PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is an author's version which may differ from the publisher's version.

For additional information about this publication click this link. http://hdl.handle.net/2066/75491

Please be advised that this information was generated on 2017-12-06 and may be subject to change.

Differential Cluster Analysis

Lejla Batina^{1,3}, Benedikt Gierlichs¹, and Kerstin Lemke-Rust²

¹ K.U. Leuven ESAT/SCD-COSIC and IBBT, Belgium
 ² University of Applied Sciences Bonn-Rhein-Sieg, Germany
 ³ Radboud University Nijmegen, Netherlands

September 7, 2009

CHES Workshop 2009, Lausanne, Switzerland

Hochschule Bonn-Rhein-Sieg

Radboud Universiteit Nijmegen

Presentation Outline

- Introduction
- Differential Cluster Analysis
- Applications
- Experimental Results

Conclusion

Adversary Success

The adversary is successful if she recovers the secret subkey k° .

Introduction: Differential Power Analysis in a Nutshell

The DPA (Differential Power Analysis) Problem

Given measurements i_n ($n \in \{1, ..., N\}$) while the crypto device computes function f_{k^0} with random inputs x_n :

 Does a statistics prove significant differences of the measurements according to a partitioning function g(f_k(x_n))?

DPA Partitioning Functions g:

- Single-bit partitioning function (Kocher et al., 1999)
- Multi-bit partitioning/comparison function:
 - "All-or-Nothing" with a leakage model (e.g., Hamming weight) (Messerges *et al.*, 2000)
 - CPA (Correlation Power Analysis) with a leakage model (e.g., Hamming distance) (Brier *et al.*, 2002)

The CA (Collision Analysis) Problem

Given measurements i_n ($n \in \{1, ..., N\}$) while the crypto device computes the many-to-one function f_{k^0} with random inputs x_n :

 Does a statistics prove high similarity of measurements with two inputs x_i ≠ x_j?

Collision Detection:

• Euclidean distance of measurement vectors over some *t*. (Schramm *et al.*, 2003)

Objectives

- Combination of leakage detection functions for DPA (Separation) and CA (Cohesion).
- Sensitivity to general leakage features
- Multi-bit approach
 - using all measurements and
 - without the need for a good power model.
- Multivariate approach

Idea

- Our basic approach: Cluster Analysis
- Our basic question: Do clusters of measurements exist?

Differential Cluster Analysis

Requirement

f_k : {0,1}^u → {0,1}^w is a many-to-one collision function, i.e., at least two inputs *x_i*, *x_{i'}* ∈ {0,1}^u with *x_i* ≠ *x_{i'}* collide in one state Δ ∈ {0,1}^w.

The DCA (Differential Cluster Analysis) Problem

Given measurements i_n ($n \in \{1, ..., N\}$) while the crypto device computes the many-to-one function f_{k^0} with random inputs x_n :

 Does a cluster criterion function prove the existence of clusters of measurements according to partitioning function f_k(x_n)?

Measuring Clustering Quality

Cluster Criterion Functions

Sum-of-Squared-Error:

$$J_{SSE} = \sum_{i=1}^{c} \sum_{\boldsymbol{x} \in \mathcal{D}_i} \| \boldsymbol{x} - \boldsymbol{m}_i \|^2$$

 J_{SSE} evaluates intra-cluster cohesion. The optimal partition minimizes $J_{SSE}.$

Sum-of-Squares:

$$J_{SOS} = \sum_{i=1}^{c} n_i \parallel \boldsymbol{m}_i - \boldsymbol{m} \parallel^2$$

 J_{SOS} evaluates inter-cluster separation. The optimal partition maximizes $J_{SOS}.$

The sum of J_{SSE} and J_{SOS} is a constant.

Special Cluster Criterion Functions

Variance criterion (Standaert et al.: ICISC 2008):

$$J_{VAR} = \frac{\parallel \mathbf{v} \parallel^2}{\frac{1}{N} \sum_{i=1}^c n_i \parallel \mathbf{v}_i \parallel^2}$$

 J_{VAR} evaluates overall variance vs. intra cluster variances. The optimal partition maximizes J_{VAR} .

T-test criterion (Gierlichs et al.: CHES 2006):

$$J_{STT} = \sum_{i,j=1;i\neq j}^{c} \frac{\|\boldsymbol{m}_{i} - \boldsymbol{m}_{j}\|^{2}}{\sqrt{\frac{\|\boldsymbol{v}_{i}\|^{2}}{n_{i}} + \frac{\|\boldsymbol{v}_{j}\|^{2}}{n_{j}}}}$$

 J_{STT} evaluates inter cluster separation, normalized by intra cluster variances and cluster sizes. The optimal partition maximizes J_{STT} .

Differential Cluster Analysis (General Approach)

- For each subkey hypothesis k:
 - Sort measurements into 2^w clusters D₀,..., D_{2^w−1} according to Δ_i = f_k(x_n) (1 ≤ n ≤ N).
 - Compute a cluster criterion function: J_k .
- **2** Rank the pairs (k, J_k) according to J_k .
- Output subkey candidate that leads to the best clustering quality.

Detailed Comparison with CA and DPA

	DPA	СА	DCA	
Many-to-one function	not required	required	required	
Leakage model	 none for single- bit DPA required for 	none	not required, can be inte-	
	• required for multi-bit DPA		grated	
Statistics	based on differ- ences	based on simi- larity	based on both separation and cohesion	
Detected Leakage Features	 differences of two states for single-bit and "all-or-nothing" multi-bit DPA linearity of differences for CPA 	general features	general features	
Multivariate Leakage	original approach can be extended	yes	yes	

Comparison with DPA: An Example

Example

Assume $f_k : \{0,1\}^u \mapsto \{0,1\}^2$ is a many-to-one function.

- Single-bit DPA fails and
- Multi-bit DPA (with Hamming weight model) fails.

Does this assure that there is no leakage at all?

Comparison with DPA: An Example

Example

Assume $f_k : \{0,1\}^u \mapsto \{0,1\}^2$ is a many-to-one function.

- Single-bit DPA fails and
- Multi-bit DPA (with Hamming weight model) fails.

Does this assure that there is no leakage at all?

No. Counter-Example:

Algorithmic Collisions:

- f_k emerges from an abstract concept (e.g., cryptographic standard).
- f_k is implementation independent (despite of masking ...).

Example: DES

• DES S-box function is 4-to-1: $f_k : \{0,1\}^6 \mapsto \{0,1\}^4$ yields 2^4 clusters.

Example: AES

- AES S-box is not a collision function.
- Targeting only r-bit $(1 \le r < 8)$ of AES S-box outcome: $f_k : \{0, 1\}^8 \mapsto \{0, 1\}^r$ yields 2^r clusters.
- AES MixColumns transformation is $2^{24} to 1$: $f_k : \{0, 1\}^{32} \mapsto \{0, 1\}^8$ yields 2^8 clusters.

Implementation specific collisions:

- f_k emerges from implementation properties.
- f_k is not obvious in the algorithmic description.

Example: AES Hardware Module

Differential of two adjacent data cells in the studied AES hardware architecture: $f_k : \{0, 1\}^{16} \mapsto \{0, 1\}^8$ yields 2^8 clusters.

$$f_k(x) = S(x_i \oplus k_i) \oplus S(x_{i'} \oplus k_{i'})$$
(1)

General DCA Approach requires 2¹⁶ subkey hypotheses.

Application: AES Hardware Module

3

AES Hardware Module: A New Attack Strategy

If $f_k(x) = 0$ then $f_k(x) = S(x_i \oplus k_i) \oplus S(x_{i'} \oplus k_{i'})$ simplifies to

 $S(x_i \oplus k_i) = S(x_{i'} \oplus k_{i'}) \Rightarrow x_i \oplus k_i = x_{i'} \oplus k_{i'} \Rightarrow k_i \oplus k_{i'} = x_i \oplus x_{i'}.$

The elements of one cluster are identical if $k_i \oplus k_{i'} = k_i^{\circ} \oplus k_{i'}^{\circ}$.

A new two-step key recovery attack:

- Determine the correct xor-difference $k_i^{\circ} \oplus k_{i'}^{\circ}$ based on 2^8 hypotheses.
 - This is the difficult step that checks whether a special (small) cluster for $f_k(x) = 0$ exists.
- 2 Determine the correct pair $(k_i^{\circ}, k_{i'}^{\circ})$ based on 2⁸ hypotheses.
 - This is the easy step that checks whether up to 2⁸ clusters exist.

Attack strategy can also be applied with DPA.

DES Implementation in Software: Univariate DCA Results

Target Device: AVR Microcontroller

18 / 21

Table: Success rates in % for various univariate and multivariate attack scenarios.

Test	Model	Time	N=15	N=20	N=25	N=30	N=40	N=50
CPA	LSB	overall	3	15	37	62	95	98
CPA	LSB	A	42	64	69	77	93	96
CPA	LSB	В	64	77	83	93	98	99
CPA	LSB	С	17	28	29	38	55	65
J _{SSE}	LSB	overall	3	15	37	62	95	98
J _{SSE}	LSB	A	42	64	70	77	93	96
J _{SSE}	LSB	В	64	78	82	93	98	99
J _{SSE}	LSB	С	18	28	31	38	56	65
CPA	LSB	AB	70	85	90	96	100	100
J_{SSE}	LSB	AB	70	83	91	97	100	100
CPA	LSB	ABC	76	90	96	99	100	100
J_{SSE}	LSB	ABC	78	94	96	99	100	100

Table: Success rates in % for various univariate and multivariate attack scenarios.

Test	Model	Time	N=15	N=20	N=25	N=30	N=40	N=50
CPA	LSB	overall	3	15	37	62	95	98
CPA	LSB	A	42	64	69	77	93	96
CPA	LSB	В	64	77	83	93	98	99
CPA	LSB	С	17	28	29	38	55	65
J _{SSE}	LSB	overall	3	15	37	62	95	98
J _{SSE}	LSB	A	42	64	70	77	93	96
J _{SSE}	LSB	В	64	78	82	93	98	99
J_{SSE}	LSB	С	18	28	31	38	56	65
CPA	LSB	AB	70	85	90	96	100	100
J _{SSE}	LSB	AB	70	83	91	97	100	100
CPA	LSB	ABC	76	90	96	99	100	100
J_{SSE}	LSB	ABC	78	94	96	99	100	100

Table: Success rates in % for various univariate and multivariate attack scenarios.

Test	Model	Time	N=15	N=20	N=25	N=30	N=40	N=50
CPA	LSB	overall	3	15	37	62	95	98
CPA	LSB	A	42	64	69	77	93	96
CPA	LSB	В	64	77	83	93	98	99
CPA	LSB	С	17	28	29	38	55	65
J _{SSE}	LSB	overall	3	15	37	62	95	98
J _{SSE}	LSB	A	42	64	70	77	93	96
J _{SSE}	LSB	В	64	78	82	93	98	99
J _{SSE}	LSB	С	18	28	31	38	56	65
CPA	LSB	AB	70	85	90	96	100	100
J_{SSE}	LSB	AB	70	83	91	97	100	100
CPA	LSB	ABC	76	90	96	99	100	100
J _{SSE}	LSB	ABC	78	94	96	99	100	100

Target Device: Prototype chip which implements an AES-128 co-processor in 0.13 μm sCMOS technology without countermeasures.

General Approach with DCA:

- 2¹⁶ key hypotheses
- key recovery with approx. 5000 measurements

Two-Step Attack Strategy with DCA:

- 2⁹ key hypotheses
- key recovery with approx. 50 000 measurements
 - Step 1: 50000 measurements
 - Step 2: 5000 measurements

- Introduction of Differential Cluster Analysis (DCA) a new technique bridging the gap between Collision Analysis (CA) and Differential Power Analysis (DPA).
- Introduction of implementation specific collisions.
- Confirmation of DCA on both software (DES) and hardware (AES) implementation.
- New two-step attack strategy for an AES hardware module.

Collision attacks on AES are not constrained to 8-bit software implementations on simple controllers anymore...