section 8.2) we now
want to obtain the propagators. In order to do so we need to calculate the
commutation relations for non-equal times, which is done using the following
identities as solutions to the field equations (first column of (8.4))

Aµ(x) =

∫

d3z
[

∂z0∆(x− z;M2
1 )Aµ(z)−∆(x− z;M2

1 )∂z0A
µ(z)

]

,

ψµ(x) = i

∫

d3z(i∂/x +M3/2)γ0∆(x− z;M2
3/2)ψ

µ(z) ,

hµν(x) =

∫

d3z
[

∂z0∆(x− z;M2
2 )hµν(z)−∆(x− z;M2

2 )∂z0h
µν(z)

]

.

(8.22)

Using these equations (8.22) and the ETC and ETAC relations we obtained
before (8.21) we calculate the commutation relations for unequal times

[Aµ(x), Aν(y)] = −i
(

gµν +
∂µ∂ν

M2
1

)

∆(x− y;M2
1 )

= P µν
1 (∂) i∆(x− y;M2

1 ) ,
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{

ψµ(x), ψ̄ν(y)
}

= −i
(

i∂/+M3/2

)

[

gµν − 1

3
γµγν +

2∂µ∂ν

3M2
3/2

− 1

3M3/2

(γµi∂ν − γνi∂µ)
]

∆(x− y;M2
3/2)

=
(

i∂/+M3/2

)

P µν
3/2(∂) i∆(x− y;M2

3/2) ,

[

hµν(x), hαβ(y)
]

= i

[

gµαgνβ + gµβgνα − 2

3
gµνgαβ

+
1

M2
2

(

∂µ∂αgνβ + ∂ν∂αgµβ + ∂µ∂βgνα + ∂ν∂βgµα
)

− 2

3M2
2

(

∂µ∂νgαβ + gµν∂α∂β
)

+
4

3M2
2

∂µ∂ν∂α∂β
]

×∆(x− y;M2
2 ) = 2P µναβ

2 (∂) i∆(x− y;M2
2 ) , (8.23)

where the Pj(∂), j = 1, 3/2, 2 are the (on mass shell) spin projection op-
erators. The factor 2 in the last line of (8.23) can be transformed away by
redefining the spin-2 field. (8.23) yields for the propagators

Dµν
F (x− y) = −i < 0|T [Aµ(x)Aν(y)] |0 >

= −iθ(x0 − y0)P µν
1 (∂)∆(+)(x− y;M2

1 )

−iθ(y0 − x0)P µν
1 (∂)∆(−)(x− y;M2

1 )

= P µν
1 (∂)∆F (x− y;M2

1 )− iδµ0 δν0 δ4(x− y) . (8.24)

SµνF (x− y) = −i < 0|T
(

ψµ(x)ψ̄ν(y)
)

|0 >
= −iθ(x0 − y0)

(

i∂/+M3/2

)

P µν
3/2(∂)∆(+)(x− y;M2

3/2)

−iθ(y0 − x0)
(

i∂/+M3/2

)

P µν
3/2(∂)∆(−)(x− y;M2

3/2)

=
(

i∂/+M3/2

)

P µν
3/2(∂)∆F (x− y;M2

3/2)

−γ0

[

2

3M2
3/2

(δµ0 δ
ν
m + δν0δ

µ
m) i∂m +

1

3M3/2

(δµmδ
ν
0 − δνmδµ0 ) γm

]

× δ4(x− y)

− 2

3M2
3/2

(

i∂/+M3/2

)

δµ0 δ
ν
0δ

4(x− y) . (8.25)

Dµναβ
F (x− y) = −i < 0|T

[

hµν(x)hαβ(y)
]

|0 >
= −iθ(x0 − y0)2P µναβ

2 (∂)∆(+)(x− y;M2
2 )

−iθ(y0 − x0)2P µναβ
2 (∂)∆(−)(x− y;M2

2 )
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= 2P µναβ
2 (∂)∆F (x− y;M2

2 )

+
1

M2
2

[

δµ0 δ
α
0 g

νβ + δν0δ
α
0 g

µβ + δµ0 δ
β
0 g

να + δν0δ
β
0 g

µα

−2

3

(

δµ0 δ
ν
0g

αβ + gµνδα0 δ
β
0

)

+
4

3

(

δµ0 δ
ν
0δ

α
0 δ

β
0 (∂0∂0 − ∂k∂k −M2

2 )

+δµ0 δ
ν
0δ

α
0 δ

β
b ∂

0∂b + δµ0 δ
ν
0δ

α
a δ

β
0 ∂

0∂a + δµ0 δ
ν
nδ

α
0 δ

β
0 ∂

0∂n + δµmδ
ν
0δ

α
0 δ

β
0 ∂

0∂m

+δµ0 δ
ν
0δ

α
a δ

β
b ∂

a∂b + δµ0 δ
ν
nδ

α
0 δ

β
b ∂

n∂b + δµmδ
ν
0δ

α
0 δ

β
b ∂

m∂b + δµ0 δ
ν
nδ

α
a δ

β
0 ∂

n∂a

+δµmδ
ν
0δ

α
a δ

β
0 ∂

m∂a + δµmδ
ν
nδ

α
0 δ

β
0 ∂

m∂n
)]

δ4(x− y) . (8.26)

The use of ∆(+)(x− y) and ∆(−)(x− y) is similar to what is written in [12]
in case of scalar fields

< 0|φ(x)φ(y)|0 > = ∆(+)(x− y) ,
< 0|φ(y)φ(x)|0 > = ∆(−)(x− y) . (8.27)

As can be seen from ((8.24)-(8.26)) the propagators are not covariant; they
contain non-covariant, local terms, as is mentioned in for instance [57].



Chapter 9

Auxiliary Fields

The goal of this chapter is to come to covariant propagators. The way we do
this is to introduce auxiliary fields. Since we also allow for mass terms we
have extra parameters which can be seen as gauge parameters. We discuss
certain choices of these parameters. Also we discuss the massless limits of the
propagators in section 9.4 and give momentum representations of the fields
in section 9.5. Apart from that, the organization of this chapter is exactly
the same as the previous one (chapter 8).

9.1 Equations of Motion

As a starting point we take the Lagrangians (8.1a), (8.2a) and (8.2b). To
these Lagrangians we add auxiliary fields coupled to the gauge conditions of
the massless theory, as discussed in the text below (8.4). We also allow for
mass terms of these auxiliary fields, which introduces parameters to be seen
as gauge parameters

LB = L1 +M1B∂
µAµ +

1

2
aM2

1B
2 , (9.1a)

Lχ = L3/2 +M3/2χ̄γ
µψµ +M3/2ψ̄µγ

µχ+ bM3/2χ̄χ , (9.1b)

Lηǫ = L2 +M2∂µh
µνην +M2

2h
µ
µǫ+

1

2
cM2

2 η
µηµ . (9.1c)

In (9.1c) we did not allow for a mass term for the ǫ field. We will come back
to this point below.

These Lagrangians ((9.1a)-(9.1c)) lead to the following EoM’s.
(

� +M2
1

)

Aµ = (1− a)M1∂
µB ,

(

� +M2
B

) (

� +M2
1

)

Aµ = 0 ,
(

� +M2
B

)

B = 0 , (9.2)

153
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where MB = aM2
1 . Furthermore we have the constraint relation ∂µAµ =

−aM1B.

(

i∂/−M3/2

)

ψµ = −b+ 2

2
M3/2γµχ− bi∂µχ ,

(i∂/+Mχ)
(

i∂/−M3/2

)

ψµ = −(3b2 + 5b+ 2)M3/2i∂µχ ,
(

� +M2
χ

) (

i∂/−M3/2

)

ψµ = 0 ,

(i∂/−Mχ)χ = 0 , (9.3)

where Mχ = (3b/2+2)M3/2. The auxiliary field is related to the original spin-
3/2 field via the equations γ ·ψ = −bχ and i∂ ·ψ = −1

2
(1+ b)(3b+4)M3/2χ.

(

� +M2
2

)

hµν = − (1 + c)M2 (∂µην + ∂νηµ)

+
2 (1 + c)

1− c M2
2 g

µνǫ ,

(

� +M2
η

) (

� +M2
2

)

hµν =
2 (1 + c)2

1− c M2
2

×
(

2∂µ∂ν − c

3 + c
M2

2 g
µν

)

ǫ ,

(

� +M2
ǫ

) (

� +M2
η

) (

� +M2
2

)

hµν = 0 ,

(

� +M2
η

)

ηµ = −2 (1 + c)

1− c M2∂
µǫ ,

(

� +M2
ǫ

) (

� +M2
η

)

ηµ = 0 ,
(

� +M2
ǫ

)

ǫ = 0 , (9.4)

where M2
η = −cM2

2 and M2
ǫ = − 2c

3+c
M2

2 . The constraint relations are hµµ = 0,

∂µh
µν = −cM2η

ν and ∂ · η = 4M2

1−c
ǫ

From the last line of (9.4) we see that the ǫ-field is a free Klein-Gordon
field. This equation comes about quite natural from the Euler-Lagrange
equations. This would not be so if we allowed for a mass term of this ǫ-
field in the Lagrangian (9.1c). Then it must be imposed that ǫ is a free
Klein-Gordon field which makes the calculations unnatural and unnecessary
difficult.

9.2 Quantization

As mentioned before the quantization procedure runs exactly the same as in
the previous chapter (section 8.2). We, therefore, determine the canonical
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momenta to be

π0
1 = M1B , πB = 0 ,

πn1 = −Ȧn + ∂nA0 ,

π0
3/2 = 0 , π0

3/2
‡
= 0 ,

πn3/2 = i
2
ψ†
kσ

kn , πn3/2
‡ = i

2
σnkψk ,

πχ = 0 , π‡
χ = 0 ,

π00
2 = −1

2
∂nh

n0 +M2η
0 , π0

η = 0 ,
π0m

2 = −∂nhnm + 1
2
∂mh00 + 1

2
∂mhnn +M2η

m , πmη = 0 ,

πnm2 = 1
2
ḣnm − 1

2
gnmḣkk + 1

2
gnm∂kh

k0 , πǫ = 0 ,

(9.5)

from which we deduce the velocities

Ȧn = −πn1 + ∂nA0 ,

ḣnm = 2πnm2 − gnmπ2
k
k +

1

2
gnm∂kh

k0 ,

ḣkk = −π2
k
k +

3

2
∂kh

k0 . (9.6)

These velocities are the same as in the previous chapter (see (8.7)). The
primary constraints are

θ0
1 = π0

1 −M1B , θB = πB ,

θ0
3/2 = π0

3/2 , θ0
3/2

‡
= π0

3/2
‡
,

θn3/2 = πn3/2 − i
2
ψ†
kσ

kn , θn3/2
‡ = πn3/2

‡ − i
2
σnkψk ,

θχ = πχ , θ‡χ = π‡
χ ,

θ00
2 = π00

2 + 1
2
∂nh

n0 −M2η
0 , θ0

η = π0
η ,

θ0m
2 = π0m

2 + ∂nh
nm − 1

2
∂mh00 θmη = πmη ,

− 1
2
∂mhnn −M2η

m , θǫ = πǫ .

(9.7)

Having determined the canonical momenta, the velocities and the primary
constraints we determine the (strong) Hamiltonians to be

HB,S = −1

2
πn1π1,n + πn1∂nA0 +

1

2
∂mAn∂

mAn − 1

2
∂mAn∂

nAm − 1

2
M2

1A
0A0

−1

2
M2

1A
nAn −M1B∂

mAm −
1

2
aM2

1B
2 + λ1,0θ

0
1 + λBθB ,



156 CHAPTER 9. AUXILIARY FIELDS

Hχ,S =
1

2
ǫµνρkψ̄µγ5γρ (∂kψν)−

1

2
ǫµνρk

(

∂kψ̄µ
)

γ5γρψν +M3/2ψ̄µσ
µνψν

−M3/2χ̄γ
µψµ −M3/2ψ̄µγ

µχ− bM3/2χ̄χ+ λ3/2,0θ
0
3/2 + λ3/2,nθ

n
3/2

+λ‡3/2,0θ
0
3/2

‡
+ λ‡3/2,nθ

n
3/2

‡ + λχθχ + λ‡χθ
‡
χ ,

Hηǫ,S = πnm2 π2,nm −
1

2
π2

n
nπ2

m
m +

1

2
π2

n
n∂

mhm0 −
1

2
∂khn0∂khn0

−1

4
∂khnm∂khnm +

1

8
∂nh

n0∂mhm0 +
1

2
∂nh

nm∂khkm

+
1

2
∂mh

00∂mhnn +
1

4
∂mh

n
n∂

mhkk −
1

2
∂nh

nm∂mh00 −
1

2
∂nh

nm∂mh
k
k

+
1

2
M2

2h
n0hn0 +

1

4
M2

2h
nmhnm −

1

2
M2

2h
00hmm −

1

4
M2

2h
n
nh

m
m

−1

2
cM2

2 η
µηµ −M2∂nh

n0η0 −M2∂nh
nmηm −M2

2h
0
0ǫ−M2

2h
k
kǫ

+λ2,00θ
00
2 + λ2,0mθ

0m
2 + λ0,ηθ

0
η + λm,ηθ

m
η + λǫθǫ . (9.8)

With this Hamiltonians (9.8) and with the definition of the Pb in (8.10) we
impose the time-derivatives of the constraints (9.7) to be zero

{

θ0
1(x), HB,S

}

P
= ∂nπ

n
1 +M2

1A
0 −M1λB = 0 , (9.9a)

{θB(x), HB,S}P = M1∂
mAm + aM2

1B +M1λ1,0 = 0 , (9.9b)

{

θ0
3/2(x), Hχ,S

}

P
= ǫµ0ρk

(

∂kψ̄µ
)

γ5γρ −M3/2ψ̄µσ
µ0 +M3/2χ̄γ

0

= 0 ≡ −Φ0
3/2

‡
(x) , (9.10a)

{

θ0
3/2

‡
(x), Hχ,S

}

P
= −ǫµ0ρkγ0γ5γρ (∂kψµ) +M3/2γ

0σ0µψµ −M3/2χ

= 0 ≡ −Φ0
3/2(x) , (9.10b)

{

θn3/2(x), Hχ,S

}

P
= ǫµnρk

(

∂kψ̄µ
)

γ5γρ −M3/2ψ̄µσ
µn +Mχ̄γn

+iλ‡3/2,kσ
kn = 0 , (9.10c)

{

θn3/2
‡(x), Hχ,S

}

P
= −ǫµnρkγ0γ5γρ (∂kψµ) +M3/2γ

0σnµψµ

−Mγ0γnχ+ iσnkλ3/2,k = 0 , (9.10d)

{θχ(x), Hχ,S}P = M3/2ψ̄ · γ + bM3/2χ̄ = 0 ≡ −M3/2Φ
‡
χγ

0 , (9.10e)
{

θ‡χ(x), Hχ,S

}

P
= −M3/2γ

0γ · ψ − bM3/2γ
0χ = 0

≡ −M3/2γ
0Φχ , (9.10f)
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{

θ00
2 (x), Hηǫ,S

}

P
= −M2λ

0
η +

1

2

(

∂k∂k +M2
2

)

hmm −
1

2
∂n∂mh

nm

+M2
2 ǫ = 0 , (9.11a)

{

θ0m
2 (x), Hηǫ,S

}

P
= 2∂kπ

km
2 −

(

∂k∂k +M2
2

)

h0m −M2∂
mη0

−M2λ
m
η = 0 , (9.11b)

{

θ0
η(x), Hηǫ,S

}

P
= ∂nh

n0 + λ00
2 + cM2η

0 = 0 , (9.11c)
{

θmη (x), Hηǫ,S

}

P
= ∂nh

nm + λ0m
2 + cM2η

m = 0 , (9.11d)

{θǫ(x), Hηǫ,S}P = M2
2

[

h0
0 + hnn

]

= 0 ≡M2
2 Φη , (9.11e)

Equations (9.9a), (9.9b), (9.10c), (9.10d) and (9.11a)-(9.11d) determine the
Lagrange multipliers λB, λ1,0, λ

‡

3/2,k, λ3/2,k, λ
0
η, λ

m
η , λ

00
2 , λ

0m
2 , respectively. All

other equations in (9.9), (9.10) and (9.11) yield new (secondary) constraints.
Imposing their time derivatives to be zero, yields

{

Φ0
3/2(x), Hχ,S

}

P
= σnki∂nλk +M3/2γ

kλ3/2,k −M3/2λχ = 0 ,
{

Φ0
3/2

‡
(x), Hχ,S

}

P
= i∂nλ

‡

3/2,kσ
kn +M3/2λ

‡

3/2,kγ
k +M3/2λ

‡
χ = 0 ,

{Φχ(x), Hχ,S}P = −bλχ − γ0λ3/2,0 − γnλ3/2,n = 0 ,
{

Φ‡
χ(x), Hχ,S

}

P
= bλ‡χ + λ‡3/2,0γ

0 − λ‡3/2,nγn = 0 , (9.12)

{Φη(x), Hηǫ}P = −π2
k
k +

1

2
∂nh

n0 − cM2η
0 = 0 = −Φ

(1)
2 . (9.13)

The equations in (9.12) determine the Lagrange multipliers λχ, λ
‡
χ, λ3/2,0 and

λ‡3/2,0. Equation (9.13) yields yet another (tertiary) constraint. Imposing its
time derivative to be zero

{

Φ
(1)
2 (x), Hηǫ

}

P
= ∂k∂kh

00 +
1

2
∂k∂kh

m
m −

1

2
∂n∂mh

nm +
3

2
M2

2h
00 +M2

2h
m
m

−M2∂
kηk − ∂mλm0

2 + 3M2
2 ǫ+ cM2λ

0
η = 0 , (9.14)

gives an equation for λ0
η. Since we already had an equation determining λ0

η

(9.11a) we combine both equations for consistency and use Φη as a weakly
vanishing constraint. What we get is the last constraint

Φ
(2)
2 = −∂n∂mhnm +

(

∂k∂k +M2
2

)

hmm + 2M2∂
kηk

−2

(

3 + c

1− c

)

M2
2 ǫ ,



158 CHAPTER 9. AUXILIARY FIELDS

{

Φ
(2)
2 (x), Hηǫ,S

}

P
= −2∂n∂mπ

nm
2 −M2

2π2
k
k +

(

∂k∂k +
3

2
M2

2

)

∂nh
n0

+2M2∂kλ
k
η − 2

(

3 + c

1− c

)

M2
2λǫ = 0 . (9.15)

As can be seen in (9.15) imposing the time derivative of Φ
(2)
2 to be zero

determines the remaining Lagrange multiplier λǫ.
All Lagrange multipliers are determined, which, again, means that all con-

straints are second class. So, every constraint has at least one non-vanishing
Pb with another constraint. The complete set of constraints is

θ0
1 = π0

1 −M1B , θB = πB ,

θ0
3/2 = π0

3/2 , θ0
3/2

‡
= π0

3/2
‡
,

θn3/2 = πn3/2 − i
2
ψ†
kσ

kn , θn3/2
‡ = πn3/2

‡ − i
2
σnkψk ,

θχ = πχ , θ‡χ = π‡
χ ,

Φ0
3/2 = −iσkn∂kψn Φ0

3/2
‡
= −i∂kψ†

nσ
nk

−M3/2

(

γkψk − χ
)

, −M3/2

(

ψ†
kγ

k + χ†
)

,

Φχ = γ0ψ0 + γkψk + bχ , Φ‡
χ = −ψ†

0γ
0 + ψ†

kγ
k − bχ† ,

θ00
2 = π00

2 + 1
2
∂nh

n0 −M2η
0 , θ0

η = π0
η ,

θ0m
2 = π0m

2 + ∂nh
nm − 1

2
∂mh00 θmη = πmη ,

− 1
2
∂mhnn −M2η

m , θǫ = πǫ ,

Φ
(2)
2 = −∂n∂mhnm +

(

∂k∂k +M2
2

)

hmm , Φη = h0
0 + hnn ,

+ 2M2∂
kηk − 2

(

3+c
1−c

)

M2
2 ǫ , Φ

(1)
2 = π2

k
k − 1

2
∂nh

n0 + cM2η
0 .

(9.16)

Again we make linear combinations of constraints in order to reduce the
number of non-vanishing Pb’s

Φ̃χ = Φχ −
b

M3/2

Φ0
3/2 = γ0ψ0 + (1 + b)γkψk +

b

M3/2

i∂kσ
klψl ,

θ̃n3/2 = θn3/2 − θ0
3/2γ0

[

(1 + b)γn − b

M3/2

i
←−
∂kσ

kn

]

+
1

M3/2

θχ

[

M3/2γ
n − i←−∂kσkn

]

= πn3/2 − (1 + b)π0
3/2γ0γ

n

+
bi∂k
M3/2

π0
3/2γ0σ

kn + πχγ
n − i∂k

M3/2

πχσ
kn − i

2
ψ†
kσ

kn ,

Φ̃‡
χ = Φ‡

χ −
b

M3/2

Φ0
3/2

‡
= −ψ†

0γ
0 + (1 + b)ψ†

kγ
k +

b

M3/2

i∂kψnσ
nk ,
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θ̃n‡3/2 = θn3/2
‡ −
[

−(1 + b)γn +
b

M3/2

σnki∂k

]

γ0θ
0
3/2

‡

− 1

M3/2

[

M3/2γ
n − σnki∂k

]

θ‡χ = πn3/2
‡ + (1 + b)γnγ0π

0
3/2

‡

− bi∂k
M3/2

σnkγ0π
0
3/2

‡ − γnπ‡
χ +

i∂k
M3/2

σnkπ‡
χ −

i

2
σnkψk ,

Φ̃η = Φη −
1

M2

θ0
η = h0

0 + hkk −
1

M2

π0
η ,

Φ̃
(1)
2 = Φ

(1)
2 + cθ00

2 +
1

2M2

(

1− c
3 + c

)

(

2∂k∂k + 3M2
)

θǫ

= πkk + cπ00 +
1

2M2
2

(

1− c
3 + c

)

(

2∂k∂k + 3M2
2

)

πǫ −
1

2
(1− c)∂nhn0 ,

θ̃0n
2 = θ0n

2 +
1

(3 + c)
∂nΦ̃η

= π0n
2 −

1

(3 + c)

∂n

M2

π0
η + ∂kh

kn − 1

2

(

1 + c

3 + c

)

(

∂nh00 + ∂nhkk
)

−M2η
n ,

Φ̃
(2)
2 = Φ

(2)
2 + 2∂kθ̃

0k
2 = 2∂kπ

k0
2 −

2

(3 + c)M2

∂k∂
kπ0

η + ∂n∂mh
nm

+
2

(3 + c)
∂k∂kh

n
n −

1 + c

3 + c
∂k∂kh

0
0 − 2

(

3 + c

1− c

)

M2
2 ǫ+M2

2h
k
k . (9.17)

With these new constraints the remaining non-vanishing Pb’s are

{

θ0
1(x), θB(y)

}

P
= −M1δ

3(x− y) ,
{

θ0
3/2(x), Φ̃χ(y)

}

P
= γ0δ

3(x− y) = −
{

θ0
3/2

‡
(x), Φ̃‡

χ(y)
}

P
,

{

θχ(x),Φ
0
3/2(y)

}

P
= M3/2 δ

3(x− y) = −
{

θ‡χ(x),Φ
0
3/2

‡
(y)
}

P
,

{

θ̃n3/2(x), θ̃
m‡

3/2(y)
}

P
= −iσmnδ3(x− y) ,

{

θ00
2 (x), θ0

η(y)
}

P
= −M2 δ

3(x− y) ,
{

θ̃0n
2 (x), θmη (y)

}

P
= −M2 g

nm δ3(x− y) ,
{

θǫ(x), Φ̃
(2)
2 (y)

}

P
= 2

(

3 + c

1− c

)

M2
2 δ

3(x− y) ,
{

Φ̃
(1)
2 (x), Φ̃η(y)

}

P
= −(3 + c) δ3(x− y) . (9.18)
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The Db and the inverse functions that go with them are defined in (8.19)
and (8.20), so we can immediately write down the ETC and ETAC relations

[

Aµ(x), Ȧν(y)
]

0
= −i (gµν − (1− a)δµ0 δν0 ) δ3(x− y) ,

[Aµ(x), B(y)]0 =
i

M1

δµ0 δ
3(x− y) ,

[

Aµ(x), Ḃ(y)
]

0
= −

[

Ȧµ(x), B(y)
]

0
= −iδµk

∂k

M1

δ3(x− y) ,
[

B(x), Ḃ(y)
]

0
= −iδ3(x− y) , (9.19)

{

ψn(x), ψm†(y)
}

0
= −

[

gnm − 1

2
γnγm

]

δ3(x− y) ,
{

ψ0(x), ψ0†(y)
}

0
= −3

2
(1 + b)2 δ3(x− y) ,

{

ψ0(x), ψm†(y)
}

0
=

[

b+ 1

2
γm − b i∂

m

M3/2

]

γ0 δ
3(x− y) ,

{

ψn(x), ψ0†(y)
}

0
=

[

b+ 1

2
γn − b i∂n

M3/2

]

γ0 δ
3(x− y) ,

{

χ(x), χ†(y)
}

0
= −3

2
δ3(x− y) ,

{

ψ0(x), χ†(y)
}

0
= γ0

[

3(1 + b)

2
− 1

M3/2

iγk∂k

]

δ3(x− y) ,

{

ψn(x), χ†(y)
}

0
= −

[

1

2
γn − i∂n

M3/2

]

δ3(x− y) , (9.20)

[

h00(x), η0(y)
]

0
=

3

M2(3 + c)
iδ3(x− y) ,

[

h0n(x), ηm(y)
]

0
=

1

M2

gnm iδ3(x− y) ,
[

h0n(x), ǫ(y)
]

0
= − 1

M2
2

(

1− c
3 + c

)

∂niδ3(x− y) ,
[

hnm(x), η0(y)
]

0
= − 1

M2(3 + c)
gnm iδ3(x− y) ,

[

η0(x), ηm(y)
]

0
=

1

M2
2 (3 + c)

∂miδ3(x− y) ,

[

η0(x), ǫ(y)
]

0
=

3

2M2

(1− c)
(3 + c)2

iδ3(x− y) . (9.21)
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In principle there are also ETC relations among time derivatives of the fields
in (9.21), that we have not shown for convenience. However, they are of
importance when calculating the commutation relations for non-equal times,
below.

9.3 Propagators

In order to get commutation and anti-commutation relations for non-equal
times we first construct solutions to the EoMs ((9.2), (9.3) and (9.4)) based
on the identities (8.22)

B(x) =

∫

d3z
[

∂z0∆(x− z;M2
B) ·B(z)−∆(x− z;M2

B) · ∂z0B(z)
]

,

Aµ(x) =

∫

d3z
[

∂z0∆(x− z;M2
1 ) · Aµ(z)−∆(x− z;M2

1 ) · ∂z0Aµ(z)
]

+
1

(1− a)M2
1

∫

d3z

[(

∂z0∆(x− z;M2
B)− ∂z0∆(x− z;M2

1 )

)

−
(

∆(x− z;M2
B)−∆(x− z;M2

1 )
)

∂z0

]

× (� +M2
1 )Aµ(z) ,

χ(x) = i

∫

d3z(i∂/x +Mχ)γ
0∆(x− z;M2

χ)χ(z) ,

ψµ(x) = i

∫

d3z(i∂/x +M3/2)γ
0∆(x− z;M2

3/2)ψµ(z)

+
2i

3(b+ 2)M3/2

∫

d3z

[

(i∂/x +M3/2)∆(x− z;M2
3/2)

− (i∂/x −Mχ)∆(x− z;M2
χ)

]

γ0(i∂/z −M3/2)ψµ(z)

+
2i

(3b+ 2)M3/2

∫

d3z

{

∆(x− z;M2
χ)−

2

3(b+ 2)M3/2

[

× (i∂/x +M3/2)∆(x− z;M2
3/2)− (i∂/x −Mχ)∆(x− z;M2

χ)

]}

×γ0(i∂/z +Mχ)(i∂/z −M3/2)ψµ(z) ,
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ǫ(x) =

∫

d3z
[

∂z0∆(x− z;M2
ǫ ) · ǫ(z)−∆(x− z;M2

ǫ ) · ∂z0ǫ(z)
]

,

ηµ(x) =

∫

d3z
[

∂z0∆(x− z;M2
η ) · ηµ(z)−∆(x− z;M2

η ) · ∂z0ηµ(z)
]

+
1

M2
η −M2

ǫ

∫

d3z

[

∂z0

(

∆(x− z;M2
ǫ )−∆(x− z;M2

η )

)

−
(

∆(x− z;M2
ǫ )−∆(x− z;M2

η )

)

· ∂z0
]

× (� +M2
η )η

µ(z) (9.22)

hµν(x) =

=

∫

d3z
[

∂z0∆(x− z;M2
2 ) · hµν(z)−∆(x− z;M2

2 ) · ∂z0hµν(z)
]

+
1

M2
2 −M2

η

∫

d3z

[

∂z0

(

∆(x− z;M2
η )−∆(x− z;M2

2 )

)

−
(

∆(x− z;M2
η )−∆(x− z;M2

2 )

)

∂z0

]

× (� +M2
2 )hµν(z)

+
1

(M2
η −M2

ǫ )(M
2
2 −M2

η )(M
2
2 −M2

ǫ )

∫

d3z

[

∂z0

(

(M2
2 −M2

η )∆(x− z;M2
ǫ )− (M2

2 −M2
ǫ )∆(x− z;M2

η )

+ (M2
η −M2

ǫ )∆(x− z;M2
2 )

)

−
(

(M2
2 −M2

η )∆(x− z;M2
ǫ )− (M2

2 −M2
ǫ )∆(x− z;M2

η )

+ (M2
η −M2

ǫ )∆(x− z;M2
2 )

)

∂z0

]

(

� +M2
η

) (

� +M2
2

)

hµν(z) .

(9.23)

Using these equations (9.23) and the ETC and ETAC relations of (9.19),
(9.20) and (9.21) we obtain the following commutation and anti-commutation
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relations

[B(x), B(y)] = −i∆(x− y,M2
B) ,

[Aµ(x), B(y)] = −i ∂
µ

M1

∆(x− y,M2
B) ,

[Aµ(x), Aν(y)] = −i
(

gµν +
∂µ∂ν

M2
1

)

∆(x− y;M2
1 ) + i

∂µ∂ν

M2
1

∆(x− y;M2
B)

= P µν
1 i∆(x− y;M2

1 ) + P µν
B i∆(x− y;M2

B) , (9.24)

{χ(x), χ̄(y)} = −3

2
i (i∂/+Mχ) ∆(x− y;M2

χ) ,

{ψµ(x), χ̄(y)} = −1

2

[

γµ − 2i∂µ

M3/2

]

i (i∂/+Mχ) ∆(x− y;M2
χ) ,

{

ψµ(x), ψ̄ν(y)
}

= −i
(

i∂/+M3/2

)

[

gµν − 1

3
γµγν +

2∂µ∂ν

3M2
3/2

− 1

3M3/2

(γµi∂ν − γνi∂µ)
]

∆(x− y;M2
3/2)

−1

6

[

γµ − 2i∂µ

M3/2

]

i (i∂/+Mχ)

[

γν − 2i∂ν

M3/2

]

∆(x− y;M2
χ)

=
(

i∂/+M3/2

)

P µν
3/2i∆(x− y;M2

3/2)

+P µν
χ i∆(x− y;M2

χ) , (9.25)

[ǫ(x), ǫ(y)] = −3

4

c(1− c)2

(3 + c)3
i∆(x− y;M2

ǫ ) ,

[ηµ(x), ǫ(y)] = −3

2

(1− c)
(3 + c)2

∂µ

M2

i∆(x− y;M2
ǫ ) ,

[ηµ(x), ην(y)] =

[

gµν +
∂µ∂ν

M2
η

]

i∆(x− y;M2
η )

− 3

(3 + c)

∂µ∂ν

M2
η

i∆(x− y;M2
ǫ ) ,

[ǫ(x), hµν(y)] =
(1− c)
(3 + c)

[

∂µ∂ν

M2
2

− 1

2

c

(3 + c)
gµν
]

i∆(x− y;M2
ǫ ) ,

[ηα(x), hµν(y)] =
1

M2

[

∂µgαν + ∂νgαµ +
2

M2
η

∂α∂µ∂ν
]

i∆(x− y;M2
η )

− 1

M2

[

1

(3 + c)
∂αgµν +

2

M2
η

∂α∂µ∂ν
]

i∆(x− y;M2
ǫ ) ,
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[

hµν(x), hαβ(y)
]

=

[

gµαgνβ + gµβgνα − 2

3
gµνgαβ

+
1

M2
2

(

∂µ∂αgνβ + ∂ν∂αgµβ + ∂µ∂βgνα + ∂ν∂βgµα
)

− 2

3M2
2

(

∂µ∂νgαβ + gµν∂α∂β
)

+
4

3M4
2

∂µ∂ν∂α∂β
]

×i∆(x− y;M2
2 )

− 1

M2
2

[

∂µ∂αgνβ + ∂ν∂αgµβ + ∂µ∂βgνα + ∂ν∂βgµα

+
4

M2
η

∂µ∂ν∂α∂β
]

i∆(x− y;M2
η )

−
[

1

3

c

3 + c
gµνgαβ − 2

3M2
2

(

∂µ∂νgαβ + gµν∂α∂β
)

+
4(3 + c)

3cM4
2

∂µ∂ν∂α∂β
]

i∆(x− y;M2
ǫ )

= 2P µναβ
2 (∂)i∆(x− y;M2

2 ) + P µναβ
η (∂)i∆(x− y;M2

η )

+P µναβ
ǫ (∂)i∆(x− y;M2

ǫ ) . (9.26)

From the overall minus signs in the (anti-) commutation relations of the
auxiliary fields in (9.26) we conclude that all auxiliary fields are ghost, except
for the ǫ-field. There the choice of the gauge parameter c determines whether
it is ghost-like or not.

Having obtained these (anti-) commutation relations we calculate the
propagators

Dµν
F,a(x− y) =

= −i < 0|T [Aµ(x), Aν(y)] |0 >

= −iθ(x0 − y0)

[

P µν
1 (∂)∆(+)(x− y;M2

1 ) + P µν
B (∂)∆(+)(x− y;M2

B)

]

−iθ(x0 − y0)

[

P µν
1 (∂)∆(−)(x− y;M2

1 ) + P µν
B (∂)∆(−)(x− y;M2

B)

]

= P µν
1 (∂)∆F (x− y;M2

1 ) + P µν
B (∂)∆F (x− y;M2

B) . (9.27)

We see that this propagator is explicitly covariant, independent of the choice
of the gauge parameter. Choosing a = 1 we see that the terms containing
derivatives cancel and that only the gµν term remains. It can be seen as
the massive photon propagator. For a =∞ we re-obtain the massive spin-1
field, like in (8.24). Except in the above derivation it is obtained without
non-covariant terms in the propagator. The choice a = 0 is particularly
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interesting, because then still the spin-1 condition ∂ · A = 0 holds (text
below (9.2)), but the propagator is covariant. In momentum space it looks
like

Dµν
F,0(P ) =

−gµν + pµpν

p2

p2 −M2
1 + iε

. (9.28)

The spin-3/2 propagator is

SµνF,b(x− y) = −i < 0|T
[

ψµ(x), ψ̄ν(y)
]

|0 >

= −iθ(x0 − y0)

[

(

i∂/+M3/2

)

P µν
3/2(∂)∆(+)(x− y;M2

3/2)

+P µν
χ (∂)∆(+)(x− y;M2

χ)

]

−iθ(x0 − y0)

[

(

i∂/+M3/2

)

P µν
3/2(∂)∆(−)(x− y;M2

3/2)

+P µν
χ (∂)∆(−)(x− y;M2

χ)

]

=
(

i∂/+M3/2

)

P µν
3/2(∂)∆F (x− y;M2

1 ) + P µν
χ (∂)∆F (x− y;M2

B)

+
b

M3/2

δµ0 δ
ν
0 δ

4(x− y) . (9.29)

Only for b = 0 we have an explicitly covariant propagator. This result was
also obtained in [59]. From the text below (9.3) we see that the choice b = 0
means that we have only one of the two spin-3/2 conditions or, to put it
in a different way, we have added an extra spin-1/2 piece to make the RS
propagator explicitly covariant.

For b = −4
3

and b = −1 we have that i∂ · ψ = 0 (, but γ · ψ 6= 0), but
then the propagator is not covariant anymore.

The spin-2 propagator is

Dµναβ
F,c (x− y) = −i < 0|T

[

hµν(x)hαβ(y)
]

|0 >

= −iθ(x0 − y0)
[

2P µναβ
2 (∂)∆(+)(x− y;M2) + P µναβ

η (∂)i∆(+)(x− y;M2
η )

+ P µναβ
ǫ (∂)i∆(+)(x− y;M2

ǫ )
]

−iθ(y0 − x0)
[

2P µναβ
2 (∂)∆(−)(x− y;M2) + P µναβ

η (∂)i∆(−)(x− y;M2
η )

+ P µναβ
ǫ (∂)i∆(−)(x− y;M2

ǫ )
]

= 2P µναβ
2 (∂)∆F (x− y;M2) + P µναβ

η (∂)∆F (x− y;M2
η )

+P µναβ
ǫ (∂)∆F (x− y;M2

ǫ ) . (9.30)
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We see that this propagator (9.30) does not contain local, non-covariant terms
independent of the choice of the gauge parameter. The first part of (9.30)
(P µναβ

2 (∂)-part) is pure spin-2 1. The nature of the other parts depends on
the free gauge parameter.

Since c is still a free parameter it is interesting to look at several gauges.
But before that, we exclude c = 1 and c = −3. In these cases the ǫ-field
vanishes and the EoM are quite different. Also the quantization procedure
runs differently.

An interesting gauge which we want to discuss here is c = −1. From
(9.4) we see that all fields become free Klein-Gordon fields of mass M2. As a
result of this choice all derivative terms disappear in (9.30) and what is left
is

Dµναβ
F,−1 (x− y) =

[

gµαgνβ + gµβgνα − 1

2
gµνgαβ

]

∆F (x− y;M2) . (9.31)

In contrast to the spin-1 case, discussed above, equation (9.31) is not the
massive version of the massless spin-2 propagator.

Making the choice c = 0 in (9.30) is easily done except for the 1
c

terms,
with which we deal explicitly

Lim
c→0

1

M4
2

[

1

3

1

p2 −M2
2 + iε

+
1

c

1

p2 −M2
η + iε

− 3 + c

3c

1

p2 −M2
ǫ + iε

]

= Lim
c→0

(

(1 + c)2

3 + c

)

×





1

p6 +
(

c2+4c−3
3+c

)

p4M2
2 +

(

c(c−5)
3+c

)

p2M4
2 −

(

2c2

3+c

)

M6
2 + iε





=
1

3

1

p6 − p4M2
2 + iε

,

→ 1

3M4
2

[

∆F (x− y;M2
2 )−∆F (x− y) +M2

2 ∆̃F (x− y)
]

. (9.32)

Using (9.32) we get for c→ 0

Dµναβ
F,0 (x− y) = 2P µναβ

2 (∂)∆F (x− y;M2
2 )− 1

M2
2

[

∂µ∂αgνβ + ∂ν∂αgµβ

+∂µ∂βgνα + ∂ν∂βgµα − 2

3

(

∂µ∂νgαβ + gµν∂α∂β
)

+
4∂µ∂ν∂α∂β

3M2
2

]

∆F (x− y) +
4

3M2
2

∂µ∂ν∂α∂β∆̃F (x− y) ,

1The factor 2 can again be transformed away by redefining all fields as in (8.23)
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Dµναβ
F,0 (p) =

[

gµαgνβ + gµβgνα − 2

3
gµνgαβ +

2

3p2

(

pµpνgαβ + gµνpαpβ
)

− 1

p2

(

pµpαgνβ + pνpαgµβ + pµpβgνα + pνpβgµα
)

+
4

3p4
pµpνpαpβ

]

1

p2 −M2
2 + iε

. (9.33)

As in the spin-1 case this propagator satisfies the field equations (and is
therefore pure spin-2) and is explicitly covariant. This result is also obtained
by ignoring the c term in the Lagrangian (9.1a) from the outset.

9.4 Massless limit

It is most easy to study the massless limits of the propagators obtained in
the previous section in momentum space

Lim
M1→0

Dµν
F,a(p) = Lim

M1→0

[

− gµν

p2 −M2
1 + iε

+

pµpν

M2
1

p2 −M2
1 + iε

−
pµpν

M2
1

p2 − aM2
1 + iε

]

= Lim
M1→0

[

− gµν

p2 −M2
1 + iε

+
(1− a)pµpν

p4 − (1 + a)p2M2
1 + aM4

1 + iε′

]

=

[

−gµν + (1− a) p
µpν

p2

]

1

p2 + iε
. (9.34)

Although we have not presented the massless case, it is done rather easily.
The quantization procedure runs very similar to what is presented in section
9.2, contrary to the case without an auxiliary field (section 8.2), only the
equations like in (9.23) are a bit different. It should be noticed that it is
sufficient in the massless case to ignore the mass term of the spin-1 field in
(9.1a), only. So, even though allowing for a mass term for the auxiliary field,
both Aµ and B turn out to be massless. Therefore the freedom in choosing
the gauge parameter is still present. In the massless case the exact same
result as (9.34) is obtained, so the massless limit connects smoothly with the
massless case and is explicitly covariant. In fact this line of reasoning is valid
for all three spin cases with auxiliary fields. Having mentioned this, we will
not come back to this when discussing the massless limits of the spin-3/2
and spin-2 cases below.
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The massless limit of the spin-3/2 field is

Lim
M3/2→0

SµνF,0(p) =

=

[

γµpν − p/
(

gµν − 1

2
γµγν

)]

1

p2 + iε

+2pµpνp/ Lim
M3/2→0

[

1

3M2
3/2

(

1

p2 −M2
3/2 + iε

− 1

p2 − 4M2
3/2 + iε

)]

+ (2pµpν + p/ (γµpν − pµγν))

× Lim
M3/2→0

[

1

3M3/2

(

1

p2 −M2
3/2 + iε

− 1

p2 − 4M2
3/2 + iε

)]

= −p/
[

gµν − 1

2
γµγν

]

1

p2 + iε
+ γµpν

1

p2 + iε
− 2pµpνp/

1

p4 + iε
. (9.35)

We notice that when this propagator (9.35) is coupled to conserved currents
only the first two parts contribute. These parts form exactly the massless
spin-3/2 propagator with only the helicities λ = ±3/2 ([68]). When we
couple the (massive) RS-propagator (8.25) to conserved currents and take
the massless limit 2 we see that it is different from the one in (9.35) because
of the factor in front of the γµγν term.

The massless limit of the spin-2 propagator is

Lim
M2→0

Dµναβ
F,c (p) =

=

(

gµαgνβ + gµβgνα
)

1

p2 + iε

−1

3
gµνgαβLim

M2→0

[

2

p2 −M2
2 + iε

+
c

3 + c

1

p2 −M2
ǫ + iε

]

−
(

pµpαgνβ + pνpαgµβ + pµpβgνα + pνpβgµα
)

× Lim
M3/2→0

[

1

M2
2

(

1

p2 −M2
2 + iε

− 1

p2 −M2
η + iε

)]

+
2

3

(

pµpνgαβ + gµνpαpβ
)

× Lim
M3/2→0

[

1

M2
2

(

1

p2 −M2
2 + iε

− 1

p2 −M2
ǫ + iε

)]

2Terms in the massive RS propagator that do not have a proper massless limit do not
contribute since we couple to conserved currents
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+4 pµpνpαpβ Lim
M3/2→0

[

1

M4
2

(

1

3

1

p2 −M2
2 + iε

+
1

c

1

p2 −M2
η + iε

−3 + c

3c

1

p2 −M2
ǫ + iε

)]

=

[

gµαgνβ + gµβgνα − 2 + c

3 + c
gµνgαβ

]

1

p2 + iε

−(1 + c)
1

p2

[

pµpαgνβ + pνpαgµβ + pµpβgνα + pνpβgµα

− 2

3 + c

(

pµpνgαβ + gµνpαpβ
)

]

1

p2 + iε

+
4(1 + c)2

3 + c

pµpνpαpβ

p4

1

p2 + iε
. (9.36)

Making the choice of the gauge parameter c → ±∞ we see that (9.36) be-
comes the massless spin-2 propagator plus terms proportional to p. In phys-
ical processes these terms do not contribute when current conservation is
demanded

Dµναβ
F,±∞(p) =

[

gµαgνβ + gµβgνα − gµνgαβ
] 1

p2 + iε
+O(p) . (9.37)

Again, this is different from taking the massive spin-2 propagator (8.26),
couple it to conserved currents and taking the massless limit, as is mentioned
in [69].

Having obtained the correct massless spin-2 propagator (9.36) it is partic-
ularly interesting to see how this limit comes about. Considering the prop-
agator (9.30) (coupled to conserved currents) with a small non-zero mass
and requiring that it is a mixture of pure spin-2 and spin-0 (so no ghosts or
tachyons) in order to have a kind of massive Brans-Dicke [85] theory, this
would imply that −3 < c < 0. However with this restriction we cannot take
the mass smoothly to zero in order to have a pure massless spin-2 propagator,
because this requires c→ ±∞ as mentioned before.

The above situation of a pure massive spin-2 and spin-0 propagator lim-
iting smoothly to a pure massless spin-2 propagator can be obtained in [60],
but there the set-up is quite different as well as the original goal.

9.5 Momentum Representation

To finalize the description of the higher spin fields coupled to auxiliary fields
we give the momentum representation of these fields in this section. Also,
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we give the relations which hold for the various creation and annihilation
operators.

A solution to the EoM of the fields in (9.2), (9.3) and (9.4) in terms of
the auxiliary fields is

Aµ = Vµ +
∂µ
M1

B ,

ψµ = Ψµ +
1

3

(

γµ −
2i∂µ
M3/2

)

χ ,

ηµ = Φ1,µ +
2(3 + c)

c(1− c)
∂µ
M2

ǫ ,

hµν = Φ2,µν −
1

M2

(∂µΦ1,ν + ∂νΦ1,µ)

+
2

3

3 + c

1− c

(

gµν −
2(3 + c)

c

∂µ∂ν
M2

2

)

ǫ , (9.38)

where

(� +M2
1 )Vµ = 0 , ∂ · V = 0 ,

(i∂/−M3/2)Ψµ = 0 , γ ·Ψ = 0 , i∂ ·Ψ = 0 ,

(� +M2
2 )Φ2,µν = 0 , ∂µΦ2,µν = 0 , Φµ

2,µ = 0 , (9.39)

and are therefore free spin-1, spin-3/2 and spin-2 fields, respectively. The
field Φ1,µ also satisfies the free spin-1 equations, but is of negative norm as
we will see below.

Since the anti-commutator of the χ-field (9.25) and the commutator of
the ǫ-field (9.26) contain constants we redefine these fields for convenience

χ =

√

3

2
χ′

ǫ =

√
3(1− c)

2(3 + c)
ǫ′ . (9.40)

3 Therefore (9.38) becomes

ψµ = Ψµ +
1√
6

(

γµ −
2i∂µ
M3/2

)

χ′ ,

ηµ = Φ1,µ +

√
3

c

∂µ
M2

ǫ′ ,

3The part in the commutator of the ǫ-field that determines whether ǫ is ghostlike or
not is not taken in the redefinition.
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hµν = Φ2,µν −
1

M2

(∂µΦ1,ν + ∂νΦ1,µ)

+
1√
3

(

gµν −
2(3 + c)

c

∂µ∂ν
M2

2

)

ǫ′ . (9.41)

The momentum representation of the fields is

B(x) =

∫

d3p

(2π)32EB

[

aB(p)e−ipx + a†B(p)eipx
]

p0=EB

,

Vµ(x) =
1
∑

λ=−1

∫

d3p

(2π)32EV

[

aV,µ(pλ)e−ipx + a†V,µ(pλ)eipx
]

p0=EV

,

χ′(x) =

1
2
∑

s=− 1
2

∫

d3p

(2π)32Eχ

[

bχ(ps)uχ(ps)e
−ipx + d†χ(ps)vχ(ps)e

ipx
]

p0=Eχ
,

Ψµ(x) =

3
2
∑

s=− 3
2

∫

d3p

(2π)32EΨ

[

bΨ(ps)uµ(ps)e
−ipx + d†Ψ(ps)vµ(ps)e

ipx
]

p0=EΨ

,

ǫ′(x) =

∫

d3p

(2π)32Eǫ

[

aǫ(p)e
−ipx + a†ǫ(p)e

ipx
]

p0=Eǫ
,

Φ1,µ(x) =
1
∑

λ=−1

∫

d3p

(2π)32E1

[

a1,µ(pλ)e−ipx + a†1,µ(pλ)eipx
]

p0=E1

,

Φ2,µν =
2
∑

λ=−2

∫

d3p

(2π)32E2

[

a2,µν(pλ)e−ipx + a†2,µν(pλ)eipx
]

p0=E2

, (9.42)

where Ei =
√

|~p|2 +M2
i . In (9.42) the spin-3/2 spinor uµ(ps) is a ten-

sor product of a spin-1 polarization vector and a spin-1/2 spinor: uµ =
ǫµ ⊗ u. The normalization of this (spin-1/2) spinor, as well as that of uχ,
is ū(ps)u(ps′) = 2Mδss′ and of course something similar for the v-spinors.
With this normalization the creation and annihilation operators satisfy the
following (commutation) relations

[

aB(p), a†B(p′)
]

= −(2π)32EB δ
3(p− p′) ,

[

aV,µ(pλ), a†V,ν(p
′λ′)
]

=

(

−gµν +
pµpν
M2

1

)

(2π)32EV δ
3(p− p′)δλλ′ ,
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{

bχ(ps), b
†
χ(p

′s′)
}

=
{

dχ(ps), d
†
χ(p

′s′)
}

= −(2π)32Eχ δ
3(p− p′)δss′ ,

{

bΨ(ps), b†Ψ(p′s′)
}

=
{

dΨ(ps), d†Ψ(p′s′)
}

= (2π)32EΨ δ
3(p− p′)δss′ ,

[

aǫ(p), a
†
ǫ(p

′)
]

= − c

3 + c
(2π)32Eǫ δ

3(p− p′) ,
[

a1,µ(pλ), a†1,ν(p
′λ′)
]

= −
(

−gµν +
pµpν
M2

η

)

(2π)32E1 δ
3(p− p′)δλλ′ ,

[a2,µν(pλ), a2,αβ(p
′λ′)] =

[

gµαgνβ + gµβgνα −
2

3
gµνgαβ

− 1

M2
2

(pµpαgνβ + pνpαgµβ + pµpβgνα + pνpβgµα)

+
2

3M2
2

(pµpνgαβ + gµνpαpβ) +
4

3M4
2

pµpνpαpβ

]

×(2π)32E2 δ
3(p− p′)δλλ′ . (9.43)

All other (anti-) commutation relations vanish. These (anti-) commutation
relations are such that the relations in (9.24), (9.25) and (9.26) remain valid.

To complete the properties of the fields in momentum space there still
are the following relations

pµaV,µ(pλ) = 0 ,

pµuµ(ps) = 0 , γµuµ(ps) = 0 ,

pµa1,µ(pλ) = 0 ,

pµa2,µν(pλ) = 0 , aµ2,µ(pλ) = 0 . (9.44)
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Appendix D

∆ Propagators

A few definitions of on mass-shell propagators, according to [12], are

∆(x;m2) =
−i

(2π)3

∫

d4pǫ(p0)δ(p
2 −m2)e−ipx ,

∆±(x;m2) = (2π)−3

∫

d4pθ(±p0)δ(p
2 −m2)e−ipx ,

∆(1)(x;m2) =
1

(2π)3

∫

d4p δ(p2 −m2)e−ipx , (D.1)

which satisfy the relations amongst each other

i∆(x;m2) = ∆+(x;m2)−∆−(x;m2) ,

∆+(−x;m2) = ∆−(x;m2) ,

∆(1)(x;m2) = ∆+(x;m2) + ∆−(x;m2) . (D.2)

Furthermore, there are the following Green functions

−∆F (x;m2) = i
[

θ(x0)∆
+(x;m2) + θ(−x0)∆

−(x;m2)
]

,

∆ret(x;m
2) = −θ(x0)∆(x;m2) ,

∆adv(x;m
2) = θ(−x0)∆(x;m2) ,

∆̄(x;m2) = −1

2
ǫ(x− y)∆(x;m2) , (D.3)

where the Green function of the last line of (D.3) is defined in the book
of Nakanishi and Ojima (see [58]). A well known form the the Feynman
propagator is

∆F (x;m2) =
1

(2π)4

∫

d4p
e−ipx

p2 −m2 + iε
. (D.4)
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Furthermore we define the following ∆ propagators

∆̃(x) = − ∂

∂m2
∆(x;m2)|m2=0 ,

˜̃∆(x) =

(

∂

∂m2

)2

∆(x;m2)|m2=0 . (D.5)

Since the last two lines of (D.5) are also valid for Feynman function we can,
by using the integral representation of the Feynman function (D.3), give

integral representations for ∆̃F (x) and ˜̃∆F (x)

∆̃F (x;m2) = − 1

(2π)4

∫

d4p
e−ipx

p4 + iε
,

˜̃∆F (x;m2) =
1

(2π)4

∫

d4p
e−ipx

p6 + iε
. (D.6)

Furthermore we have the important relations

(

� +m2
)

∆(x;m2) = 0 ,

∆(x;m2)|0 = 0 ,
[

∂0∆(x;m2)
]

|0 = −δ(~x) ,

�∆̃(x) = ∆(x) ,

∆̃(x)|0 = ∂0∆̃(x)|0 = ∂2
0∆̃(x)|0 = 0 ,

∂3
0∆̃(x)|0 = −δ(~x) ,

�
˜̃∆(x) = ∆̃(x) ,

˜̃∆(x)|0 = ∂0
˜̃∆(x)|0 = . . . = ∂4

0
˜̃∆(x)|0 = 0 ,

∂5
0
˜̃∆(x)|0 = −δ(~x) ,

[

∂0∆
(1)(x;m2)

]

|0 = 0 . (D.7)
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Summary

This thesis contains two parts, the first part deals with pion-nucleon/meson-
baryon scattering in the Kadyshevsky formalism and the second one with
higher spin field quantization in the framework of Dirac’s Constraint analy-
sis.

In the first part we have presented the Kadyshevsky formalism in chapter 2.
Main (new) contributions here, are the study of the frame dependence, i.e.
n-dependence, of the integral equation and the second quantization.

Couplings containing derivatives and higher spin fields may cause differ-
ences and problems as far as the results in the Kadyshevsky formalism and
the Feynman formalism are concerned. This is discussed in chapter 3 by
means of an example. After a second glance the results in both formalisms
are the same, however, they contain extra frame dependent contact terms.
Two methods are introduced, which discuss a second source extra terms: the
Takahashi-Umezawa (TU) and the Gross-Jackiw (GJ) method. The extra
terms coming from this second source cancel the former ones exactly. We
have discussed and extended both TU and GJ formalisms: the TU method
is a more fundamental one, which makes use of an auxiliary field and the GJ
method is a more systematic and pragmatic method. It is particularly use-
ful for studying the frame dependence. Both formalisms, however, yield the
same results. With the use of (one of) these methods the final results for the
S-matrix or amplitude are covariant and frame independent (n-independent).
At the end of chapter 3 we have introduced and discussed the P̄ -method and
last but nog least we have shown that the TU method can be derived from
the BMP theory.

After discussing the Kadyshevsky formalism in great detail we have ap-
plied it to the pion-nucleon system, although we have presented it in such a
way that it can easily be extended to other meson-baryon systems. The re-
sults for meson exchange are given in chapter 4 and those for baryon exchange
in chapter 5.

Chapter 5 also contains a formal introduction and detail discussion of
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so-called pair suppression. We have formally implemented ”absolute” pair
suppression and applied it to the baryon exchange processes, although it is
in principle possible to also allow for some pair production. For the resulting
amplitudes, we have shown, to our knowledge for the first time, that they
are causal, covariant and n-independent. Moreover, the amplitudes are just
a factor 1/2 of the usual Feynman expressions. This could be intercepted by
rescaling the coupling constants in the interaction Lagrangian. The ampli-
tudes contain only positive energy (or if one wishes, only negative energy)
initial and final states. This is particularly convenient for the Kadyshevsky
integral equation. It should be mentioned that negative energy is present
inside an amplitude via the ∆(x− y) propagator. This is, however, also the
case in the academic example of the infinite dense anti-neutron star.

The last chapter of part I (chapter 6) contains the partial wave expansion.
This is used for solving the Kadyshevsky integral equation and to introduce
the phase-shifts.

In the second part we have quantized the (massive) higher spin fields j =
1, 3/2, 2 both in the situation where they are free (chapter 8) and where they
are coupled to auxiliary fields (chapter 9). We have done this using Dirac’s
prescription. For the first time a full constraint analysis and quantization is
presented by determining and discussing all constraints and Lagrange mul-
tipliers and by giving all equal times (anti) commutation relations. Using
free field identities we have come to (anti) commutation relations for un-
equal times, from which the propagators are determined. In the free fields
case (chapter 8) it is explicitly shown that they are non-covariant, as is well
known.

In chapter 9 we have coupled auxiliary fields to gauge conditions of the
free, massless systems. Introducing mass terms for these auxiliary fields in
the Lagrangian brings about free (gauge) parameters. The requirement of
explicit covariant propagators only determines the gauge parameter in the
spin-3/2 case.

After obtaining all the various (covariant) propagators we have discussed
several choices of the parameters and the massless limits of these propagators.
We have shown that the propagators do not only have a smooth massless
limit but that they also connect to the ones obtained in the massless case
(including (an) auxiliary field(s)).

When coupled to conserved currents we have seen that it is possible to
obtain the correct massless spin-j propagators carrying only the helicities
λ = ±jz. This does not require a choice of the parameter in the spin-1 case,
but in the spin-3/2 and in the spin-2 case we have had to make the choices
b = 0 and c = ±∞, respectively. We stress however, that in the spin-3/2 and
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the spin-2 case this limit is only smooth if the massive propagator contains
ghosts.
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Samenvatting

Dit proefschrift bevat twee delen, het eerste deel handelt over pion-nucleon/meson
baryon verstrooïıng in het Kadyshevsky formalisme en het tweede over hogere
spin-velden quantizatie in het kader van ”Dirac’s Constraint” analyse.

In het eerste deel hebben wij het Kadyshevsky formalisme gepresenteerd in
hoofdstuk 2. De belangrijkste (nieuwe) bijdragen hierin zijn de bestudering
van de stelselafhankelijkheid, in andere woorden de n-afhankelijkheid, van de
integraal vergelijking en de tweede quantizatie.

Koppelingen die afgeleiden en hogere spin velden bevatten, kunnen ver-
schillen en problemen veroorzaken voor wat betreft de resultaten in het Kady-
shevsky en het Feynman formalisme. Dit is besproken in hoofdstuk 3 door
middel van een voorbeeld. Na een tweede blik zijn de resultaten in beide
formalismen wel gelijk, maar bevatten ze extra stelselafhankelijke contact
termen. Twee methodes zijn gëıntroduceerd, welke een tweede bron van
extra termen bespreken: de Takahashi-Umezawa (TU) en de Gross-Jackiw
(GJ) methode. De extra termen die van deze tweede bron komen vallen
precies weg tegen de eerdere genoemde extra termen. We hebben zowel het
TU, als het GJ formalisme besproken en uitgebreid: de TU methode is een
meer fundamentele methode, welke gebruik maakt van een hulpveld en de GJ
methode is meer systematische en pragmatische methode. Het is met name
handig voor het bestuderen van de stelselafhankelijkheid. Beide formalismes
geven echter hetzelfde resultaat. Met behulp van (een van) deze methoden
is het uiteindelijke resultaat voor de S-matrix of de amplitude covariant en
stelselonafhankelijk (n-onafhankelijk). Aan het einde van hoofdstuk 3 hebben
we de P̄ gëıntroduceerd en bediscussieerd en als laatste, maar niet als minst
belangrijke, hebben we laten zien dat de TU methode kan worden afgeleid
vanuit de BMP theorie.

Nadat we het Kadyshevksy formalism in veel detail hebben besproken,
hebben we het toegepast op het pion-nucleon systeem, alhoewel we het op
zo’n manier hebben gepresenteerd dat het eenvoudig kan worden uitgebreid
naar andere meson-baryon systemen. De resultaten voor mesonuitwisseling
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zijn gegeven in hoofdstuk 4 en die voor baryonuitwisseling in hoofdstuk 5.
Hoofdstuk 5 bevat ook een formele introductie en gedetailleerde dis-

cussie van zogenoemde paar-onderdrukking. We hebben ”absolute” paar-
onderdrukking formeel gëımplementeerd en toegepast op de baryon uitwissel-
ings processen, alhoewel het in principe mogelijk is om een beetje paar-
productie toe te staan. Voor de resulterende amplitudes hebben we, naar
onze kennis voor de eerste keer, laten zien dat ze causaal, covariant en n-
onafhankelijk zijn. Sterker, de amplitudes verschillen een factor 1/2 van
de normale Feynman uitdrukkingen. Dit kan worden ondervangen door de
koppelingsconstantes in de interactie Lagrangiaan te herschalen. De am-
plitudes bevatten alleen begin en eindtoestanden met positieve energie (of,
mocht dat gewenst zijn, alleen negatieve energie). Dit is met name handig
voor de Kadyshevsky integraal vergelijking. Het moet worden genoemd dat
negatieve energie aanwezig is in een amplitude via de ∆(x − y) propagator.
Dit is echter ook het geval in het academisch voorbeeld van de oneindig dichte
anti-neutron ster.

Het laatste hoofdstuk van deel 1 (hoofdstuk 6) bevat de partiële golf
ontwikkeling. Dit wordt gebruikt voor het oplossen van de Kadyshevksy in-
tegraal vergelijking en om de fase-verschuivingen te introduceren.

In het tweede deel hebben we de (massieve) hogere spin-velden j = 1, 3/2, 2
gequantizeerd in zowel de situatie waar ze vrij zijn (hoofdstuk 8), als waar
ze gekoppeld zijn aan hulpvelden (hoofdstuk 9). We hebben dit gedaan ge-
bruikmakende van Dirac zijn voorschrift. Voor de eerste keer is een volledige
restrictie analyse en quantizatie gepresenteerd door alle restricties en La-
grange multiplicatoren en door alle gelijke tijd (anti-) commutatie relaties
te bepalen en te bediscussiëren. Door gebruik te maken van vrije veld iden-
titeiten, zijn we gekomen tot (anti-) commutatie relaties voor niet gelijke
tijden, waaruit de propagatoren zijn bepaald. In het geval van het vrije veld
(hoofdstuk 8) is expliciet aangetoond dat ze niet covariant zijn, zoals wel
bekend is.

In hoofdstuk 9 hebben we hulpvelden gekoppeld aan ijkkondities van de
vrije, massaloze systemen. Het introduceren van massa termen voor deze
hulpvelden in de Lagrangiaan brengt vrije (ijk-)parameters met zich mee.
De vereiste dat de propagatoren expliciet covariant zijn, legt alleen de ijkpa-
rameter in het geval van spin-3/2 vast.

Nadat alle verschillende (covariante,) propagatoren zijn bepaald, hebben
we verschillende keuzes van de parameters bestudeerd en de massaloze lim-
ieten van de propagatoren. We hebben laten zien dat de propagatoren niet
alleen een gladde massaloze limiet hebben, maar dat ze ook aansluiten op
diegenen die zijn bepaald in het massaloze geval (inclusief (een) hulpveld(en)).
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Wanneer de propagatoren gekoppeld zijn aan behouden stromen, hebben
we laten zien dat het mogelijk is om de correcte, massaloze spin-j propaga-
toren te verkrijgen met alleen de heliciteiten λ = ±jz. Dit vereist niet het
maken van een keuze voor de parameter in het geval van spin-1, maar in het
geval van spin-3/2 en spin-2 moeten we respectievelijk de keuzes b = 0 and
c = ±∞ maken. We benadrukken echter, dat in het geval van spin-3/2 en
spin-2 de limiet alleen glad is als de massieve propagator ”ghosts” bevat.
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