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The electronic structure of a prototype Kondo system, a cobalt impurity in a copper host is 
calculated with accurate taking into account of correlation effects on the Co atom. Using the 
recently developed continuous-time QMC technique, it is possible to describe the Kondo resonance 
with a complete four-index Coulomb interaction matrix. This opens a way for completely first- 
principle calculations of the Kondo temperature. We have demonstrated that a standard practice 
of using a truncated Hubbard Hamiltonian to consider the Kondo physics can be quantitatively 
inadequate.

PACS numbers: 73.20.-r; 68.37.Ef; 71.27.+a 

Introduction

Scanning tunneling microscopy (STM) has become one 
of the m ost basic tools for the m anipulation of m a t­
ter a t the atom ic scale. A lthough this experim ental 
technique has reached m aturity , the detailed theoretical 
understanding of experim ental d a ta  is still incomplete 
a n d /o r contradictory. One of the  m ost famous examples 
of atom ic m anipulation is associated w ith the surface 
K ondo effect observed when transition  m etal ions (like 
Co) are placed on a m etallic surface (such as Cu (111))1,2. 
The surface Kondo effect is the basis for the  observation 
of surprising phenom ena like quantum  m irages3, and has 
a ttrac ted  a lot of a tten tion  and in terest in the  last few 
years. E arly  in terp reta tions of these observations were 
based on the assum ption th a t only surface sta tes of Cu 
(111) are involved in the scattering  of electron waves by 
the Co adatom s4,5,6. However, la ter experim ents w ith Co 
atom s on the Cu (100) surface ( th a t does not have any 
surface s ta te )7, or in Cu (111) bu t close to  atom ic sur­
face steps ( th a t affect the surface s ta te s)8 have indicated 
th a t bulk ra th e r th an  surface sta tes are responsible for 
the  Kondo effect in these situations. The la tte r can be 
im portan t for fine tun ing  of surface electronic structure, 
w ith poten tia l applications to  nanotechnology. A recent 
study  of CoCun clusters on Cu (111) dem onstrated  this 
tunab lilty  by atom ic m anipulation  and showed th a t each 
atom  in the vicinity of the m agnetic im purity  m atters  for 
determ ining the Kondo effect 9. Moreover, the  relevance 
of the Kondo effect for the  electronic struc tu re  of m etal 
surfaces themselves was dem onstrated  by the discovery 
of a sharp  density  of sta tes peak on the Cr (001) sur­
face and its possible in terp re ta tion  as an orbital Kondo 
resonance10,11,12.

At the same tim e, when calculating the Kondo tem ­
peratu res for real electronic structures a m apping onto 
one-orbital Anderson im purity  m odel13 was used. The re­
alistic atom ic geom etry of Kondo system s plays a crucial

role in complex electronic properies9,14 and  it is, a pri­
ori, not obvious th a t a one-orbital Anderson im purity  ap­
proach is sufficient: even the tw o-orbital Anderson model 
dem onstrates Kondo physics essentially different from 
the single-orbital one15. A recent theoretical investiga­
tion  of Fe im purities in gold and silver showed th a t the 
proper Kondo model corresponds to  a S = 3 /2  spin s ta te16. 
A realistic, m ulti-band consideration of correlation ef­
fects in specific solids is possible in the  framework of the 
Local Density A pproxim ation +  D ynam ical M ean-Field 
Theory (LD A +D M FT) approach (for review, see Ref. 
17). However, form ally accurate Q uantum  M onte Carlo 
(QM C) calculations are always done w ith taking into ac­
count only the diagonal p a rt of Coulomb in teraction 18,19, 
even w ith realistic hybridization functions obtained in 
the LDA. This approxim ation is, s tric tly  speaking, un­
controllable. At the same time, approxim ate schemes 
working w ith the com plete Coulomb in teraction  m atrix, 
such as the  p ertu rbative  scheme20 which is frequently 
used to  calculate electronic s truc tu re  of transition  m et­
als and  alloys21,22 are no t sufficient to  reproduce so subtle 
correlation features like the Kondo effect, properly. As 
for the exact diagonalization 10,11 or num erical renorm al­
ization group 11,15,23 m ethods they  are hard ly  applicable, 
due to  com putational problem s, for more th an  two or­
bitals per im purity.

The recent progress in continuous tim e QMC scheme 
(C T-Q M C )24,25 makes it perspective to  tre a t the  com­
plicated Kondo system s26. Here we will apply this 
m ethod to  calculate Kondo tem peratu res as well as spec­
tra l functions for the case of a Co im purity  in bulk Cu, 
in a Cu (111) surface and on top  of a Cu (111) sur­
face. In contrast w ith all previous calculations we will 
work w ith an accurate com plete Coulomb in teraction U- 
m atrix  for correlated d orbitals. The la tte r can be cal­
culated from first principles in a param eter-free way by 
the G W  technique27 so th is approach is com pletely ab 
initio. Moreover, the CT-QM C m ethod allows to  work,
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w ithout any essential difficulties, even w ith the rigor­
ous frequency-dependent U-m atrix . As the  first step, we 
present calculations for the sta tic  U -m atrix, bu t this re­
stric tion  is purely technical and can be relatively easily 
removed in the  future, w ith a grow th of available com­
pu ter resources.

I. M ULTI-ORBITAL CT-QM C FORM ALISM

The m ulti-orbital im purity  problem  w ith a general U- 
m atrix  is described by the effective action

where are o rb ita l indices, and a, a ' are spin in­
dices, Gij is the  local non-interacting Green function for 
correlated orbitals obtained from the Density Functional 
Theory (D FT) w ith the help of optim al projection oper­
ato r to  the im purity  d-states:

n.  I . \ _  \  '  (^¿IV’n k )  (V’n k M j )  .
y i j ( i u > n )  —  y .  ■ , ! W

i^n  +  M — enk

here enk is the  energy spectrum  and r̂ nk is the  corre­
sponding wave function of our system  (m etal host with 
m agnetic im purity), described by di localized orbitals, 
and Uijki is the Coulomb interaction m atrix  element:

Uijkl =  {i 1 j 2 |V e2e | k2h )  (3)

here i 1 =  di ( r 1) is local orthogonal wave function for 
correlated orbitals and V-yf is screened spin-independent 
Coulomb interaction between electrons a t the coordi­
nates r i  and r 2. We used stan d ard  quasiatom ic LD A+U 
param etrization  of Coulomb m atrix  for d-electron via ef­
fective Slater integarls or average Coulomb param eter U 
and exchange param eter J  as described in Ref.28. We 
choose the orbital basis related  to  spherical harm onics to  
be sure th a t m agnetic orb ital quantum  num bers in Uij kl 
m atrix  are satisfied the following sum  rule: i +  j  =  k +  I. 
In this case we will get rid  of so-called three-site term s like 
Uikkl w ith  i =  I which tu rn s  out to  result in a strong sign 
problem  in QMC calculations w ith real spherical harm on­
ics.

Following the general CT-QM C scheme24 we expand 
the partition  function around the G aussian p a rt of our 
m ultiorbital action E q .(1) which gives the fermionic de­
term inan t over the non-interacting G reen functions w ith 
the rank 2n:

In order to  minimize the num ber of different in terac­
tion  vertices we group different m atrix  elem ents of the 
m ultiorbital Coulomb in teractions which have a similar 
s truc tu re  of fermionic operators. Since the Uij kl m atrix  
elements are spin independent, one should look over all 
possible com binations of orb ital and spin indices, to  gen­
erate  all term s for the  in teraction  in the  action E q .(1). 
Some com binations can violate the Pauli principle and 
should be removed. For CT-QM C algorithm  it is useful 
to  represent the  in teraction H am iltonian in the  following
form : Uij kl c-ia clo c j T' cko' .

The in teraction  term s can be transform ed to  the de­
sired form, depending on relations between spin and or­
b ita l indices:

(i) if a  =  a 1, we can ju s t com m ute cla and cka/ and 
then  clrT and cj ,. A nother com bination of indices, th a tLO j t 5
allows the  same com m utation, is the following: a  =  a ' , 
i =  j  and k  =  I (the la tte r two are following from the 
Pauli principle), and also j  =  I. These term s we can 
transform  to  the following desirable representation:

H in tl =  Uijkl c l c la j  cka, . (5)

(ii) in the case when a  =  a ' and j  =  l we can commute 
cka> and Cja, , since in th is case i =  j  and k  =  l due to 
the Pauli principle:

H j d  =  Uijkl cl  cka cj a cla (6)

After generating all th is term s it is useful to  collect 
and sym m etrize  all the  term s w ith identical and equiv­
alent (i.e . Uijkl cira cja cka' cla' and Uklij cka' cla' cia cj a )
quantum  num bers.

In order to  reduce the fermionic sign problem  we in tro­
duce additional param eters, a, to  optim ize the splitting 
of the  G aussian and in teraction  p a rts  of the action E q .(1)
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S 0 = J 2  Î  (  I _ ^ / ( T _ r / ) +  ^  a k l(UUkj + Ulijk)STr' ] c\aCja dTdT' , (7)
j0  J ° \  2 { k T } )ijo 0 0 y {klo;}

11 _ /*p ,
Sint -  I u ijk l{c\a cl(j -  O ^ X c j ^ C f c ^  -  a f k )d ,T .

{ijkloo/} 0

One can see, th a t the first item  in (7) on M atsubara 
frequences corresponds to  bare G reen’s function

Gij =  (i^ n  +  l )  ^ij A ij (^ n ) (8)

where A  is the hybridization m atrix . The second term  is 
ju s t a constan t which we can absorb to  the new chemical 
poten tia l jl. Therefore we can rew rite the  bare Green 
function in the following m atrix  form:

G 1 =  (i^n  +  l )  1 — A , (9)

The optim al choice of param eters a J  would lead to  ef­
fective reduction of in teraction  term s in the action Eq. 
(7) and therefore m inim ization of average pertu rba tion  
order in Eq. (4).

Note th a t relation between G and G can be represented 
from Eq. (7) in the following spin and orbital m atrix  
form:

G-1 =  G-1 — ( Ô .U ). (10)

Here we used the fact th a t Uilkj =  Ulijk following from 
the definition of the Coulomb m atrix  elem ents (3).

We also need to  minimize the fermionic sign problem  
which finally leads us to  such expression for diagonal al­
pha param eters

a J  +  ^  (11)

corresponding to  to  the following in teraction fields 
Uij j i n iT Uja/ . The a  has to  be found iteratively  in order to 
get a p roper occupation num ber of correlated electrons. 
In the case of half-filled one-band H ubbard  model a  =  1 
leads to  the  correct chemical poten tia l shift of the  ^  and 
average a  = \  which corresponds to  the Hartree-Fock 
substraction . For non-diagonal a lp h a’s which correspond 
to  the  fields of general form Uij kl cjT clT cjlJ, cka>, where 
i =  l and  j  =  k  we find the following optim al condition:

aTJ +  aJJ, =  0 (12)

Since we sym m etrize the  in teraction U m atrix  it is nec­
essary to  extend the definition of the aU m atrix  to  keep 
all the term s in the in teraction  p a rt of initial action ( the 
last item  in Eq. (7)). I t can be done in the  following 
way24,34: for every Uij kl field in 50% of updates we de­
liver the  a  param eters as
a il =  a diag , a jk  =  a  — a diag, and in another 50% as

a il =  a  — a diag , a jk  =  a diag for the  case of i =  l 
and j  =  k. For non-diagonal fields, i.e. i =  l and 
j  =  k a il =  a nd, a jk  =  —a nd, w ith  50% probablility  
and a il =  —a nd, a jk  =  a nd otherwise. I t was found th a t 
the sign problem  is elim inated in the case when a diag < 0 
and a  > 1 for occupancy n  >  ^ per s ta te  and a diag > 0, 
a  < 1 otherwise. The optim al choice of ladiag | param ­
eter is few percent of |a | to  keep m inim al average per­
tu rb a tio n  order. A nother problem  is a proper choice of 
non-diagonal and param eter. I t is easy to  see th a t and 
is proportional to  acceptance probability  of non-diagonal 
field in the case where corresponding bare Green func­
tion  Gjk =  0. Since these processes are unphysical, the 
n a tu ra l choice is a nd =  0. B ut it leads to  division by zero 
in the updating  the inverse Green function m atrix 24. On 
the o ther hand  increasing the a nd param eter causes a 
sign problem . We find a reasonable choice of a nd to  be 
on the order of 10- 4 . Moreover for some special cases 
like the atom ic limit, where Gm m ( r ) is constant, a small 
noise should be added to  all the  a  param eters to  avoid 
num erical divergency.

II. RESULTS

The Co-Cu system  is trea ted  as five-orbital im purity  
model representing 3d electronic shell of the  cobalt atom  
hybridized w ith a b a th  of a conduction Cu electrons. 
The b a th  G reen function was obtained using the first- 
principle density-functional theory  w ithin the supercell 
approach. For Co im purity  atom s in the bulk as well as in 
/  on the Cu (111) surface the b a th  G reen functions were 
obtained using the V ienna-A b-Initio sim ulation package 
(VASP)35,36 using the pro jector augm ented wave (PAW) 
basis sets37. The density  functional calculation for cobalt 
im purity  in the bulk was carried out using C oC u63 super­
cell s truc tu re  w ith lattice constan t corresponding to  pure 
copper. The surfaces were m odelled by supercells of Cu 
(111) slabs containing 5 Cu layers w ith 2 x 2 and 3 x 4 
la teral extension for Co in and on the surface, respec­
tively. The PAW basis na tu ra lly  provides the projectors 
{di |^ nk} required in Eq. (2). In using these PAW pro­
jectors, directly, we employ here the  same representation  
of localized orbitals as used w ithin the LDA+U-scheme 
im plem ented in the  VASP-code itself or as discussed in 
the context of LD A +D M FT  in Ref. 38.

For the problem  of a single Co im purity  in a bulk cop-
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FIG. 1: (color online) Comparison with ED in the atomic 
limit (without hybridisation to the bath of free electrons). 
Main graph: U =  1 eV, J  =  0.4 eV 3  =  2 eV-1 , for 5-orbital 
impurity at half-filling; inset: U =  2 eV, J  =  0.7 eV, 3  =  3.7 
eV-1 , for 5-orbital impurity with 8 electrons.

per m atrix  the  basis set of spherical harm onics Ylm is 
used. In this basis the  in teraction p a rt of the  ham il­
ton ian  contains only term s of the following form: diag­
onal density-density like =  Ujji, n iT n jT, , where 
n ij  =  cjTcij and non-diagonal H ^  =  UijklcjT j  c \T,c ij, 
where i =  j  and k  =  I. The Coulomb m atrix  for the  d- 
electron shell in the  basis of complex harm onics contains 
45 non-equivalent diagonal term s. Non-diagonal term s 
can be further classified to  a spin-flips, where i =  I, 
j  =  k  and the m ost general four-orbitals interactions, 
where th is condition is not fulfilled. Notice, th a t pair- 
hopping term s (i =  k, j  =  I) are restricted  by sym m etry 
in this basis. In description of d-electron shell we have to  
involve 20 non-equivalent spin-flips and 64 term s of the 
m ost general form.

To find the effects, caused by non-diagonal term s, 
we used two different in teraction  H am iltonian. F irst, 
in teraction w ith only diagonal term s was used. In this 
case there is no sign problem . Then, the complete 
Coulomb in teraction m atrix  of the 3d-electron shell of 
the  cobalt atom  w ith 129 term s was included.

As a benchm ark we use im purity  problem  in the atomic 
limit, since it can be com pared w ith the result of ex­
act diagonalization (ED) m ethod. The results im aginary 
tim e G reen function for 5-orbitals model w ith different 
chemical potentials corresponding to  the d5 and d8 con­
figurations are shown in the Fig. 1 in com parison w ith 
ED results. The significant difference between density- 
density  (diagonal) in teraction and the full vertex can be 
found b o th  a t half-field case w ith relatively high tem ­
pera tu re  w ith the U =  1 e V , J  =  0.4 e V , 3  = 2  e V -1 
and a t non-sym m etric case even for lower tem perature. 
Note th a t in the d8 and d 7 cases the  m any-body ground-

FIG. 2: (color online) Histograms of Monte-Carlo distribu­
tions for average perturbation order. Main graph: U =  4 eV, 
J  =  0.7 eV, P = 1 0  eV-1 for 5-orbital impurity coupled to 
realistic Cu-bath with 7 electrons; inset: U =  4 eV, J  =  0.7 
eV, beta =  1 eV-1 in the case of 5-orbital impurity model, 
coupled to semi-elliptical bath with bandwidth W  =  0.5 eV 
at the half-filling

sta te  have different sym m etry  for diagonal interactions 
and non-diagonal full vertex. The results for d8 configu­
ra tion  w ith the in teraction  param eters U =  2 e V , J  =  0.7 
eV, 3  =  3.7 e V -1  are shown in the insert to  the  Fig. 1. 
The difference between G reen function of the  interacting  
system  w ith full Coulomb in teraction and density-density 
one is visible on the G (t ). We find a very good agreement 
between CT-QM C results and ED solution.

In the inset of Fig. 2 we show the d istribu tion  of non­
diagonal term s, i.e. the contribution of Coulomb fields of 
the form (5) to  the resulting G reen function. The zero 
en try  of this histogram  counts the num ber of steps when 
all the fields contributing to  the fermionic determ inant 
(4) were of density-density type. The en try  w ith index 2 
show us the  num ber of steps where the average (4) was 
containing two spin-flip type fields (5). Such situation 
takes place, for example, when one Coulomb field rep­
resenting spin-flip c ^ c j^ c ^ c jj process was used to  con­
struc t the determ inant.

One can see in the  insert of the  Fig. 2, th a t only 
even orders of in teraction histogram  have large accep­
tance probability  a t high tem pera tu re  and even the ten th  
order in non-diagonal in teractions has non-zero contribu­
tion. The 3-rd and 5-th order contributions exists due to 
the finite a nd param eter.

Typical d istribu tion  of the pertu rb a tio n  order (5- 
orbital AIM w ith 7 electrons, U =  4 e V , J  =  0.7 e V , 
3  = 1 0  e V - 1 ) is shown in Fig. 2, m ain plot. Dash line de­
notes the  p e rtu rba tion  order during accepted steps th a t 
involved non-diagonal fields. The coincidence of d istribu­
tions m axim a of b o th  histogram s dem onstrate th a t the
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FIG. 3: (color online) Total DOS of 3d orbital of Co atom 
embedded in Cu matrix. Model parameters: U =  4 eV, J  =  
0.7 eV, 3  =  10 eV-1 for 5-orbital impurity with 7 electrons.

acceptance ra te  m ostly depends on diagonal interactions.
For m any-body calculations of the  Co im purity  in the 

Cu m atrix  we need to  find the effective d-orbital chemi­
cal po ten tia l which defines the num ber of 3d-electrons of 
cobalt. The particu lar electronic configuration of a Co 
atom  in a copper m atrix  is unknown, bu t the D FT  re­
sults (nd =  7.3) give us an evidence th a t it is close to 
d7 configuration. Therefore we perform ed all im purity  
calculations for cobalt d7 configuration.

The results of the  CT-QM C calculations for U =  4 
eV and J  =  0.7 eV are presented in F ig .3 com pared to 
the bare im purity  density  of sta tes for cobalt im purity  
in the bulk. There is a pronounced difference between 
Kondo-like resonance near the Fermi level.In the  case of 
full U-vertex it becomes more narrow  and located much 
closer to  the  Fermi level. The sign problem  for realis­
tic five-band model depends crucially on the sym m etry 
of coulomb Vertex Ui,jkl and m agnitude of non-diagonal 
term s in the  b a th  Green functions G j . The m ost serious 
problem  is related  w ith non-diagonal term s of U-m atrix, 
therefore we use a basis of complex spherical harmonics. 
In this case there is no so-called three-cite term s or cor­
related  hopping, e.g. Uikkl. O n the o ther hand, in this 
basis, the  b a th  Green-function m atrix  G j for d-electrons 
has two non-diagonal elem ents in the bulk of cubic crys­
ta ls and much more on the surface and in the first layer. 
Moreover there are lot of small four-site term s Uijkl which 
result in a large sign problem  for surface-adatom  calcu­
lations. The sign problem  for a Co im purity  in the  bulk 
is not large and average sign is between 0.90 and 0.97 
depends on the sim ulation tem perature.

In the case of non-diagonal in teraction  we used so- 
called cluster steps which correspond to  complex M onte­
Carlo updates w ith more th an  one additional in teraction 
field. This scheme becam e essential for spin-flip like in ter­
action or more general U-vertex which can contribute to

FIG. 4: (color online)Total DOS of 3d orbital of Co atom 
embedded in the bulk of Cu, into 1-st layer and Co-adatom on 
the Cu(111) surface. Model parameters: U =  4 eV, J  =  0.7 
eV, 3  =  10 eV-1 for 5-orbital impurity with 7 electrons.

the Green-function only in the second or higher order ”di- 
agam m atic” expansion and this can let the M onte-Carlo 
process to  explore all the  phase space. We note th a t prob­
ability  of non-diagonal term s drastically  decrease w ith 
increasing the hybridization to  the bath . Nevertheless, 
a t least for th ree-band  benchm arks we found rem arkable 
effect of the spin-flip term s if the b a th  Green function has 
peaks in the vicinity of the Fermi level on the distance of 
the order of J .

We estim ated the renorm alization factor Z  =  (1 — 
d S /d E ) -1  for U =  4.5 eV, J  =  0.7 eV and 3  = 1 0  eV -1 
and find Z t2g =  0.5 and Z eg =  0.4 which shows the rea­
sonable strong in teraction  of Co d-electrons. We estim ate 
the Kondo tem pera tu re  (T K ) using the tem pera tu re  de­
pendence of FW HM  for resonance near Fermi level. Since 
our sim ulation tem pera tu re  is very high com pared to  T K 
we can get only order of m agnitude of T K =  0.1 eV, 
which is reasonable for Co-im purity systems.

We also perform ed the CT-QM C calculation of cobalt 
im purity  on the surface of Cu(111) and em bedded into 
the first copper layer. In con trast to  the bulk system  
the surface one has a large sign problem , related  w ith 
the relativelly large non-diagonal elements of the b a th  
G reen functions. A lthough changing of the sign is a very 
rare event (less then  0.03% of the  accepted steps) and we 
used a simple constrained sign calculations. Com parison 
of the  different spectral functions for the bulk, surface 
and fist-layer cobalt im purity  is presented in Fig. 4 . One 
can see clearly the change of the  Kondo resonance w idth 
as a function of reduced dimensionality.
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CONCLUSIONS

In conclusion, we perform  the continuous tim e QMC 
calculation of realistic 5-orbital Co im purity  in cop­
per and discuss the relevance of non-diagonal p a rt of 
Coulomb m atrix  in the Kondo problem . Com paring Figs.
3 and 4 we find th a t non-density-density term s in the 
Coulomb vertex are required to  ob tain  quantita tive  pre­
dictions of spectral functions and related  properties. The 
position of the H ubbard  peaks and the Kondo peak is 
m arkedly changed by spin-flips and other non-diagonal 
term s of the Coulomb vertex. Thus, obtaining sensitive 
observables like Kondo tem peratu res quan tita tively  re­
quires accounting for these term s. O n the o ther hand 
hybridization effects like bringing the Co im purity  from 
bulk to  the surface and having it on top  of the surface can

be quite drastic: As Fig 4 shows, the  sharpening of the 
Kondo resonance and the shifting of the H ubbard  bands 
is much stronger when going from bulk to  the  surface 
then  on switching on the non-diagonal p a rt of Coulomb 
m atrix . Only the qualitative overall shape the DOS and 
its response to  strong hybridization changes are well de­
scribed by density-density type term s of the  Coulomb 
vertex.
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