Radboud Repository

Radboud University Nijmegen {§

1
g

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/75650

Please be advised that this information was generated on 2017-12-06 and may be subject to
change.

http://hdl.handle.net/2066/75650

Towards A Formally Verified Network-on-Chip

Tom van den Broek and Julien Schmaltz
Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands

Email: tombroek @science.ru.nl,julien@cs.ru.nl

Abstract—Multi-Processor Systems-on-Chip (MPSoC) designs
are constructed by assembling pre-designed parameterized com-
ponents. Communications are crucial to their overall function-
ality and performance. Formal verification methods have been
intensively applied to processing elements, e.g., microprocessors.
Very little work has been done with respect to communication
modules. We present the formal specification of a packet switched
NoC and its proven refinement. At the specification level, routing
decisions are computed af once before packets get injected in the
network. In the implementation, routing decisions are distributed
over each individual node. We prove that the implementation be-
haves according to its specification for a 2D-mesh NoC. All models
and proofs have been checked using the ACL2 theorem proving
system. To the best of our knowledge, this work constitutes the
first cross-layer verification of on-chip communication networks.

I. INTRODUCTION

Formal verification often consists in showing that for every
execution of an implementation there exists an execution of
its abstract specification with the same visible effects. This
approach has been successfully applied to processing elements
(e.g. microprocessors [7], [8]). Multi-Processor Systems-on-
Chip designs offer increased performance by combining sev-
eral processing and memory cores on a single die. The inter-
connect is becoming crucial to the overall functionality of an
MPSoC [13]. When the number of interconnected units grows,
bus performances decrease. Networks-on-Chips (NoCs) [2] is
a solution that could meet future system performance.

Regarding buses, the recent work of Bohm and Melham
is the only effort trying to fill the gap between abstract
specifications and low level implementations [3]. Previous
efforts concentrate on proving properties on low-level im-
plementations using model-checking [11] or combination of
model-checking with theorem proving [1]. Gebremichael et
al. [5] provide a parametric analysis of part of the AEthereal
NoC [6]. All these works considers implementations only.
Regarding specifications, Schmaltz ef al. [12], [4] propose a
generic network model, named GeNoC. We present models
that are variations of the GeNoC model. Each model is at a
different abstraction level. Our contribution is a formal relation
between instances of these models.

Our goal is to provide a methodology to support the abstract
specification of NoCs and the proof that implementations
conform to it. In this paper, we present an initial effort
towards this goal. We present the formal specification of
a packet switched NoC. At the specification level, routing
decisions are computed at once before packets get injected
in the network. In the implementation, routing decisions are

978-1-4244-4966-8/09/$25.00 ©2009 IEEE

184

distributed over each individual node, i.e., hop-by-hop. Details
of the implementation model are available [14]. The original
contribution of this paper consists of the definition of the
specification model and the proof that the implementation
behaves according to its specification for a 2D-mesh network
based on the HERMES NoC [10]. All models and proofs have
been checked using the ACL2 theorem proving system [9] and
are available on the web'. To the best of our knowledge, this
paper presents the first cross-layer verification of a NoC.

II. A NoC EXAMPLE: HERMES

HERMES [10] is based on a 2D mesh architecture (Fig. 1).
Each node is made of an IP core and a switch. Each switch has
five bi-directional ports: Fast, West, North, South connecting
to the neighbor switches, and Local to the IP core.

Fig. 1.

Mesh architecture [10]

The routing policy is based on a deterministic, minimal
algorithm: the XY routing algorithm. Each packet is routed
on one dimension at a time. It travels first along the X axis
until the first coordinate of the destination is reached, and then
travels along the Y axis. This algorithm is recalled in Fig. 2.

Our HERMES instance uses packet switching (store-and-
forward). A packet constitutes the fixed size basic unit, which
travels in the network. A packet contains a header with
routing information and a payload with data. A packet is sent
autonomously through the network.

Each port of the switch has an input buffer queue. A Round
Robin priority policy is used to access the output ports. If the
requested port is busy, packets are blocked and the request
signal remains active. The transmission between two different
nodes is ruled by an handshake protocol.

'www.cs.ru.nl/~julien/Julien_at_Nijmegen/FMCAD09.html

XYRouting (from, to)
if from=to /% destination reached x/
then take the Local port
else
if Xfrom
then

= Xto

/% change X */

if Xfrom < Xto

then take port East

else take port West
/* change Y */

if Yfrom < Yto

then take port South

else take port North

else

Fig. 2. XY routing algorithm

Abstraction Intepreter

1

Verification Approach

Layer 2

routing — source to destination
scheduling — current to next

Layer 1 Refinement Proof

~l—

routing — current to next

scheduling — current to next

Fig. 3.

III. VERIFICATION APPROACH

A. NoC Abstraction, Interpreter, and Property

Our method consists of a NoC model, two abstraction levels
for that model, and a NoC interpreter for each level. Both
interpreters are simulators for networks composed of identical
nodes following a generic router model. They are proven
equivalent (Section VII). The generic model has a few design-
dependent functions which constitute the user-input. These
functions are the Link Layer protocol (e.g., handshake), the
routing logic (e.g., XY), and the scheduling policy (e.g., packet
switching). Together with the router model, they are described
below. The main difference between the interpreters lies in the
routing decisions. The specification (Layer 2) supports source
routing, where routes are computed before sending packets.
The implementation supports distributed routing where each
node computes the next step in a route.

B. Network Model

We assume a generic architecture composed of an arbitrary
— but finite — number of nodes and a finite number of
connections between any two nodes. Each node is uniquely
identified by its position. A node includes a local memory
and a router. A router is defined by a set of ports and four
functions: input and output units, routing control, and flow
control (see Fig. 4). All nodes are identical.

The main elements of a port are the data and control
signals, and internal buffers (Fig. 4). Formally, a port is a
tuple (addr, stat, data, buff), where addr is a unique address,
stat stores the values of the control signals and other state

185

_— | Port
l l l l l Address| 1d | no", | Direction
— g Data
— {HH H H Data Input
Rx
Input Stage ki | StatusField
Qir
Buffer
Routing Control
/ Port
Address| 1d | wo, | Direction
Flow Control / -
-=+— Data Output
/ T
wekrx | StatusField
Output Stage
Buffer

Fig. 4. A router and its ports

components, data denotes the values of the data signals, and
buff represents the value of the buffers.

An address is a tuple (coor, pid, dir), where coor is the
unique identifier of the node the port belongs to, pid the name
of the port (e.g., west, south), and dir the direction, i.e., ’i’
for an input port or o’ for an output port. The topology is
a list where each element is a pair of port addresses (p;,p;),
which means that port p; is connected to port p;. A node is
defined as the set of ports, where the address of each port p
is the same. These ports define the state of the node. The set

of all ports of a network defines the state of the network.

Functions ProcessInputs and ProcessOutputs de-
fine the low level protocols which use the control signals to
transfer the content of the data signals to the internal buffers in
case of an input port, or to transfer the content of the buffers
to the data signals in case of an output port.

Function RouteControl applies the routing logic to one
or more ports of a node. It returns a list of routed ports,
i.e., ports together with routing information. The only design-
dependent function is function routing-logic which im-
plements the routing algorithm.

Function FlowControl implements the switching tech-
nique, e.g., packet, circuit, or wormhole. In case of conflict,
this function also resolves priorities. This function extracts
from the routed ports the packets that are ready to be
transmitted. The only design-dependent function is function
switch-ports which effectively schedules packets. Those
scheduled packets are moved to the output ports computed by
the routing control function.

All these functions form function router (Fig. S5), which
updates a node state. Note that a node is equipped with a
memory which is available to each port and each function.
Argument nstmem represents that memory. To simplify the
presentation, we assume that such a memory element is given
as input argument of any function that accesses it. This
argument is not explicitly mentioned any further.

router (nst,nstmem)
let (nst nstmem) be
RouteControl (ProcessInputs (nst), nstmem)
in
let (nst nstmem) be
FlowControl (nst, nstmem)
in

return ProcessOutputs(nst), nstmem

Fig. 5. Function router

IV. NETWORK MODEL INSTANCE — USER INPUT

For the HERMES 2D-mesh, an address is defined by the xy-
coordinate of the node, pid € {n,s,e,w}, and dir € {i,0}.
A topology element identifies bi-directional links between two
nodes, for instance ((0 0,¢e), (1 0,w)).

The input and output units implement an handshake pro-
tocol. A node can request the transmission using signal Tx
connected to signal Rx of the receiver node. The latter can
deny or grant the access using signal AckRx connected to
signal AckTx of the sender.

Function routing-logic is defined to implement the
routing algorithm described in Fig. 2.

Fig. 6 shows the instantiation of function switch-ports
for packet switching, named pkt-switch-ports. It takes
as arguments the list of the output ports (outports); an
input port (Erom), the content of which has been routed; and
the state of the node (nst). Function pkt-switch-ports
finds the output to which the input port must be connected, and
checks whether this port can accept the packet. Each node has
a one-place output buffer for each output port. A port accepts
a packet if its buffer is empty. If such a port exists, function
switchBuffer transfers the content of the input port to the
output port, i.e., loads the output port and clears the input port.

pkt-switch-port (outports,
let to be outports|[0]
in
case
outports =

from, nst)

null: return nst
status-route (port-status (from))
and not (port-bufferFull (to)):
return switchBuffer (nst, from, to)

default:
pkt-switch-port (outports[l..]),

from,nst)

Fig. 6. Function pkt-switch-port

V. SPECIFICATION — GENOC-L2

Function GeNoC-L2 (Fig. 7) is the core function of our
interpreter for the specification layer. Input argument simL
defines the length of the simulation. It takes as additional
arguments the set of packets to be sent (m), the current state
of the network (ntkst), an accumulator of packets that have
reached their destination (arr, initially empty), the current
simulation step (z, initially 0), and the topology (topo). It

186

returns the list of arrived packets, the list of delayed packets,
and the state of the network at the end of the simulation.

GeNoC-L2 (m, ntkst, arr, z, topo, simL)

if simL = 0 return arr,m,ntkst
else
let (dep, del) be

depart-L2 (ntkst, m, z)
in
let newntkst be
step-ntk-L2 (dep,
in
GeNoC-L2 (del,newntkst, add(z,arr),
z + 1,topo, simL-1)

topo)

Fig. 7. Function GeNoC-L2

Function depart-L2 controls packet injection. According
to a user-defined criterion, it determines which packets can be
in the network. At the specification level, this function uses
source routing and appends to a packet its route from its source
to its destination. It inserts this extended packet in the local
input port of its source node. It returns a new state (dep) and
a list of delayed packets (del). Function step-ntk-L2 (see
below) actually performs one simulation step. It updates the
global network state. Those packets that are at their destination
are extracted from this new state and appended to accumulator
arrived. The next recursive call processes the delayed packets,
the new network state, and time is incremented by 1.

step-ntkl-L2 (ntslist,
if ntslist =
else
let newnst be ProcessInputs-L2(ntslist) in
let (newnstlist,newntkmeml) be
RouteControl-L2 (newnstlist,ntkmem) in
let (newnstlist, newntkmem) be
FlowControl-L2 (newnstlist, newntkmeml)
in
return ProcessOutputs-L2 (newnstlist),
newntkmem

ntkst) :
null return ntkst

step-ntk-L2 (ntkst,
let newntkst be
step-ntkl-L2 (ports-nodelist (ntkst), ntkst)
in
updateNeighbours-L2 (newntkst, topo)

topo) :

Fig. 8. Function step-ntk-L2

At the specification level, every element of our router is ap-
plied sequentially over all nodes. Function step-ntkl-L2
(Fig. 8) takes as arguments a list of nodes to be processed
(ntslist) and the current network state (ntkst). It updates
the network state. Function ProcessInputs-L2 applies
the input stage to all nodes. As routes have been computed
at injection time, the RouteControl module simply “reads”
the next hop as the first element of the route. Function
RouteControl-L2 performs this “routing” decision at
all nodes. After that, function FlowControl-L2 applies
the packet switching policy to all nodes. Finally, function
ProcessOutputs-L2 applies the output stage at all nodes.

Function step-ntk extracts the node structures from
the list of ports (function ports-nodelist), and calls
step-ntkl-L2. Function updateNeighbours-L2 sim-
ulates the transfer of data from output data signals to input data
signals. This function removes the first element of routes.

VI. IMPLEMENTATION — GENOC-L1

Function GeNoC-L1 is the core function of our interpreter
for the implementation layer. It takes and returns the same ar-
guments as GeNoC-L2. Its definition is obtained by replacing
every occurrence of "L2” with ”L1” in Fig. 7. It only injects
a packet without appending any additional information.

step-ntkl-L1(ntslist, ntkst):
if ntslist null return ntkst else
let newnst be router (ntslist[0]) in
let newntkst be
step-ntkl-L1l (ntslist[1..], ntkst) in
return ports-update (newntkst,newnst)
step-ntk-L1l (ntkst, topo):
let newntkst be
step-ntkl-L1 (ports-nodelist (ntkst),
updateNeighbours-L1l (newntkst, topo)

ntkst) in

Fig. 9. Function step-ntk-L1

Function step-ntk-L1 (Fig. 9) is based on recur-
sive function step-ntkl-L1l. The latter takes as argu-
ments a list of nodes to be processed (ntslist) and
the current network state (ntkst). It updates the network
state. For each node, it applies function router. Function
ports-update effectively updates the state of the nodes.
Finally, function step-ntk-L1 extracts the node structures
from the list of ports (function ports-nodelist), and
calls step-ntk1l-L1. Function updateNeighbours-L1
simulates the transfer of data from output to input signals.

VII. EQUIVALENCE PROOF

The theorem connecting the two models is shown in Fig. 10.
Function transform simply removes all routes from ex-
tended packets. This theorem states that after the application
of transform the lists of arrived packets, the lists of packets
still en route in the network, and the final network state
produced by GeNoC-L2 equals those produced by GeNoC-
L1. The proof in itself is nothing deep. The two interpreters
manipulate the same functions. The only difference is in the
ordering of these function calls. The difficulties lie in getting
the right model definitions and the details of the formal proofs.

Our proof depends on three axioms about the topology and
the state generated from it. They basically state that the initial
network state is well-formed, e.g., it agrees with the topology.

VIII. CONCLUSION AND FUTURE WORK

We presented the first effort in building a verification
methodology of NoCs. We defined two abstractions layers and
proved their equivalence. The source routing specification is
correctly refined into a distributed routing implementation. A
large part of our model and the proof is design-independent.
Our plan is to extract the generic part of our proof and

187

Theorem:

let (arr-11, m-L1, ntkst-L1) be
GeNoC-L1(m, ntkst, arr, z, topo, simL) in
let (arr-12, m-L2, ntkst-L2) be
GeNoC-L2 (m, ntkst, arr, z, topo, simL) in

transform(arr-L2) arr-L1 and
m-L2 m-L1 and

transform(ntkst-L1)

ntkst-L2

Fig. 10. Equivalence theorem

obtain a general verification method. We also are working
on extending GeNoC-L2 to support global and application-
independent properties like functional correctness or deadlock
avoidance [15]. We are convinced that the structure of our
implementation is similar to the actual structure of RTL
designs. One has now to relate our algorithm to the RTL. We
plan to investigate the generation RTL code from our models.

ACKNOWLEDGMENTS

This research is supported by NWO/EW project Formal
Validation of Deadlock Avoidance Mechanisms (FVDAM)
under grant no. 612.064.811.

REFERENCES

H. Amjad. Model Checking the AMBA Protocol in HOL. Technical
report, University of Cambridge, Computer Laboratory, September 2004.
L. Benini and G. De Micheli. Networks on Chips: A New SoC Paradigm.
Computer, 35(1):70-78, 2002

P. Bohm and T. Melham. A refinement approach to design and
verification of on-chip communication protocols. In Formal Methods in
Computer-Aided Design (FMCAD’08). IEEE Computer Society, 2008.

D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz. A formal approach
to the verification of networks on chip. EURASIP Journal on Embedded
Systems, 2009(Article 1D 548324):14 pages, 2009.

B. Gebremichael, F. Vaandrager, and M. Zhang. Formal Models of
Guaranteed and Best-Effort Services. Tech. Rep. Institute for Computing
and Information Sciences, Radboud University Nijmegen, March 2005.
K. Goossens, J. Dielissen, and A. Radulescu. Athereal Network on
Chip: Concepts, Architectures, and Implementations. /EEE Design and
Test of Computers, 22(5):414-421, September-October 2005.

W. A. Hunt. Microprocessor Design Verification. Journal of Automated
Reasoning, 5(4):429-460, 1989.

J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessors control. Computer-Aided Verification CAV, LNCS 818,
pages 68—80, Standford, California, USA, 1994. Springer.

M. Kaufmann, P. Manolios, and J Strother Moore. ACL2 Computer
Aided Reasoning: An Approach. Kluwer Academic Press, 2000.

F. Moraes, N. Calazans, A. Mello, L. Moller, and L. Ost. HERMES: an
infrastructure for low area overhead packet-switching networks on chip.
Integration, 38(1):69-93, 2004.

A. Roychoudhury, T. Mitra, and S.R. Karri. Using Formal Techniques to
Debug the AMBA System-on-Chip Bus Protocol. In Design Automation
and Test Europe (DATE’03), pages 828-833, 2003.

J. Schmaltz and D. Borrione. A functional formalization of on chip
communications. Formal Aspects of Computing, 20(3):239-348, 2008.

G. Spirakis. Beyond Verification: Formal Methods in Design. In
A. Hu and A.K. Martin, editors, Formal Methods in Computer-Aided
Design (FMCAD’04), LNCS 3312, Austin, Texas, USA, November
2004. Springer-Verlag. Invited Speaker.

T. van den Broek and J. Schmaltz. A generic implementation model
for the verification of networks-on-chips. In 8th Intl. Workshop on the
ACL2 Theorem Prover and Its Application, pages 130—134, Northeastern
Univ., Boston MA, USA, 2009. ACM.

F. Verbeek and J. Schmaltz. Formal validation of deadlock prevention in
networks-on-chips. In 8th Intl. Workshop on the ACL2 Theorem Prover
and Its Application, pages 135-145, Northeastern Univ., Boston MA,
USA, May 11-12 2009. ACM.

[1]

[4]

[5]

[6]

[7]
[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

