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Structure and thermodynamics of crystalline membranes are characterized by the long wavelength 
behavior of the normal-normal correlation function G(q). We calculate G(q) by Monte Carlo and 
Molecular Dynamics simulations for a quasi-harmonic model potential and for a realistic potential 
for graphene. To access the long wavelength limit for finite-size systems (up to 40000 atoms) we 
introduce a Monte Carlo sampling based on collective atomic moves (wave moves). We find a 
power-law behaviour G(q) <x q-2+n with the same exponent n ~  0.85 for both potentials. This 
finding supports, from the microscopic side, the adequacy of the scaling theory of membranes in the 
continuum medium approach, even for an extremely rigid material like graphene.

PACS numbers: 63.20.Ry, 68.60.Dv, 81.05.Uw, 05.10.Ln

Collective phenom ena involving infinitely m any de­
grees of freedom are often characterized by scaling laws 
w ith power-law behavior of correlation functions. In 
three dim ensional systems, th is behavior occurs only at 
critical points [1, 2, 3]. In two dimensions (2D) the 
situation  is different, and a whole tem pera tu re  interval 
w ith “alm ost broken sym m etry” and power-law decay of 
correlation functions frequently appears, the Kosterlitz- 
Thouless (KT) transition  in 2D superfluids and super­
conductors [4] being a p ro to type example. Existence of 
real long range order, where correlation functions rem ain 
non-zero in the  lim it of infinite distance, is forbidden in 
such cases by the M ermin-W agner theorem  [5] due to  
the  divergence of the  contribution of soft modes to  rel­
evant therm odynam ic properties. The theory  of flexible 
m em branes [6] em bedded in higher dimensions is an im­
p o rtan t p a rt of the sta tistica l mechanics of 2D systems. 
Here, we investigate the scaling behavior of crystalline 
flexible m em branes by m eans of atom istic sim ulations, 
using graphene [7, 8, 9], the  sim plest known mem brane, 
as an example.

In the flat phase, the  m em brane in-plane and out-of­
plane displacem ents are param etrized by a D -com ponent 
‘stre tch ing’ phonon field u a (x), a  =  1...D, and by a 
dc =  d — D  com ponent out-of-plane height fluctuation 
h(x), where d is the space dimension and  D  is the mem ­
brane dimension. Softening of bending modes makes this 
situation  very sim ilar to  the K T model. A m inim al phe­
nomenological model for m em branes is ju s t the  elasticity 
theory  described by the H am iltonian [6, 10]:

H = \ ƒ dPx (k(V2/?.)2 +  A«4/3 +  ^W'L) (!)

where k ,  ^  and A are bending rigidity, shear m odulus and 
Lame coefficient and

i 7̂  ! 1 ' I ^ i I  d j i  d/ji) (2)

is the  s tra in  tensor. In harm onic approxim ation, by ne­
glecting the last, non-linear, te rm  in Eq. (2), the bending 
(h) and stretching (u) modes are decoupled.

The H am iltonian (1) is quadratic  in the phonon de­
grees of freedom u  which can be elim inated by G aus­
sian in tegration  [6, 10]. In th is way, the H am iltonian 
can be rew ritten  only in term s of the  Fourier compo­
nents of the height h as the  sum  of a harm onic bending 
energy, quadratic  in h, and an anharm onic energy, quar- 
tic in h, th a t results from the coupling of bending and 
stretching modes [10]. If one neglects the  la tte r term , the 
m em brane becomes crum pled a t any finite tem peratu re  
w ith, for D  =  2, the m ean square height fluctuations 
(h2) ~  L 2 and  norm al-norm al correlation functions th a t 
diverge logarithm ically a t large distances. Nelson and 
Peliti [10] suggested th a t the  above anharm onic term  
stabilizes the flat phase a t least a t tem peratu res much 
smaller th an  k .  This flat phase is described by an ef­
fective bending rigidity K(q) ~  q-ri and  effective elas­
tic m oduli w ith power-law dependencies on q th a t p ar­
tia lly  suppress long wavelength bending fluctuations. As 
a result, the norm al-norm al correlation function rem ains 
finite, although (h2) still diverges as (h2) -  ' L 2Z w ith 
Z = 1  — n /2  [6]. Thus, the flat phase is not tru ly  flat, 
bu t still exhibits ra th e r strong corrugation. The model 
(1), which is called the model of phantom  mem branes, 
has a transition  to  a crum pled phase a t tem pera tu re  of 
the order of k. The long wavelength lim it was solved 
w ithin the Self C onsistent Screening A pproxim ation in 
Ref. 11 yielding n =  0.821. The discretized version of 
th is model was investigated by Bowick e t al. by means 
of M onte Carlo sim ulations giving n ~  0.72 [12]. The 
term  ‘p h an tom ’ m eans th a t the model does not include 
self-avoidance, the n a tu ra l condition of tru e  physical sys­
tems. It is assum ed th a t self-avoidance removes the phase 
transition  to  the high tem pera tu re  crum pled phase while 
the scaling properties of the ‘fla t’ phase rem ain the same
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as in phantom  m em branes. However, any kind of accu­
ra te  sta tem ent about the  model can be justified only in 
the lim it dc ^  to and, s tric tly  speaking, nothing can be 
said rigorously for the  real case of d =  3, D  =  2 and
dc =  1.

To characterize the  long wavelength lim it of the height 
fluctuations we com pare the results of atom istic simu­
lations to  the  predictions of th is theory  for the  norm al­
norm al correlation functions G(q) =  ( |n q|2). S tarting  
from Eq. (1) an expression for G(q) has been given from 
general scaling considerations[6, 10, 15] in the form of an 
effective Dyson equation

G - 1 (q) =  G - 1 (q) +  S (q ) (3)

where Go is the value derived in harm onic approxim ation

Go (q)
T N  

KSoq2

and the self energy is

A S o  2 ( q o X 71

(4)

(5)

w ith N  the num ber of atom s, =  L xL y/ N  the  area 
per a to m , T  the tem pera tu re  in un its of energy, qo =  

B  the two-dim ensional bulk m odulus [13] and 
A  an unknown num erical factor.

U ntil recently, this phenomenological continuum  model 
was the only way to  describe the sta tistical mechanics 
of m em branes since all known real m em branes [6] were 
too  com plicated for atom istic models. The situation  has 
been changed drastically  by the discovery of graphene [7] 
which is the first exam ple of a tru ly  two-dim ensional sys­
tem  (just one atom  thick) and, thus, a pro to type crys­
talline m em brane [8, 9]. The experim ental observation of 
ripples in freely hanged graphene [14] stim ulated  a large 
theoretical activ ity  [15, 16, 17, 18, 19, 20, 21]. In partic­
ular, using the accurate bond order poten tia l for carbon 
L C B O PII [22], we were able to  sim ulate s truc tu ra l and 
therm odynam ical properties of graphene a t finite tem ­
peratu res [15, 21] by straightforw ard M onte Carlo (MC) 
sim ulations. The sim ulations confirmed the existence 
of therm ally  induced intrinsic ripples a t finite tem pera­
tures resulting in strong anharm onic effects. However, 
we found th a t the norm al-norm al correlation function 
could not be described by Eq. (3) over the whole range 
of q [15]. In fact, G(q) followed the power law result­
ing from the harm onic approxim ation (phonon picture, 
n =  0) a t large enough q, bu t, after bending, a t smaller 
q’s we found a drop of the correlation functions not com­
patible w ith a power law. O ur conjecture a t th a t tim e 
was th a t the extrem e rigidity of graphene could be the 
reason why it could not be described by the phenom eno­
logical theory  of m em branes in a continuum  m edium  ap­
proach [10]. However, we felt th a t th is point deserved 
further investigation. Here, we focus on the low-q re­
gion in order to  establish firmly w hether a scaling law 
exists and, if so, to  determ ine the scaling exponent. To

this purpose, we sim ulate large systems, introduce new 
MC moves for phase space sam pling and  examine more 
th an  one model of the interatom ic forces, including a 
simple quasi-harm onic (QH) model th a t yields a not too 
rigid m em brane and the extrem ely rigid case of graphene 
which is well described by LC B O PII. In addition, for the 
QH model we verified ergodicity of our MC sim ulations 
by com paring w ith M olecular Dynamics (MD) results.

We begin by considering a relatively simple QH model 
w ith energy given by:

U  =  \  I K r ( Vi3 ~  r'e q ?  +  K 8 ^  ~
' ' k=i,ji j =i

where the  sum m ations over j  and k are over the  nearest- 
neighbors of atom  i, yijk =  cos 0ij k and yeq =  cos 0eq, 
w ith r eq =  1.42 A and 0eq =  2 n /3  the ground sta te  
equilibrium  nearest neighbor distance and bond angle 
in graphene. The stretching and the bending force con­
stan ts, K r =  22 eV Â -2 and K g =  4 eV, respectively, 
were chosen to  yield elastic m oduli for isotropic and uni­
axial compressions equal to  those for the L C B O PII [21].

In Fig. 1 we show the function G (q )/N  (dotted  line) 
calculated by extensive stan d ard  M onte Carlo simula­
tions in the canonical ensemble a t 300 K for a system  
w ith N  =  37888, L x =  314.82 A and L y =  315.24 Â and 
periodic boundary  conditions in the xy-plane. S tarting  
from the Bragg peak a t q =  4 n /(3 req) = 2 .9 4  A -1 and 
going tow ards lower q we find, first, the  power law n =  0 
due to  the  harm onic contribution, then, a smaller slope 
followed by a drop a t the sm allest q <  0.08 Â -1 which 
corresponds to  a wavelength of about 75 A. This drop 
is sim ilar to  the one m entioned above and found previ­
ously in Ref. 15 w ith the LC B O PII for graphene. These 
results are obtained by averaging over m any configura­
tions in the canonical ensemble obtained by the ordinary 
MC procedure which is based on random  displacem ents 
of random ly chosen individual atom s and volume (area) 
fluctuations w ith a M etropolis acceptance rule. By us­
ing Eq. (4) we find th a t the bending constan t for the 
QH poten tia l is k =  0.4 eV, much softer th a n  the 1.1 eV 
appropriate  for graphene [15], due to  neglected in terac­
tions beyond first neighbors. The observation th a t also 
the simple QH model shows a suppression of long wave­
length excitations m ade us th ink  of the possibility th a t 
s tan d ard  MC is not an efficient sam pling technique in 
th is case. To resolve this issue we (i) extended our MC 
phase space sam pling w ith a new type of collective tria l 
events th a t we call ‘wave m oves’ described below, and (ii) 
perform ed MD sim ulations for the QH model [23], allow­
ing a direct com parison w ith the MC results, w ith and 
w ithout wave moves. The equivalence of tim e averages in 
MD sim ulations w ith ensemble averages in MC simula­
tions guarantees th a t the system  is in therm odynam ical 
equilibrium  (ergodic).

In Fig. 1 we com pare the results of s tan d ard  MC with 
the results ob tained by MD and by MC w ith the addition 
of wave moves. The MD results coincide w ith the stan-



3

FIG. 1: (color online) Normal-normal correlation functions 
G (q )/N  calculated for a graphene system with N  =  37888 by 
ordinary MC simulations (red-dashed line), MD simulations 
and MC simulations with wave moves with the QH poten­
tial. The dashed lines show the asymptotic harmonic behav­
ior with power laws q-2 for large q and the long-wavelength 
limit q-(2-n) with n =  0.85.

FIG. 2: (color online) Normal-normal correlation functions 
G (q )/N  calculated for three systems with N  =  12096 (L x =  
177.08 A, Ly =  178.92 A), N  =  19504 (L x =  226.27 A, Ly =  
225.78 A), N  =  37888 (L x =  314.82 A, Ly =  315.24 A) by 
MC simulations with wave moves with LCBOPII. The dashed 
lines show the asymptotic harmonic behavior with power laws 
q~2 for large q and the long-wavelength limit q~(2~n) with 
n =  0.85. The dashed-dotted line is Ga of Eq. (3) with the 
coefficients fixed by the asymptotic behavior. One can see 
that the crossover is much sharper in the simulations.

dard  MC in the range where the la tte r is described by a 
power law, bu t does not show the drop a t small q and 
keeps the same slope till the  sm allest possible q allowed 
by our finite size system. The results of MC sim ulations 
w ith wave moves coincide for all q’s w ith those obtained 
by MD, im plying th a t the system  is in therm odynam ic 
equilibrium . B oth  curves display a power-law behavior 
for the whole range of q in the  long wavelength limit. A 
best fit of the  d a ta  yields an exponent n =  0.85.

A wave move consists of a transversal, wavelike dis­
placem ent of all atom s in the z-direction, perpendicular 
to  the  graphene plane. For a given wavevector q  there 
are two possible, linearly independent wave excitations,

L xL y and on the

yielding z-coordinate displacem ents for all atom s i

A zj =  (0.5 — R )A S,q cos(qr*) and 
A zj =  (0.5 — R )A s ,q  s i n ( q r )

where r* is the  3D position of atom  i and R  is a random  
num ber between 0 and 1. The am plitude As,q is chosen 
such th a t the acceptance ra te  for such a wave move is 
between 0.4 and  0.5. The appropriate value of As,q de­
pends on the size of the  2D box S  
wavevector q  (see below).

Due to  the  periodic boundary  conditions in the  x- and 
y-directions the candidate wavevectors for wave moves 
can be restricted  to  a set on a 2D grid:

2n 2n
q  =  I n ix-j— , m.y —  ,0

L x L y

w ith integer m x and  m y. This set was further bounded 
by applying only wave moves of long wavelengths since 
short wavelengths are already efficiently sam pled by the 
individual atom  displacem ent trials. Hence, we consider 
a finite set of (m x, m y )-pairs corresponding to  q-vectors 
w ithin a circular region w ith radius qmax around q  =  0. 
This set was kept constan t during the entire sim ulation. 
We choose qmax equal to  the q-value below which G(q) 
s ta rts  to  bend down in stan d ard  MC sim ulation. More 
precisely, we took qmax ~  0.16, corresponding to  a mini­
mal wavelength of 40 A. Since transversal phonon modes 
have quadratic  dispersion w(q) — q2, the energy change 
associated w ith a wave move behaves as A E wm -  AS,qq2. 
Therefore, we took As,q =  A s /q  to  ob tain  sim ilar accep­
tance rates for each of the  allowed q-vectors, as was in­
deed confirmed by our sim ulations. This choice leaves one 
adjustable param eter, A s . For different system  sizes, the 
appropriate  A s  roughly scales as A /S , bu t a correction 
is required to  fine-tune the acceptance rate . O n average, 
a wave move was a ttem p ted  every MC step  by choosing 
random ly one of the 2N q possible waves. Here, N q is 
the num ber of allowed q-vectors (or (m x, m y)-pairs) and 
the factor 2 comes from the fact th a t  each wavevector 
yields two possible waves: a sine and a cosine wave. An­
other random  num ber R  G (0,1) was then  pulled to  fix 
the am plitude (0.5 — R )A s/q . Following the M etropolis 
procedure, a wave move is always accepted if the  energy 
change A E wm is negative, whereas for A E wm >  0 it is 
accepted w ith probability  P  =  exp (—̂ A E wm), requiring 
another random  num ber R ' G (0,1) to  decide for accep­
tance when R ' <  P  or rejection when R ' >  P .

MD sim ulations are much more dem anding th an  MC 
sim ulations and are not w ithin reach for the ra th e r com­
plex LC B O PII poten tia l for the  present system  size. The 
previous results w ith the QH harm onic potential, how­
ever, show th a t equilibrium  can be reached using MC 
w ith wave moves. The correlation function G(q) calcu­
la ted  by MC w ith wave moves for L C B O PII are shown in 
Fig. 2 for three system  sizes. Again, we see the crossover 
from the harm onic behavior to  a power law w ith n =  0.85 
up to  the sm allest wavevectors. The m ain difference w ith
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FIG. 3: (a) Quadratic out-of-plane displacement (h2), aver­
aged over all particles, as a function of the MC step for the 
same systems as in Fig. 2. The dashed horizontal lines de­
note ((h2)), the average (h2) over all MC steps except the 
first 3 x 105 steps of equilibration. (b) ((h2)) as a function of 
the average linear system size L =  /̂ L xL y compared to the 
scaling law ((h2)) =  CL2-n with C =0.00232 and n =  0.85 
(dashed line). Both axis are in logarithmic scale.

the  results obtained w ith the QH poten tia l is th a t, due 
to  a higher bending rigidity, the crossover between the 
two power laws is shifted to  lower q values. Moreover, 
we note th a t for q >  1 A -1 there is a deviation from a 
power law behavior ju s t before the  Bragg peak.

Finally, in Fig. 3 (a) we show the average out-of-plane 
displacem ent (h2) corresponding to  the sim ulations for

LC B O PII of Fig. 2 which shows large fluctuations. In 
Fig. 3 (b) we plot the  values of (h2) averaged over all 
MC steps as a function of the system  size in com parison 
w ith the expected scaling law exp(2 — n). A lthough it 
would have been impossible to  deduce the scaling expo­
nent from the three points in Fig. 3 (b) due to  the  large 
error originating from the large fluctuations, these re­
sults are certain ly  com patible w ith the scaling exponent 
rj found by a fit of G (q). W ith  (h 2) =  1.65 A2 for L  =  315 
A and rj =  0.85 we estim ate (h 2) «  9 A for L = ljj,m , 
well in the  range of m easured values [14].

In summary, we have shown by atom istic simula­
tions th a t, in therm odynam ic equilibrium , crystalline 
m em branes display a power-law scaling behavior of the 
norm al-norm al correlation function, in qualitative agree­
m ent w ith continuum  m edium  theory. For different m od­
els of in teractions w ith different rigidities, we found the 
same exponent of anom alous bending rigidity n ~  0.85. 
We have dem onstrated  th a t the efficiency of MC simu­
lations for this type of system s can be greatly  improved 
by introducing collective wave moves. On the basis of 
our results, we conclude th a t despite its extrem e rigidity, 
graphene behaves as a pro to type m em brane opening new 
ways to  study  the intriguing physics of m em branes on a 
system  w ith well known in teratom ic interactions.

This work is p a rt of the research program  of the  ‘S ticht­
ing voor Fundam enteel O nderzoek der M aterie (FO M )’, 
which is financially supported  by the ‘Nederlandse O r­
ganisatie voor W etenschappelijk O nderzoek (N W O )’.
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