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Abstract

We present simulation results for the detection of ultra-high energy (UHE) cosmic ray (CR)
and neutrino interactions in the Moon by radio-telescopes. We simulate the expected radio sig-
nal at Earth from such interactions, expanding on previous work to include interactions in the
sub-regolith layer for single dish and multiple telescope systems. For previous experiments at
Parkes, Goldstone, and Kalyazin we recalculate the sensitivity to an isotropic flux of UHE neu-
trinos. Our predicted sensitivity for future experiments using the Australia Telescope Compact
Array (ATCA) and the Australian SKA Pathfinder (ASKAP) indicate these instruments will be
able to detect the more optimistic UHE neutrino flux predictions, while the Square Kilometre
Array (SKA) will also be sensitive to all bar one prediction of a diffuse ‘cosmogenic’, or ‘GZK”,
neutrino flux.

Current uncertainties concerning the structure and roughness of the lunar surface prevents
an accurate calculation of the sensitivity ofthe lunar Cherenkov technique for UHE cosmic ray
astronomy at high frequencies. However, below 200 MHz we find that the proposed SKA low-
frequency aperture array should be able to detect events above 56 EeV at a rate about 30 times
that of the current Pierre Auger Observatory. This would allow directional analysis of UHE
cosmic rays, and investigation of correlations with putative cosmic ray source populations, to
be conducted with very high statistics.

Keywords: UHE neutrino detection, UHE cosmic ray detection, coherent radio emission, lunar
Cherenkov technique, UHE neutrino flux limits

1 Introduction

The origin ofthe UHE CR — protons and possibly atomic nuclei with observed energies above
1018eV and up to at least 2 x 1020 eV — has long remained a mystery. The deflection and scat-
tering of CR trajectories in cosmic magnetic fields makes the flux of all but the highest energy
CR appear isotropic with respect to the Galaxy regardless of their source, so that measurements
of arrival directions cannot reliably be used for source identification. At the highest energies,
the deflection is less, and this allows the possibility of ‘seeing’ nearby UHE CR sources. Ar-
rival directions of UHE CR detected by the Pierre Auger experiment above 5.6 x 1019 eV are
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statistically correlated with positions of nearby AGN, which are in turn representative of the
large-scale distribution of matter in the local universe [1]. However, the flux is extremely low,
and so the nature of the sources of UHE CR within this distribution remains at present unre-
solved.

An alternative means of exploring the origin of UHE CR is to search for UHE neutrinos. As
first noted by Greisen [2] and by Zatsepin & Kuzmin [3], cosmic rays of sufficient energy will
interact (e.g. via pion photoproduction) with photons of the 2.73 K cosmic microwave back-
ground radiation (CMBR), with the resulting energy-loss producing a cut-off in the spectrum
(the ‘GZK cut-off”) from a distance source at around ~ 10% eV. These same interactions pro-
duce neutrinos from the decay of unstable secondaries. Several experiments [4, 5, 6, 7] have
reported UHE CR events with energies above 10%° eV, and therefore a flux of these ‘cosmogenic
neutrinos’, or ‘GZK neutrinos’, is almost guaranteed.

Significant information on the CR spectrum at the sources is expected to be preserved in the
spectrum of GZK-neutrinos [8] which varies significantly between different scenarios of UHE
CR production. These include acceleration in the giant radio lobes of AGN, the decay of super-
massive dark matter particles or topological defects, and Z-burst scenarios, the last of which
have already been ruled out by limits placed on an isotropic flux of UHE neutrinos [9, 10]. Of
course, neutrinos are not deflected by magnetic fields, and so should point back to where they
were produced, with even a single detection allowing the possibility of identifying the source
of UHE CR. See refs. [11, 12] for recent reviews of UHE CR production scenarios and radio
techniques for high-energy cosmic ray and neutrino astrophysics. Here we emphasize that in all
models of UHE CR origin, we expect a flux of UHE neutrinos.

UHE neutrino astronomy will be able to provide much needed clues to the origin of the UHE
CR, as would a method to vastly increase the number of observed CR at UHE. In Section 2, we
describe the lunar Cherenkov technique, which allows both UHE neutrino and CR detection by
observing the Moon using Earth-based radio-telescopes. Section 3 details our simulation, which
we use to review observational methods in the light of the next generation of radio instruments
in Section 4. We calculate the effective apertures of past and future experiments in Section 5,
and use these to place limits on an isotropic flux of UHE neutrinos from past experiments in
Section 6. For the next generation of telescopes, we calculate the sensitivity to, and predict
neutrino event rates expected for, various models of an UHE neutrino flux (Section 7), and the
event rates from the (known) cosmic ray flux (Section 8). Our results and future improvements
are discussed in Section 9.

2 The Lunar Cherenkov Technique

A high-energy particle interacting in a medium will produce a cascade of secondary particles,
which develops an excess negative charge by entrainment of electrons from the surrounding
material and positron annihilation in flight. The charge excess is roughly proportional to the
number of particles in electromagnetic cascades, which in turn is roughly proportional to the
energy deposited by the cascade. Askaryan [13] first noted this effect and predicted coher-



ent Cherenkov emission in dense dielectric media at radio and microwave frequencies where
the wavelength is comparable to the dimensions of the shower. At wavelengths comparable to
the width of the shower, the coherent emission is in a narrow cone about the Cherenkov an-
gle 8¢ = cos™!(1/n) (n the refractive index), while for wavelengths comparable to the shower
length, the coherent emission is nearly isotropic. This Askaryan effect has now been experimen-
tally confirmed in a variety of media [14, 15, 16], with measurements of the radiated spectrum
agreeing with theoretical predictions (e.g. ref. [17]). If the interaction medium is transparent to
radio waves, the radiation can readily escape from the medium and be detected remotely. Since
the power in coherent Cherenkov emission is proportional to the square of the charge excess,
i.e. to the square of the energy deposited, extremely high energy showers should be detectable
at very large distances.

The Lunar Cherenkov technique, first proposed by Dagkesamanskii and Zheleznykh [18],
aims to utilise the outer layers of the Moon (nominally the regolith, a sandy layer of ejecta
covering the Moon to a depth of ~10 m) as a suitable medium to observe the Askaryan effect.
Since the regolith is comparatively transparent at radio frequencies, coherent Cherenkov emis-
sion from sufficiently high-energy particle interactions (specifically, from UHE cosmic ray and
neutrino interactions) in the regolith should be detectable by Earth-based radio-telescopes. First
attempted by Hankins, Ekers & O’Sullivan [19] using the Parkes radio telescope, subsequent
experiments at Goldstone (GLUE) [9] and Kalyazin [20] have placed limits on an isotropic flux
of UHE neutrinos. Observations continue at both Westerbork (WSRT) [21] and the Australia
Telescope Compact Array (ATCA; our project), and the technique has been the subject of sev-
eral theoretical and Monte Carlo studies [22, 23, 24, 25] together with our own recent work
[26].

Future radio instruments will provide large aperture array (AA) tile clusters and arrays of
small dishes with very broad bandwidths, with both factors allowing very strong discrimination
against terrestrial radio frequency interference (RFI). The culmination of the next generation
of radio instruments will be the Square Kilometre Array (SKA), to be completed around 2020,
with smaller pathfinders such as ASKAP (Australian SKA Pathfinder [27]) to be built in the
intervening period. In the meantime, our project aims to perform a series of experiments with
the Australia Telescope Compact Array (ATCA), an array of six 22 m dishes currently under-
going an upgrade to an eventual 2 GHz bandwidth. Lunar Cherenkov experiments with these
instruments, together with those proposed for LOFAR [21], represent the foreseeable future of
the technique.

3 Description of Modelling

Our simulation method is the same as that developed in a previous paper [26] to simulate the
detection of UHE neutrinos by the Parkes lunar Cherenkov experiment of Hankins et al. [19],
and except where we explicitly state otherwise, the simulation methods for both papers are
identical. The simulation uses Monte Carlo methods, generating UHE particles incident on the
Moon at discrete energies, with lunar impact parameter r sampled with p(r) « rfor 0 < r < ry,



the lunar radius. The Moon was approximated to be spherically symmetric, with the density
being constant within zones as given in Table 1, the outer two layers being the sub-regolith (see
Section 3.2) and the regolith.

We assume equal proportions of v.,v,, V., since we expect oscillations to result in com-
plete flavour mixing over extragalactic distance scales [28]. Neutrinos and anti-neutrinos are
treated identically throughout the simulation. Cross-sections for both charged-current (CC) and
neutral-current (NC) interactions are taken from Gandhi et al. [29], with the interaction inelas-
ticity y (fraction of neutrino energy given to hadronic showers — see Section 3.3) sampled
from the distributions used by Beresnyak [25]. The u/t generated in v, v. CC interactions are
discarded, since their bremsstrahlung energy-loss rate will be insufficient to begin detectable
cascades. We ignore photo-hadronic interactions (which allow high-energy bremsstrahlung
photons to convert some of the shower energy into hadronic cascades), so that the e¢* from
ve CC interactions are assumed to produce purely electromagnetic showers. Unless the e* emits
a bremsstrahlung photon with a significant fraction of its initial energy, any secondary hadronic
showers from photo-hadronic interactions will be both of low energy and strung out along the
shower length, so that the whole showers appears similar to a purely electromagnetic one. Since
ve CC interactions form approximately only two ninths of all primary neutrino interactions, and
most e* thereby produced will not emit such a high-energy photon, this simplification is justi-
fied.

Interactions are treated as point-sources of coherent Cherenkov radiation, with the Cherenkov
cone axis being in the direction of the incoming particle. We parameterise the radiation spec-
trum as described in Section 3.3, with radiation spectra from the coincident hadronic and elec-
tromagnetic showers in v, CC interactions calculated separately. We propagate the radiation
using ray-tracing, treating boundaries between media as infinite plane interfaces. Transmission
of the radiation at these boundaries is calculated from the Fresnel transmission coefficients for
each component of the polarisation, and the solid-angle-stretching factor applicable to radiation
from a point source. We also account for both large-scale surface roughness (Section 3.1), and
absorption (Section 3.2).

3.1 Treatment of Surface Roughness

The frequency range of the experiments to be modelled is large, and since the lunar surface is
rougher on small length scales than on large scales the surface will appear smoother at longer
wavelengths. We use the RMS unidirectional slope S, 1.€. the RMS of slopes measured along
arbitrary vertical plane sections through of the surface, based on measured values appropriate to
the observation wavelength of the lunar Cherenkov experiment in question. Shepard et al. [30]
model the dependence of S,,; on the wavelength as a power-law, finding the relation between
the wavelength A (in cm) and the slope tangent given in Eqn. 1:

tan Spme = 0.29247%% (1)

Somewhat confusingly, it is in fact the tangent of S which is normally distributed (as opposed
to S itself), i.e. tan S is sampled from a normal distribution with mean 0 and standard deviation
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tan S5, though convention dictates that S has the RMS subscript. In the simulation, the surface
normal at some location is determined as follows: (i) two orthogonal vertical planes are chosen
to intersect with each other and the nominal spherical lunar surface at the chosen location, (i1)
a line through the intersection point is constructed in each orthogonal plane, each having a
slope sampled from the distribution above, (iii) the local surface is deemed to be the surface
containing both these lines. Throughout we use Eqn. 1 with the central frequency m of
the frequency range f£; to £ of the observations to simulate the roughness of the lunar surface.
We repeat the caution of our earlier paper [26] that this simulates only the effects of large-
scale surface roughness (e.g. from sizeable craters) illustrated in Fig. 1(a), and approximates
the effects of small-scale surface roughness illustrated in Fig. 1(b) by using values of S, at the
scale corresponding to the wavelength of the observations. In the case of the Parkes experiment,
with a central frequency of 1.4 GHz and a bandwidth of 500 MHz, Eqn. 1 predicts S, = 8.5°.
In our earlier work we used S, = 6°, and given that Beresnyak [25] found that increasing the
surface roughness, i.e. increasing S, led to a larger effective aperture, the effective aperture
for the Parkes experiment calculated here will thus be greater than that in ref. [26].

To model cosmic rays, the procedure is similar to that for neutrinos, except that CR are
assumed to interact immediately at the surface, with 100% of the energy going into hadronic
showers. Current methods (including ours) of generating S,y are not really appropriate for
cosmic ray interactions, since correlations between local surface features (which will be trans-
parent to neutrinos) and the position of cosmic ray interaction are ignored. As illustrated in
Fig. 2, cosmic rays will tend to interact with unfavourable surface slopes, as in the right-hand
side of the hill in the figure, with the surface normal pointing back towards the particle arrival
direction. For such geometries, only radiation far from the Cherenkov cone will be able to es-
cape total internal reflection, and the experimental aperture will be reduced, particularly at high
frequencies. One limit (a ‘worst-case’ limit) of this effect can be made by always generating the
surface normal in the half-hemisphere pointing back towards the arrival direction of the inci-
dent particle, while a ‘best-case’ estimate comes from ignoring correlations and generating the
surface normal as with neutrinos. We only consider our estimates of the aperture to UHE CR
reliable if the results of these two methods converge — where they diverge, a more thorough
treatment will be necessary. As found by Scholten et al. [31], the suppression of radiation from
showers developing close to the surface (formation zone effect — see [24]) is expected to be neg-
ligible even at low frequencies where the effect will be greatest, so we ignore this effect. Note,
though, that this suppression is effectively included in the worst-case limit above, since this
method considerably lowers the probability of generating a shower developing nearly parallel
(and hence close) to the surface.

3.2 Treatment of the Sub-Regolith Layer

In our previous simulation, the medium in which Cherenkov radiation is produced and trans-
mitted to the lunar surface was modelled only as a single surface layer, nominally the regolith,
with density p = 1.8 g cm™. Since the regolith is formed from impact ejecta, the composition
of the regolith — and hence its dielectric properties — should reflect that of the local under-



lying material (substrate). As discussed by Wilcox et al. [32], what constitutes the boundary
between the regolith and the substrate is poorly defined, since changes in density (increasing
with depth) and the degree of rock fragmentation (decreasing with depth) are expected to be
smooth. Neither of these should qualitatively affect the usefulness of the substrate as a dense
radio-transparent medium. Ignoring the sub-regolith layers artificially limits the aperture, ex-
cept to low-energy events for experiments observing at high frequencies, as interactions in the
substrate would otherwise be detectable at low frequencies or high energies. Therefore, we
modify our simulation as described below to allow interactions in a substrate layer to produce
detectable coherent Cherenkov radiation. Although such a layer has been previously modelled
(as an extended, uniform regolith of 500m depth) [21], in our present work we treat the layers
separately, and develop our own model as described below.

In the Mare, the substrate medium is cooled lava, while in the highlands, it is the megare-
golith. At our current (low) level of sophistication, a uniform model for both is justified. Our
model, requiring a mean depth and density, dielectric properties, Cherenkov radiation param-
eterisation, and a method to propagate radiation from the substrate to the regolith, should be
more representative of the megaregolith than Mare basalt, since highland terrain is dominant.
We model the substrate and the r > 1670 km layer (nominally the crust, of density 3 g/cm® —
see Table 1) as essentially the same medium, which we assume to begin at a depth of 10 m.
This density is possibly an overestimate, since the substrate is unlikely to be as dense as the
(underlying) crust, and models for a dual-layer crust (here we use a single layer) find a lower
density for the upper portion [33].

We use the results of Olhoeft & Strangway [34] to scale both the refractive index n and
attenuation length ¢ of the substrate from the measured values of the regolith. These authors
obtained the density-dependence of both nand ¢ at frequencies ranging from 100 kHz to 9 GHz
using results on soil samples and rock fragments from both Mare and highlands regions. They
also found that the attenuation length depended on the fraction of iron and titanium present.
While there is evidence of an increased iron content at depths greater than ~8 km, no variation
at shallower depths has been observed except from Mare basalts [35]. Therefore we scale the
values of n = 1.73 and £ = 60 A (with A the wavelength in a vacuum, i.e. 1 = ¢/ f) used for
the regolith in our previous paper [26] solely with the density as per Olhoeft & Strangway,
obtaining n = 2.5 and £ = 29 A for a density of 3 g/cm®. The depth is modelled as being
essentially infinite, since even at 100 MHz the attenuation length of 87 m is small compared
to the estimated 2 km mean depth of the substrate [36, 37]. We believe that our model of the
sub-regolith layer is an adequate reflection of reality, and except where otherwise noted include
such a layer. Since the nature of the sub-regolith is poorly constrained by measurement we also
run our simulation with this layer excluded, and it is feasible that our results for a single shallow
layer of regolith will prove to be the more accurate.

The interface between the sub-regolith and regolith is treated using ray-tracing as a standard
refraction problem at a plane boundary, on the assumption that the slope of the boundary is
the same as the slope at the surface. This assumption reflects the likely situation in the Mare,
where the lava flows are expected to present a solid (if fractured) interface. In the highlands, the
less distinct transition from regolith to sub-regolith will appear more like the model of a sharp



interface between uniform media at low frequencies, and so will be less sensitive to inhomo-
geneities (e.g. rock fragments) in the transition region. At high frequencies, the contribution to
the expected event rate from events below the regolith will be minor due to absorption in the
upper regolith layer, suggesting our approximation is not inappropriate. We await the results
from instruments such as the lunar radar sounder [38] on-board SELENE [39] to enable our
model to be improved.

3.3 Modelling Cherenkov Emission

To calculate the spectrum of observed Cherenkov radiation, we use the parameterisation de-
veloped in our previous paper [26]. This combines results from numerous different papers, in
some cases scaled from ice to the regolith and/or from low to high energies. Since here we
also scale the parameterisation from the regolith to the sub-regolith, in the interest of clarity, we
fully detail all the formula used.

In UHE neutrino-nucleon interactions, the struck nucleon initiates a hadronic cascade taking
typically ~20% of the incident neutrino’s energy. In neutral current (NC) interactions, the
remaining ~80% of the energy goes to the scattered neutrino which contributes no Cherenkov
radiation. However, in charged current (CC) interactions, a u, e or 7 is produced taking the
remaining ~80% of the energy. A singly-charged u or 7 will contribute negligible Cherenkov
radiation, while an electron will initiate an electromagnetic (EM) cascade. Thus for neutrinos
of energy E, there will be a hadronic shower of energy E£s =~ 0.2F,, and in the case of electron-
neutrino CC interactions there will also be an EM shower of energy Es ~ 0.8F,. However,
such showers will be substantially lengthened due to the Landau-Pomeranchuk-Migdal (LPM)
effect, with radiation emitted in a correspondingly narrow cone, so that at very high energies
the electromagnetic cascade will actually contribute less coherent radiation than the hadronic
cascade at most observation angles. For cosmic rays of energy Ecp the shower energy is simply
Es = Ecg.

The field strength Epn(fc, 1) (V/m/MHz) at distance R (m) from electromagnetic showers
for radiation emitted at angle § = 6, from the shower axis is given by:

Es f 1
R|&pm(bc. Nl = VOX(IEeV)(lGHz)(1+(f/16)“) (VMHz) @)

where f1is the frequency and Es is shower energy in EeV (1 EeV = 10'® eV), and o depends on
the medium.

The amplitude of coherent Cherenkov radiation from hadronic showers is related to that of
electromagnetic showers by

Eulbe, ) = f(e)Epmlbe, 1) G3)

where f(€) describes the fraction of energy going into electromagnetic sub-showers, and € =
log,,(Es/1 GeV). The result for ice [40] is

fle) = —127%x1072-4.76 x 1072 - 2.07 X 107" + 0.52 Ve. 4)
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The function f(¢) is largely determined by the rate of neutral pion production in hadronic inter-
actions, since neutral pions decay into electromagnetic products. Variation in f(e€) is therefore
expected between media due to different hadronic interaction cross sections of the target nuclei.
At very high energies however, the variation is less, and the dominant source of error comes
from uncertainties in the hadronic interaction models [41]. Hence Eqn. 4 is used unmodified
for both the regolith and sub-regolith.

Away from the Cherenkov angle, the emission falls off due to decoherence over the width
and length of the shower track. This can be approximated by

sin @ 2 2
&6, = &0, - 28y /a9y 5
. 0 (ﬂ)(sm&c) ®)
The sin 6 dependence becomes significant at low frequencies, where A8 is large. We use A6
given by Alvarez-Muniz et al. for electromagnetic [42] and hadronic [40] showers, scaling the
hadronic result above 10 eV as per Williams [43]. For hadronic shower energies above 10 EeV,
and for electromagnetic showers of all energies considered here,

£\ 1
Ay = G 6
" " (1 GHZ) 1+ 0.075 log,,(Es /10 EeV) ©
f -1 ELPM 03
Apy = G 7
M M (1 GHZ) (0.14E5 + Fipu @

where Fjpy is the energy above which the LPM effect becomes important. See Eqn. 6 of
Alvarez-Muniz et al. [40] for the (rather complex) parameterisation of A6y for Es < 10 EeV
showers — in our notation, the factor of 1° in this equation becomes 0.7° Cy, and vy/v becomes
1 GHz/ f.

The constants Vg, Cy, Cry, B, @ and Ejpy are medium-dependent, with only Ej py calcu-
lated explicitly for a given composition [44]. Alvarez-Muniz et al. [45] found the variation of
« between media to be low, and since & is insensitive to changes in « at frequencies below 1,
we adopt the value found by the authors for the regolith (o« = 1.23) also for the sub-regolith.
Alvarez-Muniz et al. [45] also used a ‘box’ model of shower development to predict changes
in V; and parameters related to Cyy and £ for regolith, given values for ice, and compared
these predictions to the values found from full regolith simulations. Variation in all parameters
except V; 1s satisfactorily explained by this model, with a 30% discrepancy between the scaled
and simulated values of V4. This is probably due to the different composition of the regolith
when compared to ice, which would alter the cross-sections at low-energy for processes in the
electromagnetic cascade, the rate of interactions producing excess track length, and hence the
intensity of coherent Cherenkov radiation. Therefore we expect a more accurate scaling of 1}
from the regolith to sub-regolith which have identical compositions, and hence changes pre-
dicted by the box model in all electromagnetic shower parameters between the regolith and
substrate are expected to be reliable. Since the emission from hadronic showers comes from
low-energy electromagnetic cascades, we scale both types of shower identically.

For the above box-model of shower development, the magnitude of Cherenkov radiation at
the Cherenkov angle is proportional to sinf./p, where p is the density, with both the width of
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the Cherenkov cone A6 and turnover frequency £, being proportional to p/ Vr# — 1 [45]. Using
this model, with ‘R’ indicating regolith and ‘SR’ sub-regolith, and given 6°* = 66.4°, we expect
VoR = 0.67 V7, and both AG® = 1.027A6% and £} = 1.027 £. Also, the LPM energy is lower
in the sub-regolith due to its higher density. Table 2 details the relevant constants for both layers.
The scaling of these parameters with p (since n = n(p)) means that a higher sub-regolith density
results in a lower effective aperture for lunar Cherenkov experiments, even once the increased
neutrino interaction rate in a denser medium is accounted for. The main uncertainty is expected
to be due to our limited knowledge of the structure of the sub-regolith.

3.4 Modelling Neutrino Detection Experiments

To model the GLUE and Kalyazin experiments, we use similar methods to that for Parkes [26].
We assume Airy beam patterns, with angular widths calculated from the physical diameters
of the antenna, and estimate the noise in each data channel / frequency band, assuming a lu-
nar temperature of 225° K [46] and base (or ‘cold-sky’) system temperature of 35° K. This
method reproduces well the system temperatures for the past experiments where reported. For
the GLUE experiment, we simulate the full five-fold coincidence detection algorithm (as im-
plemented for most of the experiment), with a detection requiring an event to be above the
thresholds specified in Williams [43] in all five data channels. The simulation for the Kalyazin
experiment is somewhat simpler, needing only to model a singly-triggered data channel. See
Gorham et al. [9] and Beresnyak et al. [20] for details of these experiments.

It is beyond the scope of this paper to perform a full optimisation of observation parameters
for future experiments with ATCA, ASKAP, or SKA. To calculate detection thresholds, we use
dual circularly polarised data channels with thresholds of Vjesn = 6 Vi in coincidence, with
Vims calculated as for previous experiments, and cold-sky system temperatures of 30° for ATCA
[47] and an assumed value of 35° K for ASKAP and SKA. Dispersion in the ionosphere is
assumed to be corrected for prior to triggering (i.e. we ignore it), as is beam-forming adequate
to cover the entire Moon with the full collecting area. While this last assumption is overly
optimistic, even for the small number of baselines provided by ATCA or the expected processing
power of the SKA, the full sensitivity in each case may be recovered by using a lower trigger
threshold off the central core, and writing buffered data from outlying stations upon triggering.

For reasons outlined below (Section 4), future detection algorithms should search for lunar
Cherenkov pulses in multiple frequency ranges. While for this one pays a statistical penalty in
sensitivity, even a 10-fold increase in statistical trials can be compensated for by a very small
sensitivity loss, e.g. by instead using Vipesn = 6.2 V. For ATCA, ASKAP, and the SKA, we
therefore model a range of frequencies and bandwidths using 50 MHz intervals, and choose the
experimental sensitivity to be the highest at a given energy. Bandwidth limitations are set by
the frequency range of the instruments, except in the case of ASKAP, with a maximum band-
width of 300 MHz. In the case of the SKA, multiple systems will be utilised to cover the very
broad frequency range [48]. Here we assume three: a sparse aperture array (AA) at the lowest
frequencies (AA low), a dense AA at higher frequencies (AA high), and dishes for the highest
frequencies. We model the sensitivity separately for each, reflecting the likely technological



constraints of combining the signals from multiple arrays into a single coherent beam. Table 3
outlines the assumed specifications used to model the capabilities of these instruments.

4 Observational Phenomenology

The current designs of next-generation radio-instruments are sufficiently different to that of
instruments previously used for lunar Cherenkov observations to warrant a new investigation
of optimal observational parameters. Here we examine the effects of pointing position and
bandwidth, and explicitly establish some results which have so far been implicit in the design
of future lunar Cherenkov observations.

4.1 Broad Bandwidth Observations

Experiments at Parkes, and in particular Goldstone and Kalyazin, have operated in the regime
where bandwidth A fis small compared to the observation frequency £, so that both signal field-
strength and noise power scale linearly with the bandwidth. Therefore, the received signal-to-
noise power scales linearly with A £, and increasing £, or decreasing f;, both equally increase
the effective aperture to particles of all energies.

This is no longer the case once the bandwidth becomes comparable to the observation fre-
quency (i.e. Af « f), so that the signal strength of lunar pulses, and band noise from either
the galactic background (low frequencies) or lunar thermal emission (high frequencies), may
change appreciably over the bandwidth. In this regime, sensitivity to geometrically-favourable
events (shallow interactions viewed near the Cherenkov angle) will be increased by extending
the bandwidth to higher frequencies, since coherency from such events could extend beyond
3 GHz. However, most geometrically unfavourable events will be drowned out by the resulting
increase in band noise, since (due to regolith absorption and/or decoherence) these events will
not have a significant high-frequency signal. To demonstrate this effect, we calculate the effec-
tive area to UHE neutrinos from a fictitious instrument of effective area 50,000 m? and system
temperature 50 K (neglecting both lunar thermal emission and the galactic background noise),
covering the Moon uniformly in beams. We run simulations over a variety of bandwidths A £,
both for fixed fnin (= 100 MHz) and fixed mean frequency f = (fnax+ fmin)/2 (= 1 GHz). In Fig.
3, we show contour plots in the E,—A f plane of the aperture A(E,, A f) at each energy/bandwidth
divided by the peak aperture for that energy — (a), for fixed £y,; (b), for fixed f.

The fixed- fnin plot (Fig. 3(a)) clearly shows that for decreasingly low energy neutrinos,
the peak aperture is achieved with an increasingly high £, and a broader bandwidth (e.g.
Af > 1 GHz for E, < 10% eV), since only geometrically-favourable events are detectable at
all. Too low an £, results in an aperture of zero. At higher energies, the vastly more common
geometrically-unfavourable events become detectable, and the optimum bandwidth reduces to
below 100 MHz. Importantly, the decline in aperture by increasing f,,. above the optimum
is slower than by reducing it below (i.e. the contours are closer together for low bandwidths),
even in log-space. Increasing £, results in a ~linear increase in noise power, since noise adds
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incoherently, so the loss of signal-to-noise through having #;,, too high is small. However, since
the signal is coherent, with E( f) rising as steeply as £, the rate of loss of peak signal power by
decreasing £, can be up to cubic. Also, at the highest energies, events appearing only at low
frequencies are generally strong enough to be detected over the increased noise introduced by
a high f£,... Thus the reduction in effective aperture for a lower than optimal £, is worse than
for a higher than optimal f,.x.

The fixed- £ plot (Fig. 3(b)) is somewhat deceptive, and illustrates why in this paper we use
fmin. Imax Tather than £, A fto describe bandwidths. At first glace, the figure seems to imply that
large bandwidths are ideal at all energies, which, for a fixed f, is certainly true. However, in the
high-energy regime, the very strong bandwidth-dependence is due entirely to the rapid relative
variation of £, as Af — 2 £, because of the aforementioned detection over a large bandwidth
at high energies of strong signals appearing only at low frequencies. This depends not so much
on fn,, but on £y, which if too high will exclude such events altogether. However, if the energy
is sufficiently low that such events are undetectable, the effect of increasing bandwidth for fixed
f1s low also, explaining why the bandwidth-dependence is less at low energies.

4.2 Optimum Pointing Position

As first reported by Gorham et al. [49] for GLUE, the greatest sensitivity to UHE neutrinos
for previous experiments has been achieved when pointing at the lunar limb, partly because
the majority of signals are expected to come from the limb, and partly because pointing at the
limb reduces the lunar thermal emission received by a detector, thus also reducing the detection
threshold. Both effects become important when the beam size is comparable to or smaller
than the Moon’s angular diameter of ~ 0.5°. Obviously, if the beam illuminates the Moon’s
surface uniformly, the origin of the signals on the lunar surface does not affect the probability
of detection. This is also the case in experiments which can form multiple independent beams,
e.g. by the use of focal plane arrays (FPAs).

To model the effects of changing beam size and pointing position, we simulate the same
fictitious instrument as above, but vary the antenna diameter from 8 to 256 m while keeping the
total effective collecting area of the instrument constant (i.e. we vary the number of antennas),
and add the contribution of lunar thermal emission to the base system temperature. We (some-
what arbitrarily) use an observation frequency of 1 GHz, with a narrow 100 MHz bandwidth to
remove the aforementioned broad-bandwidth effects.

Our results for E, = 10%° eV and E, = 10?? eV are plotted in Fig. 4. For all energies
and pointing positions, using a larger number of smaller dishes increases the effective aperture.
Smaller dishes have greater coverage of the lunar surface, due to a larger individual beam size,
and an increased sensitivity, since the lunar thermal emission is largely incoherent between
individual dishes. This is one of the main reasons why ATCA (6 X 22 m dishes) is a potentially
superior instrument over Parkes (1 X 64 m dish), despite a similar collecting area. Note that
in a real experiment, lunar thermal emission would be partially correlated between individual
antenna. This would increase thermal noise beyond that calculated, especially for closely-
packed small antennas, thus decreasing their advantage. Also, the processing requirements
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of beamforming over the entire lunar solid angle for many individual antennas are large, which
is of course why instruments with a large number of individual small elements (the ‘large /N,
small @ concept) are only now being developed.

For large antenna at low energies, pointing at the limb results in a net gain in aperture, both
because the slight reduction in threshold from reduced lunar noise results in a large increase
in detectable events, and because events far from beam centre (i.e. events on the limb when
in centre-pointing mode) are in any case undetectable. At high energies, the number of events
lost from the far limb is greater than that gained from the near, while the change in sensitivity
matters little since events are energetic enough to be readily detectable.

With these qualitative conclusions established, we now proceed to calculate the effective
apertures for both past and future experiments.

S Effective Aperture of Past and Future Experiments

In Fig. 5 we plot the effective aperture, A(E,) (km? sr), to neutrinos of previous experiments,
both with (Fig. 5(a)) and without (Fig. 5(b)) the sub-regolith layer. For these >GHz observa-
tions, the contribution to the effective aperture from interactions in the sub-regolith dominates
only above ~ 102 eV, and so the dependence of our revised limits on the nature of the sub-
regolith is only significant at energies where some models predicting large fluxes have already
been ruled out [10]. As we noted earlier [26], the effective aperture we calculate for GLUE with
the sub-regolith excluded is significantly less than that estimated under similar assumptions by
Gorham et al. [9]. For reasons we have noted earlier [26], the GLUE and Kalyazin simulations
appear inconsistent with each other, and our result for the effective aperture of the Kalyazin
experiment is in good agreement with that calculated by Beresnyak et al. [25], after allowing
for the greater regolith depth (30 m) and lower threshold used.

The predicted effective apertures A(FE,) for future experiments is shown in Fig. 6. Except
in the case of ASKAP (with a comparatively small bandwidth of Af = 0.3 f), the greatest
apertures at the highest energies were indeed achieved by using only a fraction of the available
bandwidth, e.g. for the SKA dishes, a full bandwidth of 0.7-3.0 GHz was optimum for neutrino
energies at and below 2 x 10'® eV only, while above 10! eV, the greatest aperture is achieved
over a 200 MHz bandwidth (from 0.7-0.9 GHz). In all cases, the dependence of the optimal
bandwidth for a given experiment on the inclusion or otherwise of the sub-regolith layer was
very slight, even while the dependence of A(FE)) was very strong.

Given the large increase in sensitivity offered by the SKA, the order-of-magnitude reduction
in the neutrino-energy detection threshold over possible experiments with ATCA and ASKAP
appears low, though these in turn offer an order-of-magnitude threshold reduction over the ex-
periments at Parkes, Glue, and Kalyazin. Reducing this threshold in an experiment utilising
coherent Cherenkov radiation is so difficult because the emitted power scales as the square of
the shower energy, and the interaction rate as F%*%. The low interaction rate however means
that at 10'° eV, an aperture of 1 km? sr is equivalent to an effective volume of approximately
40 km? water-equivalent seeing all 47 sr. We therefore assess the utility of these experiments in

12



the context of expected event rates from and potential limits on an UHE neutrino flux.

6 Neutrino Limits from Past Experiments

Limits from past experiments have either been expressed as a ‘model-independent’ limit as
per [50] or as a limit on a (typically) dN/dE « E? flux between two energies — we favour
the former method, since the resulting limit reflects the energy-dependence of the effective
experimental aperture. In the case of a non-detection, the corresponding limit is sy, /[ Ls ACE )],
with s the observation time, and the statistical factor for an upper bound s,, at 90% confidence
is 2.3 (in the sole case of FORTE, s,, = 3.89 for one uncertain event). Existing limits, summed
over neutrino flavour, on an isotropic, uniform-flavour flux of UHE neutrinos are plotted in
Fig. 7. Over the 10810 GeV energy range, the strongest limits come from IceCube [51],
RICE [52], ANITA-lite [10] and FORTE [50]. Our revised estimates for the limits from GLUE,
Kalyazin, and Parkes are now of mostly historical significance, with our limit for GLUE being
approximately an order of magnitude higher (i.e. less limiting) than given in [9], reflecting our
lower estimate of the GLUE effective aperture.

For the projected ANITA limits [10], we scale the published 50-day sensitivity estimates to
the 18 day duration of their December 2006 balloon flight, and convert to a 90% confidence
model-independent limit by multiplying by 2.3 because of presumed non-detection — we await
with interest the publication of the 2006 result.

7 Flux Predictions and Future Experiments

We shall first consider the difftuse UHE neutrino intensity predicted in various models, and then
the sensitivity and expected event rate for future experiments.

7.1 UHE neutrino predictions and expected event rates

In Fig. 8, we plot the region excluded by past experiments (shaded area) together with a range
of predicted UHE neutrino fluxes which should be detectable by future experiments. First we
consider models of GZK neutrinos. Being the only guaranteed source of UHE neutrinos we
shall give a fairly detailed summary of flux predictions. The assumptions in all cases are that
the UHE CR are extragalactic, and accelerated with a power-law spectrum £~ up to some max-
imum energy [, often with an exponential cut-off (see [8] for a discussion of cut-offs and
pile-ups in spectra of accelerated particles). Furthermore the cosmic ray power is assumed to
evolve with redshift z usually in a similar way to the star formation rate or quasar luminosity
function. Cosmic rays are propagated through the CMBR by Monte Carlo or other means tak-
ing account of the z-dependence of the CMBR and other target fields, and their flux at z= 0 is
obtained by weighting with the cosmic ray power evolution model, and integrating of redshift
taking account of cosmological expansion. The resulting UHE CR flux is normalized to the ob-
served spectrum, and the same normalization factor is applied to the GZK neutrino flux resulting
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from the same calculation. In the case of a mixed composition, i.e. protons plus heavy nuclei,
it is reasonable to assume that if protons are accelerated to FE,., then nuclei are accelerated
to ZE.x where Z is the atomic number. Generally, the trend is that the higher the maximum
energy and the flatter the spectrum on acceleration, the higher the GZK neutrino flux. Also,
models with strong evolution of cosmic ray source power with redshift tend to give a higher
GZK neutrino flux.

One such calculation was made by Protheroe & Johnson [53] of the GZK neutrino flux
expected for the case of UHE CR acceleration in Fanaroff-Riley II radio galaxies [54] with
protons accelerated with an E72 spectrum to 3 x 10% or 3 x 10?! eV (boundaries of shaded
area in Fig. 8a labelled PJ96). More recently, a similar calculation was made by Engel et al.
[55], with an E72 spectrum to 3 x 102! eV, cosmic ray source evolution of (1 + 2)* to z=1.9
and constant for 1.9 < z, and Einstein-de Sitter cosmology. Their result (chain curve in Fig. 8b
labelled En01) was almost indistinguishable from that of Protheroe & Johnson for the same cut-
off. They found that using the more recent ACDM cosmology the flux (solid curve in Fig. 8b
labelled EnO1) would be about a factor of 2 higher. Even more recently, Allard et al. [56]
have made calculations for a variety of spectra and compositions. We show curves labelled
Al06 in Fig. 8a, all of which are for cosmic ray source evolution (1 + 2)* to z=1 and constant
for 1 < z < 6, (i) solid curve — a mixed composition accelerated with an £~%! spectrum to
7x3x10% eV, (ii) dotted curve — a mixed composition accelerated with an E~>! spectrum to and
7x3x102! eV, and (iii) dashed curve — protons accelerated with an E~2* spectrum to 3x10% eV.
The mixed compositions can give rise to lower neutrino fluxes because photo-disintegration
dominates for heavy primaries, and the resulting nucleons having lower energy have fewer pion
photoproduction interactions from which neutrinos result. Similarly, production spectra steeper
than E72 result in fewer neutrinos. Hence the neutrino flux predicted by Allard et al. is lower
than that of Protheroe & Johnson and cuts off at lower energy. Anchordoqui et al. [57] consider
a range of maximum energies, compositions and spectra. Their GZK neutrino flux is plotted for
protons injected with a £7%2 spectrum to 4 X 10%° eV and cosmic ray source evolution (1 + 2)? to
z=1.9 and constant for 1.9 < z < 2.7 — their predicted GZK neutrino flux is significantly lower
than all the other predictions of GZK neutrinos.

In addition to these GZK neutrino fluxes, we show two topological defect (TD) models, a
generic TD model just allowed by gamma-ray and cosmic ray data in 1996 (Protheroe & Stanev
[58]), and a more recent TD model for ‘necklaces’ (Aloisio, Berezinsky & Kachelrei3 [59],
see [60]). These are plotted in Fig. 8. In addition, we show a range of generic optically thin
AGN photoproduction source models with protons accelerated to 3 x 10%, 10?!, 3 x 10?! and
102 eV, interpolation based on Fig. 2b of Mannheim, Protheroe & Rachen [61]. While those
models with higher maximum energies may already be ruled out (on various grounds), they are
included to provide some benchmarks for estimating neutrino event rates.

7.2 Sensitivity of Future Experiments

For future experiments, we plot the sensitivity (cm™2 s™! sr™! GeV™!) to the total neutrino flux
over all flavours, assuming complete flavour mixing. That is, for experiments sensitive to one
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flavour only, we multiply the sensitivity by 3, and for those presenting projected limits, we re-
move the statistical uncertainty factor s, by dividing by 2.3. To avoid the somewhat arbitrary
choice of ‘observation time’ , for future experiments, we use our best estimates of the mean
observation time available in one calendar year. For lunar Cherenkov observations, this corre-
sponds to the time the Moon appears above the telescope horizon. Using a 30° elevation angle
for the horizon of aperture arrays and 10° for other radio instruments gives a mean on-time
fraction ¢,, of 28.8% (105 days per year) and 42.6% (156 days per year) respectively for an
instrument at latitude ~26.5° S (applicable to ASKAP and, the authors’ personal bias hopes, the
SKA), and slightly less for ATCA at 30° S. For LOFAR [21], we scale the expected limit for 30
days to 17% of a year, reflecting the high latitude (at ~52.5° N) and approximate 30° horizon,
and convert to sensitivity. For the Pierre Auger fluorescence detectors (FD), with €,, = 10%,
Miele et al. [62] recently estimated the total effective aperture to tau leptons. For the Auger
surface detectors (SD) [63], which operate continuously, &, = 100%.

The resulting sensitivities using fy,, = €, X 1 year on an UHE neutrino flux for these ex-
periments are plotted together with predictions of an UHE neutrino flux in Fig. 8. Note that our
sensitivity estimates for the SKA are less than previous estimates submitted to ‘Square Kilome-
tre Array Design Studies’ [64]. This is due to a combination of changed assumptions about the
SKA’s sensitivity (particularly for the low-frequency AA), the use of three independent tech-
nologies to cover the critical frequency range (nominally 100 MHz to 3 GHz) of interest to lunar
Cherenkov observations, and a different assumed observation time.

7.3 Expected Event Rates

In Table 4 we give the number of events expected per calendar year for the UHE neutrino flux
models in Fig. 8 and the future lunar Cherenkov experiments we have simulated. The first of
these possible experiments to become available will be with ATCA, with the completion of
the CABB (Compact Array Broadband) upgrade in 2009. Since the dishes are relatively large
(22 m), the antenna beam pattern cannot cover the Moon uniformly at high frequencies, though
we find that a limb-pointing configuration (utilising the full bandwidth of 1-3 GHz) is optimal
only at energies fractionally above the minimum detectable. Since the applicable energy range
is so small, and the effective aperture in this range less than 0.1 km?, we exclude a limb-pointing
configuration from our analysis. In centre-pointing configuration, utilising the full bandwidth
still yields the greatest aperture near threshold, though above 10%° eV, the optimal peak fre-
quency fuax 1s below 2 GHz. Though this experiment actually offers a lower collecting area than
the Parkes experiment, this is more than compensated for by the large bandwidth and ability to
simultaneously cover the entire visible lunar surface near 1 GHz, and we find an improvement
of approximately an order of magnitude in both threshold and aperture is expected.

ASKAP, due to be completed in approximately 2011, offers up to twice the aperture of
ATCA — due to a lower observation frequency — but with a similar threshold. The relative
utility of each instrument as an UHE neutrino detector will probably therefore be determined by
other considerations, such as ability to utilise existing processing power for de-dispersion (likely
favouring ASKAP), usefulness as a platform to develop technologies scalable to the SKA (also

15



likely favouring ASKAP), and competition for observation time (favouring ATCA). Either of
these two instruments will be able to improve on existing limits from RICE and ANITA-lite
in the 102°-10% eV range in approximately two calendar months. While the expected number
of events per calendar year is negligible for most of the production models (see Table 4), such
observations would be sensitive to TD models considered by Protheroe & Stanev [58], and the
larger flux estimates allowed under the generic optically thin AGN photoproduction models of
Mannheim, Protheroe & Rachen [61].

As expected, the SKA offers a further leap forward in both threshold and sensitivity be-
yond the capabilities of ATCA or ASKAP. The three technology bands (dishes, low- and high-
frequency AAs) are complementary, with the highest aperture from the low-frequency AA
above 10%° eV, and from the dishes below 3 x 10'” eV. The sensitivity of the high-frequency
AA band (0.2-1 GHz) is somewhat reduced since the contribution to total system temperature
from lunar thermal emission incident on a 60 m diameter cluster of AA tiles is significant. To a
lesser extent this is true for the dishes, but in the low AA band (70-200 MHz), the Moon will
actually appear colder than the sky due to rising galactic noise.

An apparent contradiction is that the estimated limits from LOFAR of Scholten et al. [21]
are in fact stronger above 10%? eV by a factor of 2 than those for the SKA low-frequency AA,
which will have a greater collecting area over the frequency range, and thus must be able to set
the stronger limit. We emphasise that this factor is explained by differences in the modelling —
we have run our simulation using the authors’ reported techniques, and found agreement within
the limits of our ability to reproduce their methods. The primary reason for our more pessimistic
result is that the regolith substrate used here is a less efficient producer and transmitter of co-
herent Cherenkov radiation than the uniform regolith of Scholten et al., while numerous other
differences in simulation techniques, e.g. our inclusion of surface roughness, are secondary ef-
fects. We would therefore argue that the LOFAR curve should sit entirely above that presented
here for the SKA low-frequency AA.

The sensitivity provided by the SKA over all technology bands will allow most predictions
of the GZK flux of UHE neutrinos to be probed in a single calendar year, with the sole exception
being the model of Anchordoqui et al. [S7]. The remaining GZK models will need as little as
1 month (Protheroe & Johnson [53], Ena = 3 X 102! €V) or as many as 18 months (Engel
[55], EdS) to be detected / ruled-out at 90% confidence. Importantly, the flux of UHE neutrinos
at energies detectable in the sub-regolith is predicted to be very low in all GZK models, with
such events contributing at most 10% of the simulated detections, so that the detectability of
the GZK flux is insensitive to the nature of the sub-regolith layer. For models (particularly TD
models) predicting a large flux of neutrinos at the highest energies, the nature of the sub-regolith
becomes very significant, and event rates could be as large as ten per day. The huge variation in
the event rates — over four orders of magnitude — reflects both the current uncertainty in UHE
CR origin, and the size of the parameter space which the SKA will be able to explore.

Of particular interest is the relative importance of the three SKA technology bands, with the
band exhibiting the highest individual event rate being dependent on the flux models. Models
where the low-frequency AA will have the highest event rate predict large fluxes of neutrino sig-
nals in all frequency bands, and will also be (at least marginally) detectable by both ATCA and
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ASKAP, suggesting observations below 200 MHz, purely in terms of model detection and/or
elimination, will be less critical for UHE neutrino physics. Individually, only the dishes are
likely to detect fluxes consistent with all predictions, bar that of Anchordoqui et al., in a cal-
endar year. However, given the myriad other frequency-dependent issues associated with lunar
Cherenkov observations which we have so-far ignored (see the discussion), we feel that at this
stage it would be unwise to presume conclusions can be drawn as to which frequency band will
be most important for UHE neutrino observations.

The energy range at which the SKA could set a dominant limit is almost identical to that
of ANITA, reflecting the overlap in observation frequencies (ANITA observes between 200-
1200 MHz) and the similar geometry of the two experiments. At energies below 3 x 101¥ eV
(the approximate SKA detection threshold), the expected flux is high enough to be detected
by both Auger and fixed-volume Antarctic experiments such as IceCube. So far, our analysis
has been purely in terms of sensitivity to an isotropic flux of UHE neutrinos — we will delay a
discussion of the arrival direction sensitivity to a subsequent paper.

8 UHE Cosmic Ray detection with the SKA

In calculating the effective apertures of lunar Cherenkov experiments to UHE CRs, we found
the results for the two methods of generating surface slopes to diverge for frequencies above a
few hundred MHz, making it impossible to obtain reliable estimates for ATCA, ASKAP, and
the SKA dishes, while for the SKA high-frequency AA, the two methods gave values different
by more than a factor of two below 10?! eV. We therefore only present results for the SKA AAs,
and await developments in lunar surface roughness theory to determine if the sensitivity to UHE
CR at higher frequencies is significant.

The conventional experiment currently with the largest UHE CR aperture is that of the Pierre
Auger Observatory. Consisting of a single ~3000 km? site in Argentina, by 2020 (when the full
SKA comes on-line), a second, perhaps larger site in the USA will probably have been com-
pleted, with up to 10,000 km? of area. Here we assume sensitivity to all events of zenith angle
< 60°, and 100% detection efficiency, giving the total aperture of both sites to be approximately
30,000 km? sr. For an even comparison, we again weight the aperture by the fractional on-time
€n (= 1 for Auger, and 0.288 for the SKA AAs). The resulting weighted effective apertures are
plotted in Fig. 9.

Even using the lower bound for the SKA apertures, the SKA low-frequency AA could expect
a higher CR event rate above approximately 60 EeV than the combined Auger observatories.
Coincidentally, this is approximately the energy at which the most significant anisotropies in
arrival directions have been observed by Auger [1]. Since the aperture increases rapidly with
cosmic ray energy, the event rate will fall much more slowly than with a fixed-aperture exper-
iment such as Auger. This will allow a greater proportion of CR at the very highest energies
(with the lowest deflection by magnetic fields) to be observed, although consequently the rate
will be more sensitive to the spectral index at the highest energies. Measurements of the UHE
CR spectrum from Auger [65, 66] indicate a spectrum of dN/dE oc E-*+14:942 above 10 eV,
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giving an annual event rate for the SKA low-frequency AA above 56 EeV of between 260
(unfavourable surface slopes, spectral index —4.56) and 1050 (independent slopes, spectral in-
dex —3.72), with the contributions to the uncertainty from the surface slopes model and UHE
CR spectrum approximately equal. For comparison, the rate for a 13,000 km? total collecting
area (i.e. including the future Northern Hemisphere array) Pierre Auger Observatory is between
about 40 and 60 per calendar year (depending only on spectral index). For any given assumption
of surface roughness and spectral index, the SKA low-frequency AA would detect at least ~ 30
times as many cosmic rays above 56 EeV as the current Southern Pierre Auger Observatory.

The uncertainty in the aperture of the SKA high-frequency AA is somewhat greater than that
for the low-frequency AA. While the sensitivity surpasses that of the low-frequency AA mostly
only at energies where the Auger aperture dominates, there is a regime near 40-60 EeV where
the apertures are comparable. In this regime, the optimal observation band for the low-frequency
AA covers the full instrumental range of 70-200 MHz, while that of the high-frequency AA is
only 200-300 MHz, suggesting that there could be a significant advantage in simultaneously
observing with both instruments, or pushing up the maximum frequency of the low-frequency
AA to (say) 300 MHz.

It must be stated that we are not arguing the SKA in particular, or the lunar Cherenkov
technique in general, as a replacement to ground-based UHE CR detectors. Even at the highest
energies, the technique will not provide any compositional measure of the UHE CR flux, and the
energy resolution will probably be poor compared to current methods. The attraction lies in its
ability to gather unprecedented statistics on the arrival directions of the highest energy cosmic
rays, enabling more accurate statistics in correlation studies with potential source distributions.
We qualitatively describe methods for determining the arrival direction, and for distinguishing
cosmic rays from neutrinos, elsewhere — see James et al. [67]. A shift towards using higher
energy CR for correlation studies will increase the advantage of the SKA with respect to current
detection techniques.

9 Discussion

There are two broad bases upon which the accuracy of our estimates can be questioned, the first
being our ability to detect the natural (or ‘Luna-given’) rate of lunar Cherenkov signals from
UHE particle interactions in the Moon, and the second being our calculations of the signals
themselves.

Our results show the potential apertures and event rates for future radio instruments, cor-
responding to the limit of thermal noise. There are many technical hurdles to be overcome
to achieve this, as discussed by McFadden et al. [68]. Limitations on beam-forming capac-
ity impose a frequency-baseline constraint on real-time triggering if the entire Moon is to be
observed, meaning that the full sensitivity could only be recovered by setting a high trigger
rate and writing buffered data from long baselines upon triggering. Coherent de-dispersion of
the signal (which gets dispersed by the Earth’s ionosphere, greatly reducing the peak strength)
must be performed in real time prior to triggering, and this requires both specialised hardware
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and a very accurate knowledge of the ionosphere. The baseline limitation is most restricting at
high frequencies, the de-dispersion at low frequencies. Perhaps the greatest restriction will be
obtaining significant observation time to perform UHE particle physics on a radio instrument.
In this regard, the SKA AAs are least restrictive, since there is the possibility of forming mul-
tiple independent beams and carrying out lunar Cherenkov observations simultaneously with
conventional radio astronomy by other telescope users.

There are three dominant sources of uncertainty in our calculations of radio-signals from
UHE particle interactions in the outer layers of the Moon. The UHE neutrino-nucleon cross-
section is very poorly constrained at such high energies even within the bounds of standard
particle physics. To first order, the effective experimental aperture scales linearly with this
cross-section, and a reduced cross-section may render some production models undetectable
even with the SKA. Also, it is unlikely lunar Cherenkov experiments alone will break the de-
generacy between flux normalisation and cross-section except perhaps with a very large number
of detections. In combination with other experiments however, the prospects are promising, and
we view determining the unknown cross-section as a scientific goal, rather than a theoretical
limitation.

Our model of the regolith depth and sub-regolith layer is relatively poorly constrained by
current observations, and could change with data from the next generation of lunar orbiters.
Our calculated apertures from low-frequency (i.e. AA-low and AA-high) observations of UHE
neutrinos only are sensitive to the existence or otherwise of such a layer, as radiation at high
frequencies cannot escape from great depth, and cosmic rays interact near the surface. The
(high-frequency) SKA dishes dominate the expected event rates given in Table 4 for most mod-
els of a UHE neutrino flux, and the exceptions are those where we expect a high event rate
from all detectors from all modelled experiments. Therefore the question of regolith depth and
sub-regolith structure is of less importance.

The main area in which the theory is under-developed is that of lunar surface roughness.
Even at low frequencies, our method to put bounds on the aperture to UHE CR still allows
a factor of three uncertainty in the case of the high frequency AA at 50 EeV, and prevented
accurate modelling at higher frequencies. Also, our lower bound is not a physically rigorous
bound in the strictest sense of the term. Obscuration of outgoing radiation by large-scale surface
features (‘self-shadowing’) — a closely related problem — should also be included. Small-
scale surface roughness, which could affect the coherence of radiation over the shower length,
especially at high frequencies where the Moon is rougher, has so far been ignored, or treated as
large-scale roughness. We hope to address these issues in a future paper.

We have shown that the SKA could utilise the lunar Cherenkov technique to detect the UHE
neutrino flux above 3 x 10'® eV under a wide range of production models, and provide unprece-
dented statistics on the flux of > 50 EeV cosmic rays. Both ATCA and ASKAP could detect
or eliminate the most optimistic UHE neutrino production models in a reasonable observation
time, though we cannot estimate their utility as cosmic ray detectors.

While the lunar Cherenkov technique alone can not perform all the science associated with
UHE neutrino or CR observations, the next generation of radio-instruments will in the near-
future be able to make significant contributions to each.
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‘ r (km)

‘O—SOO 500-1000 1000-1670 1670-1749.99 1749.99—1750.00‘

| p(gem™) | 8.11

3.81

3.40

3.00

1.80 |

Table 1: The values of lunar density, scaled to give the correct lunar mass [43].

‘ Medium ‘ n A 95‘ P % f() CH ELPM ‘
Regolith 1.73 604 54.7° 1.8 0.0845 232 4.57° 2.40° 7.70x107*
Sub-Regolith | 2.5 294 66.4° 3.0 0.0569 238 4.69° 2.46° 4.64x10™*

Table 2: Shower and radio Cherenkov parameters of the regolith and sub-regolith used in the

present simulations. Units: p (g/cm®), V, (V/MHz), £, (GHz), E;py (EeV).

| Instrument | D(m) N Sy (m?/K) f4in (GHz) £y (GH2) |
Parkes Hi 64 1 69 1.475 1.575
Lo 1.275 1.375
GLUE DSS14 LCP 70 1 82.5 2.18 222
DSS14 RCP Hi 2.2 2.275
DSS14 RCP Lo 2.125 2.2
DSS13 Hi 34 1 20.5 22 2.275
DSS13 Lo 2.125 2.2
Kalyazin 64 1 69 2.25 2.35
ATCA 22 6 61 1 3
ASKAP 12 30 77.6 0.7 1.8
SKA AA Low 60 154 4000 0.07 0.2
AA High 60 154 10000 02 1
Dishes 15 2476 10000 0.7 3

Table 3: Parameters of radio instruments used in the modelling of both past and future lunar
Cherenkov experiments. Respectively, these parameters are dish diameter / AA cluster size [
(m), number of AA tile clusters or dishes /V, base sensitivity S¢ (= A/ Tsys) before account-
ing for lunar emission, and frequency range of the instruments (triggering frequencies will in
general be more restricted for the future experiments). The frequency range is also the maxi-
mum bandwidth, except for ASKAP which will have a maximum bandwidth of 300 MHz. For
GLUE, when in defocused mode, DSS14 was treated as DSS13 in terms of D and Sy.
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[Author  Model | ATCA ASKAP AA-dow AA-high Dishes Full SKA |
2506 20 40 3140 950 290 3200
10 14 240 108 73 266
1.6 33 180 90 49 206
ABK04 1.0 15 21 16 19 34
0 0 0.1 15 63 6.4
20 . . . .
P10 3X10TeV 0 0.06 1.0 52 52
310t ey | 018 033 9 13 29 33
016 023 2.6 7 18 19
0 0 0.03 0.3 1.7 1.7
- EdS 0 0 0.01 0.2 15 15
n ACDM 0 0 0.04 05 2.0 2.0
0 0 0.02 0.34 25 25
0 0 0.1 0.8 33 34
20 . . . .
A0 3x10%eV )y 0 0.04 0.5 27 27
310t ey | 018 033 21 12 11 30
011 017 23 3.0 6.4 7.9
0 0 0 0.02 0.24 0.24
An07 0 0 0 0.02 0.22 0.22
002 003 0.6 57 13 13
20 . . . .
30TV 002 0.3 3.4 14 14
029 052 12 36 39 66
21 : :
MRD 10%eV 1 07 0.4 4.4 16 37 38
st ey | 20 50 156 194 182 293
2.2 33 38 58 38 105
102 oV 14 23 1220 820 430 1480
10 15 190 170 180 300

Table 4: Expected number of neutrino events per calendar year from lunar Cherenkov exper-
iments for the different models of the UHE neutrino flux plotted in Fig. 8, including (upper
value) and excluding (lower value) the sub-regolith. A ‘0’ implies an expected annual event
rate of less than 0.05. The three SKA technology bands have been estimated separately, with
the total calculated using the highest aperture at a given energy.
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Figure 1: Surface roughness is described by the angular deviation S of the local surface from the
(horizontal) mean lunar surface, assuming a perfectly spherical moon. (a) Large-scale rough-
ness approximation is illustrated where S is taken to be constant over the length of the shower.

(b) illustrates small-scale roughness where S varies significantly over the length of the shower,
L.

cosmic rays

hill/crater wall

Less interactions

More interactions

Figure 2: Cosmic rays will tend to interact on the sides of hills where the local surface normal
is parallel to the arrival direction, so that the shower develops pointing away from the surface,
reducing the probability that radiation from near the Cherenkov angle will escape.

Figure 3: Contour maps of the normalised aperture A(E), A f)/Amax(E,) of a fictitious experi-
ment (see text) to UHE neutrinos. (a) for £,;, = 100 MHz, (b) for £ =1 GHz.
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Figure 4: Contour maps of the effective aperture of a fictitious experiment (see text) to UHE
neutrinos at energies of (a) 102’ eV and (b) 10?2 eV, as a function of individual antenna diameter
and pointing position. Contour levels are labelled as fractions of the peak aperture, achieved in
each case for the centre-pointing mode of the minimum antenna diameter of 8 m.

Figure 5: Effective apertures to UHE neutrinos of past lunar Cherenkov experiments, divided by

neutrino energy in ZeV (1 ZeV = 10?! eV), both (a) excluding and (b) including the sub-regolith
layer.
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Neutrino Energy E, (eV)

Figure 6: Effective apertures to UHE neutrinos of future lunar Cherenkov experiments, divided
by neutrino energy in ZeV (1 ZeV = 10* eV), both including (upper, thicker curves) and ex-
cluding (lower, fainter curves) the sub-regolith layer.
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Figure 7: Existing model-independent limits on a total UHE neutrino flux (adjusted for all neu-
trino flavours) (see text) from: GLUE [9]; IceCube [51]; RICE [52]; ANITA-lite [10]; FORTE
[50]; our revised estimates for Parkes, GLUE, and Kalyazin are shown by hatched bands (upper
boundary — limit for 10 m regolith; lower boundary — 10 m regolith plus 2 km sub-regolith);

Auger surface detectors [63].
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Figure 8: (a) and (b). Models of UHE neutrino production from GZK interaction: PJ96-
Protheroe & Johnson [53] as expected for UHE CR acceleration in Fanaroff-Riley Il radio
galaxies [54] with protons accelerated with e~2 spectrum to 3 x 1011 and 3 x 1012 GeV; En01-
Engel etal. E 2spectrum to 3x 1012 (dashed- EdS cosmology; solid- ACDM cosmology) [55];
Al106-Allard et al. [56] with protons accelerated with e~2a spectrum to 3 x 1011 GeV (dashed),
mixed composition with E~2a to Z x 3 x 1011 GeV (solid), and mixed composition with E~2a
spectrum to Zx 3 x 1012 GeV (dotted); An07- Anchordoqui et al. [57] with protons accelerated
with e~22 spectrum to 4 x 1011 GeV. Topological defects (TD) by: PS96-Protheroe & Stanev
[58], ABKO4-Aloisio, Berezinsky & Kachelreill [59] (see [60]). Optically thin AGN photopto-
duction sources MPRO1 with protons accelerated to 3 x 1011, 1012, 3x 1012 and 1013 GeV, based
on Fig. 2b of Mannheim, Protheroe & Rachen [61]. The limit on the total flux of UHE neutrinos
(adjusted for all neutrino flavours) is plotted as the region excluded by past experiments (shaded
area at top). The projected ANITA limit from their 2006 experiment [10] (adjusted for balloon
flight duration), and predicted sensitivity for one calendar year of operation of future experi-
ments to a flux of UHE neutrinos (adjusted for all neutrino flavours): ‘FD’ Auger Fluorescence
Detectors [62]; LOFAR [21]; shaded bands (upper boundary - limit for 10 m regolith; lower
boundary - 10 m regolith plus 2 km sub-regolith) from present work are shown for ATCA,
ASKAP, SKA (left- dishes, middle - mid-frequency AA, right - low-frequency AA). The sen-
sitivity for the mid-frequency AA is only shown as a shaded band where it is lower than the
low-frequency AA shaded band and elsewhere is shown by thin dotted lines. Similarly, the sen-
sitivity for the dishes is only shown as a shaded band where it is lower than the mid-frequency
AA shaded band and elsewhere is shown by thin dotted lines.
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Cosmic Ray Energy Eqg (eV)

Figure 9: Comparison of the weighted effective aperture (effective aperture multiplied by frac-
tional on-time) to cosmic rays of the SKA Aperture Arrays (high and low) with that of a po-
tential 2020 Pierre Auger project (‘Total Auger’), assuming a Northern site (‘Auger North’) of
10, 000 km? in addition to the current observatory (‘Auger South’). The upper and lower bounds
come from calculations respectively assuming independent and unfavourable surface slopes.
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