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F in ite  tem p eratu re  la ttice  properties o f graphene beyond th e  quasiharm onic

approxim ation

K.V. Zakharchenko, M.I. K atsnelson, A. Fasolino
Institute for Molecules and Materials, Radboud University Nijmegen, 

Heyendaalseweg 135, 6525 A J  Nijmegen, The Netherlands 
(Dated: December 22, 2008)

The thermal and mechanical stability of graphene is important for many potential applications in 
nanotechnology. We calculate the temperature dependence of lattice parameter, elastic properties 
and heat capacity by means of atomistic Monte Carlo simulations that allow to go beyond the quasi
harmonic approximation. We predict an unusual, non-monotonic, behavior of the lattice parameter 
with minimum at T  ~  900 K and of the shear modulus with maximum at the same temperature. 
The Poisson ratio in graphene is found to be small ~  0.1 in a broad temperature interval.

PACS num bers: 81.05.Uw, 62.20.-x, 65.40.De

U nderstanding the s truc tu ra l and therm al properties 
of two dim ensional (2D) system s is one of the  challenging 
problem s in m odern sta tistica l physics [1]. Traditionally, 
it was discussed m ainly in the  context of biological mem
branes and soft condensed m atter. The com plexity of 
these system s hindered any tru ly  microscopic approach 
based on a realistic description of interatom ic in terac
tions. The discovery of graphene [2], the first tru ly  2D 
crystal m ade of ju s t one layer of carbon atom s, provides 
a model system  for which an atom istic description be
comes possible. The in terest for graphene has been trig 
gered by its exceptional electronic properties (for review 
see [3, 4, 5]) bu t the  experim ental observation of ripples 
in freely hanged graphene [6] has in itia ted  a theoretical 
in terest also in the  stru c tu ra l properties of th is m ate
rial [7, 8]. Ripples or bending fluctuations have been pro
posed as one of the  dom inant scattering m echanisms th a t 
determ ine the electron m obility in graphene [9]. More
over, the  stru c tu ra l s ta te  influences the m echanical prop
erties th a t are im portan t in themselves for num erous po
ten tia l applications of graphene [10, 11, 12].

Two dim ensional crystals are expected to  be strongly 
anharm onic due to  an intrinsic bending instability  cou
pled to  in-plane stretching modes. This coupling is cru
cial to  prevent crum pling of the crystal and stabilize 
the  flat phase [1]. These expectations have been con
firmed by atom istic sim ulations for graphene showing 
very strong bond length fluctuations already a t room  
tem peratu re  [7]. Beside the relevance for 2D systems, 
anharm onicity  [13] is of general im portance in condensed 
m atte r in relation to  s truc tu ra l phase transitions [14, 15], 
soft modes in ferroelectrics [16], m elting [17] and related  
phenom ena. Usually anharm onicity  in crystals is weak 
enough and thus can be well described in the frame
work of p e rtu rba tion  theory  [13, 18, 19, 20]. However, 
th is m ight be not the case for strongly anharm onic sys
tems, like graphene. A tom istic sim ulations offer the  pos
sibility to  study  anharm onic effects for a specific m a
teria l w ithout need of pertu rbative  schemes. For car
bon a very accurate description of energetic and th er
m odynam ic properties of different allotropes including 
graphene [7, 21] is provided by the em pirical bond order

FIG. 1: (color online) Temperature dependence of the lattice 
parameter a (solid blue line) and nearest neighbor distance
R„„ (dashed red line). The scales of left (a.) and right (R nn) 
y-axes are related to each other by \/3. At T  = 0, a = 
2.4595 • 10-10 m.

poten tia l LC B O PII [22]. Here we present the tem pera
tu re  dependence of therm odynam ical and elastic p roper
ties of graphene, calculated by m eans of atom istic M onte 
Carlo (MC) sim ulations based on LC B O PII.

We perform  MC sim ulations a t finite tem pera tu re  T  
w ith periodic boundary  conditions for a sample of N  =  
8640 atom s w ith equilibrium  size a t zero tem peratu re  
of 147.57 Â in the x direction and 153.36 A in the y 
direction. We equilibrate the sample in the N P T  en
semble a t pressure P  =  0 for a t least 2 • 105 MC steps 
(1 MC step  corresponds to  N  a ttem p ts  to  a coordinate 
change) which we found to  be enough for convergence 
of to ta l energy and sam ple size. F urther 105 MC steps 
are used to  evaluate the average la ttice  param eter a and 
average nearest neighbor distance R nn and radial d istri
bu tion  function g(R ).

Figure 1 shows th a t a and  Rnn  decrease w ith increas
ing tem pera tu re  up to  about 900 K, yielding a negative 
therm al expansion coefficient a  =  ( - 4 .8 ±  1.0) • 10-6  K -1 
in the range 0-300 K. As noted  in Ref. [23] th is anom aly
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FIG. 2: a) (color online) Nearest neighbor radial distribution 
function g(Rnn) for the N  =  8640 sample at 300 K, 900 K 
and 2300 K. The vertical lines indicate the length of double 
(1.34 • 10-10 m), conjugated (1.42 • 10~10 m) and single (1.54 • 
10-10 m) bonds. b) Standard deviation a(R nn) (red circles) 
and the best fit to \ /T  in the temperature range up to 500 K 
(solid blue line).

FIG. 3: a) (color online) 2D elastic moduli of graphene as 
of function of temperature: adiabatic bulk modulus bA (solid 
blue line with circles), isothermal bulk modulus bT (dashed 
blue line with squares) and shear modulus ß  (solid red line 
with diamonds). b) Adiabatic Young’s modulus YA (solid 
blue line with circles) and isothermal Y t (dashed red line 
with squares).

is due to  a low-lying bending phonon branch [24]. O ur re
sults are in agreem ent up  to  500 K w ith those of M ounet 
and M arzari [23] who used the quasi-harm onic approxi
m ation w ith phonon frequencies and G räneisen param e
ters calculated by the density  functional approach. How
ever, a t higher tem peratu res our results are qualita
tively different, since in Ref. [23] a  rem ains negative in 
the  whole studied tem pera tu re  interval up to  2200 K, 
whereas we find th a t  it changes sign and becomes pos
itive a t T  «  900 K. This discrepancy w ith the quasi
harm onic theory, which in general works reasonably well 
for three-dim ensional crystals, is one of the evidences of 
strong anharm onicity  in graphene.

The deviations from harm onic behavior can be char
acterized by exam ining the radial d istribu tion  function 
g(R) around the first neighbor distance R nn =  1.42 • 
10-10 m. In Fig. 2 (a) we present g(R) and the related  
stan d ard  deviation a (R nn) shown in Fig. 2 (b). In the 
harm onic approxim ation R nn would have a G aussian dis
tribu tion  yilding a (R nn) oc \ /T .  D eviations from square 
roo t behavior can be observed above 900 K, achieving 
10 % a t 2000 K.

The L indem ann criterion has been shown to  apply also 
in 2D, giving a (R nn) «  0.23Rnn a t m elting [25]. We 
found a (R nn) /R nn =  0.056 a t T  =  2300 K, indicating 
th a t we are significantly below m elting point. Moreover, 
conventional theory  of two-dim ensional m elting relates it 
to  the form ation of topological defects [26]. In our simu
lations we have not seen any sign of prem elting anomalies 
(form ation of vacancies, topological defects etc.) up to  
3500 K [7].

The strong anharm onic behavior of graphene leads also 
to  unusual tem pera tu re  dependence of the  elastic moduli.

T, K

FIG. 4: Adiabatic vA and isothermal vT Poisson ratio of 
graphene as function of temperature.

The 2D bulk m odulus b is defined by

Eis =  2bu 2is, (1)

where E is is the  elastic energy per un it area under an 
isotropic deform ation u yy =  u xx =  u is , u xy =  0.

For uniaxial deform ations u xx (uyy =  u xy =  0) the 
elastic energy is

E uni = + (2)

where ^  is the  2D shear modulus.
Isotherm al m oduli are also expressed as in Eq. (1) and 

Eq. (2), w ith replacem ent of the energy E  by the free 
energy F  =  —T  ln Z  where Z  is the partitio n  function. 
A lthough it is impossible in MC to  calculate F  directly,
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we will use the fact th a t adiabatic  and isotherm al shear 
m oduli u  coincide [27] and th a t the Poisson ra tio  defined 
below can be calculated directly  to  derive the isotherm al 
bulk m odulus bT . The Young m odulus Y  and Poisson 
ra tio  V are defined in term s of b and u  as [28]

Y
46yU,

b +  U

b — u  
b

(3)

(4)

The Poisson ra tio  can also be defined as the ra tio  be
tween the  axial eaxial and  transverse etrans s tra in  as

^tra
(5)

The la tte r definition provides a way to  calculate the 
isotherm al vt  so th a t  Eq. (4) w ith u a  =  Ut  =  U 
yields bT .

A diabatic bulk and shear m oduli bA and u  have been 
calculated using the following procedure. We equilibrate 
the  sample as described before. Afterwords, 20 config
urations separated  by 5000 MC steps were stored  and 
subjected  to  either isotropic or uniaxial deform ation in 
steps of 0.01 % w ithout le tting  the sample relax. For each 
sample, the  variation  of the elastic energy w ith deform a
tion  was then  fitted to  Eq. (1) and Eq. (2) over 21 points 
around the undistorted  configuration. The averages of 
the  calculated bA and u  for the 20 samples are given in 
Table I and shown in Fig. 3 together w ith the derived Y  a  . 
We find th a t the  tem pera tu re  dependence of u  is anom a
lous. W hile in general all elastic m oduli decrease as a 
function of tem pera tu re  due to  weakening of interatom ic 
in teractions w ith tem perature, in graphene u  grows w ith 
increasing tem pera tu re  up to  T  ~  700 — 900 K which is 
the  same tem pera tu re  where the therm al expansion be
havior (Fig. 1) becomes norm al. The Young m odulus
Y  follows the same anom alous tem pera tu re  dependence 
as u.

We find th a t the behavior of the elastic energy as a 
function of deform ation u is parabolic in a wider range 
of deform ations, up to  about 0.2 %. For larger deform a
tions, the  elastic energies follow a cubic dependence on 
the deform ation a t least up to  u  =  3 %. At th is value 
the ra tio  of the  cubic term  to  the quadratic  one in the 
elastic energy is abou t 0.12. Up to  10 % deform ation and 
up to  2200 K, deform ations are reversible, and no defect 
(vacancy and Stone-W ales [29] or dislocations [30]) are 
found. This is not surprising in view of the very high 
cohesive energy (7.6 eV /a to m  in graphite [22]) of carbon 
and defect form ation energy in graphene [29]. To the 
best of our knowledge, there are no experim ental d a ta  
on defect form ation under s tra in  in th is range of tem per
atures.

Next, the isotherm al Poisson ra tio  vt  has been cal
culated using the following procedure. We take the

TABLE I: Adiabatic bulk (bA), shear (^) and isothermal bulk 
(bT) moduli, and isothermal Poisson ratio (vt ).

T, K bA (eV • À~2) ji (eV • À~2) bT (eV • À~2) vt
0 12.69 9.44 - -

100 12.54±0.05 9.57±0.21 13.17±0.98 0.16±0.03
200 12.44±0.03 9.80±0.15 - -
300 12.36±0.04 9.95±0.17 12.52±1.41 0.12±0.05
500 12.22±0.05 10.16±0.20 12.24±1.66 0.09±0.06
700 12.09±0.05 10.27±0.17 12.93±2.13 0.12±0.08
900 11.94±0.04 10.25±0.18 11.29±2.20 0.09±0.09
1100 11.85±0.06 10.21±0.22 11.31±2.57 0.05±0.11
1300 11.70±0.04 10.07±0.21 12.05±3.00 0.09±0.12
1500 11.57±0.04 9.94±0.18 11.63±3.10 0.08±0.13
1700 11.44±0.04 9.75±0.24 8.44±3.20 -0.07±0.18
2000 11.31±0.06 9.52±0.22 - -
2100 11.23 0.05 9.46 0.26 8.26 3.58 -0.07 0.21

graphene sam ple equilibrated as described before a t a 
given tem perature. The sample is then  stretched of 1 % 
in the x and y directions separately  and re-equilibrated 
again for a t least 5 • 104 MC steps. After re-equilibration, 
the sam ple size in the x and y directions have been aver
aged for a t least 5 • 104 MC steps and the corresponding 
s tra in  ex and ey have been calculated yielding the Pois
son ra tio  in each direction th rough Eq. (5). The Poisson 
ratios in the x  and y  directions are very close and we 
take the ir average as vt  . The calculated adiabatic  and 
isotherm al Poisson ratios va  and vt , shown in Fig. 4 
and Table I, are very small and coincide w ithin the er
ror in the  whole studied tem pera tu re  range. However 
a t high tem perature, we find th a t vt  can become neg
ative. M aterials w ith negative Poisson ra tio  are called 
auxetic and, in general, th is p roperty  is related  to  very 
unusual crystalline structures. M embranes, on the other 
hand, m ay display th is behavior due to  entropy. In fact, 
an expansion in the  unstretched direction contrasts the 
reduction of phase space due to  the  decrease of height 
fluctuations due to  stretching. Furtherm ore, the  small
ness of V implies th a t  the L am e’ constant A =  b — u  
is small in com parison w ith u. Therefore for a generic 
deform ation described by a tensor U, the elastic energy 
Ee
proxim ated as E el

Once vt  is known we can calculate bT from Eq. (4) 
and Yt  from Eq. (3). The calculated bT and YT are 
presented in Table I and com pared to  the adiabatic  values 
in Fig. 3 . At T  =  300 K, we find YA =  353 ±  4 N • m -1 
and Yt  =  355 ±  21 N • m -1 in good agreem ent w ith the 
experim ental value 340 ±  50 N • m _1 [11].

A nother im portan t anharm onic effect is the  tem pera
tu re  dependence of the m olar heat capacity  a t constant 
volume CV (T ) =  3R(1 +  T / E 0) (see Fig. 5), where R  is 
the gas constan t and E 0 is a typical energy of interatom ic 
in teractions [13, 20]. The low tem pera tu re  behavior was 
calculated in the harm onic approxim ation in [23]. Our 
approach is classical and therefore can be used to  calcu
late C V only a t high tem peratures. On the o ther hand,

WÂj +  (1/2)A (TrU 2) [1] for graphene can be ap-
9
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V =
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T, K

FIG. 5: Temperature dependence of the molar heat capacity 
at constant volume CV (solid line) and fit to CV (T) =  3R(1 +  
T /E 0) (dashed line).

our approach does not use the harm onic approxim ation, 
yielding inform ation about phonon-phonon in teraction 
effects. O ur calculations show th a t the linear tem per
a tu re  dependence of C V becomes noticeable for T  >  800 
K w ith E 0 =  1.3 eV. C on trary  to  alkali m etals where E 0

is of the order of the  vacancy form ation energy [18], for 
graphene, due to  anharm onicity, E 0 is abou t 1 /5  of the 
defect form ation energy.

In sum m ary we have presented the tem pera tu re  depen
dence of la ttice  param eter, elastic m oduli and high tem 
pera tu re  heat capacity  of graphene calculated by M onte 
Carlo sim ulations based on the L C B O PII em pirical po
ten tia l [22] for a crystallite of about 15 x 15 nm 2. In the 
studied  range of tem peratures, up to  2200 K, and for de
form ation as large as 10% we have no t seen any sign of 
defect form ation. Indeed the very high energy for defect 
form ation in graphene makes this m aterial exceptionally 
strong, as also found experim entally [11, 12]. We find 
th a t graphene is strongly anharm onic due to  soft bend
ing modes yielding strong out of plane fluctuations. We 
find th a t, up to  900 K, graphene is anom alous since its 
la ttice  param eter decreases and shear m odulus increases 
w ith increasing tem pera tu re  going over to  norm al be
havior a t higher tem peratures. I t would be interesting to  
check these predictions experimentally.
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menteel Onderzoek der M aterie (FO M )’, which is finan
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