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R E C U R S I V E  R E L A T IO N S  I N  T H E  C O R E  H O P F  A L G E B R A .

DIRK KREIMER AND WALTER D. VAN SUIJLEKOM

A b s t r a c t . We study co-ideals in the core Hopf algebra underlying a quantum field theory.

1. I n t r o d u c t io n  a n d  C o n v e n t io n s

In  th e  following, we consider th e  core H opf algebra of Feynm an graphs. I t is a H opf algebra 
w hich contains th e  renorm alization  H opf algebra as a quo tien t H opf algebra [2]. We are particu la rly  
in terested  in th e  s tru c tu re  of G reen functions w ith  respect to  th is  H opf algebra.

We w rite  G r =  G r ({Q}, { M }, {g}; R) for a generic G reen function, w here

•  r  indicates th e  am p litu d e  u n d er consideration  and  we w rite  E  =  |r | for its num ber of 
ex ternal legs. A m ongst all possible am plitudes, th e re  is a set of am plitudes provided by 
th e  free p ropagato rs  and  vertices of th e  theory. We w rite  R  for th is  set. I t is in one-to-one 
correspondence w ith  field m onom ials in a L agrangian  approach  to  field theory. T h e  set of 
all am plitudes is deno ted  by A  =  F U R ,  which defines F  as those  am plitudes only present 
th ro u g h  q u an tu m  corrections.

•  {Q} is th e  set of E  ex terna l m om enta qj sub ject to  th e  condition  ^ E = 1 qj =  0.
•  {M } is th e  set of m asses in th e  theory.
•  {g} is th e  set of coupling constan ts  specifying th e  theory. Below, we proceed for th e  case 

of a single coupling co n stan t g, th e  general case posing no principal new problem s.
•  R  indicates th e  chosen renorm alization  scheme [2].

We also no te  th a t  a generic G reen function  G r has an  expansion in to  scalar functions

(1) G  =  E  ‘ (r)<G (,)({Q }, { M }, {9 }; R).
t(r)eS(r)

Here, S ( r )  is a basis set of L orentz covariants t(r )  in accordance w ith  th e  q u an tu m  num bers 
specifying th e  am plitude  r . For each t ( r )  €  S ( r ) ,  th e re  is a p ro jec to r P t(r) on to  th is  form factor.

For exam ple, in spinor q u an tu m  electrodynam ics, th e  1PI vertex  function  for th e  pho ton  decay 
p ^  e+ e -  in to  a positron-electron  pair e+ (q)e- (—q) m easures th e  q u an tu m  corrections to  th a t  
process described by a tree  level vertex

Yß =  t(  ^  ) =  $ (  ^  ) 

in te rm s of th e  F eynm an rule $  com ing from  th e  m onom ial tpJjLtp in th e  Q ED  L agrangian.
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At zero m om entum  for th e  p ho ton  p, com puted  in th e  m om entum  scheme R mom th a t  vertex  
function  can  be decom posed in our n o ta tio n  as

G — ({qS q } ,m ,e ; R mom)

(5) X r (g) =  1 -  £  g
E(r)~r

(6) X r (g) =  1 +  E g
E(r)~r

(7) X r (g) =  y  9|r|

w ith  p ro jectors

(3) P ^  t r  o -  - lß  j  , P >  =  1 -  P ^

in D  dim ensions and  w here th e  trace  is over th e  D irac gam m a m atrices.
For r  e R ,  we can w rite

(4) G r =  $ ( r ) G £ (r)({Q}, { M }, {g}; R) +  R r ({Q}, { M }, {g}; R ),

w here R r ({Q}, { M }, {g}; R) sum s up all form factors t(r )  b u t $ ( r )  and  only con tribu tes th ro u g h  
q u an tu m  corrections, and  $  are  th e  unrenorm alized  Feynm an rules.

E ach G r can  be ob ta ined  by th e  evaluation  of a series of 1PI graphs
r

s ^ ( r ) - V r e K - |r|  =  2-

r

S j T n ( r ) ’Vr e  K , | r |  > 2 ’ 

r

* r ,E(1 )~r

w here we take th e  m inus sign for |r | =  2 and  th e  plus sign for |r | >  2. F urtherm ore , th e  n o ta tion  
E ( r )  r  ind icates a sum  over g raphs w ith  ex terna l leg s tru c tu re  in accordance w ith  r.

We w rite  for th e  unrenorm alized  and  renorm alized Feynm an rules regarded  as a m ap:
H  ^  C  from  th e  H opf algebra to  C. In  a slight abuse of no ta tion , we use th e  sam e sym bol 
to  deno te  th e  m ap w hich assigns to  an  elem ent of R  th e  corresponding  L orentz covariant, as in

$ ( ^  ) =  7m.
We have

(8) G ;m  =  (X r (9))({Q }, { M }, {g}; R ),

w here each non-em pty  g rap h  is evaluated  by th e  renorm alized Feynm an rules

(9) $R r) ( r )  :=  (1 -  R )m (S R  ® P t(r)$ P ) A ( r )

and  $R r ) (I) =  1, and  P  th e  p ro jec tion  in to  th e  augm en ta tion  ideal of H , and  R  th e  renorm alization  
m ap.

It is in th e  evaluation  (9) th a t  th e  cop roduct of th e  renorm alization  H opf algebra appears.
T h e  above sum  over all g raphs simplifies w hen one takes th e  Hochschild cohom ology of th e  

(renorm alization) H opf algebra in to  account:

(10) X r(g) =  ±  £  — L - g h \ B l ( X r (g)Q (g)),
E( 7)^r;A(7)=7®I+I®7
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(— sign for |r | =  2 , +  sign for |r | >  2 , ör,R  =  1 for r  e  R , 0 else) w ith  Q (g) being th e  form al series 
of graphs assigned to  an  invarian t charge of th e  coupling g:

(11) Q r (g) =

1
|r|-2

w here X r = X r for r  €  R  and  X r = X r +  I  else. Also, B j.  are grafting operators which are 
Hochschild cocycles (cf. Section 4 below).

N ote th a t  th e  existence of a un ique such invarian t charge depends on th e  existence of su itab le  
coideals in th e  renorm alization  H opf algebra as discussed below.

T here  is a tow er of q u o tien t H opf algebras

( 12) H 4 C He • • • C  H2n ••• Hcore =  H ,

ob ta ined  by res tric tin g  th e  coproduct to  sum s over graphs which are superficially d ivergent in

D  =  4, 6 , . . .  , 2 n , . . . ,  to

dim ensions. T hey  are defined via a cop roduct w hich restric ts  to  superficially d ivergent graphs 
WA( r )  <  0 in an  even num ber of dim ension D  g rea te r th a n  th e  critica l dim ension D  =  4.

( 13) A ( r ) = r  ® 1 +  1 ® r +  ^  7  ® r / 7 ,
0c 7cr;^D

w here restric ts  to  d isjo in t unions 7  =  such th a t  wd(Yî) <  0 for all 7 .̂

1.1. R e m a r k s .  T h e  above algebraic s tru c tu re s  given by th is  tow er of H opf algebras underly  m any 
fam iliar aspects of field theory. For exam ple, in effective field theories, one consider couplings for 
any in teraction  in accordance w ith  th e  sym m etries of th e  theory, often suppressed by a scale which 
is large com pared  to  th e  scales w hich are experim entally  observable. T h e  set R  can th en  exhaust 
th e  full set A . Still, th e  H opf algebra renorm alizing th e  corresponding  G reen functions is a quo tien t 
H opf algebra of th e  core H opf algebra, as som e am plitudes m ight only dem and  co un terterm s from 
a su itab ly  high loop num ber onw ards.

Also, in o p era to r p ro d u c t expansions we effectively enlarge th e  set R  to  con tain  any local am 
p litude  which ap p ears  in th e  h igh-m om entum  Taylor expansion of a given am p litu d e  in term s of 
local o p era to r insertions, and  th e  corresponding  renorm alizations in th is  expansion form  again a 
quo tien t H opf algebra of th e  core H opf algebra.

Finally, for theories w hich obey a grav ity  pow er-counting, th e  core H opf algebra becom es th e  
renorm alization  H opf algebra, and  th e  corresponding  co-ideal s tru c tu re  [11] is suggesting hidden  
renorm alizability , in accordance w ith  th e  recursive re la tions betw een on-shell g rav ity  sca tte ring  
am plitudes [3].

2. T h e  c o r e  H o p f  a l g e b r a

We s ta r t  by recalling th e  defin ition  of th e  core H opf algebra [2] (cf. also [10]) bu ilt on F eynm an 
graphs w ith  only a scalar edge. Besides th a t ,  we allow vertices of any valence to  appear. We om it 
th e  general case involving vertices or edges of different kinds for clarity  of no ta tion .

Recall th a t  a one-particle irreducible (1PI) graphs is a g rap h  w hich is no t a tree  and  does not 
becom e disconnected w hen cu ttin g  a single in terna l edge.

We will use th e  following n o ta tio n  for a Feynm an graph:

E , I  th e  num ber of ex terna l and  in terna l lines, respectively;
Vn th e  num ber of vertices of valence n , w hich sum  up  to  th e  to ta l num ber of vertices V ;
L  th e  num ber of loops.

3



2 I  +  E  =  E  nVn; £ ( n  — 2) Vn — (E  — 2) =  2L.
n n

Proof. T h e  first equation  follows afte r realizing th a t  th e  left-hand-side counts th e  num ber of halflines 
in a graphs, w hich are connected  to  Vn vertices of valence n , for each n , ap p earin g  a t th e  right- 
hand-side. M oreover, su b trac tin g  tw ice E u le r’s form ula I  — V +  1 =  L from  it gives th e  second 
displayed equation . □

T h e above re la tions tu rn  o u t to  be qu ite  useful la te r on. Let us now tu rn  to  th e  defin ition  of th e  
core H opf algebra.

D e f in i t io n  2. The  core H opf algebra H  is the free com m utative algebra (over C ) (generated by all 
1 P I F eynm an graphs with counit e ( r )  =  0 unless  r  =  0, in  which case e(0) =  1, coproduct,

A ( r )  =  r  ® 1 +  1 ® r +  E  7  ® r / 7 ,
0c 7c r

where the sum  is over all d isjo in t un ions o f 1 P I (proper) subgraphs in  r .  Finally, the antipode is 
given recursively by,

(14) S ( r )  =  —r  — E  s ( Y ) r / 7 .
0c 7c r

E ven though  th e  graphs r  can  have vertices of a rb itra ry  valence (as opposed to  th e  usual F eynm an 
graphs in renorm alizable p e rtu rb a tiv e  q u an tu m  field theories), th e  H opf algebra s tru c tu re  is still 
well-defined. Indeed, in view of th e  above Lem m a, a t a given loop o rder L and  num ber of ex ternal 
lines E , th e  m axim al vertex  valence th a t  appears in th e  g raph  is finite.

T h e  H opf algebra is g raded by loop num ber, since th e  num ber of loops in a su bgraph  7  C r  and 
in th e  g rap h  r / 7  add  up  to  L ( r ) .  A no ther m ulti-grad ing  is given by th e  num ber of vertices. In  
o rder for th is  to  be com patib le  w ith  th e  cop roduct -  creating  an  ex tra  vertex  in th e  quo tien t r / 7
-  we say a g raph  T  is of m ulti-vertex-degree k  = (ks, k^ , . . . )  if

Vn ( r )  =  kn  +  ^n,E(r).

O ne can check th a t  th is  g rad ing  is com patib le  w ith  th e  coproduct. From  Lem m a 1 if follows easily 
th a t  th e  tw o degrees are re la ted  v ia ^ m (m  — 2)km =  2L.

From  a physical po in t of view, it is no t so in teresting  to  s tu d y  ind iv idual graphs; ra th e r, one 
considers whole sum s of graphs w ith  th e  sam e num ber of ex ternal lines. Namely, we s tu d y  th e  1 P I  
Green’s fu n c tio n s  of (5,6,7) as elem ents in H .

R egard ing  th e  above gradings, we deno te  th e  above sum  w hen restric ted  to  g raphs w ith  l loops 
by X ; ,|r|- n Also, th e  restric tion  of X r,|r|=n to  graphs w ith  km +  öm,n vertices of valence m  (m  =  
3 , 4 , . . . )  will be w ritten  as X ^ n w ith  k  = (ks, k^ , . . . )  as before.

3. H o p f  id e a l s  in  H

In  th is  section we address th e  question  of how th e  cop roduct acts on th e  above G reen ’s functions 
X r,|r|=n . From  [15] we take th e  following

P r o p o s i t i o n  3. The coproduct reads on the 1 P I Green’s fu n c tio n s  (n  >  2):

E t t  r I I 1 Vm(r) r , , ol - I ( r ) g |r |r  [ 7  j r ,H = m  v 7 x r’\r\=2 ®
L J L J Sym(r) ’E (r)~r m

L e m m a  1. There are the follow ing relations between these numbers:
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C o r o l la r y  4. The coproduct takes the follow ing fo rm  on the 1 P I Green’s fu n c tio n s  ( |r | >  2):

<X>
A (X r,|r|=n ) =  ^ X r,|r|=n

m=3

X  r, |r|=m 

(X  r,|r|=2^m/2
®xr/ l=n.k

Proof. T his follows easily by apply ing  th e  first E q u a tio n  in L em m a 1, in com bination  w ith  th e  
defin ition  of th e  m ultig rad ing  km . □

N ext, we define th e  following ‘couplings’ Q (m) in H
l/(m —2)

q W  =  ' V '
—rr,|r|=m
X

(X  r,|r|=2^m/2
(m  >  2),

which, w hen restric ted  to  loop order l, are deno ted  by Q (m).

P r o p o s i t i o n  5. The ideal I  =  (Q (m) — Q ((n)) where m ,n  >  3 and  l >  0 is a H op f ideal, i.e.

A ( I ) C I  ® H  +  H  ® I ,  e (I) =  0, S ( I ) C I .

Proof. F rom  th e  re la tion  ^ m (m  — 2)km =  2l betw een th e  m ultig rad ing  km by num ber of vertices 
and  th e  loop o rder l, it follows th a t  we have

A (X r,|r|=n ) =  E  X r,|r|=n ( q (3^ 21 ® X [ ,|r|=n +  I  ® H . 
i

Indeed, m odulo  I , one can replace each (Q (m)) (m-2)km by (Q (3)) (m-2)km. T his leads precisely to  
S m ( m  — =  21 factors of Q ^ . E x ten d in g  th is  to  form al powers (such as 2(m ^2) G reen ’s 

functions ap p earin g  in th e  couplings Q (m))) th is  leads to

A (Q (n)) =  E Q (n) ( Q (3)f  ® Q ((n) + 1 ® h

from  which th e  claim  follows. □

T his im plies th a t  th e  quo tien t H / I  is a H opf algebra in w hich th e  relations Q (m) =  Q (n) hold; 
we will also set Q =  Q (m). A recursive way of w riting  these re la tions is

X r,|r |= n  X r,|r |= n - 1

j ç r , \ r \= n — 1 j ^ r , \ r \= n —2 '

In  a non-abelian  gauge theories th e  above identities ac tua lly  hold betw een th e  corresponding  phys
ical am plitudes so th a t  Feynm an rules provide an  elem ent of S p e c (H /I ) for n  =  4 and  are kwown 
as th e  S lavnov-T aylor iden tities for th e  couplings. N ote th a t  th en  coun tertem s in a chosen renor
m alization  scheme fu rn ish  an  elem ent in S p e c (H /I ). For renorm alized am plitudes, th e  choice of a 
renorm alization  condition  for any of th e  vertices in R  th en  determ ines F eynm an rules in S p e c (H /I ) 
for any such choice. See [6] for an  excellent discusion of such choices.

We conclude th is section w ith  an  expression for th e  cop roduct on G reen ’s functions in th e  quo
tien t.

P r o p o s i t i o n  6. In  the quotient H o p f algebra H / I  we have

A (X r,|r|=n ) =  E  Xi,n ® X [ ,|r|=n
I

where we have denoted  Xj,n =  X r,|r|=nQ 21.
5



C o r o l la r y  7.

A (X 1,n) — 'y '  X 1+j,n G (X 1,n)j . 
j

4. H o p f  s u b a l g e b r a s  and  D y so n - S c h w in g e r  e q u a t io n s

A nother way to  describe th e  G reen ’s function  is in term s of so-called g rafting  operato rs, defined 
in te rm s of 1PI prim itive graphs. We s ta r t  by considering m aps B +  : H  ^  Aug, w ith  Aug 
th e  augm en ta tion  ideal, w hich will soon lead us to  non-triv ial one co-cycles in th e  Hochschild 
cohom ology of H . T hey  are defined as follows.

('16') B V h ) =  V  b l j ( 7 ’^ r ) ___ -______ — T
( } + U  r ^ r> \h\v m axf(r) (7 |h) '

w here m a x f(r)  is th e  num ber of m axim al forests of r ,  |h |v is th e  num ber of d is tin c t g raphs o b ta in 
able by p erm u tin g  edges of h, bij(Y , h, r )  is th e  num ber of bijections of ex ternal edges of h  w ith  an  
insertion  place in 7  such th a t  th e  resu lt is r ,  and  finally (y| h) is th e  num ber of insertion  places for 
h  in y  [9]. ^ r e < r >  indicates a sum  over th e  linear span  <  r  >  of generators of H .

T h e  sum  of th e  B +  over all prim itive 1PI F eynm an graphs a t a given loop o rder and w ith  given 
residue will be deno ted  by B+n , as in loc. cit.. M ore precisely,

Rl;ra _  \  " 1 R7
+ “  ^  S y m (7 ) +Y prim

1(Y)=1
E(Y)=n

W ith  th is  and  th e  form ulas of th e  previous section on Q CD , we can prove th e  analog of th e  gauge 
theory theorem  as fo rm ulated  in [9, T heorem  5]:

T h e o r e m  8. Let H  =  H / I  be the core H o p f algebra with relations Q(n) =  Q (m) as before.

(1) X r,|r|=n =  £ ~ 0 B+n (X i,n).

(2) A (B + n (X i,n)) =  B+n (Xi,n) G I +  (id G B+n )A (X i,n ).+ ^l,nn  — *-l,nj A I v1,a ^  ^ +
; ,|r|=” ) ^ '=0 P o l? (X ) G X ,-j"

where Polr (X  ) is a polynom ial in  the n o f  degree j , determ ined as the order j  term  in the
loop expansion o f  X r,|r|=n Q 21-2j.

Proof. T he first claim  follows as in [9]. B +  acts on argum ents w hich have m ultip licity  (7 |h) x |h |v . 
We hence have to  d ivide by th is  m ultiplicity, and  by th e  num ber m a x f( r )  of ways to  generate  r .  
T his by construc tion  generates any g raph  w ith  weight 1 /S y m (r)  [9]. Indeed, assum e for a m om ent 
th a t  we label th e  ex terna l edges of h  and  in terna l edges of 7  and  th a t  we keep those labels in 
th e  bijections w hich define r .  T hen  each labeled g raph  is generated  once, th e  bijections define an  
operad ic com position and  th e  assertion  follows as in th e  operad ic p roof of L em m a 4 of [1].

For th e  second claim , we first enhance th e  resu lt of C orollary 4 to  p artia l sum s in X r,|r|=n over 
graphs th a t  have ‘prim itive residue’ isom orphic to  a fixed prim itive g rap h  7 . In  o th e r words, if 
X r,|r|=n,Y is th e  p a r t of X r,|r|=n th a t  sum s only over graphs th a t  are ob ta ined  by inserting  graphs 
in to  th e  prim itive g rap h  7 , th en

A (X r,|r|=n ,Y) =  X r,|r|=n ,Y g  1 +  £  X i,n G (X [ ,|r|=n,Y).
Z=1
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Here we have im posed (15) to  w rite  th is  in term s of th e  single coupling Q. Since X r,|r| n,Y =  

^  (BY (Xi,n ), a com bination  of th is  form ula w ith  C orollary 7 yields

A (B +  (Xi,n)) =  B +  (X i,n) G I +  (id G B + ) A ( X ^ ) .

T hen , sum m ing over all prim itive graphs w ith  n  ex ternal lines a t loop o rder l gives th e  desired 
resu lt. □

N ote th a t  our form ulation  above is som ew hat red u n d an t: in th e  core H opf algebra all prim itives 
have a single loop, 17 1 =  1. B u t in th e  given form , th e  resu lts rem ain  applicable to  any of th e  
before-m entioned quo tien t H opf algebras, w here prim itives ap p ea r beyond th e  first o rder still.

In  fact, th is  proves th e  slightly stronger resu lt th a t  every B +  defines a Hochschild 1-cocycle:

P r o p o s i t i o n  9. For 7  a p rim itive  graph at loop order k and residue r, we have

A (B +  (Xi,n)) =  B +  (X i,n) G I +  (id G B + ) A ( X ^ ) .

5. A n E x a m p l e

L et us s tu d y  0 4 theo ry  in four dim ensions and  work ou t th e  1PI vertex  function  to  tw o loops. 
We have

A,x . |x |=1 =  I  +  9 I [ : 0 . +  .:) +  Ö ' ] + 9 2 i  (  <() +  (J: )
1

+  4

+ o th e r  o rien ta tions +  O (g3).

Let us reproduce th is  expansion from  e ith e r th e  H ochschild cohom ology of th e  renorm alization  H opf 
algebra or from  th e  Hochschild cohom ology of th e  core H opf algebra. In  th e  renorm alization  H opf 
algebra we have

(17) X  x ,|x |=4 =  I  +  B + x ([X  x ,|x |= 4]Q)

(there  is no prim itive elem ent a t two-loops) w ith

(18)

and

(19)

In  th e  core H opf algebra

(20)

b u t now 

(21)

l l ': "  ( II .  +  II .  +  B D--
j+ +

Q =
X  x,|x |=4

X - , | - |= 2l

X  x ,|x |=4 =  I  +  B +  x (X  x ,|x |=4Q)

Q 1 :=
X  x,|x |=4

Ï2
X — ,|- |=2

X  % ’I % l=6
X — , | — |=2l

=  : Q 2,

w here th e  core co-ideal im plies Q 1 =  Q =  Q 2. F u rth erm o re

1,x(22) ^ ( i l .  + B +  + B ^ '  + B ^J+

T h e coproduct is different in th e  renorm alization  H opf algebra and  in th e  core H opf algebra. In 
th e  renorm alization  H opf algebra we find

(23) A ' +
1

+  4 — -  [ >0: +  Ç) +  I)-7. ] O [ : 0  +  f> +  V / } ,

2

1
2

3
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tak in g  th e  o th er o rien ta tions in to  account. 
In  th e  core H opf algebra we find

(24) AC \  ( <5 + D> ) + \
L et us now w ork ou t th e  Hochschild one-cocycles. E xpan d in g  th e  argum ents of th e  B +  cocycles 

to  one loop and  keeping th e  vertex  functions to  one loop, we have

(25) ) II. (2 X 1x ’|x=41) 

in th e  renorm alization  H opf algebra and

(26) ] {IS. (2 X 1x ’|x |=4) +  ( X ^  ’I ^ 6)) 

in th e  core H opf algebra. Let us see in p articu la r how th e  term s

(27) 2 ( :<Ö + D>' ) +  \  > 0 c x

are ob ta ined  in e ith er case. We have in th e  renorm alization  H opf algebra

b ij ( , Kix , ) =  1,

b i j(  ) =  2 ,

b i j(  c x  , e x  , [}> ) =  2

| cs< |v =  3 ,
( | xix ) =  2 ,

m axf ( x ^ x >  ) =  2 ,

m axf ^ j  =  1, 

m axf (  hy.  1 =  1.

T h e  m ain  difference is in th e  num ber of m axim al forests m axf. In  th e  renorm alization  H opf 
algebra, th e  first two term s in (27) have ju s t one m axim al forest, w hile th e  th ird  has two, as 
ind icated . In  th e  core H opf algebra th e  first two term s have th ree  m axim al forests each, while th e  
th ird  te rm  has two as before.

We hence find, counting  m axim al forests, b ijections, insertion  places and  o rien ta tions, as above,

(28) 2 B + ~  ^  X 2  ̂ 0 :  +  +  ^  =  2 (  +  ^ +  4 

while in th e  core H opf algebra, th e  s itu a tio n  is a b it m ore in teresting:

(29) 2 B+ ~  ^  X 2  ̂ +  (') +  ^  ^  =  6 (  ' ^  +  ^  ’ )  +  4

ï b +:;' ( <:> > = I

which add  up to  th e  desired result, also confirm ing th e  cocycle p ro p e rty  of th e  B +  m aps.
8



6 . T h e  c o r e  i d e a l s ,  ü n i t a r i t y  a n d  A d S /C F T

We conclude th is  p ap e r w ith  a sho rt s tu d y  of th e  re la tion  betw een th e  core co-ideal I  in troduced  
above and  recursive re la tions betw een tree-level am plitudes, as suggested in [10].

In  th e  above, we identified a core co-ideal conveniently sum m arized by th e  relations
X  r,|r|=n+1 x  r,|r|=n

X  r, | r | =n X  r, |r | =n— 1

j£r,\r\=n _ j^ r,\r\= j_ 1
_Xr,|r|= k , Vn >  2 , j  >  2, k >  2, j  +  k =  n  +  2.(31) ^  ^  ^Y'r,|r|=2'

N ote th a t  th is  severely res tric ts  possible re la tions betw een tree-level d iagram s. C onsider for 
exam ple a t zero loops th e  tree  graphs

(32) To(c1) :=  P ^ (r),|r|=4$  ^C1 +

T h e p ro jec to r P $ (r),|r|=4 m aps th e  evaluation  of th e  tree  level d iagram s, for given fixed ex ternal 
m om enta, to  com plex num bers, and  vanishes on none of th e  four term s. T here  m ust hence exist 
a num ber c1 such th a t  T0(c1) =  0. Let T (c 1) =  X j >0 T ( c 1) be th e  expansion ob ta ined  by a loop 
expansion of any in terna l vertex  or p ro p ag ato r in T0(c1).

We can now determ ine c1 from  squaring  th e  am p litu d e  T0(c1). T his delivers (for th e  s-channel)

+ + +
O + + +

+  c +  c +

+ c 1 +
X X +

+

(33)

+ c 1 + + +

+

T his is in accordance w ith  th e  co-ideal if and  only if c1 =  - 1 .  Indeed, re s tric tin g  to  th e  one-loop 
case we have in th e  co-ideal

(34) 2X r ,|r|= 3 +  x r ,|r|= 2 =  X [ ,|r|=4,

which is consisten t w ith  th e  expansion of T (c 1) to  one-loop only a t c1 =  - 1 .  T his is clearly  seen 
in th e  figure. Even th e  1PI graphs in th e  s-channel expansion of

(35)

+ +
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come w ith  different powers of c1. O n th e  o th er hand , a t c1 =  - 1 ,  sum m ing over s , t ,  u  channels 
and  tak in g  sym m etry  factors in to  account, we find

(36) X  r, |r|=4 = X  r,|r| =3 1
X r,|r |=2

X r,|r|=3

W hile in th e  renorm alization  H opf algebra one uses only th e  co-ideal for |r | = 4 ,  in th e  core H opf 
algebra we have a generic co-ideal s tru c tu re  such th a t  th e  celebrated  B C F W  recursion is required  
for consistency of th e  Feynm an rules w ith  th a t  co-ideal s tru c tu re  beyond tree-level.

P r o p o s i t i o n  10. The relations

2 + zj

(37)

« ... j “ i \ .

are in  accordance with the co-ideal above fo r  suitably chosen elem ents in  the group S p e c ( H / / ), 
defined by evaluating external particles on the m ass-shell in  accordance with the B C F W  rules [4, 5 , 
3].

Proof. We use (31). T h e  loop expansion of th e  vertices and  th e  in terna l p ro p ag ato r in each 
te rm  of (37) on th e  lhs is an  expansion of X r,|r|=n , th e  expansion of th e  rhs is an  expansion of
J £ r , \ r \ = n - j + l _ Yr i ^ 2Ä"r’lr l=:'. T h e  choices of helicities a t all ex terna l p ropagato rs, and  th e  in terna l 
p ropagato r, and  th e  m ass-shell conditions for all ex ternal legs, specify th en  an  elem ent in th e  group 
S p e c ( H / / ) by w hich we evaluate  those graphs. □

N ote th a t  th is  does no t p re tend  we can derive th e  recursion (37) from  our co-ideal. I t m erely 
says th a t  those recusions are in accordance w ith  th e  m ost n a tu ra l co-ideal in th e  core H opf algebra.

1 -  z

7. O u t l o o k

In  th is  p ap e r we have given th e  core H opf algebra as a m athem atica lly  robust fram ew ork to  
investigate m any p roperties  of F eynm an rules in S p e c ( H / / ) w hich em erge in th e  recent lite ra tu re . 
We hope th a t  th e  first steps rep o rted  here open th e  way to  a m uch b e tte r  u n d erstan d in g  of recursive 
relations betw een m ulti-leg and  m ulti-loop am plitudes.

A c k n o w l e d g m e n t s
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