
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/75885

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16160351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/75885

Semantics and Logic for Security Protocols

Bart Jacobs Ichiro Hasuo
Institute for Computing and Information Sciences, Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
Email: {B.Jacobs, I.Hasuo}@cs.ru.nl

URL: http://www.cs.ru.nl/{B.Jacobs, I.Hasuo}

October 20, 2006

Abstract

This paper presents a sound BAN-like logic for reasoning about security protocols
with theorem prover support. The logic has formulas for sending and receiving mes­
sages (with nonces, public and private encryptions etc.), and has both temporal and
epistemic operators (describing the knowledge of participants). The logic’s semantics
is based on strand spaces. Several (secrecy or authentication) formulas are proven in
general and are applied to the Needham-Schroeder(-Lowe), bilateral key exchange and
the Otway-Rees protocols, as illustrations.

1 Introduction

Security protocols are difficult to get right, and so a formal understanding of their meaning
with associated reasoning techniques is an important topic since many years. Roughly
two approaches have emerged, one based on algorithmic techniques using model checkers
(such as [17, 3], see also [24]) and one on logical reasoning. This paper fits in the latter
tradition. The algorithmic techniques are very good at detecting errors in relatively simple
protocols in a “push button” style, but usually run into problems with the size of state spaces
for more complicated protocols. In contrast, the techniques based on logical reasoning
can in principle handle arbitrarily complex protocols, but may involve considerable user
interaction. Hence, again in broad terms, algorithmic techniques are most useful early on
in design, and logical techniques later on in certification.

This paper describes a formalisation of security protocols, involving a mathematical
model in the style of strand spaces [27], on top of which a (sound) logic is defined that
resembles BAN logic [4]. The whole formalisation is represented in the higher order logic
of the theorem prover PVS [22], and allows verifications of actual protocols with tool
support, like in [23]. Hence, in a sense, it combines the best of these three approaches [27,
4, 23].

The following aspects distinguish our formalisation.

• The logic involves both (linear) temporal operators (like henceforth) and epistemic
ones (describing knowledge of participants).

• There is a clear distinction between possession (of messages) and knowledge (of
logical assertions).

1

http://www.cs.ru.nl/%7bB.Jacobs

• There is a syntactic distinction between “new” nonces (or secret keys1) and “used”
nonces, with an associated requirement that “new” nonces (or keys) are globally
fresh. Hence freshness does not refer to a particular run of a protocol, simply because
a run is a “meta” notion that is not explicitly present in our model.

This paper makes essential use of earlier related work [27, 4, 23, 25] but differs in several
ways.

• The strand spaces of [27] form a mathematical model consisting of “bundles” of
“strands” of incoming and outgoing messages for each participant in a security pro­
tocol. Here we formalise essential parts of these strand spaces in the language of a
theorem prover and provide it with a logic.

• The virtue of BAN-style logical rules does not confine itself to their use in verifica­
tion via theorem proving: they also tell a designer of a protocol how a protocol can
get right, functioning as “rules of thumb” . However, one of the most problematic
aspects of the so-called BAN logic [4] is its lack of semantics. Here we approach the
matter from a different angle: we do not start with a logic, but with a semantics and
formulate logical rules as valid consequences in the formalised model.

Hence, formally speaking we don’t have a logic as a collection of (syntactical) formu­
las with a derivation relation. Our logic is “shallow” and exists only as provable im­
plications or lemmas about (interpreted) formulas as predicates on the model. Such
a “logic” is most convenient for the verification of concrete protocols in a theorem
prover.

• Within the inductive approach [23] a new model is constructed for each protocol
that is verified, namely as inductively defined set of lists of events. Here instead we
have a semantical infrastructure of strands that is the same for each specific protocol.
This allows us to prove more general logical rules, for instance about the sending or
receiving of public or secret encryptions.

• The aim of the present paper is very similar to [25] (see also [26, Section 6.2]),
namely to formulate a BAN-like logic on top of a strand space semantics. However,
the reference [25] only contains a number of definitions for such a logic, without any
rules, applications, or formalisations. Thus, one could say, the present paper achieves
what is sketched in [25].

The use of a theorem prover in the formalisation of our model is for two reasons.

1. In general, a theorem prover is like a skeptical colleague who patiently checks all
details. In the present setting this is useful because many proofs (esp. of the logical
rules in Section 5) are complex, highly combinatorial, and involve many different
case distinctions. In such situations humans easily make mistakes.

2. The present formalisation arose via several iterations, in which some subtle prop­
erties of the set of messages or of the semantical infrastructure were changed. The
ability to re-run the proofs of existing results after such basic changes is very helpful
to quickly see the consequences, and to maintain overall consistency. It will also be
of use for possible future extensions and adaptations of the model.

1 In this paper a key for symmetric encryption is called a secret key. A key pair for asymmetric encryption
consists of a public key and a private key.

2

The fact that we used the theorem prover PVS is not especially relevant for the topic. We
could also have used the higher order logic of the theorem provers Isabelle or COQ. The
presentation in this paper abstracts from the concrete syntax of PVS and uses a more mathe­
matical/logical style. However, readers who wish to see the details of the formalisation [15]
will have to read PVS code.

The idea of building a BAN-like logic on top of a strand space model is not really
new (see for instance [25]). The contribution of this paper is however, that this idea has
been elaborated in full detail, been formalised, and put to use successfully in concrete
examples. Doing so required a subtle balancing of the various possible requirements and
formulations— and a non-trivial amount of PVS work!

We analyse three protocols using our toolkit: the Needham-Schroeder(-Lowe), the bi­
lateral key exchange and the Otway-Rees protocols. Security properties of Otway-Rees is
substantially harder to prove compared to for the first two, due to the presence of tickets. In
this paper we first introduce some simpler secrecy/authentication rules and analyse the first
two protocols. Those rules turns out to be of no use for Otway-Rees since the premises of
those rules can hardly be verified: therefore we strengthen these rules in a later section.

Below we start in Section 2 with some fundamental results about the well-known
Needham-Schroeder protocol. Their sole role at this stage is to illustrate the style of prop­
erties that can be proved. The explanation of the underlying theories starts in Section 3
with the theory of protocol messages, and proceeds with strands and bundles in Section 4,
and with logical rules in Section 5. The bilateral key exchange protocol (from [5, Sec­
tion 6 .6 .6]) is analysed in Section 6 as the second example. In Section 7 the verification
challenge in the Otway-Rees protocol is identified and the logical rules are strengthened
accordingly.

2 Results about the Needham-Schroeder public key protocol

Here we consider the well-known Needham-Schroeder public key protocol from [20],
which was shown to be flawed in [16]. It can be described via the following three mes­
sage exchanges between Alice (written as A, with public key K A) and Bob (B with public
key K b).

A — ► B : { u a ,A } k b
B — ► A : { u b ,n A } k a
A — ► B : { u b } k b

Here we write n A for a fresh (or new) nonce introduced by A, and similarly n B for a fresh
nonce of B .

What we can prove about this protocol is formulated as follows.

A S e n d s ({ new nonce(nA) , nam e(A) }Kb) @ i
A

A S e e s ({ n o n ce(n B), n o n ce (n A) }K a) @ i + j

H enceForth (S e c re t(A ,B)(n o n ce (n A))) @i + j

In ordinary words: if Alice sends the first protocol message at stage i and then sees the
second message at stage i + j , then her nonce n A is a shared secret between her and Bob
from stage i + j onwards. Notice that Alice’s nonce n A is labeled with ‘new’ in its first
use, and as a ‘plain’ nonce in subsequent use. Bob’s nonce n B is new when Bob sends it,
but not anymore when Alice sees it.

3

An analogous result about Bob’s nonce n B is not provable because of Lowe’s at­
tack [16]. It can however be proved for the repaired “Needham-Schroeder-Lowe” protocol:

A — ► B : { u a ,A }kb
B — ► A : { u b , u a ,B }ka
A — ► B : { ub }k b

Then we can prove for instance the following non-trivial result.

A S e n d s ({ new nonce(nA) , nam e(A) }Kb) @ i
A

A S e e s ({ n o n ce(u B), n o n ce(u A), n am e(B) }K a) @i + j
A

A Knows (B S e e s ({ n o n ce(u B) }K b)) @ i + j + k

A Knows (B Knows (H enceForth (S e c re t(A ,B)(n o n ce (n B))))) @i + j + k

It tells that if Alice first sends and sees the appropriate messages and then knows that Bob
sees the final message, then Alice knows that Bob knows that his nonce n B is henceforth
a shared secret. The knowledge operator satisfies (X Knows (<^)) ^ ip so that the con­
clusion is pretty strong, and implies for instance the secrecy of the nonce. Note that Alice
needs to know the fact that the final message was seen by Bob—a fact that she cannot di­
rectly observe herself—in order to draw conclusions about Bob’s knowledge. This is quite
natural.

In the remainder of this paper we shall explain what formulas like A S e n d s (m) @ i
or B Knows (<̂) mean, and how they can be proved.

3 The theory of messages

The parties involved in the security protocols will be called agents. For the time being we
shall assume a (parameter) type AG of agents, without any further structure. Only later on
we shall assume a spy among the agents.

Messages are the identities that are exchanged between agents in a protocol. They may
be nonces, keys, names, sequence numbers e tc . The type M SG of messages is defined
inductively, using the following BNF notation.

m ::= nam e(a) | num ber(i) | new nonce(n) | nonce(n) | new seckey(k) |
seckey(k) | pubkey(k) | privkey(k) | k{ m } | { m }k | hash(m) | (m ,m)

The identifier a in nam e(a) refers to an agent, where n a m e (-) acts like a tag. The n in
nonce(n) and new nonce(n) belong to an unspecified domain of nonces. Similarly for the
different types of keys k, with a tag e.g. p u b k ey (-) making a key k into a message. The
role of the ‘new’ will be explained later. We use the notation k{ m } for secret (symmetric)
encryption and { m } k for public (asymmetric) encryption. There is an implicit function
“ that sends a public key k to its associated private one k. The notation (- , -) for tuples
is often used implicitly, for instance in k{ m i , m 2 }. Since messages are freely generated
tupling is not associative: ((m 1, m 2), m 3) = (m 1, (m 2, m 3)) . Signed messages are at this
stage not supported.

The use of an inductively defined set of messages implicitly involves certain idealisa­
tions. For instance, hashes are assumed to be perfect, since by construction h a sh (m 1) =

4

h ash (m 2) implies m 1 = m 2. Also, the explicit use of the datatype’s constructors excludes
type flaw attacks (see e.g. [18, 14]).

A first basic function is n 2 p : MSG ^ MSG for “new-to-plain”. It erases ‘new’ recur­
sively, and is defined in the obvious way:

n2 p(nam e(a) = nam e(a) n2 p(pubkey(fc)) = pubkey(fc)
n2 p(num ber(i) = num ber(i) n2 p(privkey(fc)) = privkey(fc)
n2 p(nonce(n) = nonce(n) n2 p(fc{ m }) = fc{ n2 p (m)}

n2 p(new nonce(n) = nonce(n) n2 p ({ m } fc) = { n2 p (m)} fc
n2 p(seckey(fc) = seckey(fc) n2 p(hash(m)) = h a sh (n 2 p(m))

n2 p(newseckey(fc) = seckey(fc) n2 p ((m i, m 2)) = (n2 p (m i), n2 p (m 2)).

It is clear that n2p is idempotent, i.e. satisfies n2p(n2p(m)) = n2p(m). A message m is
called “plain” if it contains no ‘new’, i.e. if n2 p(m) = m.

3.1 Subterm s and paths

We use the symbol < for the syntactic subterm relation, that can also be defined inductively.
It ignores encryptions or hashes, so that for instance nonce(n) < h ash (n o n ce(n)), but
not seckey(fc) < k{ m }. It is not hard to see that < is a partial order. Further results are:
m 1 < m 2 implies n2 p (m 1) < n2 p(m 2), and: m 1 < m 2 with m 2 plain implies that m 1 is
also plain; also: if m 1 < n2 p(m 2) then m 1 < m 2 for some term m 1 with n2 p(m 1) = m 1.

It is useful to extend the subterm relation to subsets U C MSG of messages: m < U
means that m < m ' for some m ' G U .

We shall often need a more informative subterm relationship involving “paths” . A path
£ in £: m 1 '—> m 2 or m 1 m 2 indicates how a term m 1 occurs as a subterm in m 2.
Such a path is a list of labels from the set

{se(fc), pe(fc), h a ,n 1 ,n 2}

indicating how the subterm can be reached— where se(fc) stands for secret encryption with
k, etc. The path relation is defined inductively by the following two clauses.

and m i - -m 2

m i
se(k)-€

k{ m 2 }
pe(fc)-̂

{ m 2 }km i
m i h ash (m 2)

m i
ni •£ (m 2 , m 3)

m i (m 3 , m 2)

where () is the empty list, and prefixing an element a to a list £ is described by the dot
notation a ■ £.

Terms with such paths between them form a category2, with the empty list as identity
map, and list-append; as composition: if m 1 m 2 and m 2 m 3 then m 3.
Composition works backwards because of the (arbitrary) direction that we have used for
paths.

The relation between paths and subterms is easy:

m 1 ^ m 2 3£. m ^ m 2

Further, with paths we can define the following useful notions.

2It happens more frequently that a partial order can be described in a more refined way leading to morphisms
in a category, for instance in the propositions-as-types view where implications become proofterms.

m m

5

• Single-occurrence: m 1 ^ 1 m 2 is described as: m 1 m 2 and m 1 m 2 implies
£ 1 = £2. To be precise, what we define is really at m ost single occurrence.

• Occurrence under public encryption with key k: m 1 ^ pe(fc) m 2 means that each path
£ with m 1 m 2 must contain pe(k).

Similarly one defines occurrence m 1 ^ se(k) m 2 under secret encryption.

These relations are extended in the obvious way to subsets. We have m ^ pe(k) U
and m ^ se(k) U , where the relation holds for any m ' G U .

Additionally, for a set K of keys, m 1 m 2 holds if each path £ with m 1 m 2
contains pe(k) or se (k) with k G K.

3.2 Possessions

We shall refer to “possessions” as the cryptographically accessible parts of messages. For
instance, to is in the possessions of a set U C MSG if fc{ to } G E/ and seckey(fc) G £/,
and also if { to }fc G U and privkey(fc) G U—where the function “ maps a public key to
the corresponding private one.

Formally we define possessions as a closure operation P : P (M SG) ^ P (M SG) via a
least fixed point (see e.g. [6]). It is the analogue of Paulson’s a n a l z [23]. For U C MSG
we can describe P (U) C MSG as the smallest subset with:

k { m }, seckey(fc) g P (U) v 'I

u c p(i/) and {-»}<=, pnvkey(fc) e P(t/) v I ^ m e P(f/)
“ v ' (m, m ')G P (U) V | v '

(m ', m) G P (U) J

A basic observation is that m < P (U) if and only if m < U .

3.1. Exam ple. The set of terms

P^|({seckey(fcs) } kp, fcs{ name(a), hash(nonce(n)) }) , privkey(fcp) j)

contains nam e(a) but not nonce(n).
The PVS formalisation [15] contains appropriate rewrite rules that can prove such in­

habitation statement via automatic rewriting. The rewrite rules make several passes through
a list of terms, each time recording the keys that are available and that are still needed. The
rewriting stops at the end of such a pass when there is no overlap between these sets of
available and needed keys.

Possessions can be described in terms of paths:

m G P (U) 3m ' G U. 3 £ . m - ^ m ' A ha G £ A
Vfc. se(fc) g £ => seckey(fc) g V(U) a
Vfc. pe(fc) g £ => privkey(fc) g P (U)

This allows us to prove the following two important properties about occurrences under
public encryptions.

1. If to ^pe(fc) U and to G ~P(U) but not r n G iJ , then privkey(fc) G ~P(U).

2. If TO ^pe(fc) U and privkey(fc) £ P(U), then to ^ pe(fc) P(t/).

They form a crucial ingredient of the proof of the public encryption rule in Subsection 5.2.

6

3.3 Com m unications

Agents use the possessions operator from the previous subsection to decompose incoming
messages. They use a “communications” operator to build up new messages that they can
send out. This operator—comparable to the s y n t h of [23]— is again a closure operator
C : P (M SG) ^ P (M SG). For U C MSG we have C (U) C MSG as the smallest set
with:

U C C (U)
nam e(a), num ber(i), new nonce(n), newseckey(fc) e C (U)

m , seckey(fc) e C (U) fc{ m } e C (U)
m , pubkey(fc) e C (U) = ^ { m }k e c (u)

m e C (U) = ^ hash(m) e C (U)
m ,m ' e C (U) = ^ (m ,m ') e C (U).

The most important point is that ‘new’ nonces and secret keys always belong to the commu­
nications. In contrast, ‘plain’ nonces and secret keys only belong to C (U) if they already
belong to U . The restriction that ‘new’ nonces and secret keys must be really new is im­
posed on a global level, that is, on bundles. This will be explained later in Section 4.2.

Obvious properties are m < U ^ m < C (U), and similarly for ^ pe(k) and :<se(k)
instead of ^ . A less trivial one is:

nonce(n) m e C (U) = ^

3m ' e U. 3^1, ¿2 . nonce(n) m ' A m ' - ^ m A I = ¿2.

It says: if nonce(n) appears in a message m e C (U) then we can find a message m ' e U
which contains nonce(n) and is contained in m. The same result holds for seckey(k) in
place of nonce(n).

4 Strands and bundles

4.1 S trands

In our formalisation we shall use “strands” as infinite sequences of possible messages. A
strand describes what happens to an individual agent, in terms of the incoming and outgoing
messages (like in [27]). Such a message m at an arbitrary stage i, if any, is either incoming,
written as - m , or outgoing, written as + m . The type of “message” strands is thus defined
as function space:

MStr = f N — ► (l + (Sgn x M SG))

where 1 = {± } and Sgn = { - , + } . An example of a strand is thus (+ m , ± , ± , —m ', . . .)
where ± indicates that nothing is sent or received at that stage.

With such a strand of messages we associate a strand of possessions. It contains at each
stage the cryptographically accessible parts of the strand’s messages so far. The type of
“possession” strands is:

PStr d=f N — >P(M SG)

Such possession strands are obtained via a function M 2P : MStr ^ PStr defined by induc-

7

tion:

M 2P(s)(0) = U, a given set of initial possessions (terms)

M 2P(s)(i)

if s(i) = —m
< M 2P(s)(i) U

{nonce(n) | new nonce(n) ^ m } U if s(i) = + m
{seckey(n) | newseckey(fc) < m}

This requires some explanation: the possessions at stage i + 1 are the same as at i if nothing
happens in the message strand s, i.e. if s(i) = ± . But if there is an incoming message - m
at i, we extract everything we can from what we already have and from m together. For
instance, if the incoming message is a secret encryption m = k{ m ' } and we already
possess seckey(k), then we possess m ' at stage i + 1. Finally, if there is an outgoing
message at stage i, the plain versions of any new nonces or secret keys in the outgoing
messages are added. The reason for this should become clearer in the next subsection.

We note the following two properties.

• The generated possession strand is increasing, or monotone:

A disadvantage of this property is that session keys will always be around, and cannot
be “forgotten” .

• Call a subset X of messages P-closed if P (X) = X . Then:

We need to cover two more properties for (message) strands. A strand is called well-
form ed if it satisfies the following two conditions:

1. The initial possessions in M 2P(s)(0) are “primitive”, i.e. of the form nam e(a),
nonce(n), num ber(i), seckey(fc), pubkey(fc) or privkey(fc). This means in par­
ticular that M 2P(s)(0) is P-closed—and hence all other M 2P(s)(i) as well. This
condition excludes tickets or certificates from initial possessions; for the examples in
this paper it is not a problem.

2. Each outgoing message s(i) = + m satisfies m G C (M 2P(s)(i)). This means that it
can be build from the terms that are possessed at that stage.

Next, a strand may be determined by a protocol rule. Here we shall only consider
elementary rules about message initiation and response. We allow for parametrisation by
stages and sets of messages (possessions) in rules, so that the type of rules is:

Here + denotes a disjoint union. We then say that a strand s G MStr is rule-based wrt.
rule r G Rule if for each s(i) = + m one has either m G r (i , M 2P(s)(i)) or i > 0 and
s(i — 1) = —m ' with (m ',m) G r (i , M 2P(s)(i)). In the first case the outgoing message
+ m is an initiative according to rule r, and in the second case it is a reaction determined
by r.

i < j = ^ M 2P(s)(i) C M 2 P (s)(j).

M 2P(s)(0) is P-closed = ^ M 2P(s)(i) is P-closed.

Rule
def

N x P(M SG) — ► P (M S G + (MSG x M SG))

8

4.2 Bundles

Bundles are collections of strands, parametrised by agents, including a spy. Recall we used
the type AG for agents, in which we now assume a special element spy G AG. We shall
define two new types: bundles and of bundle constraints, and define what it means that a
bundle satisfies such a constraint. First, the type of bundles:

Bun d=f AG — ► MStr

describes for each agent a message strand. A particular bundle can thus be represented in a
table:

spy A 2 ■ ■ ■ <G AG

stage 0 - (t o i , t o 2) + (m i , m 2)

1 +TO1 — m i —m i

2

This describe a scenario where the tuple message (m 1 ;m 2) sent by agent A at stage 0
ends up with the spy. At the next stage the spy replays the first part m 1 of this tuple, and
both A 1 and A 2 receive it.

Bundles involve arbitrary sequences. We want them to satisfy certain restrictions, partly
determined by protocol rules. This is realised via the notion of bundle constraint:

B unC st = AG —̂ (V (M SG) x R u le) .

Such a bundle constraint tells for each participant what the initial possessions and the rules
are. It thus specifies a protocol.

The next seven points describe what it means that an arbitrary bundle b G Bun satisfies
a bundle constraint bc G BunCst. Intuitively it says that the bundle b is a combined run for
all participants in the protocol specified by bc.

1. For each agent a G AG, b(a) is a well-formed and rule-based strand with initial
possessions given by n 1 (bc(a)) and rule by n 2 (bc(a)).

2. At each stage i, if there is activity, there must be a sender: if some b(a)(i) = ± , then
there must be an a ' G AG with b(a ')(i) = + m .

3. There is at most one sender at each stage: if b(a)(i) = + m and b(a ')(i) = + m ',
then a = a ' (and hence also m = m ').

(This excludes so-called parallel attacks, see [19].)

4. Received messages are plain versions of what is sent: if b(a)(i) = + m and b(a ')(i) =
—m ', then m ' = n2 p(m).

5. The spy receives all messages: if b(a)(i) = + m and a = spy, then b(spy)(i) =
—n2 p(m).

6 . New nonces are really fresh: if b(a)(i) = + m and new nonce(n) < m, then for
each a ' G AG, not: nonce(n) < M 2P(b(a'))(i).

9

7. New secret keys are also fresh: if b(a)(i) = + m and new seckey(k) ■< m , then
for each a ' G AG, not: seckey(k) < M 2P(b(a'))(i) and also not: k{ m '} <
M 2P(b(a'))(i), for some term m '.

The set of all bundles satisfying a particular constraint/protocol form our model of the
protocol. In the remainder of this section we shall investigate some further properties of
such models.

First of all, the standard Dolev-Yao attack model [7] is incorporated, like in strand
spaces. The rules for the spy may further refine these capabilities. But in the basic set
up it is guaranteed only that the spy receives any outgoing message. If no-one else does,
one may understand that the spy has deleted the message. But the spy may also replay the
message, or adapt it— subject to cryptographic constraints as described by the possessions
operators from Subsection 3.2.

Next, we are finally in a position to explain the role of the ‘new’ versions new nonce(n)
and new seckey(k) of nonces and secret keys. They can always be included in outgoing
messages m G C (M 2P(b(a))(i)), according to the definition of the communication opera­
tor C from Subsection 3.3. But the last two of the above constraints require that such ‘new’
subterms in outgoing messages should be globally fresh. This is how we realise a global
freshness idealisation. Further, by invoking the n2p functions on the incoming messages
the ‘new’ subterms, if any, are turned into ‘plain’ ones, so that ‘new’ really only occurs
in the first use. It is indeed not hard to see that all sets M 2P(b(a))(i) of possessions only
contain plain terms.

An important consequence of the distinction between new and plain nonces (and secret
keys) is that if we have a plain nonce nonce(n) < m as subterm of an outgoing message
s(a)(i) = + m , then nonce(n) is already in a ’s possession at i—this follows from the last
statement in Subsection 3.3— so that it must be a re-use of n, i.e. so that n must already
have been sent before.

To conclude, we list a number of technical properties that hold for an arbitrary bundle
b G Bun satisfying a constraint bc G BunCst.

• All sets of possessions M 2P(b(a))(i) are P-closed and only contain plain terms.

• New nonces can only be sent once: if there are two outgoing messages b (a1) (i1) =
+ m 1 and b(a2) (i2) = + m 2 which both have the same new nonce new nonce(n) <
m 1 and new nonce(n) < m 2 as subterm, then a 1 = a 2 and i 1 = i 2, and hence also
m 1 = m 2 .

Similarly for new secret keys.

• If we have a subterm m < m 1 of an incoming message b(a1) (i1) = —m 1, then there
is an agent a 2 and earlier stage i 2 < i 1 with outgoing message b(a2) (i2) = + m 2
containing a “source” subterm m ' < m 2 where m ' G C (M 2P(b(a2)) (i2)) satisfies
n2 p(m ') = m .

• More specifically, if we have a secret encryption k{ m } < m 1 of an incoming mes­
sage b(a1) (i1) = —m 1, then there is an agent a 2 and earlier stage i 2 < i 1 where the
secret key seckey(k) G M 2P(b(a2)) (i2) is possessed and where there is an outgo­
ing message b(a2) (i2) = + m 2 with a secret encryption k{ m ' } < m 2 as subterm,
for which m ' G C (M 2P(b(a2)) (i2)) satisfies n 2 p (m ') = m.

There is an analogous result for public encryptions.

Via such results we can reason backwards about what happens in bundles, much like in the
well-foundedness arguments used in [27].

10

The notions of strand and bundle as defined above resemble the notions with the same
names in [27]. The basic idea is: behaviour of each agent is described as a strand; a collec­
tion of strands communicating with each other form a bundle. A bundle is a whole system
where communication takes place. However there are also some differences between the
original notions and ours. We shall explain these differences here.

In general in a system where communication takes place according to a cryptographic
protocol, there are two different kinds of constraints on the participants’ behaviour, namely
a message rule and a cryptographic ability. In our case every agent that wants to send a
message needs to be able to construct the message. This is a crucial part of what we call
well-formedness. This restriction only applies explicitly to the spy in the original strand
space model. There, strands belonging to the spy must be instantiations of the several
kinds of templates— each corresponding to a cryptographic operation which the spy can
conduct, such as decryption, encryption, providing a possessed key, etc. These templates
are independent of specific protocols. The strands of legitimate (non-spy) agents must be
instantiations of message rules. These rules must incorporate our well-formedness restric­
tions. The constraints are thus basically the same in both models, but organised in a slightly
different manner. This is summarised in the following table.

4.3 C om parison with strand spaces

in original strand space semantics in our semantics
message rule restricts only legitimate agents everybody
cryptographic ability restricts only spy everybody

Our formalism is a bit more complicated, because we have to keep track of each agents
possessions at each stage. However, the formalism is more uniform and is thus more suit­
able for expressing various rules, and for proving their soundness. Additionally, we can
use our formalism as basis for other purposes than analysis of authentication protocols. For
example, in the analysis of anonymity protocols (see e.g. [9]) we often need to prove that a
certain agent does not possess some given message. It is not possible in the original strand
space formalism, in which we cannot express legitimate participant’s possessions.

As illustration Lowe’s attack [16] on the Needham-Schroeder protocol (see Section 2)
is presented in the original strand space formalism in Figure 1, and in our formalism in
Figure 2. In the latter we have written N for n o n c e (N) in order to save space. Also
we leave the possession strands implicit. Observe that in Figure 1, strands for legitimate
agents embody message rules while those for the spy embody cryptographic operations.
These constraints are implicitly imposed on every agent in Figure 2 as the well-formedness
requirement.

Asynchronous nature of the network— messages can arrive delayed or in a different
order— is well modelled in the original strand space formalism which does not have a
global timing (or stages). In our formalism it is modelled using the spy: for example a
delayed message is first received only by the spy and later sent by the spy to the intended
recipient.

5 Logical formulas and rules for protocols

In this section we put a layer of abstraction on the model that was introduced in the previous
section by defining appropriate logical formulas that capture essential aspects of the model.
As we emphasised in the beginning our “logic” is interpreted and consists of a number of
definitions and operations for formulas, together with a suitable collection of implications
(rules) between them. We refrain at this stage from formulating a proper syntactic logic

11

A spy B
{N1, A}Kspy

• ---------------------------> •

(*H {Ni, A}kb

{N1, N2}Ka

'0' {N 2 }l

{ N2 } K B

where (») is

{N i, A } k b

Figure l: Lowe’s attack in the formalism of [27]

Tim e A ’s MStr B ’s MStr spy’s MStr
0 + { newnonce(Afi), A } x spy _L ~ { N i , A } Ksm
1 _L - { N- i , A } k b + { N í , A } k b
2 - { N i , N 2 } k a + { iV i, newnonce(Af2) } k a - { N i , N 2 } k a

3 + { N 2 jjfspy _L - { N 2 } k b„
4 _L -{ N 2 } k b + { N 2 } Kb

Figure 2: Lowe’s attack in our formalism

l2

with a derivation relation because: (1) we think that the set of rules is not sufficiently
stable yet, and that further applications of this framework may lead to refinements and/or
additions; and (2) for the verification work in a theorem prover it is unnecessary— even
inconvenient—to have a purely syntactic logic.

The formulas that we shall consider below are atomic formulas of the form:

A P o sse s s (m) A S en d s (m) A S ay s (m) A R eceives (m)
Secret(A)(m) S ec re t(A ,B)(m)

and compound formulas of the form:

- p p 1 A p 2 Vx g X . p H enceForth (p) A Knows (p)

where p , p^ are formulas.
These formulas, in interpreted form, are special predicates on our model. They take a

bundle constraint bc G BunCst, a bundle b G Bun satisfying bc, and a number (or stage)
i G N to true or false. In order to describe the type of formulas we introduce the notation
[bc] for the set of bundles that satisfy the bundle constraint bc. Then:

Form = (jbc] x N ^ bool)
bceBunCst

Here n denotes a dependent product.
We shall write Greek letters p , ^ , . . . for formulas. The usual logical operations are ex­
tended to such formulas via pointwise definitions, as in:

(p 1 A p 2)(bc ,b ,i) = p 1 (bc, b,i) A p 2 (bc, b, i)

(Vx G X . p (x)) (bc, b, i) == Vx G X . p(x)(bc, b ,i).

The (linear) temporal operator H enceForth (—) — sometimes written as □ — is defined in
the obvious way, namely as:

(H enceForth (p))(bc , b,i) = Vj > i.p (b c , b , j).

The epistemic “knowledge” operator will be described separately in Subsection 5.4. Very
often the bundle (constraint) arguments bc and b remain the same and there is only variation
in the stage argument i. Therefore it makes sense to leave bc and b implicit, and write p@i
for p(bc, b, i). The temporal operator then says that H enceForth (p) @ i is p@ j for all
j > i. This @-notation was already used informally in Section 2.

5.1 Basic form ulas and rules

Next we introduce some of the basic formulas about possession, sending, seeing etc. Through­
out we shall use variables A G AG and m G MSG for agents and messages.

A P o sse s s (m) (bc, b,i) = m G M 2P(b(A))(i)

This says that agent A possesses message m if m can be extracted from A ’s messages up-to
i. Notice that we are careful to talk about “possession” and not “knowledge” of messages,
because “knowledge” is reserved for use with the modal operator from Subsection 5.4.

13

As we noted in Section 4, M2P is monotone, so the implication A P o sse s s (m) ^
H enceForth (A P o sse s s (m)) holds. Hence the following rule is sound.

A P o sse s s m

H enceForth A P o sse s s m

Since M2P yields P-closed subsets of terms we also have the following four closure rules.

A P o sse ss (fc { m }) A P o ssess(seck ey (fc))

A P o s s e s s (m)

A Possess ({ to } k) A Possess (privkey(fc))

A P o s s e s s (m)

A P o sse s s ((m i, m 2)) A P o sse s s ((m i ,m 2))

A Possess (to i) A Possess (to2)

Our next formulas are about sending.

A S e n d s tm) (bc, b, i) =f b (A) (i) = + m

A S ays tm) (bc, b, i) = f 3m ' G MSG. m ^ m ' A A S e n d s tm ') (bc, b, i)
A m G C(M 2P(b(A))(i))

Agent A thus “says” a message m if m is a subterm of an outgoing message and m itself
can be constructed. Here are some obvious rules.

A S e n d s (m) A S ays (new nonce(n)) @ i

A S ays (m) A P o sse s s (nonce(n)) @ i + 1

A S ay s (new nonce(n)) @i B S ays (new nonce(n)) @ j

A = B A i = j

There are analogous rules for new seckey(k) in place of new nonce(n).
Now we turn to receiving messages.

A R eceives tm) (bc, b,i) = f b(A)(i) = —m

A S e e s (m) (bc, b, i) = f i > 0 a A P o sse s s (m) (bc, b, i) a
A P o sse s s (m) (bc, b, i — 1)) A

3 j, m ' . j < i A A R eceives (m ') (bc, b , j) A m ^ m '

The notion is “seeing” is a bit complicated: A sees a message m at stage i if m is a subterm
of an earlier incoming message and is only now (i.e. at stage i and not earlier) accessible.
Then:

A S e e s (m) A S e e s (fc{ m }) A P o sse s s (seckey(fc))

A P o sse s s (m) A P o sse s s (m)

A S e e s (fc{ m ^ @ i

3 B ,m ', j < i. n2p(m ') = m a B S ays (m ^ @ j a B P o sse s s (seckey(fc)) @ j

There are similar rules for public encryptions.

14

Finally we have secrecy formulas, in twofold, namely in shared form (for two agents)
and un-shared form (for a single agent). We use overloading and give them the same name.

Secret(A)(m) (bc, b, i)

= A P o sse s s (m) (bc, b, i) A
VX, j < i. X P o sse s s (m) (bc, b, j) ^ X = A

S ec re t(A ,B)(m) (bc, b, i)

= f A P o sse s s (m) (bc, b, i) a B P o sse s s (m) (bc, b, i) a

VX, j < i. X P o sse s s (m) (bc, b, j) ^ X = A V X = B

The definition can easily be extended to multiple (more than two) agents. Associated rules
appear in Subsection 5.3.

5.2 Rules for authentication

We present some logical rules by which we can draw authentication conclusions: from
what an agent A observes, A can be sure that a certain action has been actually done by
a specific agent B . Even in the presence of the Dolev-Yao adversary that controls all the
traffic in the network, we can establish authentication with the help of cryptography.

The rules in this section—together with the strengthened ones later in Section 7—are
to our semantics what the authentication tests [12] are to the strand space formalism [27].
Authentication properties often involve the most complex proofs among various security
goals. Since the strand space formalism is independent of specific protocols, it is possible
to establish generic “lemmas” about strand spaces which, via suitable instantiations, help us
to prove authentication properties of various protocols. The proofs of these generic lemmas
are quite complicated, as one observes in [12]. However, the task of proving these lemmas
is like giving complicated authentication proofs once for (almost) all protocols. That is the
virtue of having “authentication tests” for the strand space formalism. The logical rules we
shall introduce are useful in the very same sense.

The typical case we wish to consider is when an agent A first sends out a new nonce
under encryption with another agent B ’s public key, and then sees its own nonce back
in unencrypted form. This forms a so-called outgoing authentication test in [12]. The
desired conclusion is then that B must have seen the nonce, together with whatever was
also included in the encryption, because only B could have decrypted the relevant message.
Making all this precise turns out to be quite subtle.

The rule that we have is too large to fit on one line, so that we describe it with labels as
follows.

“A sends at j ” “A sees at i > j ” “A doesn’t say after j ” “B ’s privkey secret until i ”

3 j1. j < j 1 < i A “B sees at j ” A 3 j2, C. j 1 < j 2 < i A “C = A sends”

The meaning of the assumptions in this rule will be explained first.

• “A sends at j ” means that A sends a public-encrypted new nonce as a subterm.
Formally: A S e n d s (m) @ j with { new nonce(n), m 1 }k ■< m, together with the
requirement that the nonce occurs only once in the outgoing message: nonce(n) < 1
n2 p(m).

• “A sees at i > j ” is used as abbreviation for: A S e e s (m 2) @ i where i > j and
not: nonce(n) :<pe(k) m 2. The latter says that the nonce n has in m 2 an occurrence
which is outside an encryption by k; it requires a subtle addition to exclude trivial
cases, namely that m 2 is not nonce(n) itself or the tuple (nonce(n), n2 p (m 1)).

15

• “A doesn’t say after j ” means not: A S ay s (nonce(n)) @ j ' , for any j ' with j <
j ' < i. Indeed, the nonce n at stake should not be used again by A, so that when it
re-appears it must indeed have been decrypted.

• “B ’s privkey secret until i ” expresses the crucial assumption that B is the only one
that possesses the private key associated with k, i.e. Secret(_B)(privkey(fc)) for
all i ' < i.

The rule’s conclusions then have the following meaning.

• “B sees at j ” means B S e e s ((nonce(n), n2p (m 1))) @ j 1 and expresses that B
must have seen the encrypted tuple—because it is the only agent that could have
decrypted the tuple.

• “C = A sends” finally means C = A A C S e n d s (m 3) @ j 2 for some message m 3
with n2p(m 3) = m 2. One might have expected that B must also have been the one
that sent the incoming message m 2 of A, but that is not guaranteed: B could have
passed the nonce n on to some other agent C who uses it for the message seen by A.

Proving the soundness of this rule is a tour de force, and involves many case distinc­
tions. The main steps are as follows.

1. The incoming term m 2 must come from some agent, say C . We know that C is not
A, because A does not “say” n.

2. The nonce n must occur unencrypted in C ’s possessions, because of the last property
mentioned in Subsection 3.3.

3. Now we use well-foundedness to find the first stage, say j 1, where an agent, say A ',
different from A possesses n in unencrypted form.

4. By a non-trivial induction proof we establish that up-to j 1 the nonce n can only occur
encrypted under k.

5. Because B is the only agent with the decryption key, we must have A ' = B , using
property 1. mentioned at the end of Subsection 3.2.

There is a similar rule in which nonce(n) and new nonce(n) are replaced by seckey(k)
and new seckey(k): a freshly generated secret key can play the role of a nonce as a random
value. But there also is a more useful variation, in which the secret key k does not re-appear
as subterm of the incoming message but as (secret) encryption key in a cipher text k{ m }.
We shall see such an example in Section 6 .

5.3 Rules for secrecy

Among the many possible rules for secrecy we shall consider the case where two agents
A 1, A 2 only exchange a nonce under each other’s public keys k1, k2 respectively. In labeled
form this rule looks as follows.

“A 1 sends new n at j < i ” “A 1 , A2 send n only encrypted” “A 1 , A 2 key secrecy”

B P o sse s s (nonce(n)) @ i = ^ B = A 1 V B = A 2
(1)

The conclusion speaks for itself, so we only explain the three assumptions.

• “A 1 sends new n at j < i” means A 1 S ays (new nonce(n)) @ j for j < i.

16

• “A 1 , A 2 send n only encrypted” expresses that for j ' with j < j ' < i the nonce
n is sent by A 1 at j ' only under A 2’s public key k2, and vice-versa. Formally, if
A 1 S en d s (m) @ j ' then nonce(n) ^ pe(k2) m , and similarly for A 2.

• “A \ , A 2 key secrecy” expresses that agents A \ and A 2 both keep their own private
keys secret: Secret(Ap)(privkey(fci,)) @ i' fo rp e {1 ,2} and i' < i.

There are similar secrecy rules possible where a nonce or secret key is only sent under
secret encryptions, or even under both public and secret encryptions.

5.4 Knowledge of form ulas

In order to define knowledge we keep our bundle constraint bc G B unC st fixed, but con­
sider different bundles that satisfy the constraint. Recall that we write [bc] for the set of

A i
such bundles. We define a collection of equivalence relations ~ C [bc] x [bc], for A G AG
and i G N as follows.

b ^ b' d=f Vj < i. b(A)(j) = b' (A)(j).

This means that up-to stage i the strands of A are the same in b and b '. We then define,
much like in [25],

A Knows (p) (bc, b, i) == Vb' G [bc]. b Â i b' ^ p(bc, b', i).

The intuition behind this definition is the following. At stage i in bundle b an agent A only
has information about its own incoming and outgoing message so far, i.e. about b (A)(j)
for j < i. If p holds in all possible scenarios b' that agree with b on these incoming
and outgoing messages of A, then p can in fact only depend on these messages (because
everything else may differ in the various scenarios), and so A has all the information to
know p.

Typically in verifications, if we can prove an implication p 1 A ■ ■ ■ A p n ^ and the
assumptions p i are of the the form A S en d s (—), A S e e s (—) or A Knows (—), only
involving agent A, then one can prove p 1 A ■ ■ ■ A p n ^ A Knows (^) , since the result ^
only depends on A ’s perspective. The next section contains several such examples.

Because the relations ~ are equivalence relations we have the familiar associated “S5”
modal rules (see e.g. [10, 2]), including for instance:

A Knows (p) A Knows (p) A Knows (p) A Knows (^)

p A Knows (A Knows (p)) A Knows (p A

where the double line means that the rule may be used in both directions.

6 The bilateral key exchange example

In this final section we apply the theories from the previous section to a standard proto­
col, the so-called bilateral key exchange (BKE), described in [5, §§6 .6 .6]. Our aim is to
establish an authentication result in the form of a shared secret. The protocol involves the
following steps.

A — ► B : A, { nA, A } k b

B — ► A : { K , h a sh (n A),n B ,B }k a (2)
A — ► B : K { h a sh (n B) }

17

The protocol is an interesting verification challenge because of 1) the combination of public
and secret encryption (with a fresh session key K), and 2) the hashed versions of nonces
are used as proof of possession of the original nonces.

We shall first consider the representation of this protocol in our model, and then discuss
some interesting statements about the protocol (and a sketch of their proofs).

6.1 R epresentation of the BK E protocol

As agents we take the set/type AG = {A, B , S} for Alice, Bob and the Spy, with corre­
sponding public keys K A, K B , K S, that are (pairwise) different. We assume three nonce
functions N A, N B , N s , so that at each stage i we have a fresh nonce new nonce(N A(i))
for Alice (and similarly for Bob and the Spy). We assume that:

i = j ^ NA(i) = N A (j) NA(i) = N b (j) etc.

Further we need a function SK (—) so that Bob can at each stage take a different session
key SK(i).

The initial possessions of our three agents are given as the following sets of messages.

PA = {pubkey(KA),p™key(K^),piibkey(KB),piibkey(Ks)}
PB = {pubkey(KA),pubkey(KB),privkey(K^),pubkey(Ks)}
Ps = {pubkey(ifA),pubkey(ifB),pubkey(ifs),privkey(%^)}.

Hence at stage 0 they possess their own public and private key, and each others public keys.
Recall that a rule is a function N x P(M SG) — ► P (M S G + (MSG x M SG)) that

restricts the sending of messages. For the spy we impose no restrictions via (message)
rules, so that its rule is:

r s (i , U) = {z g MSG + (MSG x MSG) | true}.

Hence rule-basedness does not restrict the spy’s strand. Note that, however, well-formedness
does restrict: the spy can send any message, as long as the spy can (cryptographically) con­
struct the message.
The rules for Alice and Bob correspond to the protocol rules (2) from the beginning of this
section. Alice has both an initiator rule (for spontaneously sending A, { n A, A }Kb) and a
responder rule (for the final message K { h a sh (n B) }). We formalise this as follows.

rA (i,U)
= {(nam e(A), { new nonce(N A(i)), nam e(A) }K x) | X g A G ,X = A}

u
{ ({ seck ey (K), h ash (n o n ce (N A(j))) , nonce(n), n a m e (X) }K a ,

K { hash (n o n ce(n)) })
| j < i a X = A a nonce(n) G U a seck ey (K) G U }.

This rule thus says that A may at any stage i send the BKE protocol’s first message
(nam e(A), { new nonce(N A(i)), nam e(A) }K x), in which the newly generated nonce
N A(i) is encrypted with another agent X ’s public key. Notice that the protocol descrip­
tion (2) prescribes that the first message should be sent to B , but this is misleading since A
does not know for sure that B can be trusted, i.e. is not the spy. Hence we should leave this
open by using a variable X . This enables the spy to participate as player in the protocol. In
A ’s strand multiple runs of the protocol can be initiated; in each of the runs both B and the
spy can be a responder.

18

The second part of the rule (after the union u) describes the reaction: if A gets a mes­
sage of the form { sec k e y (K), h a sh (n o n ce (N A(j))), nonce(n), n a m e (X) }Ka where
j < i, X = A and both nonce(n) and se c k e y (K) are not already in A ’s possession, then
A replies by sending out the message K { h ash (n o n ce(n)) } that is built from the incom­
ing nonce and key. The condition that neither nonce(n) nor se c k e y (K) is possessed yet
is included to prevent replays, and is actually used in the verification. It is needed because
our formalisation does not have an explicit notion of run. A consequence is that a rule can
be applied repeatedly resulting in different continuations. In the BKE protocol for instance,
having sent the first message with nonce n A Alice may reply to different pairs K , n B for
this same nonce.

We turn to Bob’s rule. It only involves a reaction:

r s (i , U)
= { ((n a m e (X), { nonce(n), n a m e (X) }K b),

{ new seckey(SK (i)), h ash (n o n ce(n)), n ew nonce(N s (i)), n am e(B) }Kx)
| X = B a nonce(n) G U }.

Hence if B receives a message of the form (n a m e (X), { nonce(n), n a m e (X) }Kb) where
nonce(n) is not already possessed and X = B , then B responds by picking both a fresh
nonce N s (i) and a session key SK(i), and including them in the encrypted response mes­
sage { new seckey(SK (i)), h ash (n o n ce(n)), new nonce(N s (i)), n am e(B) }K x, using
the public key of the agent X that occurs in the incoming message.

We see that the representation of the BKE protocol basically follows the informal de­
scription (2), but requires that certain implicit assumptions (about the targets of messages
or the freshness of incoming nonces and keys) are made explicit.

Formally, the above initial possessions and rules form a bundle constraint BKE G
BunCst, like in Subsection 4.2. The properties that we shall establish below hold for
an arbitrary bundle b G Bun satisfying the constraint BKE.

6.2 BK E properties

Once the protocol is represented appropriately, the verification can start. Below we shall
sketch some of the secrecy properties that have been proven.

First of all we establish that A and B keep their private keys secret: for each i,

Secret(A) (privkey(K a)) @ i and Secret(B) (privkey(K^)) @ i

Here we use a secrecy rule that says: if a private key is never sent out then it remains secret.
The rule is found in the PVS specification. Next we have

A S e n d s ((nam e(A), { n ew nonce(N A(i)), nam e(A) }K b)) @ i

A () ()
X P o sse s s (no n ce(N A(i))) @ j V X P o sse s s (h a sh (n o n ce (N A(i)))) @ j

X = A V X = B

This follows from the secrecy rules in Subsection 5.3. There is a similar implication for B

19

B S e n d s ({ new seckey(SK (i)), h ash (n o n ce(n)), new nonce(N s (i)),
nam e(B) }K a) @ i

A ()
X P o sse s s (seckey(SK (i))) @ j

X = A V X = B

We are not so interested in B ’s newnonce N s (i) because it plays a minor role in the pro­
tocol. In fact, it could be replaced by a constant.

After these preparatory results, we first concentrate on A ’s perspective. Assume for a
moment both:

A S e n d s ((nam e(A), { n ew nonce(nA), nam e(A) }Kb)) @ i

A ()
A S e e s ({ sec k e y (K), h a sh (n o n c e (n A)), n o n ce(n B), nam e(B) }K a) @ i + j

Then we can prove the following results.

1. n A = N A(i) and j > 0 .

2. H enceForth (S e c re t(A ,B)(n o n ce (n A))) @ i + j .

3. A Knows (—) of the previous result, i.e.
A Knows (H enceForth (S e c re t(A ,B)(n o n ce (n A)))) @i + j .

4. 3 j '. j ' < j A B S en d s ({ n ew seckey (K), h a sh (n o n c e (n A)), n ew nonce(nB),
nam e(B) }KJ @ i + j '.

5. A Knows (—) of the previous result.

6 . H enceForth (S e c re t(A ,B)(sec k e y (K))) @i + j .

7. A Knows (—) of the previous result.

Next we turn to Bob’s perspective, and assume the following two formulas.

B S e n d s ({ n ew seckey (K), h a sh (n o n ce (n)), n ew nonce(nB), nam e(B) }K a) @i

A ()
B S e e s (K { h a sh (n B) ^ @ i + j

Now we can prove:

1. n B = N s (i) and k = SK(i) and j > 0 .

2. H enceForth (S e c re t(A ,B)(sec k e y (K))) @i + j .

3. B Knows (—) of the previous result.

4. 3 j '. j ' < j A A S e n d s (K { h a sh (n B) }) @ i + j '.

5. B Knows (—) of the previous result.

6 . 3 j ' . j ' < j a A S e e s ({ se c k e y (K), h a sh (n o n ce (n)), n o n ce (n B),
nam e(B) }ka) @ i + j '.

with his session key:

20

7. B Knows (—) of the previous result.

The two strongest results we have arise by combining assumptions for A and B , in
terms of knowledge about what the other agent sends or sees.

A S e n d s ((nam e(A), { n ew nonce(nA), nam e(A))) @ i
A

A S e e s ({ sec k e y (K), h a sh (n o n c e (n A)), n o n ce(n B), nam e(B) }K a) @ i + j
A

A Knows (B S e e s (K { h a sh (n B) })) @ i + j + k

A Knows (B Knows (H enceForth (S e c re t(A ,B)(sec k e y (K))))) @i + j + k

In this case it is thus assumed that A knows that B sees the final message. In a dual sense,
if B knows that A sent the initial message, we can also obtain a similarly strong secrecy
result.

B Knows (A S e n d s ((nam e(A), { n ew nonce(nA), nam e(A) }Kb))) @ i
A

B S en d s ({ n ew seckey (K), h ash (n o n ce(n)), new nonce(nB), nam e(B) }K a) @i + j
A

B S e e s (K { h a sh (n B) }) @ i + j + k

B Knows (A Knows (H enceForth (S e c re t(A ,B)(sec k e y (K))))) @i + j + k

These two conclusions are beginning to look like common knowledge (see e.g. [8]). They
provide a basis for authentication.

7 Logic strengthened for the Otway-Rees

The Otway-Rees key distribution protocol [21] is another well-known target in verification
work. There is a substantial gap between Otway-Rees and, say, Needham-Schroeder or
BKE, with respect to verification: this is due to the presence of tickets. We cope with this
new challenge by strengthening the logic that we have already introduced. We will see that
this improvement is comparable to the introduction of honest ideals [11] in the strand space
formalism.

We apply the stronger logical rules to the Otway-Rees protocol to verify its key estab­
lishment properties. Additionally, we will observe that an attack presented in [27]— which
can happen in the strand space formalism— is impossible in our formalism. This is due to
a difference in nonce management between the two formalisms, exploiting that we keep
track of agents’ possessions.

7.1 Verification challenge in the Otway-Rees protocol

The goal of the Otway-Rees protocol is key-distribution: an initiator A and a responder B
aim to establish a session key K s with the help of a trusted server S. It is assumed that
each of A and B has already established a shared long-term secret key K AS and K s s with
S . The protocol is informally described as follows.

A -
B
S -
B

B
S
B
A

n, A, B , K a s { «A, n, A, B }
n, A, B , K a s { « a , «, A, B }, K b s { « b , n, A, B }
n, K a s { « a , K s }, K b s { « b , K s }
n, K a s { « a , Ks }

(3)

21

Here n and n A are nonces freshly generated by A, n B is a fresh nonce by B , and K s
is a fresh session key generated by S . Recall that the notation K { m } is for symmetric
encryption.

A major difference from the Needham-Schroeder or BKE protocol is the existence of
tickets: a ticket is a subterm of a received message which an agent does not look inside
and just passes on to another agent. In the above run of Otway-Rees there are two tick­
ets, K a s { n A, n, A, B } and K AS{ n A, K s }. Roughly speaking, the responder B can
send a message containing any ticket t after B receives the message n, A, B , t. It is not
supposed (or possible either) for B to check whether a ticket t is of the expected form
K a s { nA, n, A, B }.

Because of tickets, validity of assumptions of most rules in Section 5 are now non­
trivial. Hence those rules—although they are still sound—are of little use. For example
consider the following secrecy rule (1) in Section 5.3, adapted to the current situation.

“B sends new n B at j < i, encrypted by K b s ” “B , S send n B only encrypted by K b s ”
“ K b s is kept secret by B , S ”

C P o s s e s s (n o n c e (n B)) @ i = ^ C = B V C = S
(4)

We cannot use this rule to derive secrecy of nonce n B in the above run (3). Since B is
supposed to send anything he receives as a ticket, validness of the second assumption is
now questioned.

In this section we shall introduce stronger rules which have weaker premises. These
weakened premises are trivially valid even for protocols involving tickets. For example, an
alternative for the above secrecy rule is as follows.

“B sends new n B at j < i, encrypted by K b s ” “B , S maintain encryption of n B by K b s ”
“K b s is kept secret by B , S ”

C P o s s e s s (n o n c e (n B)) @ i = ^ C = B V C = S
(5)

The new second assumption “B , S maintain encryption of n B by K BS” means: if B or S
ever sends a message in which n B appears without encryption, then the agent must have
received n B in a non-encrypted form. This condition is verified easily in the Otway-Rees
protocol: if n B appears not encrypted in a message sent by B , then that must be in a ticket
which is received by B beforehand. Hence we can conclude secrecy of the nonce n B .

This challenge caused by tickets is implicit in [27]. Our way of coping with the chal­
lenge can be compared to the one taken there, using the notion of honest ideals. The
fundamental Theorem 6.11 of [27] about honest ideals essentially proves that the three as­
sumptions of our stronger rule (5) yield the second assumption of our weaker rule (4). In
this sense, our strengthening of logical rules in this section corresponds to the introduction
of honest ideals like in [11] or [27, Section 6].

7.2 New form ulas

Due to the presence of tickets, we now have to take a closer look at an agent A ’s action of
sending: is A just passing a message it has received as a ticket, or is she actually operating
on a message e.g. decrypting an encryption therein? For this distinction we introduce two
new basic formulas OriginatorOf and D ecryptSends which are essentially refinements of
S en d s.

The formula A OriginatorOf m roughly says that m is a part of the sent message but

22

not a part of any messages received before. Formally,

A OriginatorOf (m) (bc, b, i)

= f 3 m 1 e MSG. (A S e n d s (m ^ @ i A m ^ n 2 p (m i))
A Vj e N. Vm2 e MSG. (j < i A A R eceives (m 2) @ j = > m ^ m 2)

For example, in the Otway-Rees protocol B OriginatorOf K AS{ n A, K s } is always false
since if B sends a message of that form it must be a ticket received before. We can prove
the following lemma (or logical rule):

(O r iSays) OriginatorOf implies Says.
A OriginatorOf m @ i

= > 3m ' e MSG. (A S ay s (m ') @ i A m = n2 p(m ')

The label (O r iSays) will be used later in Appendix B.
For an arbitrary set K of keys, the intuitive meaning of a formula A D ecryptSends (m, K)

is that A decrypts an encryption (by a key from a set K) of m and sends m. A typical ex­
ample of m is a nonce. Formally,

A D ecryptSends (m, K) (bc, b, i)

= f 3 m 1 e MSG. (A S en d s (m ^ @i A m ^ n 2 p (m 1) A m n2p(m 1))
A Vj e N. Vm2 e MSG. (j < i A A R eceives (m 2) @ j = > m m 2)

Recall that m m ' means: every occurrence of m in m ' is under encryption by some
key in K. Hence m m ' means that there is at least one occurrence of m in m ' without
encryption by any key from K. Therefore the condition m < n 2 p (m 1) above is in fact
redundant (but still there for the ease of understanding).

7.3 Strengthened logical rules

We shall present two strengthened logical rules which play crucial roles in the verification
of Otway-Rees. Their soundness against our semantics is proved in PVS. Other rules which
are less significant are presented in Appendix A.

Our first rule is for authentication and called incoming authentication test: the name is
after the corresponding lemma [12] for the strand space formalism.

(In c Te s t) Incoming authentication test. A is a set of agents.
1. Challenge] A S en d s m c @ i c A new nonce(n) < m c

A 2. Respons^ A S e e s m r @ i c + i w A nonce(n) -< K { m 1 } ^ m r
A 3. K { m 1 } does not originate from A herself

Vj e [ic, ic + iw]. - (A OriginatorOf K { m 1 } @ j)
A 4. K is secretly shared] Vj e N. S e c re t(A)(K) @ j

= Authentication result
3B e A \ { A } . 3 j e (ic, i c + i w). B OriginatorOf K { m 1 } @ j

The basic idea is a common challenge-response style authentication. The random value
nonce(n) is not encrypted in the form of K { m 1 } in the (outgoing) challenge, because of
the assumption 3: in particular,

- (A OriginatorOf K { m 1 } @ i c)

23

Note that nonce(n) ■< m 1 by the assumption 2. However at stage i r , A receives an (incom­
ing) response which contains K { m 1 }. This so-called challenge com ponent K { m 1 } must
originate from someone who possesses the key K , hence someone in A by the assumption
4. By the assumption 3 it must not be A herself. Moreover, the creation of K { m 1 } must
be after the creation of n o n ce (n). This is an incoming test because the incoming response
involves particular encryption.

It is straightforward to get a variation of this rule in which nonce(n) and new nonce(n)
are replaced by seck ey (K s) and new seckey (K s). Less straightforward is a rule for out­
going authentication test [12]— where a nonce is encrypted in the outgoing challenge but
not in the incoming response. We have the rule in the PVS specification [15] but it is not
used for the verification of Otway-Rees.

Compared to the similar authentication rule earlier in Section 5.2, the third assumption
is weakened from “A does not say K { m 1 }”—which is not trivially valid in Otway-Rees
due to tickets—to “K { m 1 } does not originate from A” .

Our second strengthened rule is a secrecy rule corresponding to the above (5). For
future reference we present a rule for secrecy of a freshly generated key: the corresponding
rule for secrecy of a nonce is similar.

(SKSe c) Secrecy of session keys encrypted with uncompromised keys.
A is a set of agents and K is a set of keys.

[1. Long-term keys are kept secret]
Vj < i. VKi e K. VA e A. (A P o sse s s (K ;) @ j = > A e A)

A [2. Legitim ate parties keep encryptions]
Vj e [i0, i]. VA e A. -] A D ecryptSends (seck ey (K s), K) @ j)

A [3. Generation of session key]
i 0 < i a A 0 e A a A0 S ays (new seckey (K s)) @ i0

=>• [Secrecy result] VA e A. (A P o sse s s (K s) @ i =>• A e A)

As explained in Section 7.1, the assumption 2 is weaker than the corresponding condition
“agents in A send K s only encrypted by a key in K” . This is crucial for the rule to be
usable for Otway-Rees.

7.4 Verification of the Otway-Rees protocol

Now we shall see that the refined rules are appropriately adapted to the Otway-Rees proto­
col and to other protocols that make similar use of tickets. Since the Otway-Rees protocol
is aimed at key-distribution, we want to establish the following security properties.

• Secrecy o f the session key K s : K s is known only by the legitimate agents A, B , and
S.

• Freshness o f K s: K s was generated recently by S, say “after B sent the message
. . . ”. (Algorithmic) cryptology says that the more data a key is used to encrypt, the
more likely the key gets compromised by cryptanalysis. This type of attacks via
cryptanalysis are not present in the Dolev-Yao model, hence not in our semantics
nor in the strand space formalism [27]. Nevertheless, freshness of a session key is
sufficient to mitigate those risks [13].

• Agreem ent on K s: B knows, after his run of protocol as a responder, that A was
also running the protocol as an initiator with the same data items; in particular A has
obtained the same session key. This is B ’s guarantee on agreement, and we can state
A ’s guarantee in a similar manner.

24

As a showcase, in Appendix B we sketch the derivation (in PVS) of B ’s guarantee of the
first two properties. Namely:

(6)

In this formula t 1 is an arbitrary message. The proof of this secrecy property is rather
complicated because it involves authentication in the following way. The secrecy is easy
if the session key is issued by the legitimate server S under proper encryptions. The hard
part is that B must be sure this is indeed the case. The guarantee for A is proved similarly.

The third property of agreement on distributed keys is the main topic in the next Sec­
tion 7.5.

7.5 Prevention of certa in replay attacks

There is an attack on the Otway-Rees protocol presented in [27] which distributes different
session keys to A and B by replaying a request to S . Due to this attack the agreement
of session keys fails for Otway-Rees. Here spyX denotes the intruder impersonating a
legitimate agent X .

We emphasise that this attack (possible in the original strand space model) is no longer
possible in our semantics. In fact we have proved in PVS A ’s guarantee on agreement of
session keys.

¿0 < ¿1 < ¿2 < ¿3
A A Sends (new nonce(n), A , B , K as{ new nonce(nA), new nonce(n), A , B }) @ ¿o
A A Knows (b Sends (n, A , B , t i , K b s{ new nonce(nB) ,n , A , B })) @ ¿ 1

A A Knows (B S ees K b s { « B ,K s }) @ ¿2

A A S ees K a s { «a,K S } @ ¿3

K s = KS A A Knows (H enceForth (S e c re t({A , B , S})(K s))) @ ¿3

It states: if A has properly finished her role in a run and if A somehow knows that B has
also finished his role with the matching nonce n (which acts as an identifier of the run),
then A is sure that the distributed session keys agree. The guarantee for B is formulated in
a similar way and proved in PVS.

How does this difference arise? In our semantics, the server S keeps track of all the
nonces to prevent replays. In particular, S stores among its possessions all n ’s (identifiers
of runs) in the requests, and S does not react to a request containing a nonce n which S has

B ^ spyA
spyB ^ s
S ^ spyB
spyB ^ A

n, A, B , K a s { nA, n, A, B }
n, A, B , K a s { nA, n, A, B }, K b s { n B , n, A, B }
n, A, B , K a s { nA, n, A, B }, K b s { » b , n, A, B }
n, K a s { » a , K s }, K b s { » b , K s }
n, K a s { » a ,K s }
n, A, B , K a s { » a , n, A, B }, K b s { » b , n, A, B }
n, K a s { » a , KS }, K b s { » b , K }
n, K a s { » a ,KS }

(7)

(8)

25

ever seen. This additional feature of our semantics prevents the 7th message of the above
attack (7) from being sent.

This feature is possible in our semantics because each agent has exactly one “strand”
(with corresponding possessions), in which it can interleave multiple runs of the protocol.
It is not the case in the original strand space formalism: there an agent can have multiple
strands, each of which corresponds to the agent’s role in a single run. There is no mech­
anism which allows different strands to communicate with each other. In this sense, in
the strand space formalism an agent is “multi-threaded”, as opposed to the single-threaded
model in our semantics. Actual implementation determines which semantics is more ap­
propriate, hence enables/disables certain attacks such as (7).

Our model of nonce management can be implemented by including a timestamp as a
part of a nonce: we can fix a certain time span within which S keeps track of nonces, and
S responds only to nonces with timestamps in that span.

8 Conclusions and further work

We have achieved a unification in the area of security protocols by combining the best of
several approaches [27,4, 23, 25], namely a tool-supported sound logic. It is a further intel­
lectual challenge to include process-based approaches (such as [1]) within this semantical
framework.

More practically-oriented further work lies in the application of this approach to other,
more complex protocols, and to other properties than secrecy. This is ongoing work, that
may require adaptation and/or extension of the current semantics. Once a stable and useful
set of (semantic) rules has been identified, one may use it to formulate a proper (syntactic)
logic for security protocols. Another line of work, possibly more suitable, is to use this
formalised framework mainly to establish soundness of logical rules and to perform actual
verifications with more automatic tools.

As mentioned in Section 4.3, formal analysis of other security properties such as anony­
mity is another possible direction of the further research. We may re-use the current PVS
infrastructure there.

Acknowledgements

Thanks are due to Erik Poll and Martijn Warnier for helpful comments and discussions,
and also to the referees for their constructive remarks and suggestions.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols. Journ. ACM ,
148(1):1-70,1999.

[2] P. Blackburn, M. de Rijke, and Y. Venema. M odal Logic. Number 53 in Tracts in
Theor. Comp. Sci. Cambridge Univ. Press, 2001.

[3] P. Broadfoot and A. Roscoe. Proving security protocols with model checkers by data
independence techniques. Journ. o f Computer Security, 7:147-190,1999.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proc. Royal Soc.,
Series A, Volume 426:233-271,1989.

26

[5] J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0.
Univ. of York.
w w w - u s e r s . c s . y o r k . a c . u k / ~ j a c / p a p e r s / d r a r e v i e w p s . p s , 1997.

[6] B. Davey and H. Priestley. Introduction to Lattices and Order. Math. Textbooks.
Cambridge Univ. Press, 1990.

[7] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans. on
Information Theory, 29(2):198-208,1983.

[8] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning A bout Knowledge. MIT
Press, Cambridge, MA, 1995.

[9] F. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable anonymity. In R. Küsters
and J. Mitchell, editors, 3rd A C M Workshop on Formal M ethods in Security Engineer­
ing (FM SE05), pages 63-72, Alexandria, VA, U.S.A., November 2005. ACM Press.

[10] R. Goldblatt. Logics o f Time and Computation. CSLI Lecture Notes 7, Stanford, 2nd
rev. edition, 1992.

[11] J. Guttman, J. Herzog, and F.T. Fabrega. Honest ideals on strand spaces. In Computer
Security Foundations Workshop, 1998.

[12] J. Guttman and F. Thayer Fabrega. Authentication tests and the structure of bundles.
Theor. Comp. Sci., 283(2):333-380,2002.

[13] J. Guttman. Key compromise, strand spaces, and the authentication tests. In M ath­
ematical Foundations o f Programming Semantics 17, volume 47 of Elect. N otes in
Theor. Comp. Sci., pages 1-21. Elsevier, Amsterdam, 2001.

[14] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security
protocols. J. Comput. Secur., 11(2):217-244,2003.

[15] B. Jacobs and I. Hasuo. PVS sources for semantics and logic of security protocols.
w w w . c s . r u . n l / B . J a c o b s / P V S / p r o t o c o l s - 3 . 0 . z i p .

[16] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
CSP and FDR. In T. Margaria and B. Steffen, editors, Tools and Algorithm s fo r the
Construction and Analysis o f Systems, number 1055 in Lect. Notes Comp. Sci., pages
147-166. Springer, Berlin, 1996.

[17] C. Meadows. The NRL protocol analyzer: An overview. Journ. o f Logic Program­
ming, 26(2):113-131,1996.

[18] C. Meadows. Identifying potential type confusion in authenticated messages. Work­
shop on Foundations of Computer Security, Techn. Rep. DIKU-02-12, Dep. Comp.
Sci., Univ. Copenhagen, 2002.

[19] J. Millen. A necessarily parallel attack. Workshop on Formal Methods and Security
Protocols.
w w w . c s l . s r i . c o m / u s e r s / m i l l e n / , 1999.

[20] R. Needham and M. Schroeder. Using encryption for authentication in large networks
of computers. Commun. ACM , 21(12):993-999,1978.

27

http://www.cs.ru.nl/B.Jacobs/PVS/protocols-3.0.zip
http://www.csl.sri.com/users/millen/

[21] D. Otway and O. Rees. Efficient and timely mutual authentication. Operating Systems
Review, 21 (1):8-10 ,1987.

[22] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Trans. on Softw.
Eng., 21(2):107-125,1995.

[23] L. Paulson. The inductive approach to verifying cryptographic protocols. Journ. o f
Computer Security, 6:85-128,1998.

[24] P. Ryan, S. Schneider, M. Goldschmith, G. Lowe, and A. Roscoe. The M odelling and
Analysis o f Security Protocols: the CSP Approach. Addison-Wesley, 2001.

[25] P. Syverson. Towards a strand semantics for authentication logics. In S. Brookes,
A. Jung, M. Mislove, and A. Scedrov, editors, M athem atical Foundations o fP rogam -
ming Sem antics, number 20 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amster­
dam, 1999.

[26] P. Syverson and I. Cervesato. The logic of authentication protocols. In C. Batini,
F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Foundations o fSecurity Analysis
and Design, number 2171 in Lect. Notes Comp. Sci., pages 63-136. Springer, Berlin,
2 0 0 1 .

[27] F. Thayer Fabrega, J. Herzog, and J. Guttman. Strand spaces: Proving security proto­
cols correct. Journ. o f Computer Security, 7:191-230,1999.

A Logical rules for Otway-Rees

The following logical rules—together with (O r iSays), (In cT est) and (SK Sec) in Sec­
tions 7.2 and 7.3—are used for the verification of Otway-Rees.

The following rule for authentication is called unsolicited authentication test after [12],
as opposed to incoming or outgoing test. It is unsolicited since the incoming “response” is
not really a response to any specific challenge.

(U STe s t) Unsolicited authentication test.
Respons^ A R eceives (m) @ i A K { m 1 } ^ m

A K is secretly shared S e c re t(A)(K) @ i
=>• [Authentication result]

3B e A. 3 j e [0 , i]. B OriginatorOf K { m 1 } @ j

The remaining rules state basic facts about our semantics. They are relatively easier to
prove and used in the verification of Otway-Rees.

28

(NRAN) Randomness of newnonce.
A S en d s (m A) @ i A A new nonce(n) < m A

A B S e n d s (m B) @ i B a new nonce(n) < m B

=>• A = B A iA = iB
(S K R an) Randomness of newseckey.

This is the same as (NRa n) but nonces are replaced by seckeys.
(LTKSec) Secrecy of never-sent keys (such as long-term symmetric keys).

[Initially K is secietly shared Secret({A , S })(K) @ 0
A [A never sends K] Vi e N. (A S e n d s (m) @ i =>• K ^ m)
A [S never sends K] Vi e N. (S S en d s (m) @ i = ^ K ^ m)

=>• [Secrecy resultl Vi e N. S ecret(A , S) (K) i

B Security proof of Otway-Rees

In the following derivation of (6), (P ro t) designates use of the specification of the Otway-
Rees protocol. Free variables are immediately replaced by fresh (Skolem) constants: for
example the steps 5 and 6 below can be read as “there exists ¿i € N such th a t ...” .

1. B Sends (n, A, B ,t1 , KBS { newnonce(nB), n, A, B }) @ i Assumption
2. B Sees' Kb s{ nB, K }) @ i + j Assumption
3. Vfc 6 [i, i + j]. B OriginatorOf KBS { nB , Ks } @ fc) (P r o t)
4. Vfc 6 N. Secret({B, S})(Kbs) @ k (P r o t), (L T K S e c)
5. i < ii < i + j 1,2, 3,4, (I n c T e s t)
6. S OriginatorOf KBS{ nB, Ks } @ i1 1,2, 3,4, (I n c T e s t)
7. S Says m1 @ i1 6, (O r iS a y s)
8. Kbs { nB , Ks } = n2p(m1) 6, (o r i S a y s)
9. S Says Kbs { nB, newseckey(Ks) } @ i1

S Receives n', D, B, Kds { nD ,n' ,D,B }, Kbs { nB ,n' ,D,B } @ i1 — 1
V S Receives n', B, D, Kbs { nB, n', B, D }, Kds { nD, n', B, D } @ i1 — 1

7, 8, (P r o t)
10. 9, (P r o t)

We refute the second disjunct of 10 as follows.

A-1.
A-2.
A-3.
A-4.
A-5.
A-6.

A-7.
A-8.
A-9.

A-10.
A.

S Receives n', B, D, KBS{ nB
E = B V E = S
E OriginatorOf KBS { nB , n', B, D } @ i2
Vk 6 N. S OriginatorOf KBS{ nB, n', B, D } @ k)
B OriginatorOf KBS { nB ,n' ,B,D } @ i2
B Says KBS { newnonce(nB), n ', B, D } @ i2

¿2 = i A n = n
B Receives n, A, B, ti @ i - 1
newnonce(nB) ¿ ti

A = B, hence _L

B, D },Kds { nD ,n/,B,D } @ ¿1 — 1

1(5 Receives n/, B, D, Kbs { nß ,n/,B,D }, Kds { no ,n/,B,D } @ ¿1 — 1)

Assumption
A-1,4, (U S T e s t)
A-1,4, (U S T e s t)
(P r o t)
A-2, A-3, A-4
A-5, (P r o t) ,
(O r i S a y s)
1, A-6, (N R a n)
1 , (P r o t)
A-8,
newnonce(nB)
only occurs in sent
messages
1,A-6, A-7, A-9
A-1,A-10

29

We turn back to the main line.

11. S Receives n', D, B, Kds { nD , n', D, B }, Kbs { ng , n', D, B } @ ¿1 — 1 10, A
12. D = A A n' = n Like A-10is derived from

A-1, using (U S T e s t)
13. S Sends n, Kas{ newseckey(Ks) }, Kbs{ n ^ , newseckey(Ks) } @ ¿1 11,12, (P r o t) , 9
14. Vk g N. Secret({A, S})(Kas)@ k (P r o t), (L T K S e c)
15. Vk G N. VK G{Kas,Kbs }. VF G AG. 4, 14

(F Possess K @ k F g {A,B,S})
16. Vk g N. VF g {A, B, S}. - (F DecryptSends (Ks, {Kas, Kb s}) @ k) (P r o t), (S K R a n)
17. i + j < l Expanding HenceForth
18. ¿1 < l A S G {A, B,S} a S Says newseckey(Ks)@ ¿1 5,17,13
19. VF g AG. (F Possess Ks @ l F G {A, B, S}) 15,16,18, (S K S e c)
20. -(spy Possess Ks @ l) 19
21. Vl > i + j. -(spy Possess Ks @ l) 17, 20
22. HenceForth (-(spy Possess Ks)) @ i + j 21
23. 3k g [i, i + j]. S Says newseckey(Ks) @ k 18,5

By steps 22 and 23, we have shown that

B S e n d s (n , A , B , t 1 ,K BS{ new non ce (nB) ,n , A , B }) @i
B S e e s (K b s { » b , K s }) @ i + j
" (HenceFor th - (s p y P o sse s s K s) @ i + j) A

(3fc e [i, i + j] . S S ay s (new seckey(K s)) @ fc)

By applying rules on Knows we obtain B ’s guarantee of secrecy and freshness of the
session key K s.

30

