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The electronic structure of a prototype Kondo system, a cobalt impurity in a copper host is

calculated with accurate taking into account of correlation effects on the Co atom.

Using the

recently developed continuous-time QMC technique, it is possible to describe the Kondo resonance

with a complete four-index Coulomb interaction matrix.

This opens a way for completely first-

principle calculations of the Kondo temperature. We have demonstrated that a standard practice
of using a truncated Hubbard Hamiltonian to consider the Kondo physics can be quantitatively

inadequate.

PACS numbers: 73.20.-r; 68.37.Ef; 71.27.+a

Introduction

Scanning tunneling microscopy (STM) has become one
of the most basic tools for the manipulation of mat-
ter at the atomic scale. Although this experimental
technique has reached maturity, the detailed theoretical
understanding of experimental data is still incomplete
and/or contradictory. One of the most famous examples
of atomic manipulation is associated with the surface
Kondo effect observed when transition metal ions (like
Co) are placed on a metallic surface (such as Cu (111))1.2.
The surface Kondo effect is the basis for the observation
of surprising phenomena like quantum mirages3, and has
attracted a lot of attention and interest in the last few
years. Early interpretations of these observations were
based on the assumption that only surface states of Cu
(111) are involved in the scattering of electron waves by
the Co adatoms45,6. However, later experiments with Co
atoms on the Cu (100) surface (that does not have any
surface state)7, or in Cu (111) but close to atomic sur-
face steps (that affect the surface states)8 have indicated
that bulk rather than surface states are responsible for
the Kondo effect in these situations. The latter can be
important for fine tuning of surface electronic structure,
with potential applications to nanotechnology. A recent
study of CoCun clusters on Cu (111) demonstrated this
tunablilty by atomic manipulation and showed that each
atom in the vicinity of the magnetic impurity matters for
determining the Kondo effect9. Moreover, the relevance
of the Kondo effect for the electronic structure of metal
surfaces themselves was demonstrated by the discovery
of a sharp density of states peak on the Cr (001) sur-
face and its possible interpretation as an orbital Kondo
resonancel0,11,12.

At the same time, when calculating the Kondo tem-
peratures for real electronic structures a mapping onto
one-orbital Anderson impurity model13was used. The re-
alistic atomic geometry of Kondo systems plays a crucial

role in complex electronic properies9,14 and it is, a pri-
ori, not obvious that a one-orbital Anderson impurity ap-
proach is sufficient: even the two-orbital Anderson model
demonstrates Kondo physics essentially different from
the single-orbital onel5. A recent theoretical investiga-
tion of Fe impurities in gold and silver showed that the
proper Kondo model corresponds to a S=3/2 spin state16.
A realistic, multi-band consideration of correlation ef-
fects in specific solids is possible in the framework of the
Local Density Approximation + Dynamical Mean-Field
Theory (LDA+DMFT) approach (for review, see Ref.
17). However, formally accurate Quantum Monte Carlo
(QMC) calculations are always done with taking into ac-
count only the diagonal part of Coulomb interaction 18,19,
even with realistic hybridization functions obtained in
the LDA. This approximation is, strictly speaking, un-
controllable. At the same time, approximate schemes
working with the complete Coulomb interaction matrix,
such as the perturbative scheme20 which is frequently
used to calculate electronic structure of transition met-
als and alloys21,22 are not sufficient to reproduce so subtle
correlation features like the Kondo effect, properly. As
for the exact diagonalization 10,11 or numerical renormal-
ization group11,1523 methods they are hardly applicable,
due to computational problems, for more than two or-
bitals per impurity.

The recent progress in continuous time QMC scheme
(CT-QMC)24,25 makes it perspective to treat the com-
plicated Kondo systems26. Here we will apply this
method to calculate Kondo temperatures as well as spec-
tral functions for the case of a Co impurity in bulk Cu,
in a Cu (111) surface and on top of a Cu (111) sur-
face. In contrast with all previous calculations we will
work with an accurate complete Coulomb interaction U-
matrix for correlated d orbitals. The latter can be cal-
culated from first principles in a parameter-free way by
the GW technique27 so this approach is completely ab
initio. Moreover, the CT-QMC method allows to work,
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without any essential difficulties, even with the rigor-
ous frequency-dependent U-matrix. As the first step, we
present calculations for the static U-matrix, but this re-
striction is purely technical and can be relatively easily
removed in the future, with a growth of available com-
puter resources.

I. MULTI-ORBITAL CT-QMC FORMALISM

The multi-orbital impurity problem with a general U-
matrix is described by the effective action

where are orbital indices, and a, a' are spin in-
dices, Gij is the local non-interacting Green function for
correlated orbitals obtained from the Density Functional
Theory (DFT) with the help of optimal projection oper-
ator to the impurity d-states:
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In order to minimize the number of different interac-
tion vertices we group different matrix elements of the
multiorbital Coulomb interactions which have a similar
structure of fermionic operators. Since the Uijkl matrix
elements are spin independent, one should look over all
possible combinations of orbital and spin indices, to gen-
erate all terms for the interaction in the action Eq.(1).
Some combinations can violate the Pauli principle and
should be removed. For CT-QMC algorithm it is useful
to represent the interaction Hamiltonian in the following
form: UijkicdaclocjT cko'.

The interaction terms can be transformed to the de-
sired form, depending on relations between spin and or-
bital indices:

() if a = al we can just commute cla and cka/ and
then c[@and cj¢,. Another combination of indicesgthat
allows the same commutation, is the following: a = a’',
i = j and k = | (the latter two are following from the
Pauli principle), and also j = I. These terms we can
transform to the following desirable representation:

here enk is the energy spectrum and fnk is the corre-
sponding wave function of our system (metal host with
magnetic impurity), described by di localized orbitals,
and Uijki is the Coulomb interaction matrix element:

Uijkl = {32 |Vee|k2h) ®)

here il = di (rl) is local orthogonal wave function for
correlated orbitals and V-yf is screened spin-independent
Coulomb interaction between electrons at the coordi-
nates ri and r2. We used standard quasiatomic LDA+U
parametrization of Coulomb matrix for d-electron via ef-
fective Slater integarls or average Coulomb parameter U
and exchange parameter J as described in Ref.28. We
choose the orbital basis related to spherical harmonics to
be sure that magnetic orbital quantum numbers in UijK
matrix are satisfied the following sum rule: i+j = k+ L
In this case we will get rid of so-called three-site terms like
Uikkl with i = I'which turns out to result in a strong sign
problem in QMC calculations with real spherical harmon-
ics.

Following the general CT-QMC scheme24 we expand
the partition function around the Gaussian part of our
multiorbital action Eq.(1) which gives the fermionic de-
terminant over the non-interacting Green functions with
the rank 2n:

Hintl = Uijklclclaj cka,. (5)
(ii)  in the case whena = a'andj = | we can commute
cka>and Cja,, since in this case i = j and k = | due to
the Pauli principle:
Hjd = Uijklcl ckacjacla (6)

After generating all this terms it is useful to collect
and symmetrize all the terms with identical and equiv-

alent (i.e. Uijklciracjacka'cla’ and Uklijcka'cla'ciacja)
quantum numbers.

In order to reduce the fermionic sign problem we intro-
duce additional parameters, a, to optimize the splitting
of the Gaussian and interaction parts of the action Eq.(1)
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One can see, that the first item in (7) on Matsubara ail = a —adiag, ajk = adiag for the case of i = |
frequences corresponds to bare Green’s function and j = k. For non-diagonal fields, i.e. i = | and

Gj = (i*n+1)7ij Aij("n) (8)
where A is the hybridization matrix. The second term is
just a constant which we can absorb to the new chemical
potential jl. Therefore we can rewrite the bare Green
function in the following matrix form:

G 1= (ifn+1)1—A, 9)

The optimal choice of parameters aJ would lead to ef-
fective reduction of interaction terms in the action Eq.
(7) and therefore minimization of average perturbation
order in Eq. (4).

Note that relation between G and G can be represented
from Eq. (7) in the following spin and orbital matrix
form:

G-1 = G-1 —(0.U). (10)

Here we used the fact that Uilkj = Ulijk following from
the definition of the Coulomb matrix elements (3).

We also need to minimize the fermionic sign problem
which finally leads us to such expression for diagonal al-
pha parameters

alJ + A (11)

corresponding to to the following interaction fields
UijjiniTUja/. The a has to be found iteratively in order to
get a proper occupation number of correlated electrons.
In the case of half-filled one-band Hubbard model a = 1
leads to the correct chemical potential shift of the ~ and
average a = \ which corresponds to the Hartree-Fock
substraction. For non-diagonal alpha’s which correspond
to the fields of general form UijklicjTcITcjl) cka> where
i=1andj = k we find the following optimal condition:

atl+ al), =0 (12)

Since we symmetrize the interaction U matrix it is nec-
essary to extend the definition of the aU matrix to keep
all the terms in the interaction part of initial action ( the
last item in Eq. (7)). It can be done in the following
way24,34: for every Uijkl field in 50% of updates we de-
liver the a parameters as
ail = adiag, ajk = a —adiag, and in another 50% as

j = k ail = and, ajk = —and, with 50% probablility
and ail = —and, ajk = and otherwise. It was found that
the sign problem is eliminated in the case when adiag < 0
and a > 1 for occupancy n > ” per state and adiag > 0,
a < 1 otherwise. The optimal choice of ladiag| param-
eter is few percent of |a] to keep minimal average per-
turbation order. Another problem is a proper choice of
non-diagonal and parameter. It is easy to see that and
is proportional to acceptance probability of non-diagonal
field in the case where corresponding bare Green func-
tion Gjk = 0. Since these processes are unphysical, the
natural choice is and = 0. But it leads to division by zero
in the updating the inverse Green function matrix24. On
the other hand increasing the and parameter causes a
sign problem. We find a reasonable choice of and to be
on the order of 10-4. Moreover for some special cases
like the atomic limit, where Gmm(r) is constant, a small
noise should be added to all the a parameters to avoid
numerical divergency.

Il. RESULTS

The Co-Cu system is treated as five-orbital impurity
model representing 3d electronic shell of the cobalt atom
hybridized with a bath of a conduction Cu electrons.
The bath Green function was obtained using the first-
principle density-functional theory within the supercell
approach. For Co impurity atoms in the bulk as well as in
/ on the Cu (111) surface the bath Green functions were
obtained using the Vienna-Ab-Initio simulation package
(VASP)35,36 using the projector augmented wave (PAW)
basis sets37. The density functional calculation for cobalt
impurity in the bulk was carried out using CoCues super-
cell structure with lattice constant corresponding to pure
copper. The surfaces were modelled by supercells of Cu
(111) slabs containing 5 Cu layers with 2 x 2 and 3 x 4
lateral extension for Co in and on the surface, respec-
tively. The PAW basis naturally provides the projectors
{di |*nk} required in Eq. (2). In using these PAW pro-
jectors, directly, we employ here the same representation
of localized orbitals as used within the LDA+U-scheme
implemented in the VASP-code itself or as discussed in
the context of LDA+DMFT in Ref. 38.

For the problem of a single Co impurity in a bulk cop-



FIG. 1. (color online) Comparison with ED in the atomic
limit (without hybridisation to the bath of free electrons).
Main graph: U= 1eV, J = 04 eV 3 = 2eV-1, for 5-orbital
impurity at half-filling; inset: U= 2eV, J = 0.7 eV, 3 = 37
eV-1, for 5-orbital impurity with 8 electrons.

per matrix the basis set of spherical harmonics YIm is
used. In this basis the interaction part of the hamil-
tonian contains only terms of the following form: diag-
onal density-density like = Ujji,niTnjT, , where
nij = cjTcij and non-diagonal H * = UijklcjTj c\T,cij,
where i = j and k = I. The Coulomb matrix for the d-
electron shell in the basis of complex harmonics contains
45 non-equivalent diagonal terms. Non-diagonal terms
can be further classified to a spin-flips, where i = |,
j = k and the most general four-orbitals interactions,
where this condition is not fulfilled. Notice, that pair-
hopping terms (i = k, j = 1) are restricted by symmetry
in this basis. In description of d-electron shell we have to
involve 20 non-equivalent spin-flips and 64 terms of the
most general form.

To find the effects, caused by non-diagonal terms,
we used two different interaction Hamiltonian. First,
interaction with only diagonal terms was used. In this
case there is no sign problem. Then, the complete
Coulomb interaction matrix of the 3d-electron shell of
the cobalt atom with 129 terms was included.

As a benchmark we use impurity problem in the atomic
limit, since it can be compared with the result of ex-
act diagonalization (ED) method. The results imaginary
time Green function for 5-orbitals model with different
chemical potentials corresponding to the d5 and d8 con-
figurations are shown in the Fig. 1 in comparison with
ED results. The significant difference between density-
density (diagonal) interaction and the full vertex can be
found both at half-field case with relatively high tem-
perature with the U = 1eV,J = 04 eV,3 =2 eV-1
and at non-symmetric case even for lower temperature.
Note that in the d8 and d7 cases the many-body ground-

FIG. 2 (color online) Histograms of Monte-Carlo distribu-
tions for average perturbation order. Main graph: U = 4 eV,
J = 07eV, P=10 eV-1 for 5-orbital impurity coupled to
realistic Cu-bath with 7 electrons; inset: U = 4¢eV,J = 0.7
eV, beta = 1 eV-1 in the case of 5-orbital impurity model,
coupled to semi-elliptical bath with bandwidth W = 0.5 eV
at the half-filling

state have different symmetry for diagonal interactions
and non-diagonal full vertex. The results for d8 configu-
ration with the interaction parameters U = 2eV,J = 0.7
eV, 3 = 3.7 eV-1 are shown in the insert to the Fig. 1.
The difference between Green function of the interacting
system with full Coulomb interaction and density-density
one is visible on the G(t). We find a very good agreement
between CT-QMC results and ED solution.

In the inset of Fig. 2 we show the distribution of non-
diagonal terms, i.e. the contribution of Coulomb fields of
the form (5) to the resulting Green function. The zero
entry of this histogram counts the number of steps when
all the fields contributing to the fermionic determinant
(4) were of density-density type. The entry with index 2
show us the number of steps where the average (4) was
containing two spin-flip type fields (5). Such situation
takes place, for example, when one Coulomb field rep-
resenting spin-flip c~cj*c”cjj process was used to con-
struct the determinant.

One can see in the insert of the Fig. 2, that only
even orders of interaction histogram have large accep-
tance probability at high temperature and even the tenth
order in non-diagonal interactions has non-zero contribu-
tion. The 3-rd and 5-th order contributions exists due to
the finite and parameter.

Typical distribution of the perturbation order (5-
orbital AIM with 7 electrons, U = 4 eV, J = 0.7 eV,
3 =10 eV-1)isshown in Fig. 2, main plot. Dash line de-
notes the perturbation order during accepted steps that
involved non-diagonal fields. The coincidence of distribu-
tions maxima of both histograms demonstrate that the
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FIG. 3 (color online) Total DOS of 3d orbital of Co atom
embedded in Cu matrix. Model parameters: U = 4eV, J =
0.7 eV, 3 = 10 eV-1 for 5-orbital impurity with 7 electrons.

acceptance rate mostly depends on diagonal interactions.

For many-body calculations of the Co impurity in the
Cu matrix we need to find the effective d-orbital chemi-
cal potential which defines the number of 3d-electrons of
cobalt. The particular electronic configuration of a Co
atom in a copper matrix is unknown, but the DFT re-
sults (nd = 7.3) give us an evidence that it is close to
d7 configuration. Therefore we performed all impurity
calculations for cobalt d7 configuration.

The results of the CT-QMC calculations for U = 4
eV and J = 0.7 eV are presented in Fig.3 compared to
the bare impurity density of states for cobalt impurity
in the bulk. There is a pronounced difference between
Kondo-like resonance near the Fermi level.In the case of
full U-vertex it becomes more narrow and located much
closer to the Fermi level. The sign problem for realis-
tic five-band model depends crucially on the symmetry
of coulomb Vertex Uijkl and magnitude of non-diagonal
terms in the bath Green functions G j. The most serious
problem is related with non-diagonal terms of U-matrix,
therefore we use a basis of complex spherical harmonics.
In this case there is no so-called three-cite terms or cor-
related hopping, e.g. Uikkl. On the other hand, in this
basis, the bath Green-function matrix Gj for d-electrons
has two non-diagonal elements in the bulk of cubic crys-
tals and much more on the surface and in the first layer.
Moreover there are lot of small four-site terms Uijkl which
result in a large sign problem for surface-adatom calcu-
lations. The sign problem for a Co impurity in the bulk
is not large and average sign is between 0.90 and 0.97
depends on the simulation temperature.

In the case of non-diagonal interaction we used so-
called cluster steps which correspond to complex Monte-
Carlo updates with more than one additional interaction
field. This scheme became essential for spin-flip like inter-
action or more general U-vertex which can contribute to

E (eV)

FIG. 4: (color online)Total DOS of 3d orbital of Co atom
embedded in the bulk of Cu, into 1-st layer and Co-adatom on
the Cu(111) surface. Model parameters: U = 4 eV, J = 0.7
eV, 3 = 10 eV-1 for 5-orbital impurity with 7 electrons.

the Green-function only in the second or higher order ”di-
agammatic” expansion and this can let the Monte-Carlo
process to explore all the phase space. We note that prob-
ability of non-diagonal terms drastically decrease with
increasing the hybridization to the bath. Nevertheless,
at least for three-band benchmarks we found remarkable
effect of the spin-flip terms if the bath Green function has
peaks in the vicinity of the Fermi level on the distance of
the order of J.

We estimated the renormalization factor Zz = (1 —
dS/dE)-1 for U = 45¢eV,J =0.7eV and 3 =10 eV-1
and find Zt2g = 0.5 and Zeg = 0.4 which shows the rea-
sonable strong interaction of Co d-electrons. We estimate
the Kondo temperature (TK) using the temperature de-
pendence of FWHM for resonance near Fermi level. Since
our simulation temperature is very high compared to TK
we can get only order of magnitude of TK = 0.1 eV,
which is reasonable for Co-impurity systems.

We also performed the CT-QMC calculation of cobalt
impurity on the surface of Cu(111) and embedded into
the first copper layer. In contrast to the bulk system
the surface one has a large sign problem, related with
the relativelly large non-diagonal elements of the bath
Green functions. Although changing of the sign is a very
rare event (less then 0.03% of the accepted steps) and we
used a simple constrained sign calculations. Comparison
of the different spectral functions for the bulk, surface
and fist-layer cobalt impurity is presented in Fig. 4. One
can see clearly the change of the Kondo resonance width
as a function of reduced dimensionality.



CONCLUSIONS

In conclusion, we perform the continuous time QMC
calculation of realistic 5-orbital Co impurity in cop-
per and discuss the relevance of non-diagonal part of
Coulomb matrix in the Kondo problem. Comparing Figs.
3 and 4 we find that non-density-density terms in the
Coulomb vertex are required to obtain quantitative pre-
dictions of spectral functions and related properties. The
position of the Hubbard peaks and the Kondo peak is
markedly changed by spin-flips and other non-diagonal
terms of the Coulomb vertex. Thus, obtaining sensitive
observables like Kondo temperatures quantitatively re-
quires accounting for these terms. On the other hand
hybridization effects like bringing the Co impurity from
bulk to the surface and having it on top of the surface can
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