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In a controversial paper (De Millo et al. 1979) at the end of the 1970’s, R. A. De Millo,

R.J. Lipton and A.J. Perlis argued against formal verifications of programs, mostly
motivating their position by an analogy with proofs in mathematics, and, in particular, with
the impracticality of a strictly formalist approach to this discipline. The recent, impressive
achievements in the field of interactive theorem proving provide an interesting ground for a
critical revisiting of their theses. We believe that the social nature of proof and program
development is uncontroversial and ineluctable, but formal verification is not antithetical to
it. Formal verification should strive not only to cope with, but to ease and enhance the
collaborative, organic nature of this process, eventually helping us to master the growing
complexity of scientific knowledge.

1. Introduction

Heavier than air flying machines are impossible.
S.P.Langley (Langley 1891)

Formal verification ofprograms, no matter how obtained, will not play the same role in the development
of computer science and software engineering as proofs do in mathematics.
R. A. De Millo, R.J. Lipton and A.J. Perlis (De Millo et al. 1979)

Samuel Pierpont Langley was a professor of astronomy and physics, and a world-expert
in aerodynamics during the late nineteenth and early twentieth century. The esteem with
which he is held can be seen from the fact that one of NASA’s research centres was
named after Langley. At the height of his research career, Samuel Langley published a
result (Langley 1891), which came to be known as ‘Langley’s Law’ According to this
erroneous law - the higher the speed, the lower the drag - more power was required in
order to make an aircraft fly slower, and indeed if this were true, heavier than air flying
machines would certainly have been an impossibility. Fortunately, the Wright Brothers
had not read Langley’s book, and they went on to develop the first manned aircrafts that
could be controlled in-flight from the aircraft itself.

In a famous, influential paper at the end of 1970’, R. A.De Millo, R.J. Lipton and
A.J. Perlis (De Millo et al. 1979) advanced various criticisms of the very idea of the formal
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verification of programs. The impressive advances in this area seem by themselves to belie
their gloomy predictions. Formal verification has currently reached such a level of maturity
as to allow correctness proofs of sophisticated hardware components (Harrison 2007),
complex programs such as optimising compilers (see, for example, Leroy (2006) and
Tristan and Leroy (2008)), and parts of modern operating systems (see, for example,
Alkassar et al. (2009) and Klein (2009)).

It is precisely in view of these achievements, however, that we can look back at
De Millo et al. (1979) with a less passionate and more objective spirit, making a
more stringent analysis of their thesis and arguments, without focusing on the polemic
frame intentionally chosen by its authors, viz., in Lamport’s wordsf, as a debate between
a reasonable engineering approach that completely ignores verification and a completely
unrealistic view of verification advocated only by its most naive proponents.

In fact, some of the thesis advocated by De Millo, Lipton and Perlis is sharable, very
pertinent and still relevant; on the other hand, most of their arguments, following thirty
years of research, sound obsolete and a bit trite, and are asking for a critical reappraisal.
Here is a quick summary of our critique, before we lay it out in detail:

— De Millo et al. state (quoting the logician Rosser) that ...intuition is the final
authority:

Intuitions and analogies may help in the explanation and the assimilation of a
statement, but when it comes to verification of a statement, proof is the authority.
Intuition sometimes just fails.

— De Millo et al. state that ...we will continue to argue that programming is like math-

ematics, and that the same social processes that work in mathematical proofs doom
verifications:
We argue that mathematics will become more and more like programming and that
the future of both mathematics and programming lies in the fruitful combination of
formal verification and the usual social processes that are already working in both
scientific disciplines.

2. Proofs and programs

Russell did succeed in showing that ordinary working proofs can be reduced to formal, symbolic
deductions. But he failed, in three enormous, taxing volumes, to get beyond the elementary facts of
arithmetic. He showed what can be done in principle and what cannot be done in practice.

R. A. De Millo, R.J. Lipton and A.J. Perlis (De Millo et al. 1979)

In drawing a parallel between program verification and proofs of theorems, the key
arguments adduced by De Millo et al. against the formal approach is the essential
impracticality of a strictly logistic approach to mathematics due to the nearly inconceivable
length of a deduction from first principles. The argument is repeated several times: the
quotation above is from their paper (page 272); on the next page they go on to say

Aformal demonstration ofone of Ramanujan’ conjectures assuming set theory and elementary analysis
would take about two thousand pages;

f See http://research.microsoft.com/en-us/um/people/lamport.
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and, on page 275, Poincaré is quoted in support of their claim,

If it requires twenty-seven equations to establish that 1 is a number, how many will it require to
demonstrate a real theorem?

Of course, the argument is not new; even Bourbaki, who is traditionally enlisted in the
ranks of the formalist school (Lee 2002), found the project of formalising mathematics
absolutely un-realisable (Bourbaki 1968):

the tiniest proofat the beginning ofthe Theory of Sets would already require several hundreds o f signs
for its complete formalisation.

The argument is reminiscent of the general disbelief at the beginning of the fifties
concerning the potentialities of computers and the possibility of writing long programs,
which was just due to the inability of conceiving of high-level languages and a process
of automatic translation to a machine-understandable code. When Grace Hopper wrote
the first compiler in 1952, opening the way to software development, nobody seemed
interested: ‘I had a running compiler and nobody would touch it’, she said. ‘They told me
computers could only do arithmetic.” (Schieber 1987). The analogy with compilation has
already been made by Maurer back in 1979 (Maurer 1979):

We can make an analogy here with compiling a higher level language program into a machine lan-
guage. Originally this was done by hand [...], then compilers came along and started to do the job
automatically. [...] nobody is ever going to read the object code produced by a compiler; one simply
trusts the compiler. What we hopefor in verifiers is that we will at least be able to trust them to show
program correctness.

Harrison (Harrison 2008) has recently restated the concept in the following terms:

the arrival of the computer changes the situation dramatically. [...] checking conformance to formal
rules is one of the things computers are very good at. [...] the Bourbaki claim that the transition to a
completely formal text is routine seems almost an open invitation to give the task to computers.

In fact, automation of formal reasoning has recently gone far beyond the elementary
facts of arithmetic, permitting the formalisation and automatic verification of complex
results such as the asymptotic distribution of prime numbers (Avigad et al. 2007), the
four colour theorem (Gonthier 2007; Gonthier 2008) and the Jordan curve theorem
(Hales 2007). All these developments are significant in size (spanning from 30 to 75
thousand lines of code), but their complexity is still negligible when compared with, say,
the size of a modern operating system.

The formal proof of the Jordan curve theorem is due to Thomas Hales, a famous
mathematician who is particularly known for his proof of the Kepler conjecture (the most
compact way of packing congruent spheres in three dimensional Euclidean space), and for
the events related to its publication. Briefly, his proof of the Kepler conjecture involved
a large amount of computer verification, and after three years of work, the reviewers of
the Annals of Mathematics concluded that, although they believed the proof was correct,
they were unable to check it thoroughly due to many ‘low-level components’ that lacked
a more general intuition, especially given the degree of computation involved. In the end,
the Annals ofMathematics published a short version of the proof (Hales 2005), and made
the code/data for the proof available un-reviewed on its website. A revised, full version
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of the article was finally published by Discrete and Computational Geometry. Since then,
Thomas Hales has started a new project, called Flyspeck (see Hales (2008)), to check the
correctness of his proof formally with the help of interactive theorem provers.

The Kepler conjecture and the four colour theorem are good examples of a large
number of mathematical proofs based on a direct and substantial use of a computer.
Other examples mentioned by Hales in Hales (2008) are the non-existence of a projective
plane of order 10, the proofthat the Lorentz equations have a strange attractor, the double-
bubble problem for minimising soap bubbles enclosing two equal volumes, the optimality
of the Leech lattice among 24-dimensional lattice packings, and hyperbolic 3-manifolds.
In all these cases, the computer is used to manage the complexity, usually by automatically
checking a finite, albeit large number of ‘atomic’ configurations (a kind of computation
that would not be possible, or extremely laborious for a human). Mathematics is entering
a new era of results requiring proofs of a complexity and dimension that defy human
comprehension, leaving a miasma of doubt about their effective correctness. For instance,
the theorem of classification of finite groups is the result of the collective work of
about a hundred authors, composed of over 10000 pages of results, spread across 500
journal articles. One of the key results, the Feit-Thomson (or odd-order) theorem (Feit
and Thompson 1963) itself takes 255 pages. A formalisation of the odd-order theorem
has recently been started by the INRIA-Microsoft research project on ‘mathematical
components’lead by G. Gonthier (Gonthier et al. 2007). As another example, the preprint
of F. Almgren’s masterpiece in geometric measure theory, familiarly referred to as the ‘Big
Paper’, is 1728 pages long.

Perhaps for the first time in the history of their discipline, mathematicians are now
forced to accept the simple fact that many theorems, even if admitting simple and
elegant statements, may not admit equally simple and elegant proofsf. As observed in
Geuvers (2009), it can be formally proved that, in any given logical system, there is no
upper bound to the relationship between the size of a statement and the size of its shortest
proof, and there is no reason to believe that things should be better if we restrict our
attention to ‘interesting’ theorems. Even De Millo et al. themselves admit that this is the
case.

For even the most trivial mathematical theories, there are simple statements whose formal demonstra-
tions would be impossibly long.

But they do not want to accept the consequence that a computer may be needed to help
the human in verifying the formal demonstrations.

Not always can one find ‘a truly marvelous demonstration’ that, alas, is just a bit too
long to ‘it in the margin of a book’: a proof can just be so complicated, no matter
what kind of rethinking you might try. Does this mean that such a proofjust has to be
dismissed and the validity of the statement rejected, possibly renouncing any proof, all
sacrificed on the mystic altar of elegance and simplicity? May it not possibly mean that
we just have to look for the right tools to help us cope with its complexity, and that we
have to learn to appreciate a different and less archaic kind of beauty?

f According to Lakatos (Lakatos 1976), simplicity is the eighteenth-century idea of mathematical rigour.
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Mathematics Programming
theorem program
proof verification

Table 1. The verifier’s analogy, according to De Millo, Lipton and Perlis.

Mathematics Programming
theorem specification
proof program
imaginary formal proof verification

Table 2. De Millo, Lipton and Perlis’ analogy.

3. Theorems, proofs and specifications

By far the most common way in which we deal with something new is by trying to relate the novelty
to what isfamiliar from past experience: we think in terms of analogies and metaphors. (Even the 5th
Edition ofthe Concise Oxford Dictionary still defines a typewriter as a machinefor printing characters
on paper as substitute for handwriting’!) As long as history evolves along smooth lines, we get away
with that technique, but that technique breaks down whenever we are suddenly faced with something
so radically differentfrom what we have experienced before that all analogies, being intrinsically too
shallow, are more confusing than helpful.

Edsger Dijkstra (Dijkstra 1986)

De Millo, Lipton and Perlis describe the ‘verifier’s analogy’ between mathematics and
programming (see Table 1), and they contrast it with their own analogy (Table 2). Their
observation is that the verifiers are mistaken by wanting to identify the notion of ‘proof’
(from mathematics) with ‘formal verification’ in computer science.

De Millo, Lipton and Perlis do not give any source for the analogy attributed to
‘verifier’s’; in fact, it is hard to imagine that anybody working in the area of program
verification would feel at ease with such an analogy. If somebody working on formal
methods really put it forward, their intent was probably to emphasise a simple but crucial
fact, which, at the end of seventies was still hard to grasp, namely that programs themselves
could become, like mathematical theorems, the object of a scientific investigation.

In fact, the analogy that De Millo, Lipton and Perlis are so happy with, to the extent
that they believe they invented it themselves, was precisely the leading theme that, in
a slightly more sophisticated form, was at that very time driving research in the field
of computer-assisted verification. The “formal’ counterpart of the analogy is called the
Curry-Howard correspondence (Howard 1980), and it just differs from the description in
Table 2 by the substitution of ‘type’ for ‘specification’: a simple twist, which by itself opens
up an entirely new universe of possibilities® The analogy can then be made more precise
(see Table 3). Proof verification is nothing other than type-checking, and, furthermore,

f Howard’s paper was printed in 1980, but the first draft was circulated in 1969. As observed by Howard
himself, however, the main ideas should be ascribed to Curry, back in the fifties.
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Mathematics Programming
theorem type
proof program
correctness verification type checking
cut elimination computation

Table 3. Curry-Howard Correspondence.

Cut Elimination

A cut is a particular logical rule that permits the factorization of a complex reasoning step into
a sequence of simpler steps. In order to prove A, we may temporarily assume B, provided we
prove it later. In principle, one expects to be able to avoid the use of this rule entirely by simply
unfolding the proof of B inside the original proof of A. In practice, the cut-elimination proof,
also known as Gentzen’s Hauptsatz, is far from trivial, and is not satisfied by all logical systems;
but when it holds, it is rich in consequences:
Consistency: It is usually easy to verify that a system does not admit cut-free proofs of the absurd.
In such a case, if the system enjoys the cut elimination property, it is immediately consistent.
Subformula property: This is an important property in several approaches to proof-theoretic
semantics and automated theorem proving. In essence, it says that in order to prove a given
statement A, you only need to use sub-formulae of A.

Fig. 1. Normalisation of proofs.

computation has a proof-theoretical counterpart in the form of cut-elimination, which is
a process of normalisation of proofs consisting essentially of removing ‘detours’ (lemmas)
by inlining them (see Figure 1).

The analogy with type checking also helps in clarifying a common misconception
about automatic verification. When we type-check a piece of code, a mathematical
expression, say, we do not have to compute it in order to check that it is properly typed:
type checking is an entirely static operation. Similarly, when we check the proof of a
mathematical theorem - the famous Ramanujan conjecture, say - we are not supposed to
first normalise the proof to a mere application of axioms from set theory and elementary
analysis: the proof can make use of any sort of theorems and lemmas, and we check it
statically and compositionally.

Starting from their analogy (see Table 2), De Millo, Lipton and Perlis also raise the
following fundamental logical objection to verification :

Since the requirementfor a program is informal and the program isformal, there must be a transition,
and the transition itself must necessarily be informal.

This criticism has already been answered by Maurer (Maurer 1979), distinguishing between
program correctness (the fact that a program meets a specification), and specification
correctness (the fact that the specification meets the user expectations):

A proof ofcorrectness consists of two steps, one formal, the other informal; and neither of the two is
valid without the other one.
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The idea of the Curry-Howard correspondence is that it is not only specifications that
can be given in a completely formal way, but that, by suitably enriching the system of
types, and, in particular, by adding dependent types, they can be altogether assimilated to
types. A dependent type is a type that depends on a term. A typical example is the type
of n-dimensional vectors in some space A, whose type clearly depends on the value n.
More generally, given a specification R(x,y) expressing the expected relation between the
input x :A and the output y : B of a program (where A and B can be seen as ‘traditional’
types), we can build the following dependent type Vx :A.{y :B|R(X, y)} and try to check if
our program inhabits it. Of course, in order to perform the verification, the programmer
may be forced to provide substantial help to the type-checker in the form of suitable type
annotations of inner expressions (this is not too far from pre- and post-conditions in an
axiomatic setting (Hoare 1969)). Quoting Altenkirch et al. (2005):

While conventional type systems allow us to validate our programs with respect to a fixed set of
criteria, dependent types are much more flexible, they realise a continuum of precision from the basic
assertions we are used to expectfrom types up to a complete specification of the program's behavior.
[...] While the price for formally certified software may be high, it is good to know that we may
pay it in instalments and that we are free to decide how far we want to go. Dependent types reduce
certification to type checking, hence they provide a means to convince others that the assertions we
make about our programs are correct. Dependently typed programs are, by their nature, proofcarrying
code (Necula and Lee 1996; Hamid et al. 2003).

The Curry-Howard correspondence also opens up a completely innovative perspective
on program verification, not consisting of trying to match a program against a specifica-
tion, but merely consisting of proving that the specification can be inhabited. If the user
can supply a constructive proof of this fact, then it is possible to automatically extract
from the proof its algorithmic content, that is, a program satisfying the specification.
Program extraction was exploited for the first time in the Nuprl proof development system
(Constable et al. 1986). Having proved a property t of the form Vx :A, 3y :B,R(x,y), the
term term_of(t) extracts a function mapping any a of type A into a pair consisting of an
element b of type B and a proof p that such a b verifies the property R(a, b). By selecting
the first component of this pair, we have a function f from A to B such that R(x,f(x))
for all x in A. The extraction technique can also be extended to some extent to classical
proofs (Parigot 1992; Barbanera and Berardi 1996).

The Curry-Howard correspondence may also help in gaining an understanding of some
of the reasons for the slow recognition of a computer-aided, strictly formal approach in the
mathematical community and, conversely, of the moderate interest of computer scientists
for its application in this field. The point is that formal proofs, whatever effort you
make to write them in a natural, declarative style (see, for example, Wenzel (1999)), still
look like programs, and the vast majority of mathematicians dislike programs altogether.
On the other side, computer scientists (usually) like them, but all the fun is in creating
something executable while, of course, you never eliminate cuts from mathematical proofs
(Boolos 1984). There is, alas, nothing so irremediably static, somberly boring as a (formal)
proof of a mathematical statement, once it has been completed. Still, of course, there is the
possibility of extracting a program from a (constructive) proof. Unfortunately, you have
no chance of extracting a good algorithm from a good proof, simply because the criteria
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used to evaluate proofs (elegance, conciseness) and algorithms (performance, above all)
are completely different, while the proof and the program realising it are essentially
isomorphic. For instance, if you try to prove that any list of objects can be ordered with
respect to a given ordering relation, you will most likely end up with a proof corresponding
to an insertion algorithm; to extract a quicksort, you have to entirely rethink the proof
according to the expected output (which is not methodologically very far removed from
first writing the algorithm and then proving its correctness).

4. Proofs and refutations

We believe that, in the end, it is a social process that determines whether mathematiciansfeel confident
about a theorem - and we believe that, because no comparable social process can take place among
program verifiers, program verification is bound to fail.

R. A. De Millo, R.J. Lipton and A.J. Perlis (De Millo et al. 1979)

A theorem either can or cannot be derived from a set of axioms. | don't believe that the correctness
of a theorem is to be decided by a general election.
Leslie Lamport (Lamport 1979)

There has always been an interesting debate about the actual role of proofs in
mathematics. De Millo et al. firmly deny any deductive validity to proofs. This position
is very common among mathematicians, and had eminent supporters. For instance,
G. H. Hardy, who is traditionally credited with reforming British mathematics by bringing
rigour into it, described the notion of mathematical proof as we working mathematicians
are familiar with in the following terms (Hardy 1928):

There is strictly speaking no such thing as a mathematical proof; we can, in the last analysis, do
nothing but point; [...] proofs are what Littlewood and | call gas, rhetorical flourishes designed to
affect psychology, pictures on the board in the lecture, devices to stimulate the imagination of pupils.

This view is traditionally contrasted with the logistic (neopositivist) school, which has
been re-invigorated by the recent results in the field of automation of formal reasoning:

The history of mathematics has stories about false results that went undetected for long periods of
time. However, it is generally believed that if a published mathematical argument is not valid, it will
be eventually detected as such. While the process offinding a proof may require creative insight, the
activity ofchecking a given mathematical argument is an objective activity; mathematical correctness
should not be decided by a social process (Coquand 2008).

Harrison (Harrison 2008) explicitly mentions that one of the goals of computer-aided
verification should be

supplementing or even partly replacing the process of peer review for mainstream mathematical papers
with an objective and mechanizable criterionfor the correctness of proofs.

As suggested by MacKenzie (MacKenzie 2005) among others, the two positions can be
reconciled if we accept the idea that proof assistants are going to change the ‘whole
concept of proof’, splitting the two roles of message and certificate:

Ever since Euclid, mathematical proofs have served a dual purpose: certifying that a statement is true,
and explaining why it is true. Now those two epistemological functions may be divorced. In the future
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the computer assistant may take care of the certification and leave the mathematicians to look for an
explanation that humans can understand.

A proof serves two purposes:

1 to be able to verify the validity of a statement; and
2 to explain - by providing intuitions - why the statement is true.

These roles are traditionally interwoven: a proof contains intuitions, sometimes some
remarks on why a certain method does not work, motivating examples, plus a line of
reasoning that builds up the precise argument. With the advent of tools like proof
assistants, it becomes realistic for us to leave the first incarnation of a proof (the
verification) to a computer and the second (the explanation) to the human.

In the optimal scenario, we can maintain a close connection between the two incarn-
ations of proof. Or even better, we would be able to generate automatically a machine
checkable certificate from a human readable message. The problem is that, since the
translation has to be done automatically, the message itself must already be written in
a machine understandable language, and it is extremely difficult to define a ‘high-level’
language suitable for this kind of human-machine communication.

However, there is another problem. Suppose we have Harrison’s tool (and we are still
very far from such a goal). Then, of course, the fact that proofs are validated by the tool
is not a sufficient reason for accepting tham as a scientific contribution; Harrison does
not suggest that, but seems to suggest the converse, which looks equally problematic.

The historical relevance of wrong proofs in the development of mathematics is easily
documented (see, for example, Lecat (1939)). To take a recent example, which is well
known in the programming language community, without the publication of Martin-
L&6f’s mistaken proof of termination for system U, we would probably never have had
Girard’s system F, that is, the polymorphic lambda calculus.

False proofs, or proofs becoming refutable under a suitable concept-stretching of the
relevant notions, are an essential component of the quasi-empirical nature of mathematics
and are extensively discussed in Lakatos (Lakatos 1976):

‘Certainty’isfar from being a sign ofsuccess, it is only a symptom oflack ofimagination, ofconceptual
poverty. It produces smug satisfaction and prevents the growth of knowledge.

The risk envisaged by Lakatos (though a similar criticism of logical positivism was
raised by Popper (Popper 1963)) is to
construct formalised languages in which artificially congealed states of science are expressed. [...]

Science teaches us not to respect any given conceptual-linguistic framework lest it should turn into a
conceptual prison.

However, Lakatos seems to be more concerned with the declarative, descriptive level of
theories and definitions, than with the foundational, logical layer, and a few pages later
he observes:

Nineteenth-century mathematical criticism stretched more and more concepts, and shifted the meaning-
load of more and more terms onto the logical form of the propositions and onto the meaning of the
few (as yet) unstretched terms. In the 1930% this process seemed to slow down and the demarcation
line between unstretchable (logical) terms and stretchable (descriptive) terms seemed to become stable.
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A list, containing a small number of logical terms came to be widely agreed upon, so that a general
definition of logical truth became possible. [...] The most interesting result in this direction was Popper
(Popper 1948) from which itfollows that one cannot give up further logical constants without giving
up some basic principles of rational discussion.

The only actual philosophical danger of a strictly formal approach to mathematics -
though not to be underestimated - may be to induce the fallacy of deductionism,
suggesting that the path of discovery is from axioms and/or definitions to proofs and
theorems (a risk that Lakatos considers just a bit more dangerous for mathematics, than
inductivism). This point has been clearly stated by Paul Halmos in his ‘Automathography’
(Halmos 1985):

Mathematics is not a deductive science. When you try to [solve a problem] ... what you do is trial and
error, experimentation, guesswork. You want tofind out what thefacts are, and what you do is in that

respect similar to what a laboratory technician does, but it is different in its degree of precision and
information.

The systematic use of an automatic checker to rule out wrong theorems, simply negating

their right to existence and with them any form of refutation (and hence of criticism),
would of course be a dramatic step towards a strictly conservative deductionist attitude,
negating the possibility and importance of what Lakatos calls naive guessing and concept
stretching. However, this is not its intended use. In exactly the same way as during
program compilation, the process of type checking is not meant to simply discriminate
good programs from bad ones. The type checker is an important driver during the program
development phase, and a major tool for the deployment of lightweight, adaptive software
methodologies, requiring frequent modifications and refactoring. This interactive use of
the type-checker is likely to increase in the near future; the situation is so described in
Altenkirch et al. (2005):
Programming is a complex task which can be made easierfor people to do with the help of computers.
The conventional cycle of programming with a text editor then compiling in ‘batch mode’is a welcome
shortening of the feedback loop since the days of punched cards, but it clearly under utilises the
technology available today. Any typed programming language can benefitfrom the capacity - but not
necessarily the compulsion - to invoke the type-checker incrementally on incomplete subprograms whilst
they are under development. The more powerful the type system, the more pressing this need becomes -
itjust gets harder to do in your head, especially when types contain computations,for which computers
are inherently useful.

It is this interactive use of the computer that is precisely the most exciting prospect
in computer-assisted reasoning, and the crucial point where modern interactive proof
assistants differ from their first generation precursors. The goal (which is still extremely
distant, though clearly identifiable) would be to assist mathematicians not in the act of
checking the ‘correctness’ of their reasoning, but in the process of mathematical discovery,
that is, during design, analysis and elaboration: for instance, in the investigation of the
impact of small, local modifications on the meaning of entities on the logical correctness
of the proof. This can be more easily understood by a simple extension of the Curry-
Howard correspondence, by distinguishing between raw (pre-typed/untyped) programs
and well-typed ones. A mathematical proof, in Lakatos’ sense, is a raw program: a crystal
clear thought experiment, or construction. From this perspective, ‘proofs’ prove nothing:
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Mathematics Programming
proof analysis type inference/refinement
proof/thought experiment untyped program

Table 4. An extended analogy.

they are just tests, experiments, but not necessarily leading to the expected results®. It is
the process of proof analysis that adds a deductive layer to the proof, inferring proof-
generated lemmas and concepts. Proof analysis is then akin to type inference. In the realm
of interactive theorem provers, the module in charge of type inference, synthesising or
constraining information omitted by the user, inserting coercions, imposing suitable views
and so on, is traditionally called the refiner. The refiner (and not the kernel in charge
of proof checking) is the real heart of these systems, and the primary source of their
‘intelligence’. The constant improvements in the functionalities of this component is one
of the main research trends in the field of interactive theorem proving. In particular, most
of the studies aim to attain a tighter integration between the refiner and the modules in
charge of proof automation, with the attempt to add limited deduction abilities to the
former, using an interesting and synergistic analogy with similar studies on type systems
for programming languages (see, for example, the recent, parallel investigations of type
classes (Wadler and Blott 1989; Hall et al. 1996; Wenzel 1997; Sozeau and Oury 2008)).

5. Mathematics and computer science

The onlyfeasible way ofcoming to grips with really radical novelty is orthogonal to the common way of
understanding: it consists in consciously trying not to relate the phenomenon to what isfamiliar from
one’s accidental past, but to approach it with a blank mind and to appreciate itfor its internal structure.

Edsger Dijkstra (Dijkstra 1986)

As observed by Van Den Bos (Bos 1979), the real novelty of the De Millo et al. paper
was that

for the first time a paper on the philosophy of computer science, in this case the methodology of
program verification, has been published in Communications of ACM.

Here, De Millo, Lipton and Perlis seem to have lost a great opportunity by failing to
exploit the most interesting aspects of the analogy they had put forth and entrenching
themselves behind a strictly sociological position and making use of old slogans like
‘dullness of rigour’, “artificiality versus beauty’, and similar things.

Actually, there are at least two major novelties introduced by the advent of computer
science in the epistemological debate: the first is related to the intrinsic nature of
computer science, which strongly differentiates it from mathematics (and all other scientific
disciplines), while the second concerns the altered conditions induced by an extensive use
of information technology in scientific practice.

t As Lakatos says, after Columbus, one should not be surprised if one does not solve the problem one has set
out to solve.
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Concerning the first point, if we look back at the Curry-Howard-De Millo corres-
pondence, there is a striking difference between mathematics and computer science that
should be evident at first glance. The point is that while programs (not algorithms, but
programs!) are a major object of study, analysis and elaboration for computer science,
the mathematical investigation of proofs is absolutely marginal, essentially confined to
a minor subfield of logic known as ‘proof theory’, see, for example, Prawitz (1965) and
Girard et al. (1989).

This is not surprising since computer science is about information, its automatic
processing, transformation and communication, and the main vehicle for managing
information are programs (again, programs, not algorithms!). Luckily, programs are
informative entities, and not only can they be the object of a metamathematical in-
vestigation, but they can also be processed, transformed and communicated as any other
kind of information. In fact, computer science starts to become really interesting when
it is applied to itself. It is precisely this circularity, this auto-referentiality of computer
science that makes it entirely peculiar among all scientific disciplines: meta-information is
still another form of information; the techniques and methodologies of computer science
are an essential part of its domain of investigation.

The difference with mathematics is striking, since the mathematical method has never
been the object of a serious mathematical investigation (apart, possibly, from the timid,
limited attempts of neopositivism). We should then acknowledge, following Popper, that
since it cannot be made an object of validation experiments, and cannot possibly be
refuted, the celebrated ‘mathematical rigour’ is a purely ideological claim, a mere illusion,
or, if you prefer, the result of a refined liturgy.

A program is written in a strictly formal language, and the possibility of writing long
programs itself testifies to the possibility of writing long formal proofs. Moreover, since
programs (almost always) work, there must be a way to govern the pedantic complexity
offormal languages. Here, we are completely reversing the traditional position: the point
is not that verification is important because programs crash, but that verification must be
possible because, most of the time, they do not crash.

An external observer might believe that this is due to particularly favorable, peculiar
conditions of computer science, but this is not the case. The multilingual foundational mi-
asma is a reality we have learned to live with (and, to some extent, to appreciate) at the de-
scriptive/functional level. Change is a rule and adaptability a bare necessity (Fowler 2000):

There’s a refrain | ve heard on every problem project | Ve run into. The developers come to me and say
‘the problem with this project is that the requirements are always changing’. The thing I find surprising
about this situation is that anyone is surprised by it. In building business software requirements changes
are the norm, the question is what we do about it.

Hence, admitting that long, sensible formal programs/proofs can be written, the really
interesting question is if some of the methodologies, not only of static analysis but more
generally of software development, can be applied to the realm of mathematics. In this
way, the original verification/type-checking problem is put in its correct perspective,
namely as one of the tools contributing to a comfortable development environment for
the ‘working mathematician’.
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Here we also directly arrive at our second point, namely the exploitation of the
possibilities offered by the new information technologies, and their impact on scientific
practice. According to Popper, scientific rigour does not depend on the objectivity or
critical attitude of individuals, but on the methodology employed (here, Kuhn expresses
similar ideas (Hutcheon 1995), but in terms of standards and values of science dictated by
the ‘paradigm’ adopted by the scientific community). Hence, if the advent of technology
does materially affect the methodology, the notion of rigour will change accordingly, and
with it the essence of the entire scientific discipline. The point is particularly important in
the case of mathematics, where changes in the criterion of rigour of the proof’ engender
major revolutions (Lakatos 1976).

From many indications, we are approaching one of Kuhn’s pre-revolutionary crises in
the realm of mathematics. The big novelty of this crisis is due to the introduction of the
use of the computer to master the growing complexity of mathematical proofs. Standard
methods seem to have hit a ceiling, though not from intrinsic deficiencies of the theoretical
framework, but from a human deficiency in coping with complex computations/encodings.
As observed by Sarnak (Economist 2005), one of the editors of the Annals of Mathematics,
they expect to receive a growing number of papers involving computer code in the next
20-50 years. So mathematics may become a bit like experimental physics - as foreseen by
Sarnak - where certain results are taken on trust, and independent duplication ofexperiments
replaces examination - or, as attempted by Hales in his Flyspeck project, we may try to
use the computer as a remedy also. In both cases the notion of ‘mathematical rigour’ will
be deeply affected.

6. Content and semantics

One ofthe major goals of verification is to provide a new dimension in the way we do mathematics, as
well as in the way we do computer science.
W.D.Maurer (Maurer 1979)

The idea that a proof assistant should not just support the process of mathematical
verification, but that of mathematical discovery has already been clearly outlined by
Constable et al. in their description of the Nuprl system (Constable et al. 1986):

For our intention is to provide a medium for doing mathematics differentfrom that provided by paper
and blackboard. Eventually such a medium may support a variety of input devices and may provide
communication with other users and systems; the essential point, however, is that this new medium is
active, whereas paper, for example, is not.

In the nineties this goal was somewhat blurred by the imposing pronouncement of
the QED manifesto®, which, with its taxing goal to provide a cultural monument to ‘the
fundamental reality of truth’shifted the focus back onto formal verification.

QED is the very tentative title of a project to build a computer system that effectively represents
all important mathematical knowledge and techniques. The QED system will conform to the highest
standards of mathematical rigor, including the use of strict formality in the internal representation of

t See http://www-unix.mcs.anl.gov/qed.
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knowledge and the use of mechanical methods to check proofs of the correctness of all entries in the
system.

The manifesto describes the ambitious goals of the project and discusses questions
and doubts, and the answers to them. There were two workshops on QED, in 1994 and
1995, but none since then. Is the QED manifesto too ambitious? In this respect it is
instructive to read what the authors of the QED manifesto thought was needed to be
done. First, a group of enthusiastic scientists should get together to determine which
parts of mathematics are needed to be formalised, in what order and with which cross-
connections. The authors assume that this phase may take a few years and it may even
involve a rearrangement of the mathematics itself, before the actual formalisation work
can start. Other points in this ‘to-do-list” are of a similar top-down nature.

However, this is a rather old fashioned approach to the problems, focusing solely on
formal correctness. Developments like Wikipedia show that a more ‘bottom up’distributed
approach may work better, using a simple lightweight basic technology. One could claim
that for mathematics - where the end goal is to get a library of verified reliable results -
such an approach could never work, but for Wikipedia the same doubts were raised
at first: Wikipedia is typically something that works in practice but not in theory. (See
Wiedijk (2007) for a present day evaluation of the QED manifesto.)

The goal of developing innovative, semantic based functionalities transcending the
mere operation of formal checking, and focusing on problems related to the manage-
ment of the repository of (formal) mathematical theorems, such as archiving, indexing,
searching, communication and publishing was strongly advocated in Asperti et al. (2000).
The emerging XML technology seemed to provide the natural infrastructure for the
development of the new systems. In particular, the idea was to use XML as a main,
platform independent language for long-term representation and exchange of the naturally
structured, formal mathematical knowledge, exploiting to their full extent all kinds of
XML technologies: MathML and XHTML for rendering; XSLT for the application of
notational transformations; Xpath and XQuery for complex, content based queries; and
RDF for indexing and efficient document retrieval. It is a pity that, since then, most of
the expectations for XML technologies have not been fulfilled due to intrinsic deficiencies
in their design and implementation: MathML failed to be adopted by major browsers;
XSLT is just too prolix for simple operations and too weak for more complex ‘content
sensitive’ operations; XQuery is too slow for large, highly structured data bases; and RDF
never really went beyond the project phase.

An alternative attempt to employ XML for encoding mathematical content was made
by the OpenMath project (Dewar 2000). In Dewar’s words, OpenMath is a standard
for representing mathematical data in as unambiguous a way as possible. Essentially, an
OpenMath object is a labelled tree describing the abstract syntax tree of the mathematical
entity, whose leaves are the basic OpenMath data structures, such as IEEE double
precision floats; Unicode strings; byte arrays, variables or symbols. Symbols consist of a
name and a reference to a ‘definition’ in an external document called a content dictionary
(CD). The definition itself is given in natural language, while CD’s are essentially meant as
background references for the implementers of phrasebooks, that is, of the actual software
tools able to internalise the OpenMath object inside specific applications.
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A ferocious critique of OpenMath is contained in Fateman (2001). Although we share
most of Fateman’s opinions and, in particular, the concern about the lack of any serious
proof of concept, there are a few points that probably deserve a deeper discussion. In
particular, Fateman affirms that
All protestations to the contrary, it [OpenMath] simply does not have any mandate outside the rather
simple application of denoting what could be trivially done in any programming language capable of
representing attributed trees.

This is true, but the point is not to just use abstract syntax trees for representing the
information, but to agree on their syntax, that is, to propose a standard. Sharing a common
grammar seems to be a minimal pre-requisite for any possible kind of communication
between automatic devices. Then, the use of XML isindeed not essential, but quite natural.
The tremendous step forward consisting of passing from an unstructured representation
of the information to a structured (standard) one, simply cannot be ignored. Of course,
what makes a standard is not a self-proclamation, but its actual adoption, and OpenMath
clearly failed in its mission. However, this does not imply that the objective was basically
wrong.
The second point is more delicate. Fateman says:

We learn that each corresponding program X must have a phrasebook which converts its internal form
Y to an OpenMath form which is, one hopes, the universal semantic notion of Y. But it seems that
except in trivial matters, its semantics may have to be encoded as ‘the meaning of Y to the program
X *. Thus the ideal of having n programs communicating using n phrasebooks to/from OpenMath has
been lost.

Of course, it is not the n2 versus n’ point that matters, but the fact that we would
entirely lose the real sense of having an intermediate structure. If we cannot give any
intended semantic interpretation to our syntax, what is the actual point in having it? The
critique seems to undermine irreparably and at its very roots the quest for a universal
‘intermediate’ language.

In fact it does not. Suppose we ask an application to compute a solution for a
given problem P. We have no way to be sure that it really understood our problem.
After a given time it returns a solution ‘a. We have no way to be sure we correctly
interpreted the solution, either. But who cares? We check if our interpretation of a is
a solution to our interpretation of P, and if it is, we are happy. The point is that the
intermediate information is merely a witness, a trace that we have to interpret and check
after internalisation. The interest is, as usual, that checking is enormously less expensive
than finding. The general picture is even more clear when we add proofs. Suppose there
is in our ‘universal’ language a proof p of some property A. We may define translations
px and Ax to our internal language and check if indeed px is (under our interpretation) a
proof of Ax. If it is, we have a proof, without caring whether the translation was ‘correct
(and surely it could not be, since we have no semantics for the intermediate language).

Having understood that we may have an interesting intermediate language with no
semantics, the actual points are:

1 Can we define a ‘trace’ language for proofs that are of suitable interest to multiple
applications?
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2 Can we apply static analysis techniques for this language (for example, a weak, possibly
logically inconsistent type system)?
3 Can we promote a direct collaborative development of this layer?

Regarding the first point, as we have already observed, the process of formalisation
of a mathematical statement is often compared to the translation of a piece of code
from a high-level programming language to some assembly language, corresponding to
a foundational dialect in some logical system. Inter-operability at a foundational level is
as hopeless as trying to send instructions from one microprocessor to another. On the
other side, the most expensive part of the formalisation process consists of a preliminary
conceptual phase of transformation of the proof into a form suitable to be understood
by a machine that is largely independent of the specific idiosyncrasies of each particular
foundation. Compilation is not an atomic process, and what is currently clearly lacking
is a good intermediate language - which is precisely the trace language we are talking
about.

Is such an objective feasible? If we overcome the foundational impasse of fixing a formal
semantics to quantifiers, and the diatribe about the role and nature of functions, it is
usually acknowledged that we could probably agree on a common syntax for mathematical
formulae. A minimal trace language, which is extremely poor but not completely deprived
of interest, would consist of a graph of dependencies relating a result to the main auxiliary
facts required for its proof (possibly admitting multiple paths). The interest of such an
approach is that it can be refined to a more or less arbitrary degree of detail, and to
the point where a software system can automatically fill in the missing steps. Moreover,
the system itself could assist the user in this refinement activity. The other point is that
the approach does not vastly differ from the natural top-down methodology already in
use in wiki-like systems (where you typically first create the link and then the page
you are linking). If we merely ask a typical mathematical user of such a system to
type mathematical statements using a suitable set of content-oriented LTEX-like macros
(possibly to be agreed according to the same policies that usually govern these systems)
we really see no reason why he should not consent (especially since he could also have
some presentational benefits). Quoting Hales again (Hales 2008):

To undertake the formalisation ofjust 100,000 pages of core mathematics would be one of the most
ambitious collaborative projects ever undertaken in pure mathematics, the sequencing ofa mathematical
genome. One might imagine a massive wiki collaboration that settles the text of the most significant
theorems in contemporary mathematics from Poincare to Sato-Tate.

The point is that everybody must be able to contribute, independent of whether they
are using a proof assistant or not. Interactive theorem-prover users can be in charge of
refining the proofs to more elementary components, possibly automatically populating
the library of basic results (which are mostly meant to be inspected by automatic devices
only). At the same time, the refinement process can provide an essential feedback to
higher-levels, possibly requiring some revisiting of already codified notions and results.
Preliminary developments towards a ‘MathW ki’ system that supports the distributed
development of a library of mathematics on various levels of formality, ranging from the
mathematics informally described on existing web pages to the formalised mathematics
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that we encounter in proof assistants, have been described and advocated in Corbineau and
Kaliszyk (2007) and Corbineau et al. (2008). Such a system should provide a lightweight
cooperative framework for developing and discussing mathematics, on various levels of
formality. It should also provide a place where various existing repositories of (formal)
mathematics come together.

7. Conclusion

The lack at this late date ofeven a single verification ofa working system has sometimes been attributed
to the youth of the field. ... there has never been a verification of, say, a Cobol system that prints
real checks; lacking even one makes it seem doubtful that there could at some time in the future be
many.

R.A.De Millo, R.J. Lipton and A.J. Perlis (De Millo et al. 1979)

As we have already observed, the gloomy predictions of De Millo et al. have been largely
refuted. Formal verification is at present a concrete reality, permitting correctness proofs
of complex software applications. For instance, in the framework of the Verifix Project
a compiler from a subset of Common Lisp to Transputer code was formally checked
in PVS (see Dold and Vialard (2001)). Strecker (Strecker 1998) and Klein (Klein 2005)
certified bytecode compilers from a subset of Java to a subset of the Java Virtual Machine
in Isabelle. In the same system, Leinenbach (Leinenbach et al. 2005) formally verified a
compiler from a subset of C to a DLX assembly code. The Compcert project, headed by
Xavier Leroy, has recently produced a verified optimising compiler from C to PowerPC
assembly code, based on the use of the Coq proof assistant both for programming
the compiler and proving its correctness (Leroy 2006; Tristan and Leroy 2008). Similar
achievements have been obtained in other fields of computer science, spanning the range
from hardware (Harrison 2007) to operating systems (Alkassar et al. 2009; Klein 2009).
However, the parallel drawn by De Millo, Lipton and Perlis between computer science
and mathematics is still relevant, and possibly even more so in view of the recent
proliferation of mathematical proofs involving the use of computers. In particular, in
this paper we have argued that mathematics is destined to assimilate some practices of
software development, and that the future of both mathematics and programming lies
in the fruitful combination of formal verification and the usual social processes that are
already working in both scientific disciplines. Quoting Hales (Hales 2008):
The hope is the system [the proofassistant] will eventually become sufficiently user-friendly to become
a familiar part of the mathematical workplace, much as email, TgX, computer algebra systems and
Web browsers are today.

At present, we are still a very long way from this dream; the current cost of transcribing
a printed page of textbook mathematics into machine-checkable code is estimated as a
week’s labour in Hales (2008), and, more pessimistically, as 1.5 hours per line in Asperti
and Ricciotti (2009). In Wiedijk (2001) the cost of formalising the standard bachelor’s
curriculum of mathematics is estimated at 140 man years. The point is not only to
reduce this cost, but also to improve the benefits coming from the representation of the
information in a ‘machine understandable’ richly structured format that is suitable for
elaboration by a machine. This means developing innovative, content-based functionalities,
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eventually overcoming the reductive operational perspective of verification. The research
directions were clearly traced in Constable et al. (1986) more than 20 years ago:

The natural growth pathfor a system like Nuprl tends toward increased ‘intelligence’. [...] For example,
it is helpful if the system is aware of what is in the library and what users are doing with it. It is
good if the user knows when to involve certain tactics, but once we see a pattern to this activity, it
is easy and natural to inform the system about it. Hence there is an impetus to give the system more
knowledge about itself.

Unfortunately, progress in this direction is extremely slow, and the following question
asked by Dijkstra still remains, for the moment, unanswered:

In the relation between mathematics and computing science, the latter has beenfor many years at the
receiving end, and | have often asked myself if, when, and how computing would ever be able to repay
its debt.

Edsger Dijkstra (Dijkstra 1986)
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