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Enhancem ent of chem ical activ ity  in corrugated graphene
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A b str a c t

Sim ulation of chemical activ ity  of corrugated  graphene w ithin  density  functional theory  predicts an 
enhancem ent of its  chemical activ ity  if the  ratio  of height of the  corrugation  (ripple) to  its  radius is larger th a n  
0.07. F urther grow th of th e  curvature of the  ripples results in appearance of m idgap sta tes which leads to  an 
additional strong increase of chem isororption energy. These results open a way for tunab le  functionalization 
of graphene, namely, depending of curvature of the  ripples one can provide b o th  homogeneous (for sm all 
curvatures) and spot-like (for large curvatures) functionalization.

1 Introduction
Graphene is considered as a prospective material for the electronics ”beyond silicon”1. Modern electronics is 
essentially two-dimensional, we use mainly just the surface of semiconductors and the bulk is, roughly speaking, 
a ballast limiting the perspectives of further miniaturization of electronic devices. It is not surprising therefore 
that the discovery of the one-atom-thick material with high electron mobility2 has initiated a huge interest in 
this new field. At the same time, specific massless chiral c haracter of charge carriers in graphene3 leading to the 
”Klein tunneling”4 is not favorable for some, potentially, the most interesting, applications such as transistors 
based on p-n junctions. Thus, creation of another two-dimensional materials based on graphene which would be 
conventional semiconductors is an important problem. Chemical functionalization of graphene is one of the most 
efficient ways to manipulate its physical properties5. Two-side complete hydrogenation of graphene reversibly 
transforming it into graphane has been predicted theoretically6,7 and realized experimentally8. Graphane is 
a broad-gap semiconductor, with the gap value more than 5 eV9. For the case of complete functionalization, 
replacement of hydrogen by other functional groups does not change the electronic structure essentially5. To tune 
the value of the energy gap, one should focus on the one-side functionalization; the metal-insulator transition 
for the case of one-side hydrogenation has been demonstrated experimentally for graphene on substrate8. The 
value of the energy gap is changed also at the reduction of graphene oxide as was predicted theoretically10 and 
confirmed experimentally11. However, in both these cases strongly disordered semiconductors arise whereas to 
preserve high enough electron mobility one has to realize some regular structures of the adsorbates. For the 
case of hydrogenation, the disorder is related, the most probably, with ripples on graphene12 which can bind 
hydrogen8. At the same time, it is possible to create artificially regular ripple structures with a given shape13. 
Ripples themselves can change drastically electronic structure of graphene resulting, e.g., in an appearance of 
midgap states14. Here we study the effect of the ripples on chemical activity of graphene, using hydrogenation 
as an example, which will allow us to formulate specific recommendations how to produce graphene with a 
desirable type of functionalization manipulating by inhomogeneities of the substrate.

2 C om putational m ethod
Our calculations have been carried out with the SIESTA code15 using the generalized gradient approxima
tion (G G A)16 to DFT and Troullier-Martins17 pseudopotentials. We used energy mesh cutoff of 400 Ry, and 
1 0 x 1 0 x 4  k-point mesh in Monkhorst-Park scheme18. Graphene with ripples is not strictly two-dimensional 
system. Chemisorption of chemical species leads to additional deviation from the planar geometry. There
fore we have chosen several k-points (namely, 4) also in z direction. During the optimization, the electronic 
ground states was found self-consistently by using norm-conserving pseudopotentials to cores and a double-Z 
plus polarization basis of localized orbitals for carbon and metals. Optimization of the bond lengths and total 
energies was performed with an accuracy 0.04 eV /A  and 1 meV, respectively. This technical parameters of 
the computations are the same as in our previous works5,7,10.The supercell in our computations contains 128 
carbon atoms.

To simulate the hydrogenation of rippled graphene the following procedure is used. First, we create some 
artificial ripple with a given height and radius, by a smooth out-of-plane distortion of a group of carbon atoms
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at the centre of the supercell. As a trial geometric shape of the ripples a semisphere has been chosen (Fig. 1a), 
which is isotropic, in a qualitative agreement with the results of Monte Carlo simulations19 and experimental 
observations12. The initial heighti (h) of the ripples varied from 0.01 to 0.3 nm, and the radius (R) from 0.8 
to 1.5 nm. Then, we add two hydrogen atoms to two neighboring carbon atoms (see Fig. 1a) situated at 
the top of the ripple and after that optimize geometric structure. To calculate the chemisorption energy one 
needs to know also total energy of the ripple without hydrogen which is, of course, unstable. To this aim, we 
make the ripple stabilized by the pair of hydrogen atoms sm ooth by decreasing out-of-plane displacements only 
for two atoms which were bonded with hydrogen and keeping all other atomic positions fixed. To calculate
the chemisorption energy we use the expression E c h e m  =  E g r a p h e n e  w i t h  r i p p l e  + 2 H  - E g r a p h e n e  w i t h  r i p p l e  - E H2
where the last term is the energy of hydrogen molecule. This characterizes stability of bonding of hydrogen 
with the ripple since it will desorb from the ripple as molecular hydrogen. At the same time, it allows us to 
estim ate energetics of one-side hydrogenation by molecular hydrogen; the hydrogenation by hydrogen plasma 
proceeds without barriers8.

3 Shape o f the ripples
First, we confirm that ripples on graphene can be stabilized by the chemisorption of functional groups8. We have 
carried out calculations for the pair of fluorine atoms or the pair of hydroxyl groups, and the results are similar 
to what is presented here for the case of hydrogen. W ithout functionalization, the supercell relaxes to the flat 
state and the ripples disappear at the structure optimization. The functionalized ripples keep basically their 
original form except some geometric distortions in a close vicinity of the functional groups. This means that 
corrugations created initially by substrate and then decorated by chemisorption remain stable after elimination 
of the substrate.

Note that the ripples stabilized by chemisorption remain isotropic and have shapes not too far from semi- 
spherical ones (the real shapes are shown in Fig. 2 ). The radius of optimized ripples varies between 0.7 to 1.0 
nm and their height from 0.04 nm to 1.6 nm. These radii are of the same order as a spatial scale of geometric 
distortions around hydrogen impurity on pristine graphene5,7. The effect of the impurity on electronic structure 
and, thus, on the chemisorption energies of next hydrogen atoms, is essentially nonlocal. The final optimized 
sizes of the ripples lie in much narrower intervals than the initially chosen parameters so one can hope that they 
are, indeed, intrinsic characteristics of the ripples and not artifacts of computational procedure. Fig. 2 shows 
optimized shapes of the ripples for three essentially different values of the geometric parameters (B, D, and E, 
according to the Figure 3a). One can see that neither radius nor height of the ripples can be used for their 
characterization. Similar to earlier works14, we characterize the ripples by the ratio h /R  which does correlate 
with the value of chemisorption energy, according to our calculations.

4 Energetics of chem isorption
Further, we investigate dependence of the chemisorption energy on the curvature of the ripples. First, it is 
worthwhile to notice an important difference of one-side functionalization of graphene with and without ripples. 
Whereas in the case of flat graphene the optimal configuration of the pair of hydrogen atoms is para (1,4) 
configuration (Fig. 1c), for the case of ripples with large enough curvatures ortho (1,2) position (Fig. 1b) 
becomes more energetically favorable. This is due to the fact that curved surface of the ripple is close initially 
to atomic distortions created by the pair of hydrogen atoms in ortho position7. This explains the initial decrease 
of the chemisorption energy for such pair of atoms (the part A-B in Fig. 3a), the energy gain in comparison with 
flat graphene is 0.5 eV for the point A. For stronger corrugations the chemisorption energy per pair drops to the 
values close to zero (the part C-D in Fig. 3a) and, at last, for further increase of the ratio h /R  the chemisorption 
energy becomes negative (the part D-E-F). This means that molecular hydrogen will be decomposed and bonded 
at the ripples with large enough curvature stabilizing them. This sharp decrease of the total energy can be 
related with the formation of the midgap states at the corresponding ripples (midgap) as one can see in Fig. 
3b. Hydrogen atoms destroy the midgap states providing the energy gain (see Fig. 3b). In such cases the 
chemisorption of six hydrogen atoms leads to the opening of the gap in electron energy spectrum which does 
not take place for less curvature of the ripples (Fig. 3c).

We tried to create initially ripples with the ratio h /R  uniformly distributed between 0.01 and 0.17. However, 
after optimization of the structure three ranges have appeared (A-B, C-D, and D-E) with breaks between them, 
with average values of h /R  equal to 0.08, 0.12, and 0.16, respectively. Interestingly, for chemisorption of the 
pair of hydrogen atoms at flat graphene the height of out-of-plane atomic distortions is about 0.04 nm, with the
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radius of the distorted region «  1 nm, so, h /R  «  0.045. Thus, the regions of stable ripples are characterized 
approximately by integer numbers of this ratio. For h /R  <  0.07 the ripples disappear at the optimization of 
atomic positions and graphene with the pair of hydrogen atoms remains flat. The value h /R  «0 .12  (part C-D) 
is typical for fullerenes, therefore, the chemisorption energies for this range is close to that for chemisorption 
of the pair of hydrogens at C6020. Further increase of the curvature (the part E-F) when the midgap states 
appear corresponds to the ripples (for our choice R «  1 nm) where the length of C-C bonds reaches its maximal 
value 0.155 nm. Further increase of the curvature will lead to breaking of the chemical bonds and formation of 
vacancies and other types of defects. It was noticed earlier21 that appearance of the midgap states requires so 
strong stresses that formation of dislocations becomes possible. Chemisorption of hydrogen destroys the midgap 
states stabilizing such ripples which may be an alternative to vacancy or dislocation formation.

5 Conclusion
To conclude, we have demonstrated that ripples in graphene effect drastically on its chemical activity. Function- 
alization can stabilize ripples with very strong strains, close to the breaking of carbon-carbon bonds. However, 
if original corrugations are small enough, such that typical h /R  is smaller than 0.07, the ripples will disappear 
after elimination of the substrate even in the presence of hydrogen. In this situation one can hope to provide a 
regular structure shown in Fig. 1c.
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F ig u r e  1: Schemes of chem isorption of pair of hydrogen atom s on the  top  of th e  ripple w ith  the  height h  and rad ius R
(a ) , of step-by-step  hydrogenation  of th e  top  of th e  ripple (red pair is the  first step  and the  blue pairs is the  second one)
(b), and of com plete homogeneous one-side functionalization of flat graphene (c).
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F ig u r e  2: O ptim ized shapes of the  ripples stabilized by hydrogenation, for special points B, D, E  in  Fig. 3a.
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F ig u r e  3: D ependence of th e  chem isorption energy on cu rvatu re of th e  ripple (the radius was of order of 1 nm , more 
detailed d a ta  see in th e  Supporting  Inform ation) (a); density  of s ta tes for th e  point E  w ith  (dashed green line) and 
w ithout (solid red line) th e  pair of hydrogen atom s (b); density  of s ta tes for six hydrogen atom s per ripple (see Fig. 1b) 
for th e  points D (solid red line) and E  (dashed green line) (c).
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