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We present a novel approach to long-range correlations beyond dynamical mean-field theory 
through a ladder approximation to dual fermions. The new technique is applied to the two­
dimensional Hubbard model. We demonstrate that the transformed perturbation series for the 
nonlocal dual fermions has superior convergence properties over standard diagrammatic techniques.
The critical Neel temperature of the mean-field solution is suppressed in the ladder approximation, 
in accordance with quantum Monte-Carlo (QMC) results. An illustration of how the approach 
captures and allows to distinguish short- and long-range correlations is given.

PACS numbers: 71.10.Fd, 71.27.+a

The physics of strongly interacting quantum  systems 
is a fascinating subject which encompasses very diverse 
phenomena such as the fractional quantum  Hall effect 
[1], high-temperature superconductivity [2, 3], heavy- 
fermion compounds [4, 5], etc. Despite a large effort 
of experimentalists and theoreticians, only recently has 
some progress on the quantitative understanding of these 
systems been achieved, in particular of the Mott transi­
tion in fermionic systems [6]. The main difficulty lies in 
the fact tha t two vastly different energy scales play an im­
portant role in the redistribution of the spectral weight. 
A description of the low-energy physics requires very ac­
curate understanding of the interplay with high-energy 
excitations dominated by short-range Coulomb repulsion. 
The interplay between low-energy spin fluctuations and 
the fermionic excitations is believed to ultim ately lead 
to the phenomenon of high-temperature superconductiv­
ity [3]. The development of reliable theoretical tools to 
calculate the material specific properties of strongly cor­
related materials remains one of the greatest challenges 
in modern theoretical condensed m atter physics.

Dynamical mean-field theory (DMFT) [7], which maps 
the strongly correlated lattice problem to a quantum  im­
purity problem coupled to an electronic bath was a ma­
jor step forward in the understanding of these systems. 
DMFT captures local temporal fluctuations, but does not 
incorporate spatial fluctuations. Its success is based on 
the fact tha t the physics is dominated by strong local 
interactions and tha t the phases of the fermions are av­
eraged over a large number of bonds connecting a given 
site to the lattice, so tha t memory effects in the bath can 
be neglected, see e.g. [8, 9].

Many efforts have been undertaken to go beyond the 
mean-field description. An expansion in 1/z where z is 
the coordination number does not converge as the ac­
tion depends in a non-analytic way on the coordination 
number [10]. Using an auxiliary field it is possible to per­
form a systematic cumulant expansion of the path inte­
gral for the partition function around the strong coupling

limit as pointed out in [11]. There the authors developed 
a general framework for expanding around DMFT even 
considering non-local Coulomb interaction. Cluster gen­
eralizations of DMFT [12, 13, 14, 15] break translational 
invariance either in real or momentum space explicitly 
and might artificially favor states which order at some 
finite wave-vector. The correlations included are nec­
essarily short-ranged. Effects like pseudogap formation 
and correlations related with a narrow region of reciprocal 
space, such as the vicinity of Van Hove singularities [16], 
can hardly be taken into account by cluster approaches. 
A momentum dependent self-energy was introduced into 
DMFT by including nonlocal correlations through a clas­
sical fluctuating field [17]. Recently, straightforward di­
agrammatic extensions to DMFT to include long-range 
correlations have been proposed [18, 19]. It was further 
recognized, tha t a systematic expansion around DMFT 
can be transformed into a standard diagrammatic tech­
nique in terms of auxiliary, so-called dual fermions.

In this Letter, we present results from a fully self- 
consistent infinite ladder diagram summation in terms 
of dual fermions. This approach manifestly takes long- 
wavelength correlations, in particular magnon contribu­
tions, into account. We show tha t the convergence of the 
perturbation series is considerably enhanced by mapping 
the strongly correlated lattice fermions to weakly corre­
lated dual fermions. This leads to a rapid convergence in 
the weak and strong coupling regimes and even far from 
these limits. Our study of the convergence properties is 
based on the leading eigenvalue analysis derived from the 
Bethe-Salpeter equation (BSE).

To be specific, we start with the one-band Hubbard 
model in two dimensions (2D)

H  =  - t X X >  j  +  u J 2 n ^ n n -
ij,a i

Here c¡a denotes the creation operator of an electron at 
site i with spin a, t  denotes the nearest neighbor hopping
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amplitude and U is the strength of the on-site (screened) 
Coulomb interaction.

The formulation of the theory for this model relies on a 
separation of the lattice action into two parts: an optimal 
impurity problem and a bilinear term  tha t couples the 
impurities. This is achieved by introducing a dynamical 
field Aw at each lattice site. The resulting imaginary 
time action takes the form

S [c , c] Simp[cwiCT , cwia] +  Cwka (ek — A w ) cwka ■
i wk a

Here ek =  —2t(cos kx +cos k y) is the bare dispersion with 
bandwidth W =  8t, w are the M atsubara frequencies and 
k  labels momentum. Simp is the action for an impurity 
embedded in a time dependent electronic bath described 
by the hybridization function A w, which is the analogue 
of the dynamical field in DMFT. The effect of spatial 
correlations enters via the remainder of the lattice action 
and renders an exact solution impossible. This term  is 
transformed by introducing auxiliary fermionic degrees 
of freedom (the dual fermions) in the path integral via a 
continuous Hubbard-Stratonovich transformation. Inte­
grating out the lattice fermions produces the correlation 
functions of the impurity. These enter the dual potential 
and Green’s functions and are obtained by solving the 
impurity problem using a numerically exact continuous­
time QMC algorithm [20]. The lattice problem is solved 
perturbatively in terms of the dual fermions through a 
standard diagrammatic expansion. The bare dual inter­
actions correspond to the reducible vertices of the impu­
rity model, which are connected by dual Green’s func­
tions as lines. In Fig. 1 we show the lowest order di­
agrams. The rules to evaluate the diagrams are essen­
tially those of the antisymmetrized diagrammatic tech­
nique [26]. More details on the method can be found in 
Refs. [21, 22, 23, 24, 25].

The ladder dual fermion approximation (LDFA) is 
obtained by functional derivative of a suitable dual 
Luttinger-W ard functional, SLDFA =  /S G d. A one- 
to-one correspondence between the dual and original 
functionals [21] ensures tha t the theory is conserving in 
the Baym-Kadanoff sense [27]. It is im portant tha t ir ­
respective of the spatial dimension, DMFT appears as 
the lowest order approximation in this functional formu­
lation. We note th a t the LDFA takes two-particle ex­
citations into account, which are the same for dual and 
lattice fermions [22, 23].

The first three LDFA diagrams are shown in the first 
row of Fig. 1 (a,b,e). We solve the BSE depicted in 
Fig. 1 g) numerically. The LDFA self-energy is obtained 
from the Schwinger-Dyson equation, taking into account 
contributions from the horizontal and vertical particle- 
hole channels, similar to Ref. [18]. Some care must be 
taken for combinatorial factors, to avoid overcounting of 
the second order contribution Fig. 1 b), similar to the 
case encountered for Hugenholtz diagrams.
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FIG. 1: Diagrams for the dual self-energy The exact two- 
and three-particle impurity vertices are depicted by squares 
and hexagons. The lines are dual Green functions. Diagrams 
a) and c) are purely local, while the remaining diagrams give 
non-local contributions. g) Diagrammatic representation of 
the Bethe-Salpeter equation in the electron-hole channel.

We assess the reliability of our method in the vicinity 
of the AFI, where long-range fluctuations are expected 
to be of vital importance. Different approximations are 
compared by their leading eigenvalue of a linear eigen­
value problem derived from the BSE in the electron-hole 
channel of Fig. 1 g). For fixed transferred frequency fi 
and momentum q, it reads

-  Gw/(k ')  Gw/+ n (k ' +  q)4>oj' = M u  ■ (1)
w'k'

Here r s =  denotes the singlet spin channel of
the irreducible vertex. T  is the tem perature and N  the 
number of k-points. We focus on the leading eigenvalues 
in the vicinity of the AFI and hence on q  =  (n, n) and 
fi =  0. An eigenvalue of one indicates a transition to the 
symmetry broken state.

For dual fermions, we have transformed the dual ver­
tex r ¿ w,Q (q) and Green’s functions back to lattice quan­
tities using an exact relation [21, 22]. The irreducible 
lattice vertex r jj^ ,fi(q) is obtained from the reducible 
one by inverting a BSE as depicted in Fig. 1 g). Re­
sults are shown in Fig. 2. While at higher tem peratures 
all approximations give similar results, DMFT fails in 
the vicinity of the AFI. The instability at a Neel tem­
perature of T d MFT/ í  =  0.233 is an artefact of the mean 
field approximation, which tends to stabilize the AF or­
der. Including short-range spatial correlations beyond 
DMFT, through the leading nonlocal diagram b) of Fig. 
1, only slightly improves the solution and reduces the 
critical tem perature down to T ^ F/ t  =  0.215. This is in 
accordance to the leading eigenvalue being close to unity, 
indicating a decelerated convergence and pointing to the 
importance of long-wavelength fluctuations in the vicin­
ity of the AFI. This is facilitated through the LDFA, 
which complies with QMC even close to the AFI. This is 
remarkable because the results have been obtained per- 
turbatively, starting from DMFT as a local approxima­
tion.
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FIG. 2: (Color online) Comparison of the leading eigenvalue 
of the Bethe-Salpeter equation in the electron-hole channel for 
a wavevector q =  (n, n) and 0  =  0 obtained within different 
approximations with quantum Monte-Carlo data taken from 
Ref. [28] for an 8 x 8 lattice. An eigenvalue of Amax indicates 
the antiferromagnetic instability.

A self-consistent renormalization of the LDFA self­
energy is essential below TDf as the eigenvalue of the 
BSE is larger than one in this regime and forbids a 
straightforward summation of the electron-hole ladder. 
Using a Green’s function renormalized by the first few 
ladder diagrams pushes the eigenvalue below one and al­
lows the self-consistent ladder summation. It is, however, 
not possible to approach the AFI arbitrarily close since it 
becomes computationally unfeasible to sum a large but 
finite number of ladder diagrams by iteratively solving 
the BSE. In the accessible tem perature range, we do not 
find a sign of a transition to the ordered state.

In order to discuss the convergence properties, we con­
sider the eigenvalue problem for dual fermions, by replac­
ing Green’s functions and the irreducible vertex by their 
dual counterparts (the impurity vertex for the latter) in 
Eq. 1. Since the corresponding matrix is the building 
block of the electron-hole ladder, an eigenvalue equal to 
unity implies the divergence of the ladder sum and also 
a breakdown of the perturbation theory.

The results are presented in Fig. 3. For weak cou­
pling, the leading eigenvalue is small and implies a fast 
convergence of the diagrams in the electron-hole ladder. 
More significantly, the eigenvalues decrease and converge 
to the same intercept in the large U limit. This nicely 
illustrates tha t the dual perturbation theory smoothly 
interpolates between a standard perturbation expansion 
at small, and the cumulant expansion at large U , ensur­
ing fast convergence in both regimes. From the figure 
it is clear th a t this also improves the convergence prop­
erties for intermediate coupling (U ~  W ). Even here 
corrections from approximations involving higher-order 
diagrams remain small, including those from the LDFA. 
Diagrams involving the three-particle vertex give a negli­
gible contribution. Neglecting such diagrams is justified 
from a phase space argument [26].

U /t

FIG. 3: (Color online) Leading eigenvalue of the Bethe- 
Salpeter equation for dual fermions as function of U in com­
parison to DMFT. The diagrams considered in each of the 
calculations are shown in the legend (cf. Fig. 1). The arrows 
point to the data for the same parameters as in Fig. 2.

For a straightforward diagrammatic expansion around 
DMFT, the building block of the particle-hole ladder 
is constructed from the DMFT irreducible vertex and 
DMFT Green functions. As seen in Fig. 3, the cor­
responding leading eigenvalue (and the effective interac­
tion) is much larger than for dual fermions over the whole 
param eter range (e.g. at red arrows). This is also true for 
the leading eigenvalue of the lattice fermions (red arrow 
in Fig. 2), which is close to the DMFT value for these 
parameters (the data  labeled DMFT at the red arrows is 
the same in both plots). Remarkably, for the intermedi­
ate to strong coupling region, standard perturbation the­
ory has to break down (since the eigenvalue approaches 
one), while for a theory in terms of dual fermions, this is 
not the case.

In Fig. 4 we show the dynamical susceptibility x(q, w) 
obtained at half-filling for U /t =  4 and T / t  =  0.19, to­
gether with the dispersion from spin-wave theory for a 
Heisenberg model with AF exchange J  =  4t2/U . It 
clearly displays the magnon spectrum in the paramag­
netic state. We find a broadening of the frequency distri­
bution and a small frequency shift of the peak from zero 
at the wave-vector q =  (n, n) (M -point). Such a be­
havior is reminiscent of a 2D Heisenberg model at finite 
tem perature where a short-range order with correlation 
length £ ^  a (a is the lattice constant) takes place and 
a typical small energy scale of order J a /£  arises [29].

Figure 5 (left) shows the local density of states (DOS) 
at the M ott transition. The insulating (thick line) and 
metallic DOS (thin line) was calculated in the coexistence 
region for U /t =  6.25 and T / t  =  0.08, where DMFT 
gives a metallic solution. The insulating solution exhibits 
the characteristic coherence peaks at the gap edge. The 
short-range AF correlations lead to a smeared “antifer­
romagnetic gap”-like behavior [29]. In our approach it 
is possible to account for the strong, tem perature de­
pendent modification of the DMFT hybridization func­
tion in a self-consistent procedure. This is essential since
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FIG. 4: (Color online) Dynamical susceptibility x (q ,^ ) for 
U /t =  4, and T /t =  0.19.

the Mott transition cannot be described perturbatively
[6]. We find a sizeable reduction of the critical U at the 
second-order endpoint at T / t  ~  0.11 from Uc =  9.35 in 
DMFT down to Uc ~  6.5 due to the short-range AF cor­
relations. The transition remains first order but displays 
a qualitative modification of the transition lines Uci,2(T ) 
compared to DM FT, which is in accordance with recent 
dynamical cluster approximation results [30].

To further demonstrate the power of the method, we 
show the DOS for U /t =  4 and T / t  =  0.19, obtained 
within DMFT (dashed line), dual fermion approximation 
with diagram Fig. 1 b) and the LDFA in Fig. 5 (right) 
at half-filling. While the short-range correlations only 
slightly reduce the DOS at zero frequency, the pseudogap 
opens as long-range correlations are included through the 
LDFA. The pseudogap has been obtained within large 
scale cluster DMFT calculations [12], in the symmetry 
broken state [23] or semiclassically [17]. Here we obtain 
it for the first time within a translationally invariant so­
lution in the paramagnetic state and for a U well below 
the Mott transition point. A pseudogap behavior previ­
ously reported at U /t =  8 [19] is reproduced using only 
diagram b) of Fig. 1 and the DMFT hybridization, so 
that it is actually the precursor of the short-range AF 
correlation-assisted Mott transition.

To conclude, we have shown that the dual ladder ap­
proximation efficiently takes long-range correlations into 
account and is superior to straightforward diagrammatic 
expansions. The theory treats spatial correlations on all 
length scales on equal footing, is complementary to clus-

FIG. 5: (Color online) Left: Metallic and insulating DOS 
within the coexistence region of the Mott transition U/t = 
6.25, T /t = 0.08. Right: DMFT (dashed), DF (diagrams a,b) 
(thin line) and LDFA (thick line) DOS at U/t =  4, T /t = 0.19. 
The LDFA DOS exhibits the antiferromagnetic pseudogap.

ter approaches and can access low tem peratures away 
from half filling. The multi-orbital formulation [24] in 
combination with density functional theory provides a 
computationally feasible scheme for a systematic study of 
strongly correlated real materials of present day interest, 
such as the high-Tc materials, or quasi-one-dimensional 
organic conductors.
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