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In a controversial paper (De M illo et al. 1979) at the end o f the 1970’s, R. A. De Millo,
R. J. L ipton and  A. J. Perlis argued against form al verifications o f program s, m ostly 
m otivating their position by an analogy w ith proofs in m athem atics, and, in particular, with 
the im practicality o f a strictly form alist approach to  this discipline. The recent, impressive 
achievements in the field of interactive theorem  proving provide an interesting ground for a 
critical revisiting o f their theses. We believe th a t the social nature  o f p roo f and program  
developm ent is uncontroversial and ineluctable, bu t form al verification is no t antithetical to 
it. Form al verification should strive no t only to cope with, bu t to  ease and enhance the 
collaborative, organic nature  o f this process, eventually helping us to  m aster the growing 
complexity o f scientific knowledge.

1. Introduction

Heavier than air flying machines are impossible.
S. P. Langley (Langley 1891)

Formal verification o f  programs, no matter how obtained, will not play the same role in the development 
o f  computer science and software engineering as proofs do in mathematics.

R. A. De Millo, R. J. L ipton and  A. J. Perlis (De M illo et al. 1979)

Samuel Pierpont Langley was a professor o f astronom y and physics, and a world-expert 
in aerodynam ics during the late nineteenth and early tw entieth century. The esteem with 
which he is held can be seen from  the fact tha t one o f NASA’s research centres was 
nam ed after Langley. A t the height o f his research career, Samuel Langley published a 
result (Langley 1891), which came to be known as ‘Langley’s Law ’. According to this 
erroneous law -  the higher the speed, the lower the drag -  more power was required in 
order to make an aircraft fly slower, and indeed if this were true, heavier than  air flying 
machines would certainly have been an impossibility. Fortunately, the W right Brothers 
had no t read Langley’s book, and they went on to develop the first m anned aircrafts that 
could be controlled in-flight from  the aircraft itself.

In a famous, influential paper at the end of 1970’s, R. A. De Millo, R. J. L ipton and
A. J. Perlis (De Millo et al. 1979) advanced various criticisms o f the very idea o f the formal
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verification o f programs. The impressive advances in this area seem by themselves to belie 
their gloomy predictions. Form al verification has currently reached such a level o f m aturity 
as to allow correctness proofs o f sophisticated hardw are com ponents (H arrison 2007), 
complex program s such as optimising compilers (see, for example, Leroy (2006) and 
Tristan and Leroy (2008)), and parts o f m odern operating systems (see, for example, 
A lkassar et al. (2009) and Klein (2009)).

It is precisely in view o f these achievements, however, tha t we can look back at 
De Millo et al. (1979) w ith a less passionate and m ore objective spirit, m aking a 
m ore stringent analysis o f their thesis and argum ents, w ithout focusing on the polemic 
fram e intentionally chosen by its authors, viz., in L am port’s wordsf , as a debate between 
a reasonable engineering approach that completely ignores verification and a completely 
unrealistic view o f  verification advocated only by its most naive proponents.

In fact, some o f the thesis advocated by De Millo, L ipton and Perlis is sharable, very 
pertinent and still relevant; on the other hand, m ost o f their arguments, following thirty 
years o f research, sound obsolete and a bit trite, and are asking for a critical reappraisal. 
Here is a quick sum m ary o f our critique, before we lay it out in detail:

—  De Millo et al. state (quoting the logician Rosser) tha t ...in tu ition  is the final 
authority:
Intuitions and analogies may help in the explanation and the assimilation o f a 
statem ent, bu t when it comes to verification of a statem ent, p roof is the authority. 
Intuition sometimes just fails.

—  De Millo et al. state th a t ...w e  will continue to argue that programming is like math
ematics, and that the same social processes that work in mathematical proofs doom 
verifications:
We argue th a t m athem atics will become m ore and m ore like program m ing and that 
the future o f bo th  m athem atics and program m ing lies in the fruitful combination of 
form al verification and the usual social processes tha t are already working in both  
scientific disciplines.

2. Proofs and programs

Russell did succeed in showing that ordinary working proofs can be reduced to formal, symbolic 
deductions. B ut he failed, in three enormous, taxing volumes, to get beyond the elementary fa c ts  o f  
arithmetic. H e showed what can be done in principle and what cannot be done in practice.

R. A. De Millo, R. J. L ipton and  A. J. Perlis (De M illo et al. 1979)

In drawing a parallel between program  verification and proofs o f theorems, the key 
argum ents adduced by De Millo et al. against the form al approach is the essential 
im practicality o f a strictly logistic approach to m athem atics due to the nearly inconceivable 
length o f  a deduction from  first principles. The argum ent is repeated several times: the 
quotation  above is from  their paper (page 272); on the next page they go on to say

A  form al demonstration o f  one o f  Ramanujan’s conjectures assuming set theory and elementary analysis 
would take about two thousand pages;

f See h t tp : / / r e s e a r c h .m i c r o s o f t . c o m / e n - u s / u m / p e o p l e / l a m p o r t .
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and, on page 275, Poincaré is quoted in support o f their claim,

I f  it requires twenty-seven equations to establish that 1 is a number, how many will it require to 
demonstrate a real theorem?

O f course, the argum ent is not new; even Bourbaki, who is traditionally enlisted in the 
ranks of the formalist school (Lee 2002), found the project o f formalising m athem atics 
absolutely un-realisable (Bourbaki 1968):

the tiniest p roo f at the beginning o f  the Theory o f  Sets would already require several hundreds o f  signs 
fo r  its complete formalisation.

The argum ent is reminiscent o f the general disbelief a t the beginning o f the fifties 
concerning the potentialities o f com puters and the possibility o f writing long program s, 
which was just due to the inability o f conceiving o f high-level languages and a process 
o f autom atic translation  to a m achine-understandable code. W hen Grace H opper wrote 
the first compiler in 1952, opening the way to software development, nobody seemed 
interested: ‘I had a running compiler and nobody would touch it’, she said. ‘They told me 
com puters could only do arithm etic.’ (Schieber 1987). The analogy w ith com pilation has 
already been m ade by M aurer back in 1979 (M aurer 1979):

We can make an analogy here with compiling a higher level language program into a machine lan
guage. Originally this was done by hand [...], then compilers came along and started to do the job  
automatically. [...] nobody is ever going to read the object code produced by a compiler; one simply 
trusts the compiler. W hat we hope fo r  in verifiers is that we will at least be able to trust them to show 
program correctness.

H arrison (H arrison 2008) has recently restated the concept in the following term s:

the arrival o f  the computer changes the situation dramatically. [...] checking conformance to form al 
rules is one o f  the things computers are very good at. [...] the Bourbaki claim that the transition to a 
completely form al text is routine seems almost an open invitation to give the task to computers.

In fact, autom ation o f form al reasoning has recently gone far beyond the elementary 
fac ts  o f  arithmetic, perm itting the form alisation and autom atic verification o f complex 
results such as the asym ptotic distribution o f prime num bers (Avigad et al. 2007), the 
four colour theorem  (G onthier 2007; G onthier 2008) and the Jordan curve theorem  
(Hales 2007). All these developments are significant in size (spanning from  30 to 75 
thousand lines o f code), but their complexity is still negligible when com pared with, say, 
the size o f a m odern operating system.

The form al proof o f the Jordan  curve theorem  is due to Thom as Hales, a famous 
m athem atician who is particularly known for his p roof o f the Kepler conjecture (the m ost 
com pact way o f packing congruent spheres in three dim ensional Euclidean space), and for 
the events related to its publication. Briefly, his p roof o f the Kepler conjecture involved 
a large am ount o f com puter verification, and after three years o f work, the reviewers of 
the Annals o f  Mathematics concluded that, although they believed the proof was correct, 
they were unable to check it thoroughly due to m any ‘low-level com ponents’ tha t lacked 
a more general intuition, especially given the degree o f com putation involved. In the end, 
the Annals o f  Mathematics published a short version o f the proof (Hales 2005), and made 
the co d e /d a ta  for the p roo f available un-reviewed on its website. A revised, full version
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of the article was finally published by Discrete and Computational Geometry. Since then, 
T hom as Hales has started a new project, called Flyspeck (see Hales (2008)), to check the 
correctness o f his p roof formally w ith the help o f interactive theorem  provers.

The Kepler conjecture and the four colour theorem  are good examples o f a large 
num ber o f m athem atical proofs based on a direct and substantial use of a computer. 
O ther examples m entioned by Hales in Hales (2008) are the non-existence of a projective 
plane o f order 10, the proof th a t the Lorentz equations have a strange attractor, the double
bubble problem  for minimising soap bubbles enclosing two equal volumes, the optim ality 
o f the Leech lattice am ong 24-dimensional lattice packings, and hyperbolic 3-manifolds. 
In all these cases, the com puter is used to m anage the complexity, usually by autom atically 
checking a finite, albeit large num ber o f ‘atom ic’ configurations (a kind of com putation 
th a t would not be possible, or extremely laborious for a hum an). M athem atics is entering 
a new era o f results requiring proofs o f a complexity and dim ension tha t defy hum an 
com prehension, leaving a m iasm a o f doubt about their effective correctness. For instance, 
the theorem  o f classification o f finite groups is the result o f the collective work of 
about a hundred authors, com posed o f over 10000 pages o f results, spread across 500 
jou rnal articles. One o f the key results, the Feit-T hom son (or odd-order) theorem  (Feit 
and Thom pson 1963) itself takes 255 pages. A form alisation of the odd-order theorem  
has recently been started by the IN R IA -M icrosoft research project on ‘m athem atical 
com ponents’ lead by G. G onthier (G onthier et al. 2007). As another example, the preprint 
o f F. A lm gren’s masterpiece in geometric measure theory, familiarly referred to as the ‘Big 
Paper’, is 1728 pages long.

Perhaps for the first time in the history o f their discipline, m athem aticians are now 
forced to accept the simple fact tha t m any theorems, even if adm itting simple and 
elegant statements, may not adm it equally simple and elegant proofsf . As observed in 
Geuvers (2009), it can be formally proved that, in any given logical system, there is no 
upper bound to the relationship between the size o f a statem ent and the size o f its shortest 
proof, and there is no reason to believe th a t things should be better if we restrict our 
attention to ‘interesting’ theorems. Even De Millo et al. themselves adm it tha t this is the 
case.

For even the most trivial mathematical theories, there are simple statements whose form al demonstra
tions would be impossibly long.

But they do no t w ant to accept the consequence th a t a com puter may be needed to help 
the hum an in verifying the form al dem onstrations.

N o t always can one find ‘a truly marvelous dem onstration’ that, alas, is just a bit too 
long to ‘fit in the m argin o f a book’: a p roof can just be so complicated, no m atter 
w hat kind o f rethinking you m ight try. D oes this m ean th a t such a proof just has to be 
dismissed and the validity o f the statem ent rejected, possibly renouncing any proof, all 
sacrificed on the mystic altar o f elegance and simplicity? M ay it no t possibly m ean that 
we just have to look for the right tools to help us cope with its complexity, and tha t we 
have to learn to appreciate a different and less archaic kind o f beauty?

f A ccording to L akatos (L akatos 1976), simplicity is the eighteenth-century idea o f m athem atical rigour.
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M a th em a tics P rogram m ing

theorem program
proof verification

Table 1. The verifier’s analogy, according to De Millo, Lipton and Perlis.

M a th em a tics P rogram m ing

theorem specification
proo f program
im aginary form al p roof verification

Table 2. De Millo, Lipton and Perlis’ analogy.

3. Theorems, proofs and specifications

By fa r  the most common way in which we deal with something new is by trying to relate the novelty 
to what is fam iliar from  past experience: we think in terms o f  analogies and metaphors. (Even the 5th 
Edition o f  the Concise Oxford Dictionary still defines a typewriter as a ‘machine fo r  printing characters 
on paper as substitute fo r  handwriting’!) A s long as history evolves along smooth lines, we get away 
with that technique, but that technique breaks down whenever we are suddenly faced  with something 
so radically different from  what we have experienced before that all analogies, being intrinsically too 
shallow, are more confusing than helpful.

Edsger D ijkstra  (D ijkstra 1986)

De Millo, L ipton and Perlis describe the ‘verifier’s analogy’ between m athem atics and 
program m ing (see Table 1), and they contrast it w ith their own analogy (Table 2). Their 
observation is tha t the verifiers are m istaken by wanting to identify the notion o f ‘p ro o f’ 
(from  m athem atics) w ith ‘form al verification’ in com puter science.

De Millo, L ipton and Perlis do not give any source for the analogy attribu ted  to 
‘verifier’s’; in fact, it is hard  to imagine tha t anybody working in the area o f program  
verification would feel a t ease w ith such an analogy. If  som ebody working on form al 
m ethods really pu t it forward, their intent was probably to emphasise a simple bu t crucial 
fact, which, at the end o f seventies was still hard  to grasp, namely th a t program s themselves 
could become, like m athem atical theorems, the object o f a scientific investigation.

In fact, the analogy th a t De Millo, L ipton and Perlis are so happy with, to the extent 
tha t they believe they invented it themselves, was precisely the leading theme that, in 
a slightly m ore sophisticated form, was a t th a t very time driving research in the field 
o f com puter-assisted verification. The ‘form al’ counterpart o f the analogy is called the 
C urry-H ow ard correspondence (Howard 1980), and it ju st differs from  the description in 
Table 2 by the substitution o f ‘type’ for ‘specification’: a simple twist, which by itself opens 
up an entirely new universe o f possibilities^ The analogy can then be m ade more precise 
(see Table 3). P roof verification is nothing other than  type-checking, and, furtherm ore,

f H ow ard’s pap er was prin ted  in 1980, b u t the first d ra ft was circulated in 1969. A s observed by H ow ard 
himself, however, the m ain  ideas should be ascribed to Curry, back in the fifties.
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M a th em a tics P rogram m ing

theorem type
proof program
correctness verification type checking
cut elim ination com putation

Table 3. Curry-Howard Correspondence.

Cut Elimination

A  cut is a  particu lar logical rule th a t perm its the factorization o f a  complex reasoning step into 
a sequence o f simpler steps. In order to prove A, we m ay tem porarily  assume B, provided we 
prove it later. In principle, one expects to  be able to  avoid the use o f this rule entirely by simply 
unfolding the p roo f o f B  inside the original p roo f o f A . In practice, the cut-elim ination proof, 
also known as G entzen’s H auptsatz, is far from trivial, and is n o t satisfied by all logical systems; 
bu t when it holds, it is rich in consequences:

Consistency: It is usually easy to  verify th a t a  system does no t adm it cut-free proofs o f the absurd.
In such a case, if the system enjoys the cut elim ination property, it is im mediately consistent. 

Subformula property: This is an im portan t property in several approaches to proof-theoretic 
sem antics and au tom ated theorem  proving. In essence, it says th a t in order to  prove a  given 
statem ent A, you only need to  use sub-form ulae o f A.

Fig. 1. N orm alisation o f proofs.

com putation has a proof-theoretical counterpart in the form  o f cut-elimination, which is 
a process o f norm alisation o f proofs consisting essentially o f removing ‘detours’ (lemmas) 
by inlining them  (see Figure 1).

The analogy w ith type checking also helps in clarifying a com m on misconception 
about autom atic verification. W hen we type-check a piece o f code, a m athem atical 
expression, say, we do no t have to com pute it in order to check tha t it is properly typed: 
type checking is an entirely static operation. Similarly, when we check the proof o f a 
m athem atical theorem  -  the fam ous R am anujan conjecture, say -  we are no t supposed to 
first normalise the proof to a mere application o f axioms from  set theory and elementary 
analysis: the proof can make use o f any sort of theorem s and lemmas, and we check it 
statically and compositionally.

Starting from  their analogy (see Table 2), D e Millo, L ipton and Perlis also raise the 
following fundamental logical objection to verification :

Since the requirement fo r  a program is informal and the program is formal, there must be a transition, 
and the transition itse lf must necessarily be informal.

This criticism has already been answered by M aurer (M aurer 1979), distinguishing between 
program correctness (the fact tha t a program  meets a specification), and specification 
correctness (the fact th a t the specification meets the user expectations):

A  proo f o f  correctness consists o f  two steps, one formal, the other informal; and neither o f  the two is 
valid without the other one.
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The idea o f the C urry-H ow ard correspondence is th a t it is no t only specifications tha t 
can be given in a completely form al way, bu t that, by suitably enriching the system of 
types, and, in particular, by adding dependent types, they can be altogether assimilated to 
types. A dependent type is a type tha t depends on a term. A typical example is the type 
o f n-dimensional vectors in some space A , whose type clearly depends on the value n. 
M ore generally, given a specification R(x, y) expressing the expected relation between the 
input x : A  and the ou tpu t y  : B  o f a program  (where A  and B  can be seen as ‘trad itional’ 
types), we can build the following dependent type Vx :A.{y  :B |R(x, y)} and try to check if 
our program  inhabits it. O f course, in order to perform  the verification, the program m er 
may be forced to provide substantial help to the type-checker in the form  o f suitable type 
annotations o f inner expressions (this is not too far from  pre- and post-conditions in an 
axiom atic setting (Hoare 1969)). Q uoting A ltenkirch et al. (2005):

While conventional type systems allow us to validate our programs with respect to a fixed  set o f  
criteria, dependent types are much more flexible, they realise a continuum o f  precision from  the basic 
assertions we are used to expect from  types up to a complete specification o f  the program's behavior. 
[...] While the price fo r  form ally certified software may be high, it is good to know that we may 
pay it in instalments and that we are free  to decide how fa r  we want to go. Dependent types reduce 
certification to type checking, hence they provide a means to convince others that the assertions we 
make about our programs are correct. Dependently typed programs are, by their nature, p roo f carrying 
code (Necula and Lee 1996; Hamid et al. 2003).

The C urry-H ow ard correspondence also opens up a completely innovative perspective 
on program  verification, no t consisting o f trying to m atch a program  against a specifica
tion, bu t merely consisting o f proving tha t the specification can be inhabited. If  the user 
can supply a constructive p roof o f this fact, then it is possible to autom atically extract 
from  the proof its algorithm ic content, th a t is, a program  satisfying the specification. 
Program  extraction was exploited for the first time in the N uprl p roof developm ent system 
(Constable et al. 1986). H aving proved a property t o f the form  Vx : A, 3y : B ,R (x , y), the 
term  t e r m_ o f ( t )  extracts a function m apping any a o f type A  into a pair consisting o f an 
element b o f type B  and a p roof p th a t such a b verifies the property R(a, b). By selecting 
the first com ponent o f this pair, we have a function f  from  A  to B  such th a t R(x , f ( x ) )  
for all x in A. The extraction technique can also be extended to some extent to classical 
proofs (Parigot 1992; B arbanera and Berardi 1996).

The C urry-H ow ard correspondence may also help in gaining an understanding o f some 
o f the reasons for the slow recognition o f a com puter-aided, strictly form al approach in the 
m athem atical com m unity and, conversely, o f the m oderate interest o f com puter scientists 
for its application in this field. The point is tha t form al proofs, whatever effort you 
make to write them  in a natural, declarative style (see, for example, Wenzel (1999)), still 
look like program s, and the vast m ajority o f m athem aticians dislike program s altogether. 
On the other side, com puter scientists (usually) like them, bu t all the fun is in creating 
something executable while, o f course, you never eliminate cuts from  m athem atical proofs 
(Boolos 1984). There is, alas, nothing so irrem ediably static, somberly boring as a (formal) 
p roof o f a m athem atical statem ent, once it has been completed. Still, o f course, there is the 
possibility o f extracting a  program  from  a (constructive) proof. U nfortunately, you have 
no chance o f extracting a good algorithm  from  a good proof, simply because the criteria
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used to evaluate proofs (elegance, conciseness) and algorithm s (performance, above all) 
are completely different, while the proof and the program  realising it are essentially 
isomorphic. For instance, if you try to prove th a t any list o f objects can be ordered with 
respect to a given ordering relation, you will m ost likely end up w ith a proof corresponding 
to an insertion algorithm ; to extract a quicksort, you have to entirely rethink the proof 
according to the expected output (which is no t methodologically very far removed from  
first writing the algorithm  and then proving its correctness).

4. Proofs and refutations

We believe that, in the end, it is a social process that determines whether mathematicians fe e l confident 
about a theorem -  and we believe that, because no comparable social process can take place among 
program verifiers, program verification is bound to fail.

R. A. De Millo, R. J. L ipton and  A. J. Perlis (De M illo et al. 1979)

A  theorem either can or cannot be derived from  a set o f  axioms. I  don’t believe that the correctness 
o f  a theorem is to be decided by a general election.

Leslie L am port (L am port 1979)

There has always been an interesting debate about the actual role of proofs in 
mathematics. De Millo et al. firmly deny any deductive validity to proofs. This position 
is very com m on am ong m athem aticians, and had  eminent supporters. For instance, 
G. H. Hardy, who is traditionally  credited w ith reform ing British m athem atics by bringing 
rigour into it, described the notion o f m athem atical p roof as we working mathematicians 
are familiar with in the following term s (H ardy 1928):

There is strictly speaking no such thing as a mathematical proof; we can, in the last analysis, do 
nothing but point; [...] proofs are what Littlewood and I  call gas, rhetorical flourishes designed to 
affect psychology, pictures on the board in the lecture, devices to stimulate the imagination o f  pupils.

This view is traditionally contrasted with the logistic (neopositivist) school, which has 
been re-invigorated by the recent results in the field o f autom ation o f form al reasoning:

The history o f  mathematics has stories about fa lse  results that went undetected fo r  long periods o f  
time. However, it is generally believed that i f  a published mathematical argument is not valid, it will 
be eventually detected as such. While the process o f  finding a p roo f may require creative insight, the 
activity o f  checking a given mathematical argument is an objective activity; mathematical correctness 
should not be decided by a social process (Coquand 2008).

H arrison (H arrison 2008) explicitly m entions th a t one o f the goals o f com puter-aided 
verification should be

supplementing or even partly replacing the process o f  peer review fo r  mainstream mathematical papers 
with an objective and mechanizable criterion fo r  the correctness o f  proofs.

As suggested by M acKenzie (M acKenzie 2005) am ong others, the two positions can be 
reconciled if we accept the idea th a t p roof assistants are going to change the ‘whole 
concept o f p ro o f’, splitting the two roles o f message and certificate:

Ever since Euclid, mathematical proofs have served a dual purpose: certifying that a statement is true, 
and explaining why it is true. Now those two epistemological functions may be divorced. In the fu ture
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the computer assistant may take care o f  the certification and leave the mathematicians to look fo r  an 
explanation that humans can understand.

A proof serves two purposes:

1 to be able to verify the validity o f a statem ent; and
2 to explain -  by providing intuitions -  why the statem ent is true.

These roles are traditionally interwoven: a proof contains intuitions, sometimes some 
rem arks on why a certain m ethod does no t work, m otivating examples, plus a line of 
reasoning th a t builds up the precise argument. W ith the advent o f tools like proof 
assistants, it becomes realistic for us to leave the first incarnation o f a proof (the 
verification) to a com puter and the second (the explanation) to the human.

In the optim al scenario, we can m aintain a close connection between the two incarn
ations o f proof. Or even better, we would be able to generate autom atically a machine 
checkable certificate from  a hum an readable message. The problem  is that, since the 
translation has to be done autom atically, the message itself m ust already be w ritten in 
a machine understandable language, and it is extremely difficult to define a ‘high-level’ 
language suitable for this kind of hum an-m achine com m unication.

However, there is another problem. Suppose we have H arrison’s tool (and we are still 
very far from  such a goal). Then, o f course, the fact tha t proofs are validated by the tool 
is no t a sufficient reason for accepting tham  as a scientific contribution; H arrison does 
no t suggest that, but seems to suggest the converse, which looks equally problematic.

The historical relevance o f wrong proofs in the developm ent o f m athem atics is easily 
docum ented (see, for example, Lecat (1939)). To take a recent example, which is well 
known in the program m ing language community, w ithout the publication o f M artin- 
L ö f’s m istaken proof o f term ination for system U, we would probably never have had 
G irard ’s system F, th a t is, the polym orphic lam bda calculus.

False proofs, or proofs becom ing refutable under a suitable concept-stretching o f the 
relevant notions, are an essential com ponent o f the quasi-empirical nature o f mathem atics 
and are extensively discussed in Lakatos (Lakatos 1976):

‘Certainty’ is fa r  from  being a sign o f  success, it is only a symptom o f  lack o f  imagination, o f  conceptual 
poverty. I t produces smug satisfaction and prevents the growth o f  knowledge.

The risk envisaged by Lakatos (though a similar criticism o f logical positivism was 
raised by Popper (Popper 1963)) is to

construct form alised languages in which artificially congealed states o f  science are expressed. [... ]  
Science teaches us not to respect any given conceptual-linguistic framework lest it should turn into a 
conceptual prison.

However, Lakatos seems to be m ore concerned w ith the declarative, descriptive level of 
theories and definitions, than  with the foundational, logical layer, and a few pages later 
he observes:

Nineteenth-century mathematical criticism stretched more and more concepts, and shifted the meaning
load o f  more and more terms onto the logical form o f  the propositions and onto the meaning o f  the 
few  (as ye t) unstretched terms. In the 1930’s this process seemed to slow down and the demarcation 
line between unstretchable (logical) terms and stretchable (descriptive) terms seemed to become stable.
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A  list, containing a small number o f  logical terms came to be widely agreed upon, so that a general 
definition o f  logical truth became possible. [...] The most interesting result in this direction was Popper 
(Popper 1948) from  which it follow s that one cannot give up further logical constants without giving 
up some basic principles o f  rational discussion.

The only actual philosophical danger o f a strictly form al approach to m athem atics -  
though no t to be underestim ated -  may be to induce the fallacy o f deductionism, 
suggesting tha t the path o f  discovery is from  axioms a n d /o r  definitions to proofs and 
theorem s (a risk th a t Lakatos considers ju st a bit m ore dangerous for m athem atics, than 
inductivism). This point has been clearly stated by Paul H alm os in his ‘A utom athography’ 
(Halm os 1985):
M athematics is not a deductive science. When you try to [solve a problem] .. .  what you do is trial and 
error, experimentation, guesswork. You want to find  out what the fa c ts  are, and what you do is in that 
respect similar to what a laboratory technician does, but it is different in its degree o f  precision and 
information.

The systematic use o f an autom atic checker to rule out wrong theorems, simply negating 
their right to existence and with them  any form  o f refutation (and hence o f criticism), 
would o f course be a dram atic step towards a strictly conservative deductionist attitude, 
negating the possibility and im portance of w hat Lakatos calls naive guessing and concept 
stretching. However, this is no t its intended use. In exactly the same way as during 
program  com pilation, the process o f type checking is no t m eant to simply discriminate 
good program s from  bad  ones. The type checker is an im portant driver during the program  
developm ent phase, and a m ajor tool for the deployment o f lightweight, adaptive software 
m ethodologies, requiring frequent modifications and refactoring. This interactive use of 
the type-checker is likely to increase in the near future; the situation is so described in 
A ltenkirch et al. (2005):
Programming is a complex task which can be made easier fo r  people to do with the help o f  computers. 
The conventional cycle o f  programming with a text editor then compiling in ‘batch m ode’ is a welcome 
shortening o f  the feedback loop since the days o f  punched cards, but it clearly under utilises the 
technology available today. Any typed programming language can benefit from  the capacity -  but not 
necessarily the compulsion -  to invoke the type-checker incrementally on incomplete subprograms whilst 
they are under development. The more powerful the type system, the more pressing this need becomes -  
it ju s t gets harder to do in your head, especially when types contain com putations , fo r  which computers 
are inherently useful.

It is this interactive use o f the com puter th a t is precisely the m ost exciting prospect 
in com puter-assisted reasoning, and the crucial point where m odern interactive proof 
assistants differ from  their first generation precursors. The goal (which is still extremely 
d istant, though clearly identifiable) would be to assist m athem aticians no t in the act of 
checking the ‘correctness’ o f their reasoning, bu t in the process o f  mathematical discovery, 
th a t is, during design, analysis and elaboration: for instance, in the investigation o f the 
im pact o f small, local modifications on the meaning o f entities on the logical correctness 
o f the proof. This can be m ore easily understood by a simple extension o f the Curry
How ard correspondence, by distinguishing between raw  (pre-typed/untyped) program s 
and well-typed ones. A m athem atical proof, in L akatos’ sense, is a raw  program : a crystal 
clear thought experiment, or construction. F rom  this perspective, ‘proofs’ prove nothing:

Cambridge J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org


Social processes, program verification and all that 887

M a th em a tics P rogram m ing

proo f analysis type inference/refinem ent
p ro o f/th o u g h t experim ent untyped program

Table 4. An extended analogy.

they are just tests, experiments, bu t no t necessarily leading to the expected results^. It is 
the process o f p roof analysis th a t adds a deductive layer to the proof, inferring proof
generated lemmas and concepts. P roof analysis is then akin to type inference. In the realm  
o f interactive theorem  provers, the m odule in charge o f type inference, synthesising or 
constraining inform ation om itted by the user, inserting coercions, imposing suitable views 
and so on, is traditionally called the refiner. The refiner (and no t the kernel in charge 
o f proof checking) is the real heart o f these systems, and the prim ary source o f their 
‘intelligence’. The constant improvements in the functionalities o f this com ponent is one 
o f the m ain research trends in the field o f interactive theorem  proving. In particular, m ost 
o f the studies aim  to attain  a tighter integration between the refiner and the m odules in 
charge o f proof autom ation, with the attem pt to add limited deduction abilities to the 
former, using an interesting and synergistic analogy w ith similar studies on type systems 
for program m ing languages (see, for example, the recent, parallel investigations of type 
classes (W adler and Blott 1989; Hall et al. 1996; Wenzel 1997; Sozeau and Oury 2008)).

5. Mathematics and computer science

The only feasible way o f  coming to grips with really radical novelty is orthogonal to the common way o f  
understanding: it consists in consciously trying no t to relate the phenomenon to what is fam iliar from  
one’s accidental past, but to approach it with a blank mind and to appreciate it fo r  its internal structure.

Edsger D ijkstra  (D ijkstra 1986)

As observed by Van D en Bos (Bos 1979), the real novelty o f the De Millo et al. paper 
was tha t

fo r  the firs t time a paper on the philosophy o f  computer science, in this case the methodology o f  
program verification, has been published in Communications o f  ACM .

Here, De Millo, L ipton and Perlis seem to have lost a great opportunity by failing to 
exploit the m ost interesting aspects o f the analogy they had  pu t forth  and entrenching 
themselves behind a strictly sociological position and m aking use o f old slogans like 
‘dullness o f rigour’, ‘artificiality versus beauty’, and similar things.

Actually, there are at least two m ajor novelties introduced by the advent o f com puter 
science in the epistemological debate: the first is related to the intrinsic nature of 
com puter science, which strongly differentiates it from  mathem atics (and all other scientific 
disciplines), while the second concerns the altered conditions induced by an extensive use 
o f inform ation technology in scientific practice.

t  A s L akatos says, a fte r C olum bus, one should n o t be surprised if one does n o t solve the problem  one has set 
ou t to solve.
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Concerning the first point, if we look back at the C urry-H ow ard-D e Millo corres
pondence, there is a striking difference between m athem atics and com puter science that 
should be evident a t first glance. The point is tha t while program s (not algorithms, but 
program s!) are a m ajor object o f study, analysis and elaboration for com puter science, 
the mathematical investigation o f proofs is absolutely m arginal, essentially confined to 
a m inor subfield o f logic know n as ‘proof theory’, see, for example, Prawitz (1965) and 
G irard  et al. (1989).

This is no t surprising since com puter science is about information, its autom atic 
processing, transform ation and com m unication, and the m ain vehicle for m anaging 
inform ation are programs (again, program s, no t algorithms!). Luckily, program s are 
informative entities, and no t only can they be the object o f a m etam athem atical in
vestigation, bu t they can also be processed, transform ed and com m unicated as any other 
kind o f inform ation. In fact, com puter science starts to become really interesting when 
it is applied to itself. It is precisely this circularity, this auto-referentiality o f com puter 
science tha t makes it entirely peculiar am ong all scientific disciplines: m eta-inform ation is 
still another form  of inform ation; the techniques and methodologies o f com puter science 
are an essential part o f its dom ain o f investigation.

The difference w ith m athem atics is striking, since the m athem atical m ethod has never 
been the object o f a serious mathematical investigation (apart, possibly, from  the timid, 
limited attem pts o f neopositivism). We should then acknowledge, following Popper, that 
since it cannot be m ade an object o f validation experiments, and cannot possibly be 
refuted, the celebrated ‘m athem atical rigour’ is a purely ideological claim, a mere illusion, 
or, if you prefer, the result o f a refined liturgy.

A program  is written in a strictly form al language, and the possibility o f writing long 
program s itself testifies to the possibility of writing long form al proofs. M oreover, since 
program s (alm ost always) work, there m ust be a way to govern the pedantic complexity 
o f  form al languages. Here, we are completely reversing the traditional position: the point 
is no t th a t verification is important because programs crash, bu t tha t verification must be 
possible because, most o f  the time, they do not crash.

A n external observer m ight believe th a t this is due to particularly favorable, peculiar 
conditions o f com puter science, bu t this is no t the case. The m ultilingual foundational m i
asm a is a reality we have learned to live with (and, to some extent, to appreciate) at the de
scriptive/functional level. Change is a rule and adaptability a bare necessity (Fowler 2000):

There’s a refrain I ’ve heard on every problem project I ’ve run into. The developers come to me and say 
‘the problem with this project is that the requirements are always changing’. The thing I  find  surprising 
about this situation is that anyone is surprised by it. In building business software requirements changes 
are the norm, the question is what we do about it.

Hence, adm itting th a t long, sensible form al program s/proofs can be written, the really 
interesting question is if some o f the methodologies, no t only o f static analysis but more 
generally of software development, can be applied to the realm  o f m athematics. In this 
way, the original verification/type-checking problem  is pu t in its correct perspective, 
namely as one of the tools contributing to a com fortable developm ent environm ent for 
the ‘working m athem atician’.
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H ere we also directly arrive at our second point, namely the exploitation o f the 
possibilities offered by the new inform ation technologies, and their im pact on scientific 
practice. According to Popper, scientific rigour does no t depend on the objectivity or 
critical attitude o f individuals, bu t on the methodology employed (here, K uhn expresses 
similar ideas (H utcheon 1995), but in term s o f standards and values o f science dictated by 
the ‘paradigm ’ adopted by the scientific community). Hence, if the advent o f technology 
does m aterially affect the m ethodology, the notion o f rigour will change accordingly, and 
w ith it the essence o f the entire scientific discipline. The point is particularly im portant in 
the case o f m athem atics, where changes in the criterion o f  ‘rigour o f  the p roo f’ engender 
major revolutions (Lakatos 1976).

F rom  m any indications, we are approaching one o f K uhn’s pre-revolutionary crises in 
the realm  o f mathem atics. The big novelty o f this crisis is due to the introduction o f the 
use o f the com puter to m aster the growing complexity o f m athem atical proofs. S tandard 
m ethods seem to have hit a ceiling, though no t from  intrinsic deficiencies o f the theoretical 
framework, bu t from  a hum an deficiency in coping w ith complex com putations/encodings. 
As observed by Sarnak (Econom ist 2005), one o f the editors o f the Annals o f  Mathematics, 
they expect to receive a growing num ber o f papers involving com puter code in the next 
20-50 years. So m athem atics may become a bit like experimental physics -  as foreseen by 
Sarnak -  where certain results are taken on trust, and independent duplication ofexperim ents 
replaces examination -  or, as attem pted by Hales in his Flyspeck project, we may try to 
use the com puter as a remedy also. In bo th  cases the notion  o f ‘m athem atical rigour’ will 
be deeply affected.

6. Content and semantics

One o f  the major goals o f  verification is to provide a new dimension in the way we do mathematics, as 
well as in the way we do computer science.

W. D. M aurer (M aurer 1979)

The idea th a t a p roof assistant should no t just support the process o f m athem atical 
verification, bu t tha t o f m athem atical discovery has already been clearly outlined by 
Constable et al. in their description o f the N uprl system (Constable et al. 1986):

For our intention is to provide a medium fo r  doing mathematics different from  that provided by paper 
and blackboard. Eventually such a medium may support a variety o f  input devices and may provide 
communication with other users and systems; the essential point, however, is that this new medium is 
active, whereas paper, fo r  example, is not.

In the nineties this goal was som ewhat blurred by the imposing pronouncem ent of 
the Q ED  manifesto^, which, w ith its taxing goal to provide a cultural monument to ‘the 
fundamental reality o f  truth’ shifted the focus back onto form al verification.

QED is the very tentative title o f  a project to build a computer system that effectively represents 
all important mathematical knowledge and techniques. The QED system will conform to the highest 
standards o f  mathematical rigor, including the use o f  strict form ality in the internal representation o f

t  See h t tp : / /w w w -u n ix .m c s .a n l .g o v /q e d .
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knowledge and the use o f  mechanical methods to check proofs o f  the correctness o f  all entries in the 
system.

The manifesto describes the am bitious goals o f the project and discusses questions 
and doubts, and the answers to them. There were two w orkshops on Q ED , in 1994 and 
1995, bu t none since then. Is the Q ED  manifesto too am bitious? In this respect it is 
instructive to read w hat the authors o f the Q ED  manifesto thought was needed to be 
done. First, a group o f enthusiastic scientists should get together to determine which 
parts o f m athem atics are needed to be formalised, in w hat order and w ith which cross
connections. The authors assume th a t this phase may take a few years and it may even 
involve a rearrangem ent o f the m athem atics itself, before the actual form alisation work 
can start. O ther points in this ‘to-do-list’ are o f a similar top-down nature.

However, this is a rather old fashioned approach to the problems, focusing solely on 
form al correctness. Developm ents like W ikipedia show tha t a more ‘bo ttom  up’ distributed 
approach may work better, using a simple lightweight basic technology. One could claim 
th a t for m athem atics -  where the end goal is to get a library o f verified reliable results -  
such an approach could never work, but for W ikipedia the same doubts were raised 
at first: W ikipedia is typically something tha t works in practice bu t no t in theory. (See 
W iedijk (2007) for a present day evaluation o f the Q ED  manifesto.)

The goal o f developing innovative, semantic based functionalities transcending the 
mere operation o f form al checking, and focusing on problems related to the m anage
m ent o f the repository o f (formal) m athem atical theorems, such as archiving, indexing, 
searching, com m unication and publishing was strongly advocated in A sperti et al. (2000). 
The emerging X M L technology seemed to provide the natu ral infrastructure for the 
developm ent o f the new systems. In particular, the idea was to use X M L as a main, 
p latform  independent language for long-term  representation and exchange o f the naturally 
structured, form al m athem atical knowledge, exploiting to their full extent all kinds of 
X M L technologies: M athM L  and X H T M L  for rendering; XSLT for the application of 
notational transform ations; X path  and XQuery for complex, content based queries; and 
R D F  for indexing and efficient docum ent retrieval. It is a pity that, since then, m ost of 
the expectations for X M L technologies have not been fulfilled due to intrinsic deficiencies 
in their design and im plem entation: M athM L  failed to be adopted by m ajor browsers; 
XSLT is ju st too prolix for simple operations and too weak for more complex ‘content 
sensitive’ operations; XQuery is too slow for large, highly structured d a ta  bases; and R D F  
never really went beyond the project phase.

A n alternative attem pt to employ X M L for encoding m athem atical content was made 
by the O penM ath project (Dewar 2000). In D ew ar’s words, O penM ath is a standard 
for representing m athem atical d a ta  in as unambiguous a way as possible. Essentially, an 
O penM ath object is a labelled tree describing the abstract syntax tree o f the m athem atical 
entity, whose leaves are the basic O penM ath da ta  structures, such as IE E E  double 
precision floats; Unicode strings; byte arrays, variables or symbols. Symbols consist o f a 
nam e and a reference to a ‘definition’ in an external docum ent called a content dictionary 
(CD). The definition itself is given in natu ral language, while C D ’s are essentially m eant as 
background references for the implementers o f phrasebooks, th a t is, o f the actual software 
tools able to internalise the O penM ath object inside specific applications.

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org


Social processes, program verification and all that 891

A ferocious critique of O penM ath is contained in Fatem an (2001). A lthough we share 
m ost o f F atem an’s opinions and, in particular, the concern about the lack o f any serious 
proof o f  concept, there are a few points tha t probably deserve a deeper discussion. In 
particular, Fatem an affirms tha t

A ll protestations to the contrary, it [O penM ath] simply does not have any mandate outside the rather 
simple application o f  denoting what could be trivially done in any programming language capable o f  
representing attributed trees.

This is true, but the point is no t to just use abstract syntax trees for representing the 
inform ation, bu t to agree on their syntax, tha t is, to propose a standard. Sharing a com m on 
gram m ar seems to be a m inimal pre-requisite for any possible kind o f com m unication 
between autom atic devices. Then, the use o f X M L is indeed no t essential, bu t quite natural. 
The trem endous step forw ard consisting o f passing from  an unstructured representation 
o f the inform ation to a structured (standard) one, simply cannot be ignored. O f course, 
w hat makes a standard  is not a self-proclamation, bu t its actual adoption, and O penM ath 
clearly failed in its mission. However, this does no t imply tha t the objective was basically 
wrong.

The second point is m ore delicate. Fatem an says:

We learn that each corresponding program X  must have a phrasebook which converts its internal form  
Y  to an OpenMath form  which is, one hopes, the universal semantic notion o f  Y. B ut it seems that 
except in trivial matters, its semantics may have to be encoded as ‘the meaning o f  Y  to the program 
X ’. Thus the ideal o f  having n programs communicating using n phrasebooks to /from  OpenMath has 
been lost.

O f course, it is not the ‘n2 versus n ’ point tha t m atters, bu t the fact th a t we would 
entirely lose the real sense o f having an interm ediate structure. If  we cannot give any 
intended semantic in terpretation to our syntax, w hat is the actual point in having it? The 
critique seems to underm ine irreparably and at its very roots the quest for a universal 
‘interm ediate’ language.

In fact it does not. Suppose we ask an application to com pute a solution for a 
given problem  P . We have no way to be sure th a t it really understood our problem. 
A fter a given time it returns a solution ‘a. We have no way to be sure we correctly 
interpreted the solution, either. But who cares? We check if our in terpretation o f a is 
a solution to our interpretation o f P , and if it is, we are happy. The point is tha t the 
interm ediate inform ation is merely a witness, a  trace th a t we have to interpret and check 
after internalisation. The interest is, as usual, th a t checking is enorm ously less expensive 
than  finding. The general picture is even m ore clear when we add proofs. Suppose there 
is in our ‘universal’ language a proof p o f some property A. We may define translations 
px and A x to our internal language and check if indeed px is (under our interpretation) a 
proof of Ax. If  it is, we have a proof, without caring whether the translation was ‘correct’ 
(and surely it could no t be, since we have no semantics for the interm ediate language).

H aving understood tha t we may have an interesting interm ediate language with no 
semantics, the actual points are:

1 C an we define a ‘trace’ language for proofs tha t are o f suitable interest to multiple
applications?
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2 Can we apply static analysis techniques for this language (for example, a weak, possibly
logically inconsistent type system)?

3 Can we prom ote a direct collaborative developm ent of this layer?

Regarding the first point, as we have already observed, the process o f form alisation 
o f a m athem atical statem ent is often com pared to the translation  o f a piece o f code 
from  a high-level program m ing language to some assembly language, corresponding to 
a foundational dialect in some logical system. Inter-operability at a foundational level is 
as hopeless as trying to send instructions from  one microprocessor to another. On the 
other side, the m ost expensive p art o f the form alisation process consists o f a preliminary 
conceptual phase o f transform ation o f the proof into a form  suitable to be understood 
by a machine tha t is largely independent o f the specific idiosyncrasies o f each particular 
foundation. Com pilation is not an atom ic process, and w hat is currently clearly lacking 
is a good interm ediate language -  which is precisely the trace language we are talking 
about.

Is such an objective feasible? If  we overcome the foundational impasse of fixing a formal 
semantics to quantifiers, and the diatribe about the role and nature o f functions, it is 
usually acknowledged th a t we could probably agree on a com m on syntax for m athem atical 
form ulae . A m inimal trace language, which is extremely poor bu t no t completely deprived 
o f interest, would consist o f a graph o f dependencies relating a result to the m ain auxiliary 
facts required for its p roof (possibly adm itting m ultiple paths). The interest o f such an 
approach is tha t it can be refined to a more or less arb itrary  degree o f detail, and to 
the point where a software system can autom atically fill in the missing steps. Moreover, 
the system itself could assist the user in this refinement activity. The other point is tha t 
the approach does not vastly differ from  the natural top-down m ethodology already in 
use in wiki-like systems (where you typically first create the link and then the page 
you are linking). If  we merely ask a typical m athem atical user o f such a system to 
type m athem atical statem ents using a suitable set o f content-oriented LTEX-like macros 
(possibly to be agreed according to the same policies th a t usually govern these systems) 
we really see no reason why he should no t consent (especially since he could also have 
some presentational benefits). Q uoting Hales again (Hales 2008):

To undertake the formalisation o f  ju s t 100,000 pages o f  core mathematics would be one o f  the most 
ambitious collaborative projects ever undertaken in pure mathematics, the sequencing o f  a mathematical 
genome. One might imagine a massive wiki collaboration that settles the text o f  the most significant 
theorems in contemporary mathematics from  Poincare to Sato-Tate.

The point is tha t everybody m ust be able to contribute, independent o f w hether they 
are using a proof assistant or not. Interactive theorem -prover users can be in charge of 
refining the proofs to m ore elementary com ponents, possibly autom atically populating 
the library o f basic results (which are mostly m eant to be inspected by autom atic devices 
only). A t the same time, the refinement process can provide an essential feedback to 
higher-levels, possibly requiring some revisiting o f already codified notions and results.

Preliminary developments towards a ‘M athW iki’ system th a t supports the distributed 
developm ent o f a library o f m athem atics on various levels o f formality, ranging from  the 
m athem atics informally described on existing web pages to the formalised m athem atics
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tha t we encounter in proof assistants, have been described and advocated in C orbineau and 
Kaliszyk (2007) and Corbineau et al. (2008). Such a system should provide a lightweight 
cooperative fram ework for developing and discussing m athem atics, on various levels of 
formality. It should also provide a place where various existing repositories o f (formal) 
m athem atics come together.

7. Conclusion

The lack at this late date o f  even a single verification o f  a working system has sometimes been attributed 
to the youth o f  the field. .. .  there has never been a verification of, say, a Cobol system that prints 
real checks; lacking even one makes it seem doubtful that there could at some time in the fu ture  be 
many.

R. A. De Millo, R. J. L ipton and A. J. Perlis (De M illo et al. 1979)

As we have already observed, the gloomy predictions of De Millo et al. have been largely 
refuted. Form al verification is at present a concrete reality, perm itting correctness proofs 
o f complex software applications. For instance, in the fram ework o f the Verifix Project 
a compiler from  a subset o f C om m on Lisp to T ransputer code was formally checked 
in PVS (see D old  and Vialard (2001)). Strecker (Strecker 1998) and Klein (Klein 2005) 
certified bytecode compilers from  a subset o f Java to a subset o f the Java V irtual M achine 
in Isabelle. In the same system, Leinenbach (Leinenbach et al. 2005) formally verified a 
compiler from  a subset o f C to a D LX  assembly code. The Com pcert project, headed by 
Xavier Leroy, has recently produced a verified optimising compiler from  C to PowerPC 
assembly code, based on the use o f the Coq proof assistant bo th  for program m ing 
the compiler and proving its correctness (Leroy 2006; Tristan and Leroy 2008). Similar 
achievements have been obtained in other fields o f com puter science, spanning the range 
from  hardw are (H arrison 2007) to operating systems (Alkassar et al. 2009; Klein 2009).

However, the parallel draw n by De Millo, L ipton and Perlis between com puter science 
and m athem atics is still relevant, and possibly even m ore so in view o f the recent 
proliferation o f m athem atical proofs involving the use o f computers. In particular, in 
this paper we have argued th a t m athem atics is destined to assimilate some practices of 
software development, and tha t the future o f bo th  m athem atics and program m ing lies 
in the fruitful combination o f form al verification and the usual social processes th a t are 
already working in b o th  scientific disciplines. Q uoting Hales (Hales 2008):

The hope is the system [the p roo f assistant] will eventually become sufficiently user-friendly to become 
a fam iliar part o f  the mathematical workplace, much as email, TgX, computer algebra systems and 
Web browsers are today.

A t present, we are still a very long way from  this dream ; the current cost o f transcribing 
a printed page o f textbook m athem atics into machine-checkable code is estim ated as a 
week’s labour in Hales (2008), and, more pessimistically, as 1.5 hours per line in A sperti 
and Ricciotti (2009). In W iedijk (2001) the cost o f formalising the standard  bachelor’s 
curriculum  o f m athem atics is estim ated at 140 m an years. The point is no t only to 
reduce this cost, but also to improve the benefits coming from  the representation o f the 
inform ation in a ‘m achine understandable’ richly structured form at th a t is suitable for 
elaboration by a machine. This means developing innovative, content-based functionalities,
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eventually overcoming the reductive operational perspective o f verification. The research 
directions were clearly traced in Constable et al. (1986) m ore than  20 years ago:

The natural growth path fo r  a system like Nuprl tends toward increased ‘intelligence’. [...] For example, 
it is helpful i f  the system is aware o f  what is in the library and what users are doing with it. I t  is 
good i f  the user knows when to involve certain tactics, but once we see a pattern to this activity, it 
is easy and natural to inform the system about it. Hence there is an impetus to give the system more 
knowledge about itself.

Unfortunately, progress in this direction is extremely slow, and the following question 
asked by D ijkstra still remains, for the m om ent, unanswered:

In the relation between mathematics and computing science, the latter has been fo r  many years at the 
receiving end, and I  have often asked m yself if, when, and how computing would ever be able to repay 
its debt.

Edsger D ijkstra  (D ijkstra 1986)
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