
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/75843

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/75843

M a th . S truct. in Comp. Science (2009), vol. 19, pp. 877-896. © C am bridge U niversity Press 2009

doi:10.1017/S0960129509990041 F irst published online 7 Septem ber 2009

Social processes, program verification and all that
A N D R E A A S P E R T I f , H E R M A N G E U V E R S * and

R A J A N A T A R A J A N §

f Dept. o f Comp. Sci., Univ. o f Bologna, Mura Anteo Zamboni 7, 40127 Bologna, Italy
Email: a s p e r t i@ c s .u n ib o . i t
*Dept. o f Comp. Sci., Radboud Univ. Nijmegen and Tech. Univ. Eindhoven, The Netherlands
Email: h e rm an @ cs.ru .n l
§School o f Tech. and Comp. Sci., Tata Institute o f Fundamental Research, M umbai 400 005, India
Email: r a j a @ t i f r . r e s . i n

Received 25 April 2009; revised 3 M ay 2009

In a controversial paper (De M illo et al. 1979) at the end o f the 1970’s, R. A. De Millo,
R. J. L ipton and A. J. Perlis argued against form al verifications o f program s, m ostly
m otivating their position by an analogy w ith proofs in m athem atics, and, in particular, with
the im practicality o f a strictly form alist approach to this discipline. The recent, impressive
achievements in the field of interactive theorem proving provide an interesting ground for a
critical revisiting o f their theses. We believe th a t the social nature o f p roo f and program
developm ent is uncontroversial and ineluctable, bu t form al verification is no t antithetical to
it. Form al verification should strive no t only to cope with, bu t to ease and enhance the
collaborative, organic nature o f this process, eventually helping us to m aster the growing
complexity o f scientific knowledge.

1. Introduction

Heavier than air flying machines are impossible.
S. P. Langley (Langley 1891)

Formal verification o f programs, no matter how obtained, will not play the same role in the development
o f computer science and software engineering as proofs do in mathematics.

R. A. De Millo, R. J. L ipton and A. J. Perlis (De M illo et al. 1979)

Samuel Pierpont Langley was a professor o f astronom y and physics, and a world-expert
in aerodynam ics during the late nineteenth and early tw entieth century. The esteem with
which he is held can be seen from the fact tha t one o f NASA’s research centres was
nam ed after Langley. A t the height o f his research career, Samuel Langley published a
result (Langley 1891), which came to be known as ‘Langley’s Law ’. According to this
erroneous law - the higher the speed, the lower the drag - more power was required in
order to make an aircraft fly slower, and indeed if this were true, heavier than air flying
machines would certainly have been an impossibility. Fortunately, the W right Brothers
had no t read Langley’s book, and they went on to develop the first m anned aircrafts that
could be controlled in-flight from the aircraft itself.

In a famous, influential paper at the end of 1970’s, R. A. De Millo, R. J. L ipton and
A. J. Perlis (De Millo et al. 1979) advanced various criticisms o f the very idea o f the formal

J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

C a m b r id g e

mailto:asperti@cs.unibo.it
mailto:herman@cs.ru.nl
mailto:raja@tifr.res.in
http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 878

verification o f programs. The impressive advances in this area seem by themselves to belie
their gloomy predictions. Form al verification has currently reached such a level o f m aturity
as to allow correctness proofs o f sophisticated hardw are com ponents (H arrison 2007),
complex program s such as optimising compilers (see, for example, Leroy (2006) and
Tristan and Leroy (2008)), and parts o f m odern operating systems (see, for example,
A lkassar et al. (2009) and Klein (2009)).

It is precisely in view o f these achievements, however, tha t we can look back at
De Millo et al. (1979) w ith a less passionate and m ore objective spirit, m aking a
m ore stringent analysis o f their thesis and argum ents, w ithout focusing on the polemic
fram e intentionally chosen by its authors, viz., in L am port’s wordsf , as a debate between
a reasonable engineering approach that completely ignores verification and a completely
unrealistic view o f verification advocated only by its most naive proponents.

In fact, some o f the thesis advocated by De Millo, L ipton and Perlis is sharable, very
pertinent and still relevant; on the other hand, m ost o f their arguments, following thirty
years o f research, sound obsolete and a bit trite, and are asking for a critical reappraisal.
Here is a quick sum m ary o f our critique, before we lay it out in detail:

— De Millo et al. state (quoting the logician Rosser) tha t ...in tu ition is the final
authority:
Intuitions and analogies may help in the explanation and the assimilation o f a
statem ent, bu t when it comes to verification of a statem ent, p roof is the authority.
Intuition sometimes just fails.

— De Millo et al. state th a t ...w e will continue to argue that programming is like math­
ematics, and that the same social processes that work in mathematical proofs doom
verifications:
We argue th a t m athem atics will become m ore and m ore like program m ing and that
the future o f bo th m athem atics and program m ing lies in the fruitful combination of
form al verification and the usual social processes tha t are already working in both
scientific disciplines.

2. Proofs and programs

Russell did succeed in showing that ordinary working proofs can be reduced to formal, symbolic
deductions. B ut he failed, in three enormous, taxing volumes, to get beyond the elementary fa c ts o f
arithmetic. H e showed what can be done in principle and what cannot be done in practice.

R. A. De Millo, R. J. L ipton and A. J. Perlis (De M illo et al. 1979)

In drawing a parallel between program verification and proofs o f theorems, the key
argum ents adduced by De Millo et al. against the form al approach is the essential
im practicality o f a strictly logistic approach to m athem atics due to the nearly inconceivable
length o f a deduction from first principles. The argum ent is repeated several times: the
quotation above is from their paper (page 272); on the next page they go on to say

A form al demonstration o f one o f Ramanujan’s conjectures assuming set theory and elementary analysis
would take about two thousand pages;

f See h t tp : / / r e s e a r c h .m i c r o s o f t . c o m / e n - u s / u m / p e o p l e / l a m p o r t .

C a m b r i d g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://research.microsoft.com/en-us/um/people/lamport
http://www.journals.cambridge.org

Social processes, program verification and all that 879

and, on page 275, Poincaré is quoted in support o f their claim,

I f it requires twenty-seven equations to establish that 1 is a number, how many will it require to
demonstrate a real theorem?

O f course, the argum ent is not new; even Bourbaki, who is traditionally enlisted in the
ranks of the formalist school (Lee 2002), found the project o f formalising m athem atics
absolutely un-realisable (Bourbaki 1968):

the tiniest p roo f at the beginning o f the Theory o f Sets would already require several hundreds o f signs
fo r its complete formalisation.

The argum ent is reminiscent o f the general disbelief a t the beginning o f the fifties
concerning the potentialities o f com puters and the possibility o f writing long program s,
which was just due to the inability o f conceiving o f high-level languages and a process
o f autom atic translation to a m achine-understandable code. W hen Grace H opper wrote
the first compiler in 1952, opening the way to software development, nobody seemed
interested: ‘I had a running compiler and nobody would touch it’, she said. ‘They told me
com puters could only do arithm etic.’ (Schieber 1987). The analogy w ith com pilation has
already been m ade by M aurer back in 1979 (M aurer 1979):

We can make an analogy here with compiling a higher level language program into a machine lan­
guage. Originally this was done by hand [...], then compilers came along and started to do the job
automatically. [...] nobody is ever going to read the object code produced by a compiler; one simply
trusts the compiler. W hat we hope fo r in verifiers is that we will at least be able to trust them to show
program correctness.

H arrison (H arrison 2008) has recently restated the concept in the following term s:

the arrival o f the computer changes the situation dramatically. [...] checking conformance to form al
rules is one o f the things computers are very good at. [...] the Bourbaki claim that the transition to a
completely form al text is routine seems almost an open invitation to give the task to computers.

In fact, autom ation o f form al reasoning has recently gone far beyond the elementary
fac ts o f arithmetic, perm itting the form alisation and autom atic verification o f complex
results such as the asym ptotic distribution o f prime num bers (Avigad et al. 2007), the
four colour theorem (G onthier 2007; G onthier 2008) and the Jordan curve theorem
(Hales 2007). All these developments are significant in size (spanning from 30 to 75
thousand lines o f code), but their complexity is still negligible when com pared with, say,
the size o f a m odern operating system.

The form al proof o f the Jordan curve theorem is due to Thom as Hales, a famous
m athem atician who is particularly known for his p roof o f the Kepler conjecture (the m ost
com pact way o f packing congruent spheres in three dim ensional Euclidean space), and for
the events related to its publication. Briefly, his p roof o f the Kepler conjecture involved
a large am ount o f com puter verification, and after three years o f work, the reviewers of
the Annals o f Mathematics concluded that, although they believed the proof was correct,
they were unable to check it thoroughly due to m any ‘low-level com ponents’ tha t lacked
a more general intuition, especially given the degree o f com putation involved. In the end,
the Annals o f Mathematics published a short version o f the proof (Hales 2005), and made
the co d e /d a ta for the p roo f available un-reviewed on its website. A revised, full version

C a m b r i d g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 880

of the article was finally published by Discrete and Computational Geometry. Since then,
T hom as Hales has started a new project, called Flyspeck (see Hales (2008)), to check the
correctness o f his p roof formally w ith the help o f interactive theorem provers.

The Kepler conjecture and the four colour theorem are good examples o f a large
num ber o f m athem atical proofs based on a direct and substantial use of a computer.
O ther examples m entioned by Hales in Hales (2008) are the non-existence of a projective
plane o f order 10, the proof th a t the Lorentz equations have a strange attractor, the double­
bubble problem for minimising soap bubbles enclosing two equal volumes, the optim ality
o f the Leech lattice am ong 24-dimensional lattice packings, and hyperbolic 3-manifolds.
In all these cases, the com puter is used to m anage the complexity, usually by autom atically
checking a finite, albeit large num ber o f ‘atom ic’ configurations (a kind of com putation
th a t would not be possible, or extremely laborious for a hum an). M athem atics is entering
a new era o f results requiring proofs o f a complexity and dim ension tha t defy hum an
com prehension, leaving a m iasm a o f doubt about their effective correctness. For instance,
the theorem o f classification o f finite groups is the result o f the collective work of
about a hundred authors, com posed o f over 10000 pages o f results, spread across 500
jou rnal articles. One o f the key results, the Feit-T hom son (or odd-order) theorem (Feit
and Thom pson 1963) itself takes 255 pages. A form alisation of the odd-order theorem
has recently been started by the IN R IA -M icrosoft research project on ‘m athem atical
com ponents’ lead by G. G onthier (G onthier et al. 2007). As another example, the preprint
o f F. A lm gren’s masterpiece in geometric measure theory, familiarly referred to as the ‘Big
Paper’, is 1728 pages long.

Perhaps for the first time in the history o f their discipline, m athem aticians are now
forced to accept the simple fact tha t m any theorems, even if adm itting simple and
elegant statements, may not adm it equally simple and elegant proofsf . As observed in
Geuvers (2009), it can be formally proved that, in any given logical system, there is no
upper bound to the relationship between the size o f a statem ent and the size o f its shortest
proof, and there is no reason to believe th a t things should be better if we restrict our
attention to ‘interesting’ theorems. Even De Millo et al. themselves adm it tha t this is the
case.

For even the most trivial mathematical theories, there are simple statements whose form al demonstra­
tions would be impossibly long.

But they do no t w ant to accept the consequence th a t a com puter may be needed to help
the hum an in verifying the form al dem onstrations.

N o t always can one find ‘a truly marvelous dem onstration’ that, alas, is just a bit too
long to ‘fit in the m argin o f a book’: a p roof can just be so complicated, no m atter
w hat kind o f rethinking you m ight try. D oes this m ean th a t such a proof just has to be
dismissed and the validity o f the statem ent rejected, possibly renouncing any proof, all
sacrificed on the mystic altar o f elegance and simplicity? M ay it no t possibly m ean that
we just have to look for the right tools to help us cope with its complexity, and tha t we
have to learn to appreciate a different and less archaic kind o f beauty?

f A ccording to L akatos (L akatos 1976), simplicity is the eighteenth-century idea o f m athem atical rigour.

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

Social processes, program verification and all that 881

M a th em a tics P rogram m ing

theorem program
proof verification

Table 1. The verifier’s analogy, according to De Millo, Lipton and Perlis.

M a th em a tics P rogram m ing

theorem specification
proo f program
im aginary form al p roof verification

Table 2. De Millo, Lipton and Perlis’ analogy.

3. Theorems, proofs and specifications

By fa r the most common way in which we deal with something new is by trying to relate the novelty
to what is fam iliar from past experience: we think in terms o f analogies and metaphors. (Even the 5th
Edition o f the Concise Oxford Dictionary still defines a typewriter as a ‘machine fo r printing characters
on paper as substitute fo r handwriting’!) A s long as history evolves along smooth lines, we get away
with that technique, but that technique breaks down whenever we are suddenly faced with something
so radically different from what we have experienced before that all analogies, being intrinsically too
shallow, are more confusing than helpful.

Edsger D ijkstra (D ijkstra 1986)

De Millo, L ipton and Perlis describe the ‘verifier’s analogy’ between m athem atics and
program m ing (see Table 1), and they contrast it w ith their own analogy (Table 2). Their
observation is tha t the verifiers are m istaken by wanting to identify the notion o f ‘p ro o f’
(from m athem atics) w ith ‘form al verification’ in com puter science.

De Millo, L ipton and Perlis do not give any source for the analogy attribu ted to
‘verifier’s’; in fact, it is hard to imagine tha t anybody working in the area o f program
verification would feel a t ease w ith such an analogy. If som ebody working on form al
m ethods really pu t it forward, their intent was probably to emphasise a simple bu t crucial
fact, which, at the end o f seventies was still hard to grasp, namely th a t program s themselves
could become, like m athem atical theorems, the object o f a scientific investigation.

In fact, the analogy th a t De Millo, L ipton and Perlis are so happy with, to the extent
tha t they believe they invented it themselves, was precisely the leading theme that, in
a slightly m ore sophisticated form, was a t th a t very time driving research in the field
o f com puter-assisted verification. The ‘form al’ counterpart o f the analogy is called the
C urry-H ow ard correspondence (Howard 1980), and it ju st differs from the description in
Table 2 by the substitution o f ‘type’ for ‘specification’: a simple twist, which by itself opens
up an entirely new universe o f possibilities^ The analogy can then be m ade more precise
(see Table 3). P roof verification is nothing other than type-checking, and, furtherm ore,

f H ow ard’s pap er was prin ted in 1980, b u t the first d ra ft was circulated in 1969. A s observed by H ow ard
himself, however, the m ain ideas should be ascribed to Curry, back in the fifties.

J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

C a m b r id g e

http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 882

M a th em a tics P rogram m ing

theorem type
proof program
correctness verification type checking
cut elim ination com putation

Table 3. Curry-Howard Correspondence.

Cut Elimination

A cut is a particu lar logical rule th a t perm its the factorization o f a complex reasoning step into
a sequence o f simpler steps. In order to prove A, we m ay tem porarily assume B, provided we
prove it later. In principle, one expects to be able to avoid the use o f this rule entirely by simply
unfolding the p roo f o f B inside the original p roo f o f A . In practice, the cut-elim ination proof,
also known as G entzen’s H auptsatz, is far from trivial, and is n o t satisfied by all logical systems;
bu t when it holds, it is rich in consequences:

Consistency: It is usually easy to verify th a t a system does no t adm it cut-free proofs o f the absurd.
In such a case, if the system enjoys the cut elim ination property, it is im mediately consistent.

Subformula property: This is an im portan t property in several approaches to proof-theoretic
sem antics and au tom ated theorem proving. In essence, it says th a t in order to prove a given
statem ent A, you only need to use sub-form ulae o f A.

Fig. 1. N orm alisation o f proofs.

com putation has a proof-theoretical counterpart in the form o f cut-elimination, which is
a process o f norm alisation o f proofs consisting essentially o f removing ‘detours’ (lemmas)
by inlining them (see Figure 1).

The analogy w ith type checking also helps in clarifying a com m on misconception
about autom atic verification. W hen we type-check a piece o f code, a m athem atical
expression, say, we do no t have to com pute it in order to check tha t it is properly typed:
type checking is an entirely static operation. Similarly, when we check the proof o f a
m athem atical theorem - the fam ous R am anujan conjecture, say - we are no t supposed to
first normalise the proof to a mere application o f axioms from set theory and elementary
analysis: the proof can make use o f any sort of theorem s and lemmas, and we check it
statically and compositionally.

Starting from their analogy (see Table 2), D e Millo, L ipton and Perlis also raise the
following fundamental logical objection to verification :

Since the requirement fo r a program is informal and the program is formal, there must be a transition,
and the transition itse lf must necessarily be informal.

This criticism has already been answered by M aurer (M aurer 1979), distinguishing between
program correctness (the fact tha t a program meets a specification), and specification
correctness (the fact th a t the specification meets the user expectations):

A proo f o f correctness consists o f two steps, one formal, the other informal; and neither o f the two is
valid without the other one.

J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

C a m b r id g e

http://www.journals.cambridge.org

Social processes, program verification and all that 883

The idea o f the C urry-H ow ard correspondence is th a t it is no t only specifications tha t
can be given in a completely form al way, bu t that, by suitably enriching the system of
types, and, in particular, by adding dependent types, they can be altogether assimilated to
types. A dependent type is a type tha t depends on a term. A typical example is the type
o f n-dimensional vectors in some space A , whose type clearly depends on the value n.
M ore generally, given a specification R(x, y) expressing the expected relation between the
input x : A and the ou tpu t y : B o f a program (where A and B can be seen as ‘trad itional’
types), we can build the following dependent type Vx :A.{y :B |R(x, y)} and try to check if
our program inhabits it. O f course, in order to perform the verification, the program m er
may be forced to provide substantial help to the type-checker in the form o f suitable type
annotations o f inner expressions (this is not too far from pre- and post-conditions in an
axiom atic setting (Hoare 1969)). Q uoting A ltenkirch et al. (2005):

While conventional type systems allow us to validate our programs with respect to a fixed set o f
criteria, dependent types are much more flexible, they realise a continuum o f precision from the basic
assertions we are used to expect from types up to a complete specification o f the program's behavior.
[...] While the price fo r form ally certified software may be high, it is good to know that we may
pay it in instalments and that we are free to decide how fa r we want to go. Dependent types reduce
certification to type checking, hence they provide a means to convince others that the assertions we
make about our programs are correct. Dependently typed programs are, by their nature, p roo f carrying
code (Necula and Lee 1996; Hamid et al. 2003).

The C urry-H ow ard correspondence also opens up a completely innovative perspective
on program verification, no t consisting o f trying to m atch a program against a specifica­
tion, bu t merely consisting o f proving tha t the specification can be inhabited. If the user
can supply a constructive p roof o f this fact, then it is possible to autom atically extract
from the proof its algorithm ic content, th a t is, a program satisfying the specification.
Program extraction was exploited for the first time in the N uprl p roof developm ent system
(Constable et al. 1986). H aving proved a property t o f the form Vx : A, 3y : B ,R (x , y), the
term t e r m_ o f (t) extracts a function m apping any a o f type A into a pair consisting o f an
element b o f type B and a p roof p th a t such a b verifies the property R(a, b). By selecting
the first com ponent o f this pair, we have a function f from A to B such th a t R(x , f (x))
for all x in A. The extraction technique can also be extended to some extent to classical
proofs (Parigot 1992; B arbanera and Berardi 1996).

The C urry-H ow ard correspondence may also help in gaining an understanding o f some
o f the reasons for the slow recognition o f a com puter-aided, strictly form al approach in the
m athem atical com m unity and, conversely, o f the m oderate interest o f com puter scientists
for its application in this field. The point is tha t form al proofs, whatever effort you
make to write them in a natural, declarative style (see, for example, Wenzel (1999)), still
look like program s, and the vast m ajority o f m athem aticians dislike program s altogether.
On the other side, com puter scientists (usually) like them, bu t all the fun is in creating
something executable while, o f course, you never eliminate cuts from m athem atical proofs
(Boolos 1984). There is, alas, nothing so irrem ediably static, somberly boring as a (formal)
p roof o f a m athem atical statem ent, once it has been completed. Still, o f course, there is the
possibility o f extracting a program from a (constructive) proof. U nfortunately, you have
no chance o f extracting a good algorithm from a good proof, simply because the criteria

C a m b r i d g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 884

used to evaluate proofs (elegance, conciseness) and algorithm s (performance, above all)
are completely different, while the proof and the program realising it are essentially
isomorphic. For instance, if you try to prove th a t any list o f objects can be ordered with
respect to a given ordering relation, you will m ost likely end up w ith a proof corresponding
to an insertion algorithm ; to extract a quicksort, you have to entirely rethink the proof
according to the expected output (which is no t methodologically very far removed from
first writing the algorithm and then proving its correctness).

4. Proofs and refutations

We believe that, in the end, it is a social process that determines whether mathematicians fe e l confident
about a theorem - and we believe that, because no comparable social process can take place among
program verifiers, program verification is bound to fail.

R. A. De Millo, R. J. L ipton and A. J. Perlis (De M illo et al. 1979)

A theorem either can or cannot be derived from a set o f axioms. I don’t believe that the correctness
o f a theorem is to be decided by a general election.

Leslie L am port (L am port 1979)

There has always been an interesting debate about the actual role of proofs in
mathematics. De Millo et al. firmly deny any deductive validity to proofs. This position
is very com m on am ong m athem aticians, and had eminent supporters. For instance,
G. H. Hardy, who is traditionally credited w ith reform ing British m athem atics by bringing
rigour into it, described the notion o f m athem atical p roof as we working mathematicians
are familiar with in the following term s (H ardy 1928):

There is strictly speaking no such thing as a mathematical proof; we can, in the last analysis, do
nothing but point; [...] proofs are what Littlewood and I call gas, rhetorical flourishes designed to
affect psychology, pictures on the board in the lecture, devices to stimulate the imagination o f pupils.

This view is traditionally contrasted with the logistic (neopositivist) school, which has
been re-invigorated by the recent results in the field o f autom ation o f form al reasoning:

The history o f mathematics has stories about fa lse results that went undetected fo r long periods o f
time. However, it is generally believed that i f a published mathematical argument is not valid, it will
be eventually detected as such. While the process o f finding a p roo f may require creative insight, the
activity o f checking a given mathematical argument is an objective activity; mathematical correctness
should not be decided by a social process (Coquand 2008).

H arrison (H arrison 2008) explicitly m entions th a t one o f the goals o f com puter-aided
verification should be

supplementing or even partly replacing the process o f peer review fo r mainstream mathematical papers
with an objective and mechanizable criterion fo r the correctness o f proofs.

As suggested by M acKenzie (M acKenzie 2005) am ong others, the two positions can be
reconciled if we accept the idea th a t p roof assistants are going to change the ‘whole
concept o f p ro o f’, splitting the two roles o f message and certificate:

Ever since Euclid, mathematical proofs have served a dual purpose: certifying that a statement is true,
and explaining why it is true. Now those two epistemological functions may be divorced. In the fu ture

J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

C a m b r id g e

http://www.journals.cambridge.org

Social processes, program verification and all that 885

the computer assistant may take care o f the certification and leave the mathematicians to look fo r an
explanation that humans can understand.

A proof serves two purposes:

1 to be able to verify the validity o f a statem ent; and
2 to explain - by providing intuitions - why the statem ent is true.

These roles are traditionally interwoven: a proof contains intuitions, sometimes some
rem arks on why a certain m ethod does no t work, m otivating examples, plus a line of
reasoning th a t builds up the precise argument. W ith the advent o f tools like proof
assistants, it becomes realistic for us to leave the first incarnation o f a proof (the
verification) to a com puter and the second (the explanation) to the human.

In the optim al scenario, we can m aintain a close connection between the two incarn­
ations o f proof. Or even better, we would be able to generate autom atically a machine
checkable certificate from a hum an readable message. The problem is that, since the
translation has to be done autom atically, the message itself m ust already be w ritten in
a machine understandable language, and it is extremely difficult to define a ‘high-level’
language suitable for this kind of hum an-m achine com m unication.

However, there is another problem. Suppose we have H arrison’s tool (and we are still
very far from such a goal). Then, o f course, the fact tha t proofs are validated by the tool
is no t a sufficient reason for accepting tham as a scientific contribution; H arrison does
no t suggest that, but seems to suggest the converse, which looks equally problematic.

The historical relevance o f wrong proofs in the developm ent o f m athem atics is easily
docum ented (see, for example, Lecat (1939)). To take a recent example, which is well
known in the program m ing language community, w ithout the publication o f M artin-
L ö f’s m istaken proof o f term ination for system U, we would probably never have had
G irard ’s system F, th a t is, the polym orphic lam bda calculus.

False proofs, or proofs becom ing refutable under a suitable concept-stretching o f the
relevant notions, are an essential com ponent o f the quasi-empirical nature o f mathem atics
and are extensively discussed in Lakatos (Lakatos 1976):

‘Certainty’ is fa r from being a sign o f success, it is only a symptom o f lack o f imagination, o f conceptual
poverty. I t produces smug satisfaction and prevents the growth o f knowledge.

The risk envisaged by Lakatos (though a similar criticism o f logical positivism was
raised by Popper (Popper 1963)) is to

construct form alised languages in which artificially congealed states o f science are expressed. [...]
Science teaches us not to respect any given conceptual-linguistic framework lest it should turn into a
conceptual prison.

However, Lakatos seems to be m ore concerned w ith the declarative, descriptive level of
theories and definitions, than with the foundational, logical layer, and a few pages later
he observes:

Nineteenth-century mathematical criticism stretched more and more concepts, and shifted the meaning­
load o f more and more terms onto the logical form o f the propositions and onto the meaning o f the
few (as ye t) unstretched terms. In the 1930’s this process seemed to slow down and the demarcation
line between unstretchable (logical) terms and stretchable (descriptive) terms seemed to become stable.

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 886

A list, containing a small number o f logical terms came to be widely agreed upon, so that a general
definition o f logical truth became possible. [...] The most interesting result in this direction was Popper
(Popper 1948) from which it follow s that one cannot give up further logical constants without giving
up some basic principles o f rational discussion.

The only actual philosophical danger o f a strictly form al approach to m athem atics -
though no t to be underestim ated - may be to induce the fallacy o f deductionism,
suggesting tha t the path o f discovery is from axioms a n d /o r definitions to proofs and
theorem s (a risk th a t Lakatos considers ju st a bit m ore dangerous for m athem atics, than
inductivism). This point has been clearly stated by Paul H alm os in his ‘A utom athography’
(Halm os 1985):
M athematics is not a deductive science. When you try to [solve a problem] .. . what you do is trial and
error, experimentation, guesswork. You want to find out what the fa c ts are, and what you do is in that
respect similar to what a laboratory technician does, but it is different in its degree o f precision and
information.

The systematic use o f an autom atic checker to rule out wrong theorems, simply negating
their right to existence and with them any form o f refutation (and hence o f criticism),
would o f course be a dram atic step towards a strictly conservative deductionist attitude,
negating the possibility and im portance of w hat Lakatos calls naive guessing and concept
stretching. However, this is no t its intended use. In exactly the same way as during
program com pilation, the process o f type checking is no t m eant to simply discriminate
good program s from bad ones. The type checker is an im portant driver during the program
developm ent phase, and a m ajor tool for the deployment o f lightweight, adaptive software
m ethodologies, requiring frequent modifications and refactoring. This interactive use of
the type-checker is likely to increase in the near future; the situation is so described in
A ltenkirch et al. (2005):
Programming is a complex task which can be made easier fo r people to do with the help o f computers.
The conventional cycle o f programming with a text editor then compiling in ‘batch m ode’ is a welcome
shortening o f the feedback loop since the days o f punched cards, but it clearly under utilises the
technology available today. Any typed programming language can benefit from the capacity - but not
necessarily the compulsion - to invoke the type-checker incrementally on incomplete subprograms whilst
they are under development. The more powerful the type system, the more pressing this need becomes -
it ju s t gets harder to do in your head, especially when types contain com putations , fo r which computers
are inherently useful.

It is this interactive use o f the com puter th a t is precisely the m ost exciting prospect
in com puter-assisted reasoning, and the crucial point where m odern interactive proof
assistants differ from their first generation precursors. The goal (which is still extremely
d istant, though clearly identifiable) would be to assist m athem aticians no t in the act of
checking the ‘correctness’ o f their reasoning, bu t in the process o f mathematical discovery,
th a t is, during design, analysis and elaboration: for instance, in the investigation o f the
im pact o f small, local modifications on the meaning o f entities on the logical correctness
o f the proof. This can be m ore easily understood by a simple extension o f the Curry­
How ard correspondence, by distinguishing between raw (pre-typed/untyped) program s
and well-typed ones. A m athem atical proof, in L akatos’ sense, is a raw program : a crystal
clear thought experiment, or construction. F rom this perspective, ‘proofs’ prove nothing:

Cambridge J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

Social processes, program verification and all that 887

M a th em a tics P rogram m ing

proo f analysis type inference/refinem ent
p ro o f/th o u g h t experim ent untyped program

Table 4. An extended analogy.

they are just tests, experiments, bu t no t necessarily leading to the expected results^. It is
the process o f p roof analysis th a t adds a deductive layer to the proof, inferring proof­
generated lemmas and concepts. P roof analysis is then akin to type inference. In the realm
o f interactive theorem provers, the m odule in charge o f type inference, synthesising or
constraining inform ation om itted by the user, inserting coercions, imposing suitable views
and so on, is traditionally called the refiner. The refiner (and no t the kernel in charge
o f proof checking) is the real heart o f these systems, and the prim ary source o f their
‘intelligence’. The constant improvements in the functionalities o f this com ponent is one
o f the m ain research trends in the field o f interactive theorem proving. In particular, m ost
o f the studies aim to attain a tighter integration between the refiner and the m odules in
charge o f proof autom ation, with the attem pt to add limited deduction abilities to the
former, using an interesting and synergistic analogy w ith similar studies on type systems
for program m ing languages (see, for example, the recent, parallel investigations of type
classes (W adler and Blott 1989; Hall et al. 1996; Wenzel 1997; Sozeau and Oury 2008)).

5. Mathematics and computer science

The only feasible way o f coming to grips with really radical novelty is orthogonal to the common way o f
understanding: it consists in consciously trying no t to relate the phenomenon to what is fam iliar from
one’s accidental past, but to approach it with a blank mind and to appreciate it fo r its internal structure.

Edsger D ijkstra (D ijkstra 1986)

As observed by Van D en Bos (Bos 1979), the real novelty o f the De Millo et al. paper
was tha t

fo r the firs t time a paper on the philosophy o f computer science, in this case the methodology o f
program verification, has been published in Communications o f ACM .

Here, De Millo, L ipton and Perlis seem to have lost a great opportunity by failing to
exploit the m ost interesting aspects o f the analogy they had pu t forth and entrenching
themselves behind a strictly sociological position and m aking use o f old slogans like
‘dullness o f rigour’, ‘artificiality versus beauty’, and similar things.

Actually, there are at least two m ajor novelties introduced by the advent o f com puter
science in the epistemological debate: the first is related to the intrinsic nature of
com puter science, which strongly differentiates it from mathem atics (and all other scientific
disciplines), while the second concerns the altered conditions induced by an extensive use
o f inform ation technology in scientific practice.

t A s L akatos says, a fte r C olum bus, one should n o t be surprised if one does n o t solve the problem one has set
ou t to solve.

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 888

Concerning the first point, if we look back at the C urry-H ow ard-D e Millo corres­
pondence, there is a striking difference between m athem atics and com puter science that
should be evident a t first glance. The point is tha t while program s (not algorithms, but
program s!) are a m ajor object o f study, analysis and elaboration for com puter science,
the mathematical investigation o f proofs is absolutely m arginal, essentially confined to
a m inor subfield o f logic know n as ‘proof theory’, see, for example, Prawitz (1965) and
G irard et al. (1989).

This is no t surprising since com puter science is about information, its autom atic
processing, transform ation and com m unication, and the m ain vehicle for m anaging
inform ation are programs (again, program s, no t algorithms!). Luckily, program s are
informative entities, and no t only can they be the object o f a m etam athem atical in­
vestigation, bu t they can also be processed, transform ed and com m unicated as any other
kind o f inform ation. In fact, com puter science starts to become really interesting when
it is applied to itself. It is precisely this circularity, this auto-referentiality o f com puter
science tha t makes it entirely peculiar am ong all scientific disciplines: m eta-inform ation is
still another form of inform ation; the techniques and methodologies o f com puter science
are an essential part o f its dom ain o f investigation.

The difference w ith m athem atics is striking, since the m athem atical m ethod has never
been the object o f a serious mathematical investigation (apart, possibly, from the timid,
limited attem pts o f neopositivism). We should then acknowledge, following Popper, that
since it cannot be m ade an object o f validation experiments, and cannot possibly be
refuted, the celebrated ‘m athem atical rigour’ is a purely ideological claim, a mere illusion,
or, if you prefer, the result o f a refined liturgy.

A program is written in a strictly form al language, and the possibility o f writing long
program s itself testifies to the possibility of writing long form al proofs. M oreover, since
program s (alm ost always) work, there m ust be a way to govern the pedantic complexity
o f form al languages. Here, we are completely reversing the traditional position: the point
is no t th a t verification is important because programs crash, bu t tha t verification must be
possible because, most o f the time, they do not crash.

A n external observer m ight believe th a t this is due to particularly favorable, peculiar
conditions o f com puter science, bu t this is no t the case. The m ultilingual foundational m i­
asm a is a reality we have learned to live with (and, to some extent, to appreciate) at the de­
scriptive/functional level. Change is a rule and adaptability a bare necessity (Fowler 2000):

There’s a refrain I ’ve heard on every problem project I ’ve run into. The developers come to me and say
‘the problem with this project is that the requirements are always changing’. The thing I find surprising
about this situation is that anyone is surprised by it. In building business software requirements changes
are the norm, the question is what we do about it.

Hence, adm itting th a t long, sensible form al program s/proofs can be written, the really
interesting question is if some o f the methodologies, no t only o f static analysis but more
generally of software development, can be applied to the realm o f m athematics. In this
way, the original verification/type-checking problem is pu t in its correct perspective,
namely as one of the tools contributing to a com fortable developm ent environm ent for
the ‘working m athem atician’.

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

Social processes, program verification and all that 889

H ere we also directly arrive at our second point, namely the exploitation o f the
possibilities offered by the new inform ation technologies, and their im pact on scientific
practice. According to Popper, scientific rigour does no t depend on the objectivity or
critical attitude o f individuals, bu t on the methodology employed (here, K uhn expresses
similar ideas (H utcheon 1995), but in term s o f standards and values o f science dictated by
the ‘paradigm ’ adopted by the scientific community). Hence, if the advent o f technology
does m aterially affect the m ethodology, the notion o f rigour will change accordingly, and
w ith it the essence o f the entire scientific discipline. The point is particularly im portant in
the case o f m athem atics, where changes in the criterion o f ‘rigour o f the p roo f’ engender
major revolutions (Lakatos 1976).

F rom m any indications, we are approaching one o f K uhn’s pre-revolutionary crises in
the realm o f mathem atics. The big novelty o f this crisis is due to the introduction o f the
use o f the com puter to m aster the growing complexity o f m athem atical proofs. S tandard
m ethods seem to have hit a ceiling, though no t from intrinsic deficiencies o f the theoretical
framework, bu t from a hum an deficiency in coping w ith complex com putations/encodings.
As observed by Sarnak (Econom ist 2005), one o f the editors o f the Annals o f Mathematics,
they expect to receive a growing num ber o f papers involving com puter code in the next
20-50 years. So m athem atics may become a bit like experimental physics - as foreseen by
Sarnak - where certain results are taken on trust, and independent duplication ofexperim ents
replaces examination - or, as attem pted by Hales in his Flyspeck project, we may try to
use the com puter as a remedy also. In bo th cases the notion o f ‘m athem atical rigour’ will
be deeply affected.

6. Content and semantics

One o f the major goals o f verification is to provide a new dimension in the way we do mathematics, as
well as in the way we do computer science.

W. D. M aurer (M aurer 1979)

The idea th a t a p roof assistant should no t just support the process o f m athem atical
verification, bu t tha t o f m athem atical discovery has already been clearly outlined by
Constable et al. in their description o f the N uprl system (Constable et al. 1986):

For our intention is to provide a medium fo r doing mathematics different from that provided by paper
and blackboard. Eventually such a medium may support a variety o f input devices and may provide
communication with other users and systems; the essential point, however, is that this new medium is
active, whereas paper, fo r example, is not.

In the nineties this goal was som ewhat blurred by the imposing pronouncem ent of
the Q ED manifesto^, which, w ith its taxing goal to provide a cultural monument to ‘the
fundamental reality o f truth’ shifted the focus back onto form al verification.

QED is the very tentative title o f a project to build a computer system that effectively represents
all important mathematical knowledge and techniques. The QED system will conform to the highest
standards o f mathematical rigor, including the use o f strict form ality in the internal representation o f

t See h t tp : / /w w w -u n ix .m c s .a n l .g o v /q e d .

J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

C a m b r id g e

http://www-unix.mcs.anl.gov/qed
http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 890

knowledge and the use o f mechanical methods to check proofs o f the correctness o f all entries in the
system.

The manifesto describes the am bitious goals o f the project and discusses questions
and doubts, and the answers to them. There were two w orkshops on Q ED , in 1994 and
1995, bu t none since then. Is the Q ED manifesto too am bitious? In this respect it is
instructive to read w hat the authors o f the Q ED manifesto thought was needed to be
done. First, a group o f enthusiastic scientists should get together to determine which
parts o f m athem atics are needed to be formalised, in w hat order and w ith which cross­
connections. The authors assume th a t this phase may take a few years and it may even
involve a rearrangem ent o f the m athem atics itself, before the actual form alisation work
can start. O ther points in this ‘to-do-list’ are o f a similar top-down nature.

However, this is a rather old fashioned approach to the problems, focusing solely on
form al correctness. Developm ents like W ikipedia show tha t a more ‘bo ttom up’ distributed
approach may work better, using a simple lightweight basic technology. One could claim
th a t for m athem atics - where the end goal is to get a library o f verified reliable results -
such an approach could never work, but for W ikipedia the same doubts were raised
at first: W ikipedia is typically something tha t works in practice bu t no t in theory. (See
W iedijk (2007) for a present day evaluation o f the Q ED manifesto.)

The goal o f developing innovative, semantic based functionalities transcending the
mere operation o f form al checking, and focusing on problems related to the m anage­
m ent o f the repository o f (formal) m athem atical theorems, such as archiving, indexing,
searching, com m unication and publishing was strongly advocated in A sperti et al. (2000).
The emerging X M L technology seemed to provide the natu ral infrastructure for the
developm ent o f the new systems. In particular, the idea was to use X M L as a main,
p latform independent language for long-term representation and exchange o f the naturally
structured, form al m athem atical knowledge, exploiting to their full extent all kinds of
X M L technologies: M athM L and X H T M L for rendering; XSLT for the application of
notational transform ations; X path and XQuery for complex, content based queries; and
R D F for indexing and efficient docum ent retrieval. It is a pity that, since then, m ost of
the expectations for X M L technologies have not been fulfilled due to intrinsic deficiencies
in their design and im plem entation: M athM L failed to be adopted by m ajor browsers;
XSLT is ju st too prolix for simple operations and too weak for more complex ‘content
sensitive’ operations; XQuery is too slow for large, highly structured d a ta bases; and R D F
never really went beyond the project phase.

A n alternative attem pt to employ X M L for encoding m athem atical content was made
by the O penM ath project (Dewar 2000). In D ew ar’s words, O penM ath is a standard
for representing m athem atical d a ta in as unambiguous a way as possible. Essentially, an
O penM ath object is a labelled tree describing the abstract syntax tree o f the m athem atical
entity, whose leaves are the basic O penM ath da ta structures, such as IE E E double
precision floats; Unicode strings; byte arrays, variables or symbols. Symbols consist o f a
nam e and a reference to a ‘definition’ in an external docum ent called a content dictionary
(CD). The definition itself is given in natu ral language, while C D ’s are essentially m eant as
background references for the implementers o f phrasebooks, th a t is, o f the actual software
tools able to internalise the O penM ath object inside specific applications.

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

Social processes, program verification and all that 891

A ferocious critique of O penM ath is contained in Fatem an (2001). A lthough we share
m ost o f F atem an’s opinions and, in particular, the concern about the lack o f any serious
proof o f concept, there are a few points tha t probably deserve a deeper discussion. In
particular, Fatem an affirms tha t

A ll protestations to the contrary, it [O penM ath] simply does not have any mandate outside the rather
simple application o f denoting what could be trivially done in any programming language capable o f
representing attributed trees.

This is true, but the point is no t to just use abstract syntax trees for representing the
inform ation, bu t to agree on their syntax, tha t is, to propose a standard. Sharing a com m on
gram m ar seems to be a m inimal pre-requisite for any possible kind o f com m unication
between autom atic devices. Then, the use o f X M L is indeed no t essential, bu t quite natural.
The trem endous step forw ard consisting o f passing from an unstructured representation
o f the inform ation to a structured (standard) one, simply cannot be ignored. O f course,
w hat makes a standard is not a self-proclamation, bu t its actual adoption, and O penM ath
clearly failed in its mission. However, this does no t imply tha t the objective was basically
wrong.

The second point is m ore delicate. Fatem an says:

We learn that each corresponding program X must have a phrasebook which converts its internal form
Y to an OpenMath form which is, one hopes, the universal semantic notion o f Y. B ut it seems that
except in trivial matters, its semantics may have to be encoded as ‘the meaning o f Y to the program
X ’. Thus the ideal o f having n programs communicating using n phrasebooks to /from OpenMath has
been lost.

O f course, it is not the ‘n2 versus n ’ point tha t m atters, bu t the fact th a t we would
entirely lose the real sense o f having an interm ediate structure. If we cannot give any
intended semantic in terpretation to our syntax, w hat is the actual point in having it? The
critique seems to underm ine irreparably and at its very roots the quest for a universal
‘interm ediate’ language.

In fact it does not. Suppose we ask an application to com pute a solution for a
given problem P . We have no way to be sure th a t it really understood our problem.
A fter a given time it returns a solution ‘a. We have no way to be sure we correctly
interpreted the solution, either. But who cares? We check if our in terpretation o f a is
a solution to our interpretation o f P , and if it is, we are happy. The point is tha t the
interm ediate inform ation is merely a witness, a trace th a t we have to interpret and check
after internalisation. The interest is, as usual, th a t checking is enorm ously less expensive
than finding. The general picture is even m ore clear when we add proofs. Suppose there
is in our ‘universal’ language a proof p o f some property A. We may define translations
px and A x to our internal language and check if indeed px is (under our interpretation) a
proof of Ax. If it is, we have a proof, without caring whether the translation was ‘correct’
(and surely it could no t be, since we have no semantics for the interm ediate language).

H aving understood tha t we may have an interesting interm ediate language with no
semantics, the actual points are:

1 C an we define a ‘trace’ language for proofs tha t are o f suitable interest to multiple
applications?

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 892

2 Can we apply static analysis techniques for this language (for example, a weak, possibly
logically inconsistent type system)?

3 Can we prom ote a direct collaborative developm ent of this layer?

Regarding the first point, as we have already observed, the process o f form alisation
o f a m athem atical statem ent is often com pared to the translation o f a piece o f code
from a high-level program m ing language to some assembly language, corresponding to
a foundational dialect in some logical system. Inter-operability at a foundational level is
as hopeless as trying to send instructions from one microprocessor to another. On the
other side, the m ost expensive p art o f the form alisation process consists o f a preliminary
conceptual phase o f transform ation o f the proof into a form suitable to be understood
by a machine tha t is largely independent o f the specific idiosyncrasies o f each particular
foundation. Com pilation is not an atom ic process, and w hat is currently clearly lacking
is a good interm ediate language - which is precisely the trace language we are talking
about.

Is such an objective feasible? If we overcome the foundational impasse of fixing a formal
semantics to quantifiers, and the diatribe about the role and nature o f functions, it is
usually acknowledged th a t we could probably agree on a com m on syntax for m athem atical
form ulae . A m inimal trace language, which is extremely poor bu t no t completely deprived
o f interest, would consist o f a graph o f dependencies relating a result to the m ain auxiliary
facts required for its p roof (possibly adm itting m ultiple paths). The interest o f such an
approach is tha t it can be refined to a more or less arb itrary degree o f detail, and to
the point where a software system can autom atically fill in the missing steps. Moreover,
the system itself could assist the user in this refinement activity. The other point is tha t
the approach does not vastly differ from the natural top-down m ethodology already in
use in wiki-like systems (where you typically first create the link and then the page
you are linking). If we merely ask a typical m athem atical user o f such a system to
type m athem atical statem ents using a suitable set o f content-oriented LTEX-like macros
(possibly to be agreed according to the same policies th a t usually govern these systems)
we really see no reason why he should no t consent (especially since he could also have
some presentational benefits). Q uoting Hales again (Hales 2008):

To undertake the formalisation o f ju s t 100,000 pages o f core mathematics would be one o f the most
ambitious collaborative projects ever undertaken in pure mathematics, the sequencing o f a mathematical
genome. One might imagine a massive wiki collaboration that settles the text o f the most significant
theorems in contemporary mathematics from Poincare to Sato-Tate.

The point is tha t everybody m ust be able to contribute, independent o f w hether they
are using a proof assistant or not. Interactive theorem -prover users can be in charge of
refining the proofs to m ore elementary com ponents, possibly autom atically populating
the library o f basic results (which are mostly m eant to be inspected by autom atic devices
only). A t the same time, the refinement process can provide an essential feedback to
higher-levels, possibly requiring some revisiting o f already codified notions and results.

Preliminary developments towards a ‘M athW iki’ system th a t supports the distributed
developm ent o f a library o f m athem atics on various levels o f formality, ranging from the
m athem atics informally described on existing web pages to the formalised m athem atics

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

Social processes, program verification and all that 893

tha t we encounter in proof assistants, have been described and advocated in C orbineau and
Kaliszyk (2007) and Corbineau et al. (2008). Such a system should provide a lightweight
cooperative fram ework for developing and discussing m athem atics, on various levels of
formality. It should also provide a place where various existing repositories o f (formal)
m athem atics come together.

7. Conclusion

The lack at this late date o f even a single verification o f a working system has sometimes been attributed
to the youth o f the field. .. . there has never been a verification of, say, a Cobol system that prints
real checks; lacking even one makes it seem doubtful that there could at some time in the fu ture be
many.

R. A. De Millo, R. J. L ipton and A. J. Perlis (De M illo et al. 1979)

As we have already observed, the gloomy predictions of De Millo et al. have been largely
refuted. Form al verification is at present a concrete reality, perm itting correctness proofs
o f complex software applications. For instance, in the fram ework o f the Verifix Project
a compiler from a subset o f C om m on Lisp to T ransputer code was formally checked
in PVS (see D old and Vialard (2001)). Strecker (Strecker 1998) and Klein (Klein 2005)
certified bytecode compilers from a subset o f Java to a subset o f the Java V irtual M achine
in Isabelle. In the same system, Leinenbach (Leinenbach et al. 2005) formally verified a
compiler from a subset o f C to a D LX assembly code. The Com pcert project, headed by
Xavier Leroy, has recently produced a verified optimising compiler from C to PowerPC
assembly code, based on the use o f the Coq proof assistant bo th for program m ing
the compiler and proving its correctness (Leroy 2006; Tristan and Leroy 2008). Similar
achievements have been obtained in other fields o f com puter science, spanning the range
from hardw are (H arrison 2007) to operating systems (Alkassar et al. 2009; Klein 2009).

However, the parallel draw n by De Millo, L ipton and Perlis between com puter science
and m athem atics is still relevant, and possibly even m ore so in view o f the recent
proliferation o f m athem atical proofs involving the use o f computers. In particular, in
this paper we have argued th a t m athem atics is destined to assimilate some practices of
software development, and tha t the future o f bo th m athem atics and program m ing lies
in the fruitful combination o f form al verification and the usual social processes th a t are
already working in b o th scientific disciplines. Q uoting Hales (Hales 2008):

The hope is the system [the p roo f assistant] will eventually become sufficiently user-friendly to become
a fam iliar part o f the mathematical workplace, much as email, TgX, computer algebra systems and
Web browsers are today.

A t present, we are still a very long way from this dream ; the current cost o f transcribing
a printed page o f textbook m athem atics into machine-checkable code is estim ated as a
week’s labour in Hales (2008), and, more pessimistically, as 1.5 hours per line in A sperti
and Ricciotti (2009). In W iedijk (2001) the cost o f formalising the standard bachelor’s
curriculum o f m athem atics is estim ated at 140 m an years. The point is no t only to
reduce this cost, but also to improve the benefits coming from the representation o f the
inform ation in a ‘m achine understandable’ richly structured form at th a t is suitable for
elaboration by a machine. This means developing innovative, content-based functionalities,

Cambridge J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 894

eventually overcoming the reductive operational perspective o f verification. The research
directions were clearly traced in Constable et al. (1986) m ore than 20 years ago:

The natural growth path fo r a system like Nuprl tends toward increased ‘intelligence’. [...] For example,
it is helpful i f the system is aware o f what is in the library and what users are doing with it. I t is
good i f the user knows when to involve certain tactics, but once we see a pattern to this activity, it
is easy and natural to inform the system about it. Hence there is an impetus to give the system more
knowledge about itself.

Unfortunately, progress in this direction is extremely slow, and the following question
asked by D ijkstra still remains, for the m om ent, unanswered:

In the relation between mathematics and computing science, the latter has been fo r many years at the
receiving end, and I have often asked m yself if, when, and how computing would ever be able to repay
its debt.

Edsger D ijkstra (D ijkstra 1986)

References

Alkassar, E., Bogan, S. and Paul, W. J. (2009) Proving the correctness o f client/server software.
Sadhana 34 (1) 145-191.

Altenkirch, T., M cBride, C. and M cK inna, J. (2005) W hy dependent types m atter. (Available at
h t t p : / / s n e e z y . c s . n o t t . a c . u k / e p i g r a m / .)

Asperti, A., Padovani, L., Sacerdoti Coen, C. and Schena, I. (2000) C ontent-centric logical
environments. Short Presentation a t the F ifteenth IE E E Symposium on Logic in C om puter
Science.

Asperti, A. and Ricciotti, W. (2009) A bou t the form alization o f some results by Chebyshev in
num ber theory. In: Proc. o f TY PES’08. Springer-Verlag Lecture Notes in Computer Science 5497
19-31.

Avigad, J., Donnelly, K., Gray, D. and Raff, P. (2007) A form ally verified proof o f the prim e num ber
theorem . A C M Trans. Comput. Log. 9 (1).

Barbanera, F. and Berardi, S. (1996) A symmetric lam bda calculus for classical program extraction.
Information and Computation 125 (2) 103-117.

Boolos, G. (1984) D on’t elim inate cut. Journal o f Philosophical Logic 13 373-378.
Bos, J. V. D. (1979) Letter to the editor. Communications o f the A C M 22 623.
Bourbaki, N. (1968) Theory o f Sets, Elem ents o f m athem atics, A ddison Wesley.
Constable, R. L., Allen, S. F., Bromley, H. M., C leaveland, W. R., Cremer, J. F., H arper, R. W.,

Howe, D. J., Knoblock, T. B., M endler, N. P., Panangaden, P., Sasaki, J. T. and Smith, S. F. (1986)
Implementing M athematics with the N uprl Development System , Prentice-Hall.

C oquand, T. (2008) D raft o f the F orm ath Project.
Corbineau, P., Geuvers, H., Kaliszyk, C., M cK inna, J. and Wiedijk, F. (2008) A real sem antic web

for m athem atics deserves a real semantics. In: Lange, C., Schaffert, S., Skaf-Molli, H. and Völkel,
M. (eds.) SemWiki. C EU R Workshop Proceedings 360.

Corbineau, P. and Kaliszyk, C. (2007) C ooperative repositories for form al proofs - a w iki-based
solution. In: K auers, M., K erber, M., M iner, R. and W indsteiger, W. (eds.) Towards M echanized
M athem atical Assistants. Springer-Verlag Lecture Notes in Computer Science 4573 221­
234.

De Millo, R. A., Lipton, R. J. and Perlis, A. J. (1979) Social processes and proofs o f theorem s and
program s. Commun. A C M 22 (5) 271-280.

J O U R N A L S

h ttp ://iournals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

C a m b r id g e

http://sneezy.cs.nott.ac.uk/epigram/
http://www.journals.cambridge.org

Social processes, program verification and all that 895

Dewar, M. (2000) Special issue on O penM ath. A C M SIG SA M Bulletin 34.
D ijkstra, E. W. (1986) On a cultural gap. Mathematical Intelligencer 8 (1) 48-52.
Dold, A. and Vialard, V. (2001) A mechanically verified compiling specification for a lisp compiler.

In: Proc. o f FSTTCS 2001. Springer-Verlag Lecture Notes in Computer Science 2245 144-155.
The Econom ist (2005) P roof and beauty. The Economist, 31st M arch 2005.
Fatem an, R. (2001) A critique o f O penM ath and thoughts on encoding m athem atics. (Available at

h t tp : / /w w w .e e c s .b e r k e le y .e d u /~ fa te m a n /p a p e r s /o p e n m a th c r i t .p d f .)
Feit, W. and Thom pson, J. G. (1963) Solvability o f groups of odd order. Pacific Journal o f

Mathematics 13 775-1029.
Fowler, M. (2000) The New M ethodology. (Available a t h ttp :/ /w w w .m a r tin fo w le r .c o m /

a r t ic le s /n e w M e th o d o lo g y .h tm l.)
Geuvers, H. (2009) P roof A ssistants: history, ideas and future. Sadhana 34 (1) 3-25.
G irard, J.-Y., Lafont, Y. and Taylor, P. (1989) Proofs and Types, Cam bridge Tracts in Theoretical

C om puter Science, Cam bridge U niversity Press.
G onthier, G. (2007) The four colour theorem : Engineering o f a form al proof. In: Proc. o f ASCM

2007. Springer-Verlag Lecture Notes in Computer Science 5081.
G onthier, G. (2008) Form al p roof - the four color theorem. Notices o f the American Mathematical

Society 55 1382-1394.
G onthier, G., M ahboubi, A., R ideau, L., Tassi, E. and Thery, L. (2007) A m odular form alisation of

finite group theory. In: The 20th In ternational Conference on Theorem Proving in H igher O rder
Logics. Springer-Verlag Lecture Notes in Computer Science 4732 86-101.

Hales, T. C. (2005) A p roof o f the K epler conjecture. Ann. M ath. 162 1065-1185.
Hales, T. C. (2007) The Jo rdan curve theorem , form ally and informally. The American Mathematical

M onthly 114 882-894.
Hales, T. C. (2008) Form al proof. Notices o f the American Mathematical Society 55 1370-1381.
Hall, C., H am m ond, K., Jones, S. P. and W adler, P. (1996) Type classes in Haskell. A C M Transactions

on Programming Languages and Systems 18 241-256.
Halm os, P. (1985) I want to be a Mathematician: A n Automathography, Springer-Verlag.
H am id, N. A., Shao, Z., Trifonov, V., M onnier, S. and Ni, Z. (2003) A syntactic approach to

foundational proof-carrying code. J. Autom. Reasoning 31 (3-4) 191-229.
H ardy, G. H. (1928) M athem atical proof. M ind 38 1-25.
H arrison, J. (2007) F loating-point verification. J. UCS 13 (5) 629-638.
H arrison, J. (2008) Form al p roo f - theory and practice. Notices o f the American Mathematical Society

55 1395-1406.
Hoare, C. A. R. (1969) A n axiom atic basis for com puter program m ing. Commun. A C M 12 (10)

576-580.
H oward, W. A. (1980) The form ulae-as-types notion o f construction. In: Seldin, J. P. and

Hindley, J. R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
A cademic Press 479-490.

H utcheon, P. D. (1995) Popper and K uhn on the evolution o f science. Brock Review 4 (1/2) 28-37.
Klein, G. (2005) Verified Java bytecode verification. Information Technology 47 (2) 107-110.
Klein, G. (2009) O perating system verification - an overview. Sadhana 34 (1) 27-69.
Lakatos, I. (1976) Proofs and Refutations: The Logic o f Mathematical Discovery, Cam bridge

U niversity Press.
Lam port, L. (1979) L etter to the editor. Communications o f the A C M 22 624.
Langley, S. P. (1891) Experiments in Aerodynamics, Kessinger Publishing.
Lecat, M. (1939) Erreurs de mathématiciens: des origines a nos jours, A ncienne Librairie Castaigne,

Brussels.

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.eecs.berkeley.edu/~fateman/papers/openmathcrit.pdf
http://www.martinfowler.com/
http://www.journals.cambridge.org

A. Asperti, H. Geuvers and R. Natarajan 896

Lee, J. K. (2002) Philosophical perspectives on p roo f in m athem atics education. Philosophy o f
M athematics Education Journal 16.

Leinenbach, D., Paul, W. J. and Petrova, E. (2005) Towards the form al verification of a C0 compiler:
Code generation and im plem entation correctness. In: Third IE E E International Conference on
Software Engineering and Formal M ethods (SE F M 2005), IE E E C om puter Society 2-12.

Leroy, X. (2006) Form al certification o f a com piler back-end or: program m ing a com piler with
a p roof assistant. In: Proc. o f the 33rd A C M S IG P L A N -S IG A C T Symposium on Principles o f
Programming Languages, P O P L 2006, Charleston, South Carolina, USA 42-54.

M acKenzie, D. (2005) W hat in the nam e of Euclid is going on here? Science 207 (5714) 1402­
1403.

M aurer, W. D. (1979) Letter to the editor. Communications o f the A C M 22 625-629.
N ecula, G. C. and Lee, P. (1996) Proof-carrying code. Technical R eport CM U-CS-96-165, Carnegie

M ellon University.
Parigot, M. (1992) L am bda-m u calculus: An algorithm ic in terpre tation o f classical natu ral deduction.

In: Proc. o f the Logic Program m ing and A utom ated R easoning In ternational Conference
LPA R ’92. Springer-Verlag Lecture Notes in Computer Science 624 190-201.

Popper, K. (1948) Logic w ithout assum ptions. Aristotelian society proceedings 47 251-292.
Popper, K. (1963) Conjectures and Refutations. The Growth o f Scientific Knowledge, Routledge.
Prawitz, D. (1965) Natural Deduction: a proo f theoretical study, A lm qvist and Wiksell.
Schieber, P. (1987) The wit and wisdom o f G race H opper. O CLC Newsletter 167.
Sozeau, M. and Oury, N. (2008) First-class type classes. In: TP H O Ls 278-293.
Strecker, M. (1998) Construction and Deduction in Type Theories, Ph.D. thesis, U niversitöt Ulm.
Tristan, J.-B. and Leroy, X. (2008) Form al verification of translation validators: a case study on

instruction scheduling optim izations. In: Proc. o f the 35th A C M S IG P L A N -S IG A C T Symposium
on Principles o f Programming Languages, P O P L 2008 17-27.

W adler, P. and Blott, S. (1989) How to m ake ad-hoc polym orphism less ad hoc. In: P O P L ’89:
Proc. o f the 16th A C M S IG P L A N -S IG A C T symposium on Principles o f programming languages,
A CM 60-76.

Wenzel, M. (1997) Type classes and overloading in higher-order logic. In: TP H O Ls 307-322.
Wenzel, M. (1999) Isar - a generic interpretative approach to readable form al p roo f docum ents.

In: Theorem Proving in H igher O rder Logics. Springer-Verlag Lecture Notes in Computer Science
1690 167-184.

Wiedijk, F. (2001) Estim ating the cost o f a standard library for a m athem atical p roo f checker.
(Available a t h t t p : / /w w w .c s . r u .n l /~ f r e e k /n o te s /m a th s t d l i b 2 .p d f .)

Wiedijk, F. (2007) The Q ed manifesto revisited. In: M atuszwski, R. and Zalewska, A. (eds.) From
Insight to Proof, Festschrift in H onour o f Andrzej Trybulec. Studies in Logic, Grammar and
Rhetoric, U niversity o f B ialystok 10 (23) 121-133.

C a m b r id g e J O U R N A L S

h ttp ://journals.cam bridge.o rg Downloaded: 04 May 2010 IP address: 131.174.17.17

http://www.cs.ru.nl/~freek/notes/mathstdlib2.pdf
http://www.journals.cambridge.org

