
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/75875

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16160341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/75875

Secure and Self-stabilizing Clock
Synchronization in Sensor Networks

Jaap-Henk Hoepman1, Andreas Larsson2, Elad M. Schiller2,
and Philippas Tsigas2

1 TNO ICT, and Radboud University Nijmegen
jaap-henk.hoepman@tno.nl

2 Department of Computer Science and Engineering, Chalmers University of
Technology and Göteborg University

{larandr,elad,tsigas}@chalmers.se

Abstract. In sensor networks, correct clocks have arbitrary starting off-
sets and nondeterministic fluctuating skews. We consider an adversary
that aims at tampering with the clock synchronization by intercepting
messages, replaying intercepted messages (after the adversary’s choice
of delay), and capturing nodes (i.e., revealing their secret keys and im-
personating them). We present the first self-stabilizing algorithm for se-
cure clock synchronization in sensor networks that is resilient to such
an adversary’s attacks. Our algorithm tolerates random media noise,
guarantees with high probability efficient communication overheads, and
facilitates a variety of masking techniques against pulse-delay attacks in
the presence of captured nodes.

Keywords: Secure and Resilient Computer Systems, Sensor-Network
Systems, Clock-synchronization, Self-Stabilization.

1 Introduction

Accurate clock synchronization is imperative for many applications in sensor
networks such as mobile object tracking, detection of duplicates, and TDMA
radio scheduling. Broadly speaking, existing clock synchronization protocols are
too expensive for sensor networks because of the nature of the hardware and
the limited resources that sensor nodes have. The unattended environment, in
which sensor nodes typically reside, necessitates secure solutions and autonomous
system design criteria that are self-defensive against a malicious adversary.

To illustrate an example of clock synchronization importance, consider a mo-
bile object tracking application which monitors objects that pass through the net-
work area (see [2]). Nodes detect the passing objects, record the time of detection,
and send the estimated trajectory. Inaccurate clock synchronization would result
in an estimated trajectory that could differ significantly from the actual one.

We propose the first self-stabilizing algorithm for clock synchronization in
sensor networks with security concerns. We consider an adversary that intercepts
messages that it later replays. Our algorithm guarantees automatic recovery after

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 340–356, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 341

the occurrence of arbitrary failures. Moreover, the algorithm tolerates message
omission failures that might occur, say, due to the algorithm’s message collisions
or due to random media noise.

The propagation delay of messages in short distance wireless communications
allows nodes to use broadcast transmissions to approximate pulses that mark the
time of real physical events (i.e., beacon messages). In the pulse-delay attack, the
adversary snoops messages, jams the synchronization pulses, and replays them
at the adversary’s choice of time (see [9,10,19]).

We are interested in fine-grained clock synchronization, where there are no
cryptographic counter measures for such pulse-delay attacks, e.g., the nonce tech-
niques strive to verify the freshness of a message by issuing pseudo-random num-
bers for ensuring that old communications could not be reused in replay attacks
(see [18]). Unfortunately, the lack of fine-grained clock synchronization implies
that the round-trip time of message exchange cannot be efficiently estimated.

The system strives to synchronize its clocks while forever monitoring the ad-
versary. We assume that the adversary cannot break existing cryptographic prim-
itives for sensor networks by eavesdropping (e.g., [18,22]). However, we assume
that the adversary can capture nodes, reveal their entire state (including private
variables), stop their execution, and impersonate them.

We assume that, at any time, the adversary has a distinct location in space
and a bounded influence radius, uses omnidirectional broadcasts from that dis-
tinct location, and cannot intercept broadcasts for an arbitrarily long period.
(Namely, we consider a model that is comparable to the one of Gilbert et al. [11],
which considers the minimal requirements for message delivery under broadcast
interception attacks.) We explain how, by following these realistic assumptions,
we can sift out responses to delayed beacons.

A secure synchronization protocol should mask attacks by an adversary that
aims to make the protocol give an erroneous output. Unfortunately, due to the
unattended environment and the limited resources, it is unlikely that all the
designer’s assumptions hold forever, e.g., over time, the number of captured
nodes becomes sufficiently large for the adversary to tamper with the clock.

We consider systems that have the capability of monitoring the adversary ,
and then stopping it by external intervention. In this case, the nodes start ex-
ecuting their program from an arbitrary state. From that point on, we require
rapid system recovery. Self-stabilizing algorithms [3,4] cope with the occurrence
of transient faults in an elegant way. Self-stabilizing systems can be started in any
configuration, which might occur due to the occurrence of an arbitrary combi-
nation of failures. From that arbitrary starting point, the algorithm must ensure
that it accomplishes its task if the system obeys the designer’s assumptions for
a sufficiently long period.

We focus on the fault-tolerance aspects of secure clock synchronization pro-
tocols in sensor networks. Our objective is to design a distributed algorithm for
sampling n clocks in the presence of t incorrect nodes (i.e., faulty or captured).
The clock sampling algorithm facilitates clock synchronization using a variety
of existing masking techniques to overcome pulse-delay attacks in the presence

342 J.-H. Hoepman et al.

of captured nodes, e.g., [9,10] uses Byzantine agreement (requires 3t + 1 ≤ n),
and [19] considers the statistical outliers (requires 2t + ε ≤ n, where ε ∈ O(1)).

Our Contribution. We present the first design for secure and self-stabilizing
clock synchronization in sensor networks that is resilient to an adversary that
can capture nodes and launch pulse-delay attacks. Our design tolerates transient
failures that may occur due to temporary violation of the designer assumption,
e.g., the adversary captures more than t nodes and then stops. After the system
resumes operation according to designer assumption, the algorithm secures with
high probability clock precision that is O((log n)3) times the optimum, where
Ω(n2) is the optimum and n is the number of sensor nodes. We assume that
(before and after the system’s recovery) there are message omission failures, say,
due to random media noise or the algorithm’s message collision. The correct node
sends beacons and responds to the other nodes’ beacons. We use a randomized
strategy for beacon scheduling that guarantees collision avoidance with high
probability.

Document structure. We start by describing the system settings (Section 2)
and formally present the algorithm (Section 3). Then we review the literature
and draw our conclusions (Section 4).

2 System Settings

We model the system as one that consists of a set of communicating entities,
which we call processors (or nodes). We denote the set of processors by P , where
|P | ≤ N ; N is an upper bound on the number of processors and is known by the
processors themselves. In addition, we assume that every processor pi ∈ P has
a unique identifier, i.

Time, Clocks, and Their Notation. We follow a model compatible with the
one of Herman and Zhang [12]. We consider three notations of time: real time
is the usual physical notion of continuous time, used for definition and analysis
only; native time is obtained from a native clock, implemented by the operating
system from hardware counters; local time builds on native time with an additive
adjustment factor in an effort to approximate a cluster-wise clock.

We consider applications that require the clock interface to include the read
operation, which returns a timestamp with T possible states. Let Ci

k and ci
k

denote the value pi ∈ P gets from the kth read of the native or local clock,
respectively. Moreover, let ri

k denote the real-time instant associated with that
kth read operation.

Clock counters do not increment at ideal rates, because the hardware oscil-
lators have manufacturing variations and the rates are affected by voltage and
temperature. The clock synchronization algorithm adjusts the local clock in order
to achieve synchronization, but never adjusts the native clock. We define the na-
tive clocks offset δi,j(k, q) = Ci

k −Cj
q , where Δi,j(k, q) = ri

k −rj
q = 0. We assume

that, throughout system execution, the native clock offset is arbitrary. Moreover,

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 343

the skew of pi’s clock ρi = limΔi,i(k,q)→0 δi,i/Δi,i(k, q) is in [ρmin, ρmax], where
ρmin and ρmax are known constants. Thus, the clock skew is the first derivative
of the clock offset value with respect to real time. Because clock skew is generally
not constant, higher order derivatives of the clock rate are nonzero. The relative
clock skew is ρi,j = ρi − ρj . We assume that 1 − κ ≤ ρi ≤ 1 + κ. The second
derivative of the clocks’ offset is called drift. We follow the approach of Herman
and Zhang [12] and allow non-zero drift (as long as ρi ∈ [ρmin, ρmax]).

Communications. Wireless transmissions are subject to collision and noise.
The processors communicate among themselves using a local broadcast primi-
tive, LBcast and LBrecv , with a transmission radius of at most Rlb. We consider
the potential of any pair of processors to communicate directly, or to interfere
with each others communications.

We associate every processor, pi, with a fixed and unknown location in space,
Li. We denote the potential set of processors that processor pi ∈ P can directly
communicate with (with whose communications, processor pi can interfere) by
Gi ⊆ {pj ∈ P |Rlb ≥ |Li − Lj|} (respectively,

−→
Gi ⊆ {pj ∈ P |2Rlb ≥ |Li − Lj |}).

We assume that n ≥ |−→Gi| is a known upper bound on the node’s degree.

Communication Operations. We model the communication channel,
queuei,j, from processor pi to processor pj ∈ Gi as a FIFO queuing list of the
messages that pi has sent to pj and pj is about to receive. When pi broadcasts
message m, the operation LBcast inserts a copy of m to every queuei,j, such
that pj ∈ Gi. Every message m ∈ queuei,j is associated with a particular time
at which m arrives at pj . Once m arrives, pj executes LBrecv . We require that
the period between the time in which m enters the communication channel and
the time in which m leaves it, is at most a constant, d. We assume that d is
a known and efficient upper bound on the communication delay between two
neighboring processors.

Accessing the Communication Media. We assume that processor pi uses the
following optimization, which is part of many existing implementations. Before
accessing the communication media, pi waits for a period d and broadcasts only
if there was no message transmitted during that period. Thus, processor pi does
not intercept broadcasts that have started (and did not finish) before time t−d,
where t is the time of the broadcast by pi.

Security Primitives. The existing literature describes many elements of the
secure implementation of the broadcast primitives LBcast and LBrecv using
symmetric key encryption and message authentication (e.g., [18,22]). We assume
that neighboring processors store predefined pairwise secret keys. In other words,
pi, pj ∈ P : pj ∈ Gi store keys si,j : si,j = sj,i. The adversary cannot efficiently
guess si,j . Confidentiality and integrity are guaranteed by encrypting the mes-
sages and adding a message authentication code. We can guarantee messages’
freshness by adding a message counter (coupled with the beacon’s timestamp)

344 J.-H. Hoepman et al.

to the message before applying these cryptographic operations, and by letting
receivers reject old messages, say, from the clock’s previous incarnation. Note
that this requires maintaining, for each sender, the index of the last properly
received message. As explained above, the freshness criterion is not suitable for
fine-grained clock synchronization in the presence of pulse-delay attacks.

The Interleaving Model. Every processor pi executes a program that is a
sequence of (atomic) steps. For ease of description, we assume the interleaving
model where steps are executed atomically, a single step at any given time. An
input event, which can be either the receipt of a message or a timer going off,
triggers each step of pi. Only steps that start from a timer going off may include
(at most once) an LBcast operation. We note that there could be steps that read
the clock and decide not to broadcast.

Since no self-stabilizing algorithm terminates (see [4]), the program of a pro-
cessor consists of a do-forever loop. An iteration is said to be complete if it
starts in the loop’s first line and ends at the last (regardless of whether it enters
branches). A processor executes other parts of the program (and other programs)
and activates the loop upon a time-out. We assume that every processor triggers
the loop’s time-out within every period of u/2, where u > w + d is the (opera-
tion time) slot, where w is the time it takes to execute a complete iteration of
the do-forever loop, including all messages received in that slot, assuming that
there is a known upper bound on the number of those. Since processors execute
programs other than the clock synchronization, the actual time in which the
timer goes off is hard to predict. Therefore, for the sake of simplicity, we assume
that the this time has a uniform distribution. We note that a simple random
scheduler can be used for the case in which the this time can be characterized.

The state si of a processor pi consists of the value of all the variables
of the processor (including the set of all incoming communication channels,
{queuej,i|pj ∈ Gi}). The execution of a step in the algorithm can change the
state of a processor. The term system configuration is used for a tuple of the
form (s1, s2, · · · , sn), where each si is the state of processor pi (including mes-
sages in transit for pi). We define an execution E = c[0], a[0], c[1], a[1], . . . as an
alternating sequence of system configurations c[x] and steps a[x], such that each
configuration c[x + 1] (except the initial configuration c[0]) is obtained from the
preceding configuration c[x] by the execution of the step a[x]. We often associate
the notation of a step with its executing processor pi using a subscript, e.g., ai.

Tracing Timestamps and Communications. The communication opera-
tions that we use, LBcast and LBrecv , have a time notation that we call times-
tamp. We assume that all timestamps have T possible states. We assume the
existence of an efficient algorithm for timestamping the message in transfer
(see [22]).

That is, the sent message includes the estimated value of the native clock
at sending time. The timestamp of an LBcast operation is the native time
at which message m is sent. When processor pi executes the LBrecv operation, an

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 345

event is triggered with the arguments j, t, and 〈m〉: pj is the sending processor
of message 〈m〉, which pi receives when pi’s native clock is (approximately) t.
We note that every step can be associated with at most one communication
operation and therefore with one access to the native clock counter during or at
the end of the operation. We denote by Ci(ai) the native clock value associated
with the communication operation in step ai, which processor pi takes.

Adversarial Message Omission and Delay. We assume that at any time,
the adversary and all processors have distinct (unknown) locations in space. We
assume that there is a single adversary and that its radio transmitter sends omni-
directional broadcasts (using antennas that radiate equally in space). Therefore,
the adversary cannot arbitrarily control the distribution in space of the set of
recipients for which the beacon’s broadcast is delayed or omitted. We assume
that it chooses a sphere that divides the set of processors in two: (1) The correct
receivers are outside the sphere and receive all beacons on time, and (2) The
late receivers are inside the sphere and receive either no beacon or beacons after
a delay that is greater than a known constant.

Concurrent vs. Independent Broadcasts. We say that processor pi performs
an independent broadcast in a step ai ∈ E if there is no processor pj ∈ P that
broadcasts in a step aj ∈ E, such that either (1) aj is performed after ai and
before step ar

k that receives the message that was sent in ai (where pk ∈ P), or
(2) ai is performed after aj and before step ar

k that receives the message that
was sent in aj . We say that processor pi ∈ P performs a concurrent broadcast
in a step ai if ai is dependent (i.e., “not independent”). Concurrent broadcasts
can cause message collisions.

Fair Communications. The processors reside in the unattended environment
and malicious adversarial activity is not the only reason why communication
links may fail. Therefore, we consider message omission due to either random
media noise or message collisions that the algorithm causes.

Gilbert et al. [11] consider the minimal requirements for message delivery
under broadcast interception attacks and assume that the adversary intercepts
no more than β broadcasts of the algorithm, where β is a known constant. We
note that the result of Gilbert et al. is applicable in a model in which, in every
period, the algorithm is able to broadcast at most α messages the adversary can
intercept at most β. In other words, our assumption regarding the ratio of β/α
is comparable to the model of Gilbert et al. [11]. The parameter ξ ≥ 1 denotes
the maximal number of repeated transmissions required for a single successful
message transfer whenever there are no message collisions due to the algorithm’s
concurrent broadcasts. We assume that all processors know ξ.

We say that execution E has fair communications, if, whenever processor pi

independently broadcasts ξ successive messages in steps aξ
i ∈ E, every processor

receives at least one of these messages. We note that fair communication does
not imply reliable communication even for ξ = 1, because processors might

346 J.-H. Hoepman et al.

broadcast concurrently when there is no agreed broadcast schedule or when the
clock synchrony is not tight.

The Environment. The environment that restricts the adversary’s ability
to launch message interception attacks guarantees fair communication. The
environment can execute the operation omissioni(m) (which is associated with a
particular message, m, sent by processor pi) immediately after LBcasti(m). The
environment selects a subset of pi’s neighbors (Ri ⊆ Gi) to remove any message
mi from their queues queuei,j (such that pj ∈ Ri). We assume that the envi-
ronment arbitrarily selects Ri when invoking omission due to algorithm message
collision. The adversary, under the environment’s supervision, selects messages
to remove due to random media noise. The adversary launches message inter-
ception attacks by selecting Ri. The environment supervises so the adversary
does not violate the fair communication requirements.

System Specifications Fair Executions. An execution E is fair if the com-
munications are fair and every correct processor, pi, executes steps in a timely
manner (by letting the loop’s timer go off in the manner that we explain above).

The Task. We define the system’s task by a set of executions called legal
executions (LE) in which the task’s requirements hold. A configuration c is
a safe configuration for an algorithm and the task of LE provided that any
execution that starts in c is a legal execution (belongs to LE). An algorithm is
self-stabilizing with relation to the task of LE if every infinite execution of the al-
gorithm reaches a safe configuration with relation to the algorithm and the task.

Clock Synchronization Requirements. Roughly speaking, without any at-
tacks or failures, the native clocks follow similar characteristics. Processors can
synchronize their local clocks by revealing these characteristics. The task’s out-
put decodes the coefficient vector of a finite degree polynomial Pi,j(t) that closely
approximates the native clock value of processor pj at time t, where t is a value
of pi’s native clock. Römer et al. [16] explain how to calculate {Pi,j(t)}j �=i.

Elson et al. [7,6] explain how to calculate the global and the local clocks using
{Pi,j(t)}j �=i. We note that the local ci could be agreed in different manners,
one of which is based on clustered networks. In each cluster, every processor
considers a predefined set of processors, call the cluster head, for which it tries
to estimate a common local time using a predefined deterministic function.

This paper presents an algorithm for sampling n neighbouring clocks. We
measure the algorithm’s performance by looking at the period, Γ (n), it takes n
processors to send at least one beacon that all processors respond to. In other
words, we are interested in the minimal period in which all processors are able
to complete roundtrip message exchange.

Let pi, pj , and pk be three correct nodes such that pi and pj are of type (1)
and pk is of type (2). Suppose that pj broadcasts a message that pk receives
(after a delay) and pk then sends a response message that pi receives (possibly
i = j). We require that pk detects that pj has responded to a delayed message
in the presence of at most t captured nodes.

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 347

3 Secure and Self-stabilizing Clock Synchronization

In order to explain better the scope of the algorithm, we present a generic or-
ganization of secure clock synchronization protocols. The objectives of the clock
synchronization protocol are to: (1) periodically broadcast beacons, (2) respond
to beacons, and (3) aggregate beacons with their responses in records and de-
liver them to the upper layer. Every node estimates the clock after sifting out
responses to delayed beacons. Unlike objectives (1) to (3), the clock estimation
task is not a hard realtime task. Therefore, the algorithm outputs records to the
upper layer that synchronizes clocks after neutralizing the effect of pulse-delay
attacks (see section 4 for more details). The algorithm focuses on the following
two tasks:

• Beacon Scheduling: The nodes sample clock values by broadcasting beacons
and waiting for their responses. The task is to guarantee round-trip message
exchange.
• Beacon and Response Aggregation: Once a beacon completes the round-trip
exchange, the nodes deliver to the upper layer the records of a beacon and its
set of responses.

We present a design for an algorithm that samples clocks of neighboring pro-
cessors by continuously sending beacons and response. Without synchronized
clocks, the nodes cannot efficiently follow a predefined schedule. Moreover, as-
suring reliable communication becomes hard in the presence of random media
noise and message collision. The celebrated Aloha protocol [1] (which does not
consider nondeterministic fluctuating skews) inspires us to take a randomized
strategy for scheduling broadcasts and overcome the above difficulties by show-
ing that with high probability there are no concurrent broadcasts. Our scheduling
strategy is simple; the processors choose a random time to broadcast from a pre-
defined period D. We use time redundancy to overcome the clocks’ asynchrony
and the difficulty in measuring D. Moreover, we use a parameter, �, used to
trade off between minimal size of D and the probability of having a collision free
schedule.

Beacon and Response Aggregation. The algorithm allows the use of clock
synchronization techniques such as round-trip synchronization [9,10] and refer-
ence broadcasting [6]. For example, in the round trip synchronization technique,
the sender pj sends a timestamped message 〈t1〉 to receivers, pk, which receive
the message at time t2. The receiver pk responds with the message 〈t1, t2, t3〉,
which pk sends at time t3 and pj receives at time t4. Thus, the output records
are in the form of 〈j, t1, {〈k, 〈t2, t3, t4〉〉}〉, where {〈k, 〈t2, t3, t4〉〉} is the set of all
received responses sent by nodes pk.

We piggyback beacon and response messages. For the sake of presentation
simplicity, let us start by assuming that all beacon schedules are in a (de-
terministic) Round Robin fashion. Given a particular node pi and a partic-
ular beacon that pi sends at time tis, we define tis’s round as the set of re-
sponses, 〈tjs, tjr〉, that pi sends to node pj for pj ’s previous beacon, tjs, where tjr

348 J.-H. Hoepman et al.

is the time in which pi received pi’s beacon tjs. Node pi piggybacks its beacon
with the responses to nodes, pj , and the beacon message, 〈vi〉, is of the form:
〈〈t1s, t1r〉, . . . 〈ti−1

s , ti−1
r 〉, tis, 〈ti+1

s , ti+1
r 〉, . . . 〈tns , tnr 〉〉.

Now, suppose that the schedules are not done in a Round Robin fash-
ion. We denote pj ’s sequence of up to BLog most recently sent beacons with
[tjs(k)]0≤k<BLog, among which tjs(k) is the k-th oldest and BLog is a predefined
constant. (We note that BLog may depend on the safety parameter, �, for assur-
ing that all nodes successfully broadcast.) We assume that, in every schedule, pi

receives at least one beacon from pj before broadcasting BLog beacons. There-
fore, pi’s beacon message, 〈vi〉, can include a response to pj ’s most recently
received beacon, tjs(k), where 0 ≤ k < BLog.

Since not every round includes a response to the last beacon that pi sends,
then pi stores its last BLog beacon messages a FIFO queue, qi[k] = [tjs]0≤k<BLog.
Moreover, every beacon message includes all responses to the BLog most recently
received beacons from all nodes. Let qj = q[k]0≤k<BLog be pi’s FIFO queue of
the last BLog records of the form 〈tjs(k), tjr(k)〉, among which tjs(k) is pi’s k-th
oldest beacon from pj , tjr(k) is the time at which it was received and i 	= j. The
new form of the beacon message is: 〈q1, . . . qi−1, qi, qi+1, . . . qn〉. In the round trip
synchronization, the nodes take the role of a synchronizer that sends the beacon
and waits for responses from the other nodes. The program of node pi considers
both cases in which pi is, and is not, respectively the synchronizer.

The Algorithm’s Pseudo-code. The pseudo-code, in Figure 1, includes two
procedures: (1) a do-forever loop that schedules and broadcasts beacon messages
(lines 53 to 63) and (2) an upon message arrival procedure (lines 66 to 68).

The Do-Forever Loop. Recall that by our system settings assumptions (Sec-
tion 2), we assume that the do-forever loop’s timer will go off within any period
of u/2. Moreover, since the actual time cannot be predicted, we assume that the
actual schedule has a uniform distribution over the period u. (A straightforward
random scheduler can assist, if needed, to enforce the last assumption.) The do-
forever loop periodically tests whether the “timer” has expired (in lines 53 to
58). In case the beacon’s next schedule is in the “too far in the past” or “too far
in the future”, then processor pi “forces” the “timer” to expire (line 55). The
algorithm tests that all the stored beacon messages are ordered correctly and
refer to the last BLog beacons (line 56). In the case where the stored beacon
messages are incorrect, then the algorithm flushes the queues (line 57).

When the time slot arrives, the processor outputs a synchronizer case record,
a response to the beacons that processor pi has sent BLog rounds ago (line59).
These data can be used for the round-trip synchronization and delay detection
in the upper layer. Then, pi enqueues the timestamp of the beacon it is about
to send during this schedule (line 60). The next schedule for processor pi is set
(lines 61 and 62) just before it broadcasts the beacon message (line 63).

The Message Arrival. When a beacon message arrives (line 65), processor pi

outputs a record of the non-synchronizer case (line 68). This is not done before

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 349

Constants:
2 i = id of executing processor

n = total number of processors
4 w = compensation time between lines 53 and 63

d = upper bound on message propagation delay
6 u = size of a slot in time units (u > d + w)

BLog = �(ξ + 2)(ρmax − ρmin)�, backlog size
8 � = the safety parameter

D = � n log n, the broadcast time slots
10 T = number of possible states of a timestamp (T� Du)

12 Variables:
native clock : immutable storage of the native clock

14 m[n] = all received messages and timesamps
each entry is an array v[n]

16 each entry is a queue q[BLog]
each entry is a pair 〈s, r〉

18 cslot : [0, D-1] = current slot in use
next : [0, T -1] = schedule of next broadcast

20 cT = last do-forever loop′s timestamp

22 External functions:
output(R) : delivers record R to the upper layer

24 choose(S) : uniform selection of an item from the set S
siz(Q) : size of the queue

26 fst(Q) : least recently enqueued element in Q, number 0
lst(Q) : most recently enqueued element in Q

28 flush(Q) : empties the queue Q
get(t,Q) : list elements of field t ∈ {s,r} in Q

30

Macros and inlines:
32 border(t) : (D-cslot)u + t mod T

schedule(t) : cslot·u + t mod T
34 leq(x, y) : (∃ b : 0≤ b≤ 2 BLog D u ∧

y mod T = x + b mod T)
36 enq(q, m) : {while full(q) do dequeue(q); enqueue(m) }

cvec(v,t) : siz(v) = 0 ∨ (leq(fst(v),t) ∧ leq(lst(v),t) ∧
38 {∀ b1 < b2 , {b1,b2} ⊆ [1,siz(v)] : leq(v[b1],v[b2])}

checki(t) : cvec(get(s,m[i].v[i].q),t)
40 check(t) : ∧{∀ j ∈ P-{i} : cvec(get(r,m[i].v[j].q),t)}

(∗ Get response-record for pj , for pi as the synchronizer ∗)
42 tsi(s, j) : {if � ∃ b : s = m[j].v[i].q[b].s then return⊥

else return
44 〈m[j].v[i].q[b].r, lst(m[i].v[j]).s, lst(m[i].v[j]).r〉 }

matches(j) : {b : tsi(m[i].v[i].q[b].s, j) �=⊥}
46 sci(j) : if matches(j) = ∅ then return⊥

else return min(matches(j))
48 (∗ Get response-record for pk , for pj as the synchronizer ∗)

ts(s, j, k) : details appear in [14].
50 sc(j, k) : details appear in [14].

52 Do forever, every u/2
let cT = read(native clock) + w

54 if ¬ (leq(next-2Du, cT) ∧ leq(cT, next+u)) then
next← cT

56 if ¬ (checki(cT) ∧ check(cT)) then
∀ j,k ∈ P : flush(m[j].v[k].q)

58 if leq(next, cT) ∧ leq(cT, next + u) then
output 〈i, { 〈sci(j), j, tsi(sci(j), j)〉 : j ∈ P -{i}} 〉

60 enq(m[i].v[i].q, 〈cT,⊥〉)
(next, cslot)← (border(next), choose([0, D-1]))

62 next← schedule(next)
LBcast(m[i])

64

Upon LBrecv(j, r, v) (∗ i �= j ∗)
66 enq(m[i].v[j].q, 〈lst(v[j].q).s, r〉)

m[j]← v
68 output 〈j, {〈sc(j,k), k, ts(sc(j, k), j, k)〉 : k ∈ P -{i, j}}〉

Fig. 1. Secure and self-stabilizing native clock sampling algorithm (code for pi ∈ P)

processor pi stores the arrival time of the message (line 66) and the message
itself (line 67). These data can be used for the reference broadcast in the upper
layer. Once pi receives a beacon from node pk, node pi scans m[] for responses
that refer to pk’s previous beacons.

The Correctness. We divide the correctness proof of the algorithm presented
in Figure 1 into two parts. The first part relates to the task of random broadcast
scheduling and the second relates to the task of beacon and response aggrega-
tion. The second part’s proofs simply verify that the pseudo-code aggregates the
right responses with the right beacon. Due to space limits, some parts of the
correctness proof of the random broadcast scheduling, and the correctness proof
of the aggregation task appears in [14].

We analyze our random broadcasting strategy as a ball throwing game in a
team of n players that throw balls into bins. The bins represent the timeslots.
For the sake of simplicity, we consider every timestamp as a single information
unit, which we call a ball. The players’ coordination is poor and resembles the
clocks’ partial synchrony. We measure the team performance by looking at the

350 J.-H. Hoepman et al.

number, Γ (n), of bins it takes the team to get each at least n balls into bins. A
detailed game description and the correctness proof of corollary 1 appears in [14].

Corollary 1. Γ (n) ∈ Ω(n2) and the random broadcasting strategy of the al-
gorithm presented in Figure 1 secures with probability 1 − 2−� that Γ (n) ∈
O(n2(log n)3).

Let E be an execution and ai ∈ E an atomic step in which processor pi broad-
casts. Let c ∈ E, be the configuration that immediately follows ai. We define
the first round from ai, Eai(1) as a (finite) subsequence of E that starts in c
and ends in the atomic step a′i ∈ E, that is the first step after ai in which pi

broadcasts. We define the second round Eai(2) = Ea′
i
(1). Similarly, the x-th

round Eai(x), ∀x > 1, x ∈ N, is defined as Eai(x) = Ea′
i
(x − 1). We say that

processor pj skips a round Eai(1) if pi does not receive a broadcast from pj in
Eai(1). The beacon broadcast period (BBP) of processor pi for a given broadcast
in atomic step ai ∈ E is the real time length of the round Eai(1).

Definition 1. We define the set LErbs of legal executions with respect to the
task of random broadcast scheduling, such that it includes every execution E in
which: (1) The expected beacon broadcast period (BBP) of processor pi is within
[Du/ρmax, Du/ρmin] and (2) The probability that no processor skips ξ consecutive
rounds Eai(x), . . . Eai(x + ξ) is in O(1 − 2−�), where x ∈ N and ai ∈ E, is an
atomic step in which pi broadcasts).

Let E be a fair execution of the algorithm presented in Figure 1 and c ∈ E
a configuration in which αi = (leq(nexti − 2Du, cTi) ∧ leq(cTi, nexti) holds. We
say that c is safe with respect to LErbs.

We show that cTi follows the native clock.

Lemma 1. Let E be a fair execution of the algorithm presented in Figure 1,
and c a configuration that is at least u after the starting configuration. Then, it
holds that (leq(Ci − u, cTi − w) ∧ leq(cTi − w, Ci)) in c.

Proof. Since E is fair, the do-forever loop’s timer goes off in every period of u/2.
Hence, within a period of u, processor pi performs a complete iteration of the
do-forever loop in an atomic step ai.

Suppose that c immediately follows ai. According to line 53, the value of
cTi − w is the value of Ci in c. Let t = cTi − w = Ci. It is easy to see that
leq(t − u, t) ∧ leq(t, t) in c.

Let ar
i be an atomic step that includes the execution of lines 66 to 68, follows

c, and immediately precedes c′ ∈ E. Let t′ = Ci in c′. Then, within a period
of at most u/2, processor pi executes step a′i ∈ E, which includes a complete
iteration of the do-forever loop. Since the period between ai and a′i is at most
u/2, we have that t′ − t < u/2.

We show that starting from an arbitrary configuration a fair execution researches
a safe configuration.

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 351

Lemma 2. Let E be a fair execution of the algorithm presented in Figure 1.
Then, within a period of u, a safe configuration is reached.

Proof. Let pi be a processor for which αi does not hold in the starting configu-
ration of E. We show that within the first complete iteration of lines 53 to 63,
the predicate αi holds. According to Lemma 1, all processors, pi, complete at
least one iteration of lines 53 to 63, within a period of u.

Let ai ∈ E be the first step in which processor pi completes the first iteration.
If αi does not hold in the configuration that immediately precedes ai, then the
predicate in line 54 holds and processor pi executes line 55.

Immediately after the execution of line 55, the predicate ¬(leq(nexti −
2Du, cTi)∧ leq(cTi, nexti)) does not hold, because ¬(leq(t−2Du, t)∧ leq(t, t)) is
false for any t. Moreover, the predicate in line 58 holds, since leq(t, t + u) holds
for any t. Therefore, pi executes lines 59 to 63.

Claim. Suppose that the predicate ¬(leq(nexti−2Du, cTi)∧leq(cTi, nexti)) (line
54) does not hold and the predicate leq(nexti, cT) ∧ leq(cT, nexti + u) (line 58)
holds. If processor pi executes lines 59 to 63, then αi holds for the configuration
that immediately follows.

Proof. Among the lines 59 to 63, only lines 61 to 62 can change the values of αi.
Let t1 = nexti immediately after line 58 and let t2 = nexti immediately after
the execution of line 62. We denote by A = t2 − t1 the value that lines 61 to 62
adds to nexti, i.e., A = (y + D − x)u, where 0 ≤ x, y ≤ D − 1. Note that x is
the value of csloti before line 61 and y is the value of csloti after line 61.

Therefore, A ∈ [u, (2D − 1)u]. By the claim’s assertion, we have that
leq(cTi, t1 + u) holds before line 61. Since u ≤ A, it holds that leq(cTi, t1 + A)
and therefore leq(cTi, t2) holds. Moreover, by the claim assertion we have that
leq(t1, cTi) holds. Since A ≤ (2D−1)u, it holds that A−2Du ≤ −u. This implies
that leq(t1 − 2Du + A, cTi). Therefore leq(t2 − 2Du, cTi) holds.

We show that a safe configuration follows the configuration of Definition 1.

Lemma 3. Let E be a fair execution of the algorithm presented in Figure 1 that
starts in a configuration c, in which αi holds. Then, every configuration in E is
safe with respect to LErbs.

Proof. Let ti be the value of pi’s native clock in configuration c and ai ∈ E is
the first step of processor pi. According to Lemma 1 and by the fairness of E,
without loss of generality, we can assume that Ci − ti mod T ≤ u/2.

We show that αi holds in configuration c′ that immediately follows ai. Lines
66 to 68 do not change the value of αi. By the proof of Lemma 2, if ai executes
lines 59 to 63 within one complete iteration, then αi holds in c′. Therefore, we
look at step ai that includes the execution of line 53 to 58, but does not include
the execution of lines 59 to 63.

Let t1 = cTi in c and t2 = cTi in c′. We show that while ai executes line 54,
the predicate ¬(leq(nexti − 2Du, cTi) ∧ leq(cTi, nexti)) does not hold in ai.

352 J.-H. Hoepman et al.

Let A = nexti − Du and B = nexti in c. The values of nexti − Du and B =
nexti do not change in c′. Since αi is true in c, it holds that leq(A, t1)∧leq(t1, B).
We claim that leq(A, t2)∧ leq(t2, B+u). Suppose, in a way of contradiction, that
leq(A, t2) = leq(A, t1 + u/2) does not hold. Then, leq(nexti − Du, t1 + u/2) does
not hold in configuration c, which implies that leq(t1 − Du, t1 + u/2) because
leq(t1, nexti) hold in c. Hence, a contradiction.

Since leq(t1, B) in c, we have that leq(t2, B +u) while pi execute line 54 in ai.
By the assumption that t2− t1 mod T < u we have that leq(t1 +u/2, B+u) =⇒
leq(t2, B + u).

We show that every execution (for which the safe configuration requirements
hold) is a legal execution with regard to the random broadcast scheduling task.

Lemma 4. Let E be a fair execution of the algorithm presented in Figure 1,
where all configurations in E are safe. Then, E ∈ LErbs.

Proof. (1) Let ai ∈ E be a step in which processor pi broadcasts and a′i ∈ E is
the first step after ai in which pi broadcasts. Let c1 ∈ E immediately precede
ai and c2 ∈ E immediately follow ai. Let c3 ∈ E immediately precede a′i and
c4 ∈ E immediately follow a′i. Let n1 = nexti in c1, t1 = cTi in c2, n2 = nexti in
c3, t2 = cTi in c4. The BBP can be expressed as B/ρi, where B = t2 − t1 mod T .

Processor pi broadcasts in line 63 only when the predicate γi =
leq(nexti, cTi) ∧ leq(cTi, nexti + u) (line 58) holds. Claim 3 of Lemma 2 shows
that in lines 61 to 62, nexti is incremented (modulo T) by A = (y + D − x)u.
Both integers x and y are chosen independently and from the same uniform dis-
tribution over [0, D − 1]. Therefore, they have the same expected value. There-
fore, the expected value of A is E((y + D − x)u) = (E(y) + E(D) − E(x))u =
(E(D) + E(y) − E(y))u = E(D)u = Du.

Let û1 = t1−n1 and û2 = t2−n2. If we assume that û1 and û2 are independent
and have the same distribution, the expected value of B is E((n2 + û2) − (n1 +
û1)) = E(n2 − n1) + E(û2 − û1) = Du + E(û2) − E(û1) = Du

Even if û1 and û2 are not independent and/or not from the same distribution,
the expected value of B is Du as well, as the decrement of the BBP for a
broadcast in a′i within the period [n2, n2 +u] implies a corresponding increment
of the BBP for the broadcast in ai. By the definition of ρmin and ρmax we have
that Du/ρmax ≤ Du/ρi ≤ Du/ρmin (since ∀i : ρmin ≤ ρi ≤ ρmax).
(2) Let ai be a step in which in which processor pi broadcasts, a′i be the next step
in which processor pi broadcasts, and c be the configuration that immediately
follows ai.

Let r be the value of nexti between lines 61 and 62 in ai. The period of length
Du that begins at r is divided in D slots of length u. A slot begins at time r+xu
and ends at time r + (x + 1)u for a unique integer x ∈ [0, D − 1]. The slot in
which a′i broadcasts is cslot in c. By Corollary 1, the probability of no messages
collides in the period r to r + Du is in O(1 − 2−�).

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 353

Performances. Several elements determine the precision of the clock synchro-
nization. The clock sampling technique is one of them. Elson et al. [6] show
that the reference broadcast technique can be more precise than the roundtrip
synchronization technique. We allow the use of both techniques. Another impor-
tant precision factor is the degree of the polynomial, Pi,j(t), that approximates
the native clock values of the neighboring processors pi and pj (see Römer et
al. [16]). We consider any finite degree of the polynomial. Moreover, the clock
synchronization precision improves, as neighboring processors are able to sam-
ple their clocks more frequently. However, due to the limited energy reserves in
sensor networks, careful considerations are required.

The execution of a clock synchronization protocol can be classified between
two extremes: on-demand and continuous. Nodes that wish to synchronize their
clocks can invoke a distributed procedure for clock synchronization on-demand.
The procedure terminates as soon as the nodes reach their target precision.
An execution of a clock synchronization program is classified as continuous if no
node ever stops invoking the clock synchronization procedure. Our generic design
facilitates a trade-off between energy conservation (i.e., on-demand operation)
and fine-grained clock synchronization (i.e., continuous operation). The trade-off
allows budget policies to balance between application requirements and energy
constraints.

Let us consider the continuous operation mode. The clock precision improves
as the frequency of the beacons (and responses) that the correct processors are
able send increases. Thus, the precision of Pi,j(t) depends on round(n), where
round(n) is the time it takes n processors to send n beacons and then to let n
processors to respond to all n beacons. By Corollary 1, round(n) ∈ Ω(n2) and
round(n) ∈ O(n2(log n)3). Therefore, our design can secure clock precision that
is O((log n)3) times the optimum, with probability that is 1 − 2−�.

We note that the required storage is in O(n2 log T). Moreover, existing sensor
networks technology allows a message size of 14n+O(1) bytes. In [14], we explain
how to further accommodate message size and to optimize performance.

4 Discussion

Sensor networks are particularly vulnerable to interference, whether as a result
of hardware malfunction, environmental anomalies, or malicious intervention.
When dealing with message collisions, message delays and noise, it is hard to
separate malicious from non-malicious causes. For instance, it is hard to distin-
guish between a pulse delay attack from a combination of failures, e.g., a node
that suffers from a hidden terminal failure, but receives an echo of a beacon. Re-
cent studies consider more and more implementations that take security, failures
and interference into account when protecting sensor networks (e.g., [11,5]). We
note that many of the existing implementations assume the existence of a fined
grained synchronized clock, which we implement.

Ganeriwal et al. [9,10] overcome the challenge of delayed beacons using the
round-trip synchronization technique, and the Byzantine agreement protocol

354 J.-H. Hoepman et al.

[13]. Thus, Ganeriwal et al. requires 3t + 1 ≤ n. Song et al.’s [19] consider a dif-
ferent approach that uses the reference broadcasting synchronization technique.
Existing statistics models refer to malicious time offsets as outliers. The statis-
tical outlier approach is numerically stabile for 2t + ε ≤ n ≤ 3t + 1, where ε
is a safety constant (see [19]). We note that both approaches are applicable to
our work. However, based on our practical assumptions, we are able to avoid
the Byzantine agreement overheads and follow the approach of Song et al. [19].
They assume the existence of a distributed algorithm for sending beacons and
collecting their responses. This work presents the first design of that algorithm.

The generalized extreme studentized deviate (GESD) algorithm [17] can be
used to detect outliers. We note that there exists self-stabilizing version of Song
et al.’s [19] strategy. Let B be the set of “recently” delivered beacon records.
By “recently”, we mean that within a predefined period, � ∈ O(D), the node
removes old records from B, where � depends on ξ, i.e., the number of broadcasts
it takes to assure message delivery. The algorithm tests set B for outliers.

Existing implementations of secure clock synchronization protocols
[22,21,9,8,15,10,19] are not self-stabilizing. Thus, their specifications are not
compatible with security requirements for autonomous systems. In autonomous
systems, the self-stabilization design criteria are imperative for secure clock syn-
chronization. For example, many existing implementations require initial clock
synchronization prior to the first pulse-delay attack (during the protocol set
up). This assumption implies that the system uses global restart for self-defense
management, say, using an external intervention. We note that the adversary
is capable of intercepting messages continually. Thus, the adversary can risk
detection and intercept all pulses for a long period. Assume that the system
detects the adversary’s location and stops it. Nevertheless, the system cannot
synchronize its clocks without a global restart.

Sun et al. [20] describe a cluster-wise synchronization algorithm that is based
on synchronous rounds. The authors assume that a Byzantine agreement al-
gorithm [13] synchronizes the clocks before the system executes the algorithm.
Our algorithm is comparable with the requirements of autonomous systems and
makes no assumptions on synchronous rounds or start.

Manzo et al. [15] describe several possible attacks on an (unsecured) clock
synchronization algorithm and suggest counter measures. For single hop syn-
chronization, the authors suggest using a randomly selected “core” of nodes to
minimize the effect of captured nodes. The authors do not consider the cases
in which the adversary captures nodes after the core selection. In this work, we
make no assumption regarding the distribution of the captured nodes. Farrugia
and Simon [8] consider a cross-network spanning tree in which the clock values
propagate for global clock synchronization. However, no pulse-delay attacks are
considered. Sun et al. [21] investigate how to use multiple clocks from external
source nodes (e.g., base stations) to increase the resilience against an attack that
compromises source nodes. In this work, there are no source nodes.

In [22], the authors explain how to implement a secure clock synchronization
protocol. Although the protocol is not self-stabilizing, we believe that some of

Secure and Self-stabilizing Clock Synchronization in Sensor Networks 355

their security primitives could be used in a self-stabilizing manner when imple-
menting our self-stabilizing algorithm.

Herman and Zhang [12] present a self-stabilizing clock synchronization algo-
rithm for sensor networks. The authors present a model for proving the correct-
ness of synchronization algorithms and show that the converge-to-max approach
is stabilizing. However, the converge-to-max approach is prone to attacks with
a single captured node that introduces the maximal clock value whenever the
adversary decides to attack. Thus, the adversary can at once set the clock values
“far into the future”, preventing the nodes from implementing a continuous time
approximation function. This work is the first in the context of self-stabilization
to provide security solutions for clock synchronization in sensor networks.

Conclusions. Designing secure and self-stabilizing infrastructure for sensor net-
works narrows the gap between traditional networks and sensor networks by sim-
plifying the design of future systems. In this work, we consider realistic system
settings and take a clean slate approach in designing a fundamental component;
a clock synchronization protocol.

The designers of sensor networks often implement clock synchronization proto-
cols that assume the system settings of traditional networks. However, sensor net-
works often require fine-grained clock synchronization for which the traditional
protocols are inappropriate, e.g., the nonce techniques cannot resist pulse-delay
attacks.

Alternatively, when the designers do not assume traditional system settings,
they turn to reinforce the protocols with masking techniques. Thus, the designers
assume that the adversary never violates the assumptions of the masking tech-
niques, e.g., there are at most t captured nodes at all times, where 3t + 1 ≤ n.
Since sensor networks reside in an unattended environment, the last assumption
is unrealistic.

Our design promotes self-defense capabilities once the system returns to follow
the original designer’s assumptions. Interestingly, the self-stabilization design
criteria provide an elegant way for designing secure autonomous systems.

Acknowledgments. This work would not have been possible without the con-
tribution of Marina Papatriantafilou in many helpful discussions, ideas, and anal-
ysis. Many thanks to Edna Oxman for improving the presentation.

References

1. Abramson, N., et al.: The Aloha System. Univ. of Hawaii (1972)
2. Demirbas, M., Arora, A., Nolte, T., Lynch, N.A.: A hierarchy-based fault-local sta-

bilizing algorithm for tracking in sensor networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 299–315. Springer, Heidelberg (2005)

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

4. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

356 J.-H. Hoepman et al.

5. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a Multi-Channel
Radio Network, An Oblivious Approach to Coping with Malicious Interference. In:
DISC 2007. LNCS, vol. 4731, pp. 130–145. Springer, Heidelberg (2007)

6. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using
reference broadcasts. Operating Systems Review (ACM SIGOPS) 36(SI), 147–163
(2002)

7. Elson, J., Karp, R.M., Papadimitriou, C.H., Shenker, S.: Global synchronization in
sensornets. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 609–624.
Springer, Heidelberg (2004)

8. Farrugia, E., Simon, R.: An efficient and secure protocol for sensor network time
synchronization. J. Syst. Softw. 79(2), 147–162 (2006)

9. Ganeriwal, S., Capkun, S., Han, C.-C., Srivastava, M.B.: Secure time synchroniza-
tion service for sensor networks. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J.,
Chung, J.Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 97–106. Springer,
Heidelberg (2005)

10. Ganeriwal, S., Capkun, S., Srivastava, M.B.: Secure time synchronization in sensor
networks. ACM Transactions on Information and Systems Security (March 2006)

11. Gilbert, S.,Guerraoui, R., Newport, C.C.: Ofmalicious motes and suspicious sensors:
On the efficiency of malicious interference in wireless networks. In: Shvartsman, A.A.
(ed.) OPODIS 2006. LNCS, vol. 4305, pp. 215–229. Springer, Heidelberg (2006)

12. Herman, T., Zhang, C.: Best paper: Stabilizing clock synchronization for wireless
sensor networks. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280,
pp. 335–349. Springer, Heidelberg (2006)

13. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

14. Larsson, A., Schiller, E.M., Tsigas, P.: Secure and fault-tolerant clock synchroniza-
tion in sensor networks. TR 2006:16, Computer Science and Engineering, Chalmers
University of technology (September 2006)

15. Manzo, M., Roosta, T., Sastry, S.: Time synchronization attacks in sensor networks.
In: SASN 2005. Proceedings of the 3rd ACM workshop on Security of ad hoc and
sensor networks, pp. 107–116. ACM Press, New York (2005)

16. Römer, K., Blum, P., Meier, L.: Time synchronization and calibration in wireless
sensor networks. In: Stojmenovic, I. (ed.) Handbook of Sensor Networks: Algo-
rithms and Architectures, pp. 199–237. John Wiley and Sons, Chichester (2005)

17. Rosner, B.: Percentage points for a generalized esd many-outlier procedure. Tech-
nometrics 25, 165–172 (1983)

18. Schneier, B.: Applied Cryptography, 2nd edn. John Wiley & Sons, Chichester
(1996)

19. Song, H., Zhu, S., Cao, G.: Attack-resilient time synchronization for wireless sensor
networks. Ad Hoc Networks 5(1), 112–125 (2007)

20. Sun, K., Ning, P., Wang, C.: Fault-tolerant cluster-wise clock synchronization for
wireless sensor networks. IEEE Transactions on Dependable and Secure Comput-
ing 2(3), 177–189 (2005)

21. Sun, K., Ning, P., Wang, C.: Secure and resilient clock synchronization in wireless
sensor networks. IEEE Journal on Selected Areas in Communications 24(2), 395–
408 (2006)

22. Sun, K., Ning, P., Wang, C.: Tinysersync: secure and resilient time synchronization
in wireless sensor networks. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.)
ACM Conference on Computer and Communications Security, pp. 264–277. ACM
Press, New York (2006)

	Secure and Self-stabilizing Clock Synchronization in Sensor Networks
	Introduction
	System Settings
	Secure and Self-stabilizing Clock Synchronization
	Discussion
	References

