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Introduction: Adversary Model

Input x /

Differential ) 3 i
Side Channel  Physical Leakage i -~ Function f. with
Adversary while computing fko(x) secret subkey k°
i ‘ o \
W Crypto Device
Time t

Adversary Success

The adversary is successful if she recovers the secret subkey k°.
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Introduction: Differential Power Analysis in a Nutshell

The DPA (Differential Power Analysis) Problem

Given measurements i, (n € {1,..., N}) while the crypto device computes
function fio with random inputs x,:

@ Does a statistics prove significant differences of the measurements
according to a partitioning function g(fx(x,))?

A A

DPA Partitioning Functions g:
@ Single-bit partitioning function (Kocher et al., 1999)
@ Multi-bit partitioning/comparison function:
@ “All-or-Nothing” with a leakage model (e.g., Hamming weight)
(Messerges et al., 2000)
o CPA (Correlation Power Analysis) with a leakage model (e.g.,
Hamming distance) (Brier et al., 2002)
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ction: Collision Analysis in a Nutshell

The CA (Collision Analysis) Problem

Given measurements i, (n € {1,..., N}) while the crypto device computes
the many-to-one function fio with random inputs x,:

@ Does a statistics prove high similarity of measurements with two
inputs x; # x;?

Collision Detection:

@ Euclidean distance of measurement vectors over some t. (Schramm
et al., 2003)
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Our Approach

Objectives

@ Combination of leakage detection functions for DPA (Separation) and
CA (Cohesion).

@ Sensitivity to general leakage features
@ Multi-bit approach

@ using all measurements and
o without the need for a good power model.

@ Multivariate approach

@ Our basic approach: Cluster Analysis

@ Our basic question: Do clusters of measurements exist?
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Differential Cluster Analysis

Requirement

e f; :{0,1}¥ — {0,1}" is a many-to-one collision function, i.e., at
least two inputs x;, x; € {0, 1}" with x; # x; collide in one state
A e {0,1}".

The DCA (Differential Cluster Analysis) Problem

Given measurements i, (n € {1,..., N}) while the crypto device computes
the many-to-one function fio with random inputs x,:

@ Does a cluster criterion function prove the existence of clusters of
measurements according to partitioning function fi(x,)?

L. Batina, B. Gierlichs, and K. Lemke-Rust Differential Cluster Analysis September 7, 2009 7/21



Measuring Clustering Quality

Measure of Inter-Cluster

Separation Measure of Intra-Cluster

Cohesion
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Cluster Criterion Functions

Sum-of-Squared-Error:

Jsse =Y Y |l x—m|?

i=1 xeD;

Jsse evaluates intra-cluster cohesion. The optimal partition minimizes
JssE.

Sum-of-Squares:
(o}
2
Jsos =Y _ni || mi—m|
i=1
Jsos evaluates inter-cluster separation. The optimal partition maximizes
Jsos.

The sum of Jssg and Jsps is a constant.
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Special Cluster Criterion Functions

Variance criterion (Standaert et al.: 1CISC 2008):

v

g i | vi |

Jyar evaluates overall variance vs. intra cluster variances. The optimal
partition maximizes JyaR.

Jvar =

T-test criterion (Gierlichs et al.: CHES 2006):

C

2
e | mi—m, |
STT = = 5
P arn P 171 llvill
ij=1;i#j n; n;
Jst1 evaluates inter cluster separation, normalized by intra cluster
variances and cluster sizes. The optimal partition maximizes Js7r.
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Differential Cluster Analysis (General Approach)

Differential Cluster Analysis (General Approach)

© For each subkey hypothesis k:

o Sort measurements into 2% clusters Dy, ..., Dow_; according to
A,‘ = fk(Xn) (1 S n S N)
o Compute a cluster criterion function: Jg.

© Rank the pairs (k, Jx) according to J.
© Output subkey candidate that leads to the best clustering quality.
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Detailed Comparison with CA and DPA

Multivariate Leakage

can be extended

DPA CA DCA
not required required required
Many-to-one function
e none for single- | none not required,
Leakage model bit DPA can be inte-
e required for grated
multi-bit DPA
o based on differ- | based on simi- | based on both
Statistics ences larity separation and
cohesion
e differences of | general features | general features
Detected Leakage | two  states for
Features single-bit and
“all-or-nothing”
multi-bit DPA
. linearity  of
differences for CPA
original approach | yes yes
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Comparison with DPA: An Example

Assume f; : {0,1}¥ + {0,1}? is a many-to-one function.
@ Single-bit DPA fails and
@ Multi-bit DPA (with Hamming weight model) fails.

Does this assure that there is no leakage at all?
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Comparison with DPA: An Example

Assume f; : {0,1}¥ + {0,1}? is a many-to-one function.
@ Single-bit DPA fails and
@ Multi-bit DPA (with Hamming weight model) fails.

Does this assure that there is no leakage at all?

No. Counter-Example:

Leakage

Cluster with States “00” and “11”.
States “00” and “11” are indistinguishable.
Cluster with States “01” and “10”.
States “01” and “10” are indistinguishable.

Time

September 7, 2009
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Applications: Algorithmic Collisions

Algorithmic Collisions:

@ f; emerges from an abstract concept (e.g., cryptographic standard).

@ f; is implementation independent (despite of masking ...).

Example: DES
@ DES S-box function is 4-to-1: f; : {0,1}° +— {0,1}* yields 2* clusters.

Example: AES
@ AES S-box is not a collision function.

@ Targeting only r-bit (1 < r < 8) of AES S-box outcome:
fi : {0,1}8 — {0,1}" yields 2" clusters.

@ AES MixColumns transformation is 224 — to — 1:
fi : {0,1}32 — {0,1}8 yields 28 clusters.
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Applications: Implementation Specific Collisions

Implementation specific collisions:
@ fx emerges from implementation properties.

@ fi is not obvious in the algorithmic description.

Example: AES Hardware Module

Differential of two adjacent data cells in the studied AES hardware
architecture: f; : {0,1}1¢ +— {0,1}2 yields 28 clusters.

fi(x) = S(x @ ki) ® S(xir © ki) (1)

General DCA Approach requires 219 subkey hypotheses.
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Application: AES Hardware Module
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AES Hardware Module: A New Attack Strategy

If f(x) =0 then f(x) = S(x; ® ki) & S(xi» @ kiv) simplifies to
S(X,' SY) k,') = S(X,'/ SY) k,'/) = XD ki = xpp © ki = ki D ki = x; D xjr .

The elements of one cluster are identical if k; © ki = k7 @ k.

A new two-step key recovery attack:

@ Determine the correct xor-difference kP @ k;; based on 28 hypotheses.

o This is the difficult step that checks whether a special (small) cluster
for fi(x) = 0 exists.

@ Determine the correct pair (k?, k7) based on 28 hypotheses.

(]
o This is the easy step that checks whether up to 28 clusters exist.

@ Attack strategy can also be applied with DPA.
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DES Implementation in Software: Univariate DCA Results

Target Device: AVR Microcontroller
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DES Implementation in Software: Comparison with CPA

Table: Success rates in % for various univariate and multivariate attack scenarios.

Test

Model

Time

N=15

N=20

N=25

N=30

N=40

N=50

CPA

LSB

overall

overall

3

15

37

62

95

98

Jsse LSB AB 70 83 91 97 100 100
CPA | LSB ABC 76 90 96 99 100 100
Jsse LSB ABC 78 94 96 99 100 100
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AES Hardware Module: DCA Results

Target Device: Prototype chip which implements an AES-128
co-processor in 0.13 ym sCMOS technology without countermeasures.

General Approach with DCA:
@ 20 key hypotheses

@ key recovery with approx. 5000 measurements

Two-Step Attack Strategy with DCA:
@ 2° key hypotheses

@ key recovery with approx. 50000 measurements

o Step 1: 50000 measurements
o Step 2: 5000 measurements
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Conclusion

@ Introduction of Differential Cluster Analysis (DCA) — a new technique
bridging the gap between Collision Analysis (CA) and Differential
Power Analysis (DPA).

@ Introduction of implementation specific collisions.

@ Confirmation of DCA on both software (DES) and hardware (AES)
implementation.

@ New two-step attack strategy for an AES hardware module.

Collision attacks on AES are not constrained to 8-bit software implementations on

simple controllers anymore...
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