
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/75428

Please be advised that this information was generated on 2019-12-04 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16159894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/75428

Formalizing Arrow’s theorem

Freek Wiedijk
freek@cs.ru.nl

Institute for Computing and Information Sciences
Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract. We present a small project in which we encoded a proof of
Arrow’s theorem – probably the most famous results in the economics
field of social choice theory – in the computer using the Mizar system.
We both discuss the details of this specific project, as well as describe the
process of formalization (encoding proofs in the computer) in general.

Keywords: formalization of mathematics, Mizar, social choice theory, Ar-
row’s theorem, Gibbard-Satterthwaite theorem, proof errors.

1 Introduction

1.1 The project

Some time ago Krzysztof Apt suggested to me to formalize a proof of Arrow’s
theorem. He told me that this theorem is considered important by economists,
and that for this reason a formalization of that theorem might generate some
attention from the economics community. Also it would show that formalization
can be useful beyond mathematics and computer science.

Formalizing is the activity of creating a formalization, a very detailed repre-
sentation of a mathematical theory (both consisting of definitions and theorems)
in the computer. Creating a formalization is done using a computer program
called a proof checker or proof assistant. Such a proof assistant helps with the
creation of the formalization – although the main part of the work is done by the
human user – and checks everything for correctness. Once a proof of a theorem
has been formalized, it is impossible for that theorem to be false. (Human beings
are fallible, but computers are very good at checking even the smallest details.
For a discussion of the reliability aspect of formalization, see Section 9 below.)

For a while I wondered whether I should follow Krzysztof’s suggestion or not.
He had suggested that I might formalize one of the proofs from John Geanako-
plos’ Three Brief Proofs of Arrow’s Impossibility Theorem [Geanakoplos 2001].
These proofs indeed are brief, as each of them is about a single page long. Now
a reasonable rule of thumb when formalizing is that it takes about one week
of full time work to formalize a textbook page. For this reason my expectation
was that if I would try this, it would take me one week of work, and it would
be straight-forward and uneventful. It was not clear to me what I would have

2 Freek Wiedijk

shown if that expectation happened to be true. (It turned out that, after I made
a false start – described in Section 4 below – of about two days, I formalized the
first of the three proofs in another three days. This second attempt indeed was
uneventful. My expectation had been quite accurate.)

In the end I decided that, despite my doubts about the usefulness of the
project, I would write the formalization anyway. My main reason for this was
that I wanted to show Krzysztof what a formalization of Arrow’s theorem would
be like, and since it was not a lot of time that I was investing, it would not be
a big loss if the project turned out to be not too interesting.

1.2 The proof assistant

When formalizing, the first step is to thoroughly understand the proof that will
be formalized. Once one is using a proof assistant, the technical details of the
formalization process distract quite a bit from the understanding of the proof.
The time lost by taking the time to thoroughly understand the proof before
starting the formalization is more than paid back by the time gained during the
formalization process. (One could imagine a proof assistant so helpful that it
would assist in exploring the informal proof, in which case this first step would
not be necessary, but unfortunately such a proof assistant does not exist yet.) In
the case of Arrow’s theorem however, this first phase had not to take very long
as John Geanakoplos’ paper was quite clear and explicit.

Another first step is to select the proof assistant to be used for the formal-
ization. Here is a list of important current proof assistants that were options for
this:

Mizar. A proof assistant for mathematics, developed in Poland under the di-
rection of Andrzej Trybulec at the University of Bia lystok. Development
of Mizar started in the early seventies and continues until today. Mizar is
based on set theory and has the feature that formalizations look quite sim-
ilar to non-formalized mathematics. Mizar offers basic automation of proof
steps, but this automation cannot be extended by the users of the system
(only by the system’s developers). Mizar has the largest library of formal-
ized mathematics of the current systems. This library, called MML (Mizar
Mathematical Library), currently consists of 2.1 million lines of code, prov-
ing more than 55 thousand lemmas. Mizar has been used to formalize a
major part of a graduate level textbook in mathematical logic [Bancerek &
Rudnicki 2003].

Coq. A proof assistant for both software correctness and mathematics, devel-
oped in France at the INRIA institute. Development of Coq was started in
the eighties by Gérard Huet and Thierry Coquand, but has since then been
continued by many people. Coq is based on a foundational competitor of
set theory called type theory, which is a synthesis between logical systems
of Jean-Yves Girard and Per Martin-Löf. For this reason the natural way
of reasoning in Coq is constructive, which means that you only can prove
something to exist if a computer can be programmed to calculate it. How-
ever Coq also supports the usual, classical, kind of mathematics. Formalized

Formalizing Arrow’s theorem 3

proofs in Coq do not look like normal proofs, and only can be understood
by ‘replaying’ them on the computer. Coq has been used for the most im-
pressive formalization thus far, the formalization of the Four Color Theorem
by Georges Gonthier in 2004 [Gonthier 2006]. For this formalization an im-
proved input language for Coq called ssreflect was implemented. Coq also
has been used to prove a realistic C compiler correct, in the Compcert project
of Xavier Leroy [Leroy 2006, Blazy et al 2006].

HOL. A proof assistant both for hardware and software correctness as well as
for mathematics, developed in the UK by Mike Gordon at the University of
Cambridge. HOL was developed in the eighties as a close successor to the
LCF system from the early seventies. The LCF and HOL systems are not
based on set theory or type theory, but on a weaker and typed variant of
set theory called higher order logic. (Because it is typed, higher order logic
shares some concepts with type theory.) This is also what gives the system
its name. The HOL logic and its implementation are the simplest that one
can find among the proof assistants listed here. A HOL proof, like a Coq
proof, does not look like a normal proof, and also needs ‘replaying’ on the
computer to be intelligible. The HOL proof language is rather difficult to
learn. The HOL system supports strong proof automation, and the user of
the system can easily extend this by implementing programs that generate
parts of proofs.
HOL is one of the most well-known proof assistants, and for that reason has
been implemented several times:
HOL4. This is the current version of the original HOL system. It is still in

development at the University of Cambridge in the UK, and probably
the most popular version of HOL. HOL4 has been used by Anthony Fox
to prove the correctness of a real micro-processor (the ARM6 micro-
architecture) [Fox 2003].

HOL Light. This is a lean and clean reimplementation of HOL by John
Harrison, made in the late nineties as part of his PhD research at the
University of Cambridge. Originally this system was being referred to
as HOL Done Right [Harrison 1995]. Currently it is being used at Intel
for verification of algorithms used in floating point processors. The HOL
Light system has the largest library of formalized mathematics of the
HOL variants, and provides strong proof automation. The HOL Light
library contains many interesting theorems, and is much better organized
than the Mizar library. HOL Light has been used by John Harrison to
formalize a proof of the prime number theorem that uses a significant
amount of complex analysis [Harrison 2008].

ProofPower. ProofPower is a reimplementation of HOL by Rob Arthan
and Roger Jones, to have a version of HOL that supports the Z notation
for set theory. Originally it was a commercial product, but nowadays it
is open software. ProofPower also has been significantly used for math-
ematics.

Isabelle. A direct successor to the HOL system, that however is different from
HOL in many ways now. Isabelle has been developed in the UK by Larry

4 Freek Wiedijk

Paulson at the University of Cambridge and in Germany by Tobias Nipkow
and Makarius Wenzel at the Technische Universität München. An important
difference between Isabelle and HOL is that Isabelle did not hardwire the
mathematical foundations into the system, but keeps it as a parameter of
the system. (However, the HOL implementation on top of Isabelle, called
Isabelle/HOL, is the only variant of the system that is significantly used.)
Another difference between Isabelle and HOL is that Isabelle has a read-
able proof language inspired by the Mizar language called Isar. This means
that Isabelle can be used to make formalizations that are readable like nor-
mal mathematics. Like HOL, Isabelle has been used extensively, both for
computer science applications as well as for formalization of mathematics.

PVS. A proof assistant for hardware and software correctness. PVS was devel-
oped in the nineties in the US by Natarajan Shankar and John Rushby of
SRI International. PVS means ‘Prototype Verification System’, but the sys-
tem is far more than a prototype. It actually is one of the most popular proof
assistants for computer science applications today. PVS has strong proof au-
tomation, and also has an integrated model checker, which makes it possible
to explore finite state transition systems automatically. PVS is based on a
variant of higher order logic, but one that is substantially different from the
foundation of HOL and Isabelle/HOL. A PVS formalization is like a Coq or
HOL formalization in that it only can be understood by replaying it on a
computer. (In PVS the proof parts of the formalization are not even stored in
a humanly readable way.) PVS has been used less for non-computer science
related mathematics than the systems mentioned above.

ACL2. A proof assistant for hardware and software correctness. It is the di-
rect successor to nqthm, the ‘Boyer-Moore prover’, that was developed in
the seventies in the US by Bob Boyer and J Moore. ACL2 is quite close to
nqthm but was developed from scratch by J Moore and Matt Kaufmann at
the University of Texas. Both nqthm and ACL2 have been used for mathe-
matics, but the foundation of the system, primitive recursive arithmetic, is
too weak to express advanced mathematics. ACL2 is very closely related to
the Lisp programming language (ACL2 means ‘A Computational Logic for
Applicative Common Lisp’), and ACL2’s mathematical definitions all are
executable as Lisp programs. ACL2 is more of an automated theorem prover
than an interactive theorem prover: one does not enter the proofs into the
system oneself, but has the system discover these proofs in a guided fashion.
The proofs that ACL2 discovers are printed in a very verbose but readable
English format.

For the Arrow theorem formalization project I decided to use the Mizar proof
assistant, which is one of the three proof assistants that I know well (Mizar, Coq
and HOL). A gentle introduction to the Mizar system is my Writing a Mizar
article in nine easy steps [Wiedijk 2007].

Mizar makes it possible to have the formalized version of a proof be quite close
to the normal English version. When I started the Arrow’s theorem formalization
this was my reason for selecting Mizar. It would make the project interesting

Formalizing Arrow’s theorem 5

to see how close to the text in John Geanakoplos’ paper I could get with my
formalization. (However, in the end I did not pursue this aspect of the project,
as described at the end of Section 4 below.)

1.3 Earlier formalizations of Arrow’s theorem

Some time months after I finished my formalization of Arrow’s theorem, I at-
tended the TTVSI (‘Tools and Techniques for Verification of System Infrastruc-
ture’) workshop in London, which was held on March 25 and 26, 2008. It was
a celebration of the sixtieth birthday of the creator of the HOL system, Mike
Gordon. At this workshop there was a talk by one of the creators of the Isabelle
system, Tobias Nipkow from the Technische Universität München in Germany.
In this talk he presented a formalization of Arrow’s theorem under the title A Bit
of Social Choice Theory in HOL: Arrow and Gibbard-Satterthwaite. An abstract
of this talk was included in the proceedings of this workshop [Nipkow 2008].

In Tobias’ talk I learned that Arrow’s theorem had already been formal-
ized by him long before I had done it. (However, I had submitted it to the
Mizar library MML and its accompanying journal Formalized Mathematics in
August 2007. My formalization still might be the first published formalization
of Arrow’s theorem. The details of the submission process to the MML of my
Arrow formalization are described in Section 13 below.) Tobias had formalized
Arrow’s theorem in Isabelle/HOL in 2002, and afterwards also had formalized
the Gibbard-Satterthwaite theorem.

During the talk Tobias mentioned that both Arrow’s theorem and the Gib-
bard-Satterthwaite theorem also had been formalized (and in Isabelle/HOL as
well) by Peter Gammie who was at that time at the University of New South
Wales and National ICT Australia. Peter finished his formalization of Arrow’s
theorem in December 2006 and Gibbard-Satterthwaite in April 2007.

Here I will not compare my formalization with the Isabelle formalizations of
Tobias and Peter. That would turn this paper into a comparison between the
Mizar and Isabelle systems, which is not its intended topic. Instead I will focus
on the process of writing my Mizar formalization of Arrow’s theorem.

Tobias stated in the questions session after his talk at the TTVSI workshop
that his formalization had not been particularly difficult, which suggests that
his experiences with the formalization of Arrow’s theorem had been similar to
mine.

1.4 Outline

The rest of the paper describes my formalization of Arrow’s theorem in Mizar.
Section 2 gives a brief introduction to Arrow’s theorem. Section 3 presents the
proof that I formalized. Section 4 describes my first, aborted, attempt at a
formalization, while Sections 5 to 7 present the formalization that was finished.
Section 5 explains how I formalized orders and preorders. Section 6 presents a
fragment of the formalization in detail, and Section 7 gives an example of how
the formalization can be used to get very precise information from the proof.

6 Freek Wiedijk

Section 8 discusses whether flaws in the original proof were found by formalizing
it, while Sections 9 and 10 discuss the question whether we can now guarantee
that the proof will not have any further mistakes. Section 11 discusses possible
variations on the statement of the theorem in the formalization (of which one
also was formalized). Sections 12 and 13 describe how the formalization was
submitted to the library of the Mizar system. Finally, in Section 14 we conclude
with some possibilities to extend the work that is presented here.

Below we will present fragments of the Mizar formalization of Arrow’s theo-
rem. For this we will use the version of the formalization that is in the library
of version ‘7.8.10_4.99.1005’ of the Mizar system. This formalization is also on
the web on its own at the URLs:

http://www.cs.ru.nl/~freek/mizar/arrow-7.8.10_4.99.1005.miz

http://www.cs.ru.nl/~freek/mizar/arrow-7.8.10_4.99.1005.abs

(The first file is the full formalization. The second file is the ‘abstract’ of this
formalization, in which all proofs have been automatically removed.)

2 Arrow’s theorem

Arrow’s theorem says that it is impossible to have a fair rule for combining the
preferences of a group of individuals. The theorem says that the only rule that
satisfies some combination of reasonable restrictions (given below) is to take one
of the individuals to be a dictator, and to just always follow that individual’s
preferences. That clearly is not a fair rule.

Arrow’s theorem is also known as the impossibility theorem, the dictatorship
theorem, or Arrow’s paradox. The theorem was first proved by the economist
Kenneth Arrow (a 1972 Nobel prize winner in economics) as part of his 1950
PhD work [Arrow 1950]. However, one might claim that the first fully correct
proof was given by Richard Routley in 1979 [Routley 1979].

There are various versions of Arrow’s theorem. Here is a basic version:
Let there be a finite number N of individuals that have to rank a finite set of

alternatives A. We want a rule for combining the preferences of each individual
into a preference for the whole group. Here a preference is a linear order on the
set of alternatives, from least to most acceptable. The rule for combining these
preferences now should be seen as a constitution for the democratic process of
combining the individual preferences.

Here are the two requirements that we would like this rule to satisfy:

– If for two alternatives a, b ∈ A all the individuals prefer b to a, then the
outcome for the rule should be that the group as a whole also prefers b to a.
This is the requirement of the rule respecting unanimity.

– For two alternatives a, b ∈ A, it should not be possible for an individual to
change the group decision on the order of a and b by manipulating his or her
preference for a third alternative c. This is the requirement of independence
of irrelevant alternatives.

Formalizing Arrow’s theorem 7

Arrow’s theorem says that if the size of A is at least three, then the only possi-
bility for a rule satisfying these two requirements is to be:

– There is an individual n, called the dictator, such that the rule is to take the
group preference always to be identical to the preference of this individual.
This is the property of the rule being a dictatorship.

(If the size of A is equal to two, then the theorem does not apply. In that
case deciding by majority works. It is easy to check that if there are only two
alternatives, then that satisfies the two requirements.)

Before we look into why naive attempts at a fair rule do not work, and how
one proves this theorem, let us first look at some basic variations on the theorem.
First, one can allow ties between alternatives, either in the preferences of the
individuals, in the preference for the whole group (the outcome of the rule), or
both. It turns out that surprisingly this does not make much of a difference.
Second, one can drop the finiteness condition on the number of individuals, on
the number of alternatives, or both. Again, this does not make a difference for
the theorem (although in that case the proof that we present below will not work
anymore).

Here is the notation that we will use for preference between alternatives. We
will write a ≤ b when either b is preferred to a or when a and b are considered
to be equivalent (when ‘ties’ are allowed). We will write a < b when a ≤ b but
not b ≤ a. We always will have that between any two alternatives a and b at
least one of a ≤ b or b ≤ a holds: this means that a < b coincides with the
the negation of b ≤ a. In fact, in the Mizar formalization this is the definition
of a < b, as shown on page 23. You should think of a preference as a linearly
ordered sequence of small clusters of alternatives, where all alternatives within
a cluster are considered to be equivalent.

Now why is it that naive approaches for taking the group decision do not
work?

The naive solution for choosing which one of two alternatives a, b ∈ A to
prefer for the group as a whole, is to tally how many people prefer a to b and
how many prefer b to a. If N is odd, there will be a majority vote for this, and
then it seems natural to follow this for the group as a whole.

The problem with this solution is that it does not lead to a transitive group
preference. Suppose the preferences of three individuals are a < b < c and
b < c < a and c < a < b (three cyclic permutations), where we write a < b

to mean that the individual prefers b to a. Now in that situation two out of
three people prefer b to a, so in the group decision one would like to have a < b.
However, similarly one would have b < c and c < a. But that does not constitute
a transitive relation! Which means that this approach does not work.

Now there seems to be a way out of this problem if one is allowed to have
ties in the group decision. That would mean that in the example (because the
group apparently is not able to decide between a, b and c) one could consider
the alternatives to be all equivalent in the group preference. An order in which
ties are allowed (formally: which is allowed to be not antisymmetric) is called
a preorder. However, even with ties the naive majority rule still does not work.

8 Freek Wiedijk

In that case the third person can affect the outcome of the vote by moving a

up (instead of c < a < b his preferences then becomes c < b < a), in which
case the majority vote becomes b < c < a. Instead of b being equivalent to
c then c is preferred to b, and therefore the relationship between b and c has
changed by only one person changing his preference for a. Clearly this violated
the requirement of independence of irrelevant alternatives.

Another approach to try to make a fair rule is to have two alternatives be
considered equivalent whenever there is no unanimity about it. However, that
also does not work. If the three preferences are a < b < c and b < a < c and
a < c < b, then this rule would make a equivalent to b, b equivalent to c, but
a < c. Clearly again this is not transitive.

Apparently naive attempts at a good rule that satisfies the two requirements
without being a dictatorship do not work. Arrow’s theorem states that no non-
naive attempts will give a good voting rule either.

3 The proof

We formalized the first proof from John Geanakoplos’ Three Brief Proofs of
Arrow’s Impossibility Theorem [Geanakoplos 2001]. (This was the same proof
that Tobias Nipkow formalized in Isabelle/HOL.) The three proofs in that pa-
per successively get more abstract. Generally abstract mathematics is easier to
formalize than concrete mathematics. For this reason the first proof from the
paper seemed the most challenging.

Formalization becomes particularly difficult when in a proof an appeal is
made to ‘visual intuition’. In the first proof there were little pictures of alterna-
tives being moved around in a preference. I wondered whether this would make
the formalization difficult. (In the end it turned out that it was not that difficult
to do this ‘visual’ reasoning formally. The way that we handled this is described
in Section 5.2 below.)

The statement of Arrow’s theorem in the formalization was:

reserve A,N for finite non empty set;

reserve a,b for Element of A;

reserve i,n for Element of N;

reserve o for Element of LinPreorders A;

reserve p,p’ for Element of Funcs(N,LinPreorders A);

reserve f for Function of Funcs(N,LinPreorders A),LinPreorders A;

theorem Th14:

(for p,a,b st for i holds a <_p.i, b holds a <_f.p, b) &

(for p,p’,a,b st

for i holds (a <_p.i, b iff a <_p’.i, b) & (b <_p.i, a iff b <_p’.i, a)

holds a <_f.p, b iff a <_f.p’, b) &

card A >= 3 implies

ex n st for p,a,b st a <_p.n, b holds a <_f.p, b

(This is a slightly modified version of lines 530–542 of the formalization. We
removed the variable reservations that were not used in the statement.)

Formalizing Arrow’s theorem 9

We will now explain this statement in some detail. The Mizar syntax for the
universal quantifier

for x st A holds B

should be read as
∀x (A ⇒ B)

(the ‘st A’ part also may be omitted), while the syntax for the existential quan-
tifier

ex x st A

should be read as
∃x A

In both cases ‘st’ abbreviates ‘such that’.
Now one should read

a <_o, b

as
a <o b

and take it to mean ‘b is preferred to a in preference o’. Using this notation ‘b is
preferred to a by individual i’ becomes

a <_p.i, b

and ‘b is preferred to a by the group preference’ becomes

a <_f.p, b

The variable p describes the function that maps individuals to their preferences,
and the variable f describes the rule for combining these preferences together.

The statement of Arrow’s theorem in the formalization has the form

A1 ∧ A2 ∧ A3 ⇒ A4

in which a free variable f occurs, and in which the four subformulas are:

A1 = for p,a,b st for i holds a <_p.i, b holds a <_f.p, b

This is the requirement of unanimity. If each individual i prefers a to b, then
that also holds in the group preference f(p).

A2 = for p,p’,a,b st B2 holds a <_f.p, b iff a <_f.p’, b

B2 = for i holds (a <_p.i, b iff a <_p’.i, b) & (b <_p.i, a iff b <_p’.i, a)

This is the requirement of independence of irrelevant alternatives. If we have
two situations p and p′ that only differ in preferences for alternatives different
from a and b (this is the condition labeled B2), then the group preferences
f(p) and f(p′) for those two situations also match on a and b.

10 Freek Wiedijk

A3 = card A >= 3

This is the requirement that there are at least three alternatives.

A4 = ex n st for p,a,b st a <_p.n, b holds a <_f.p, b

This states that there is a dictator called n. There exists an n such that if
n prefers b to a, then that also will hold in the group preference f(p).

The proof of Arrow’s theorem consists of four steps. (These are the four steps of
John Geanakoplos’ proof, which are reflected in four steps in the formal Mizar
proof.)

– First one proves that if every individual puts an alternative at the lowest or
at the highest place (so no one puts it between other possibilities) then in
the group ranking it also is at an extremal place.
Here is how this statement was rendered in the Mizar formalization (lines
550–552):

defpred extreme[Element of LinPreorders A,Element of A] means

(for a st a <> $2 holds $2 <_$1, a) or (for a st a <> $2 holds a <_$1, $2);

A4: for p,b st for i holds extreme[p.i,b] holds extreme[f.p,b]

The expression extreme[o,a] is defined to mean that alternative a is at the
extreme point of the preference o. (In this definition the text ‘$2 <_$1, a’
means ‘the second argument of this macro is less than a in the preference
which is the first argument of the macro.) The third line states the first step
in the proof of Arrow’s theorem. It is labeled A4 (the labels in the proof are
A1, A2, A3, and so on). The proof of this step in the formalization consists of
lines 553–619.
We will present the proof of this fact below, but first will continue with the
statement of the second step in the proof.

– Second, one proves that for each alternative b there is a person n(b) and a
specific situation tailored to this person, such that n(b) by just changing his
preference for b can move the group preference for b from the bottom to the
top.
In Mizar the counterpart for this step is stated in lines 620–624:

A20: for b holds ex nb,pI,pII st (for i st i <> nb holds pI.i = pII.i) &

(for i holds extreme[pI.i,b]) & (for i holds extreme[pII.i,b]) &

(for a st a <> b holds b <_pI.nb, a) &

(for a st a <> b holds a <_pII.nb, b) &

(for a st a <> b holds b <_f.pI, a) & (for a st a <> b holds a <_f.pII, b)

This says that there are two situations pI and pII, which only differ in the
preference of nb, such that the group preference for b is extremal in both
cases, but because nb moves b from lowest to highest position, in the group
preference it goes from lowest to highest as well. The proof of this statement
is lines 625–797 of the formalization.

Formalizing Arrow’s theorem 11

Clearly the formalized statement gives more specific (and even redundant)
information than the informal statement. The reason for this is that in that
way the formalization becomes easier. If the less specific statement had been
used, work would have been needed later to get back information that already
is present in the proof of the statement.

– Third one shows that n(b) is a dictator over each pair of alternatives a and
c that both are different from b.
In Mizar this is lines 798–801:

A53: for b holds ex nb,pI,pII st (for i st i <> nb holds pI.i = pII.i) &

(for i holds extreme[pI.i,b]) &

(for a st a <> b holds b <_f.pI, a) & (for a st a <> b holds a <_f.pII, b) &

(for p,a,c st a <> b & c <> b & a <_p.nb, c holds a <_f.p, c)

which is proved in lines 802–917.
Again this gives more information than needed, which again is just for con-
venience, to prevent the need to ‘regenerate’ information that one already
has. The informal statement of the third step corresponds to just the fourth
line of the formal statement.

– The fourth step says that n(c) = n(b) for any alternative c different from b.
Hence this n(b) is a dictator for all alternatives, and the proof is done.
In the Mizar version this is not a single statement, as there the existence of
n(b) from the previous steps is asserted, but this existence is not turned into
a function. For this reason the proof asserts the existence of n(b) in lines
919–924, the existence of n(c) in lines 939–942, and then in line 943:

nc = nb

which is proved in lines 944–968.

The following table summarizes how the lines of the formalization are distributed
over these four steps in the proof:

statement of the theorem lines 530–542
step 1 of the proof lines 550–619
step 2 of the proof lines 620–797
step 3 of the proof lines 798–917
step 4 of the proof lines 919–968

the full theorem lines 530–971
the full formalization lines 1–1121

The part of the formalization before the proof consists of the definition and
properties of the linear orders and preorders that we used. This will be discussed
in Section 5 below. The part of the formalization after the proof derives a variant
of Arrow’s theorem. This is discussed in Section 11 below.

We will now explain how the four steps of the proof are proved:

12 Freek Wiedijk

– If every individual puts an alternative b at an extremal place then in the
group ranking it always also is at an extremal place.
The proof goes by contradiction. Suppose that in the group ranking it would
not be at an extremal place, so that in the group ranking we have a ≤ b ≤
c for some a and c. We are going to move a and c around in everyone’s
preference in such a way that the relative positions of both a and c with
respect to b do not change. (That still leaves us a lot of freedom as b is at
the far end of each individual’s preference. We can move a and c almost
everywhere as long as we leave b at the far end.)
We will move a and c in such a way that have c < a for everyone (specifically:
move a just above c for everyone), because then by unanimity in the group
preference we also will have c < a. That will then give a contradiction with
the fact that we had a ≤ b and b ≤ c from the relative positions of a and
c with respect to b (which did not change, and which therefore also did not
change in the group preference).

– For each alternative b there is a person n(b) and a specific situation tailored
to this person, such that n(b) by just changing his preference for b can move
the group preference for b from the bottom to the top.
This is proved by considering the following process. Start with everyone with
b at the very bottom. In this situation by unanimity b will also be on the
bottom in the group preference.
One by one have the individuals move b in their preference from the very
bottom to the very top. From the previous fact we know that after this move
in the group preference b then still either has to be at the very bottom or at
the very top. As long as in the group preference b is at the bottom we keep
doing this. When the b flips to the top, we have found our individual n(b)
and the situation from the statement.
There has to occur a flip from the bottom to the top at some point, because
after everyone has had his turn moving b to the top, by unanimity b also will
be at the top in the group preference.
We will call the situation just before n(b) moved b from bottom to top p I,
and the situation just after this move we will call p II.

– The individual n(b) from the previous step is a dictator over each a and c

that is different from b.
Suppose that n(b) has the preference a < c. We are going to show that then
in the group preference we also have a < c.
To do this, for each individual but n(b) move b to the extremal position that
it has in the situations p I and p II from the previous step. However for n(b)
put it in between a and c. This means that n(b) now has a < b < c.
This does not affect the placing of a with respect to c, so the group preference
between a and c is not affected by this, and we still need to show that in
this new situation a < c.
Now we will show that in the group preference after the preferences for b

were moved in this way, both a < b and b < c hold.

Formalizing Arrow’s theorem 13

We get b < c, because the relative positions of b and c are now for every-
one the same as in p I, and there we had b < c (as there b was less than
everything), so we get that in our group preference we also have b < c.
By the same argument for p II we also get a < b. Hence by transitivity we
find a < c and we are done.

– For any b and c the dictators n(b) and n(c) coincide.
Take some a different from b and c. Dictator n(b) can move b from the very
bottom to the very top. In particular, he can affect the order between a and
b that way. But according to the previous step n(c) is the dictator for the
group preference between a and b. Hence only n(c) can affect that order, and
we find that n(b) and n(c) are the same individual.

4 An aborted formalization

When I first started the formalization, I decided that I would try to mimic
the paper as much as possible. This is the technology of formal proof sketches,
where one makes a skeleton of a formalization as close as possible to the informal
original [Wiedijk 2004].

However, it turned out that this proof was not really suited to this approach,
and I aborted this attempt. John Geanakoplos’ proof contains sentences like
(from the middle of page 2):

[. . .] this would continue to hold even if every individual moved c above
a, because that could be arranged without disturbing any ab or cb votes.

This is too far from the formal statements of Mizar to make a formal proof
sketch that is sufficiently close to this to be attractive. (Of course the sentence
can easily be expressed using the Mizar language, but the result will not at all
be structurally similar to the natural language.)

For my first version of the formalization I defined the terminology that is
used in the paper. For instance I introduced a type called ‘Alternatives’ for finite
sets that have at least three elements, and a type ‘Constitution’ for functions
that determine a group preference from the preferences of the individuals. The
statement to be proved then became:

reserve A for Alternatives;

reserve N for non zero (natural number);

theorem

for f being Constitution of A,N st

f is independent_of_irrelevant_alternatives & f is respecting_unanimity

holds f is a_dictatorship;

However, this is not what I put in my file, as in Mizar such a statement is more
naturally expressed as a so-called cluster :

14 Freek Wiedijk

registration let A,N;

cluster

independent_of_irrelevant_alternatives respecting_unanimity ->

a_dictatorship Constitution of A,N;

. . .
end;

A cluster is the way that one provides Mizar’s type system with information
about properties of ‘attributes’, argumentless type modifiers. This cluster would
mean that every time the type of a Mizar term would contain the attributes
independent_of_irrelevant_alternatives and respecting_unanimity, the Mizar
type system would also automatically give it the attribute a_dictatorship. The
advantage of a cluster is that the type system will infer properties of terms
expressed by attributes automatically, relieving the user from that kind of rea-
soning.

The three definitions that I had in my file for the terminology in the cluster
were:

definition let A,N,f;

attr f is independent_of_irrelevant_alternatives means

for p,p’,a,b st

for i holds (a <_p.i, b iff a <_p’.i, b) & (b <_p.i, a iff b <_p’.i, a)

holds a <_f.p, b iff a <_f.p’, b;

end;

definition let A,N,f;

attr f is respecting_unanimity means

for p,a,b st for i holds a <_p.i, b holds a <_f.p, b;

end;

definition let A,N,f;

attr f is a_dictatorship means

ex n st for p,a,b st a <_p.n, b holds a <_f.p, b;

end;

(The bodies of these definitions clearly are three parts of the statement that I
formalized in my eventual formalization.) The definitions of the types involved
in this were:

definition let A,N;

mode Constitution of A,N is

Function of Funcs(N,LinPreorders A),LinPreorders A;

end;

notation let A;

synonym Alternative of A for Element of A;

end;

notation let N;

synonym Individual of N for Element of N;

end;

Formalizing Arrow’s theorem 15

Clearly I could have put this notation back on top of my final formalization.
However I decided not to do this. Generally I like to only have definitions for
notions that are used more than once. In this case the only use of these definitions
would have been cosmetic, and it would have made the final statement a bit less
transparent.

5 Moving alternatives around in preferences

5.1 Modelling orders and preorders

Arrow’s theorem and its proof is about orders and preorders. I had to decide how
to model this in my formalization. One consideration for this was that I did not
have a single fixed order, but many orders simultaneously. In Mizar there is a
large amount of theory about orders, but not one in which the order is explicitly
indicated in the notation. For that reason I had to introduce my own definitions.
(When I submitted the formalization to the Mizar library the referee did not like
that at all. See the description of this submission process in Section 13 below.)

In my definitions of orders and preorders I could have used some notions
already defined in the Mizar library, but it would not have saved me time.
Relating my notions to the existing ones would just have added work.

I could have used the extreme possibility to represent the orderings as set of
pairs and to just write

[a,b] in o

which is Mizar notation for
〈a, b〉 ∈ o

However, I really wanted to have the less-than symbol in my statements. For this
reason I introduced definitions that allowed me to write an ASCII counterpart
to my preferred notation

a <o b

The closest that one can get to this in Mizar is to use either

a < b ,o

(‘a < b in the order o’), or

a <_o, b

At first I used the first possibility, but after a while I changed my mind and used
the second.

After I introduced my own definitions of orders and preorders, I had to de-
velop the basic properties of these notions, like antisymmetry and transitivity
and so on. That took lines 83–344 of the formalization. I put in a small token
theorem to link my notions to the rest of the library by proving in lines 201–283:

16 Freek Wiedijk

definition

let A;

redefine func LinOrders A means :Def3:

for R being set holds R in it iff R is connected Order of A;

. . .
end;

5.2 Moving elements around

Once I had my orders and preorders defined, I had to think about how to model
moving elements around. But it turned out that I did not need that! All I needed
was to prove that certain orders existed in which the relative positions on a few
elements were the same as in the original order.

For instance, instead of defining an operation to move an element a to the
bottom (and keeping the rest of the elements in the same order), all I needed
was to prove a lemma (lines 421–448 of the formalization):

theorem Th10:

a <> b & a <> c implies ex o st

a <_o, b & a <_o, c &

(b <_o, c iff b <_o’, c) & (c <_o, b iff c <_o’, b);

This says that if I have an order o′, then I can find an order o where b and c are
in the same order as in o′, and a is below both of them.

Altogether I had seven lemmas like this, which I proved in lines 346–524.

6 A small sample of Mizar code

To give an impression of what the proof of Arrow’s theorem looks like in Mizar
code, I will now transcribe the formalization of the first step in this proof. Here
is the Mizar version (with line numbers in the right margin):

552A4: for p,b st for i holds extreme[p.i,b] holds extreme[f.p,b]

553proof

554assume not thesis;

555then consider p,b such that

556A5: (ex a st a <> b & a <=_f.p, b) & (ex c st c <> b & b <=_f.p, c) &

557for i holds extreme[p.i,b];

558consider a’ such that

559A6: a’ <> b & a’ <=_f.p, b by A5;

560consider c’ such that

561A7: b <> c’ & b <=_f.p, c’ by A5;

562ex a,c st a <> b & b <> c & a <> c & a <=_f.p, b & b <=_f.p, c

563proof

564per cases;

565suppose

566A8: a’ <> c’;

567take a’,c’;

Formalizing Arrow’s theorem 17

568thus thesis by A6,A7,A8;

569end;

570suppose

571A9: a’ = c’;

572consider d such that

573A10: d <> b & d <> a’ by A3,Th2;

574per cases by Th4;

575suppose

576A11: d <=_f.p, b;

577take d,c’;

578thus thesis by A7,A9,A10,A11;

579end;

580suppose

581A12: b <=_f.p, d;

582take a’,d;

583thus thesis by A6,A10,A12;

584end;

585end;

586end;

587then consider a,c such that

588A13: a <> b & b <> c & a <> c & a <=_f.p, b & b <=_f.p, c;

589defpred P[Element of N,Element of LinPreorders A] means

590(a <_p.$1, b iff a <_$2, b) & (b <_p.$1, a iff b <_$2, a) &

591(b <_p.$1, c iff b <_$2, c) & (c <_p.$1, b iff c <_$2, b) & c <_$2, a;

592A14: for i holds ex o st P[i,o]

593proof

594let i;

595per cases by A5;

596suppose for c st c <> b holds b <_p.i, c;

597then

598A15: b <_p.i, a & b <_p.i, c by A13;

599consider o such that

600A16: b <_o, c & c <_o, a by A13,Th7;

601take o;

602thus thesis by A15,A16,Th4,Th5;

603end;

604suppose for a st a <> b holds a <_p.i, b;

605then

606A17: a <_p.i, b & c <_p.i, b by A13;

607consider o such that

608A18: c <_o, a & a <_o, b by A13,Th7;

609take o;

610thus thesis by A17,A18,Th4,Th5;

611end;

612end;

613consider p’ being Function of N,LinPreorders A such that

614A19: for i holds P[i,p’.i] from FUNCT_2:sch 3(A14);

615reconsider p’ as Element of Funcs(N,LinPreorders A) by FUNCT_2:11;

616a <=_f.p’, b & b <=_f.p’, c by A2,A13,A19;

617then a <=_f.p’, c & c <_f.p’, a by A1,A19,Th5;

18 Freek Wiedijk

618hence contradiction;

619end;

In English this proof can be read as follows:

We are going to show that if for each individual i the alternative b is at
the extreme point of i’s preference, then it is also at the extreme point
of the group preference (line 552).
Suppose by contradiction that this is not true (line 554–557). Then there
are a′ and c′ (both different from b, but maybe not different from each
other), with in the group preference a′ ≤ b ≤ c′ (lines 558–561). We
use this to find a and c that again satisfy a ≤ b ≤ c, but where we
also have a 6= c (line 562). For this we do a case distinction (line 564):
either already a′ 6= c′, in which case we can take a = a′ and c = c′ (lines
565–569), or we have a′ = c′ (line 570–571). In this latter case we use
the fact that there are at least three alternatives (this is the assumption
labeled A3) to obtain an alternative d different from both b and a′ = c′

(lines 572–573). Now either d ≤ b in which case we can take a = d and
c = c′ (lines 575–579) or b ≤ d in which case a = a′ and c = d works
(lines 580–584).
We therefore have a ≤ b ≤ c with a 6= c (line 587–588). Now for each in-
dividual i change the preference to one in which b is in the same position
relative to a and c, but where c < a (lines 589–592 and lines 613–615).
It is easy to see that such a preference always exists (lines 592), by a
case distinction (lines 595) with the kind of extreme that b was for i (the
statement that b was an extreme was on line 556 with label A5). Either
b is the lowest choice of i (line 596), in which case any preference with
b < c < a will work (lines 599–602). Or b is the highest choice (line 604),
in which case we use c < a < b (lines 607–610).
With the modified preferences, independence of irrelevant alternatives
(the statement labeled A2) gives us that in the group preference b still is
in the same relative order to a and c as before, i.e., we still have there
that a ≤ b ≤ c. By transitivity this gives a ≤ c, but we also now have
that all individuals have preference c < a, so by unanimity (the statement
labeled A1) that also holds in the group preference (line 617). Together
this clearly is a contradiction (line 618), which finishes the proof (line
619).

This proof is a bit more subtle that the proof in the paper of John Geanakoplos.
We will discuss this in Section 8.

7 Where is the cardinality assumption used?

Mizar requires one to make explicit what is the relation between the steps in
the proof through the use of labels, that are subsequently referred to using the
keyword ‘by’.

Formalizing Arrow’s theorem 19

Furthermore the system has a utility called relprem that will point out which
of those labels actually are not necessary. This utility is one among many similar
ones (relinfer, reliters, trivdemo, chklab, inacc, etc.) that are often called the
irrelevant utilities, as they point out which parts of the formalization are irrel-
evant. These utilities all have been run on the Arrow’s formalization. Therefore
all the references to labels that occur in the formalization are needed to make
the formalization correct.

We can use this to gain a better understanding of the proof. As a specific
example, consider the assumption in the theorem that the cardinality of the set
of alternatives is at least three. Where in the proof is this used?

In the formalization this assumption is stated as

A3: card A >= 3;

Therefore, we should be looking for justifications of the form

by . . . , A3, . . . ;

It turns out that there are three of these:

– The first use of the assumption is on line 573 of the formalization, in the
first step of the proof, which was detailed in the previous section. It is used
to deal with the possibility that we get a ≤ b ≤ c with a = c, in which case
the movement of c with respect to a will not be possible.

– The second use of the assumption is on line 717 of the formalization, in the
second step in the proof. Actually the only thing that is used there is that
there are at least two alternatives. This is used to make the proof easier: we
are looking for an individual where b moves from the bottom to the top. If
the number of alternatives is equal to one, then it is at the top already, and
the proof breaks the way it is formalized.
It probably is possible to get rid of this second use of the assumption by
being a bit more careful in the way that we determine n(b).

– The third use of the assumption is on line 938, in the fourth step in the
proof. This corresponds to the sentence ‘take some a different from b and c’
on page 13 above.

The possibility to do this kind of very careful proof analysis is one of the attrac-
tive sides of using formalization technology.

8 Did formalization show errors in the informal proof?

Formalization is also called proof checking, and what is the point of checking
something if it will not find errors? Of course Arrow’s theorem is very well known,
and the paper that was formalized has been widely read. Still an interesting
question is: did I find any errors?

The answer is that, no, I did not find real errors. (Nor did Tobias Nipkow
according to his talk in London.) However, I did find ‘omissions’ of some trivial

20 Freek Wiedijk

cases. The formalized proof seemed to have more case distinctions than I experi-
enced when I read the original proof. All these case distinctions do not amount
to much, but when formalizing one still has to navigate all those possibilities,
thinking ‘ah yes, in that case of course it is trivial.’ Those cases were not (con-
sciously) present in my mind when I studied the proof without the computer’s
help.

The only case distinction where one might claim that the proof from John
Geanakoplos’ paper really misses something is the one that already was presented
in Section 6. In the paper it reads:

Suppose to the contrary that for such a profile and for distinct a, b, c,
the social preference put a ≥ b and b ≥ c. By independence of irrelevant
alternatives, this would continue to hold even if every individual moved
c above a, [. . .]

However, it is not shown that this moving around of c with respect to a is
possible, as we do not have the information that a 6= c ! From the way that a

and c are found we know that a and c both are different from b, but this is not
sufficient to establish that a 6= c.

Of course the situation with a = c is easy to deal with as well (as the
detailed proof in Section 6 shows), but it might be claimed that the proof by
John Geanakoplos is incomplete because it does not make this case explicit. At
least, I had not seen it coming, and was surprised when Mizar forced me to think
about it.

9 Is it now absolutely certain that the proof is flawless?

Human beings are fallible, and any non-trivial computer program has bugs.
Everyone knows that. Therefore, how reliable is it when a proof assistant tells
me that the proof that I formalized is flawless? Is it thinkable that the proof still
might be wrong in some way?

We are getting into the very dangerous territory of philosophy here. The
answer is: of course it might be wrong! Absolute certainty does not exist in any
way. For example, the existence of India is not certain either. One might be
mistaken about that as well. (Even if you happen to be in India, that does not
guarantee that India exists. You might very well be mistaken about where you
are.) But questioning the existence of India is not interesting. And therefore the
question of absolute certainty is not interesting. If the certainty of the correctness
of my proof is of the same magnitude as the certainty of India existing, there is
no point in discussing that certainty.

There is one significant aspect in which a proof might have a problem despite
the fact that it has been coded and verified with a proof assistant. This is the
possibility that the definitions of the notions that were used in the formalization
do not correspond to your understanding of them. In that case your formalization
proved something, which means that it is not strictly speaking false, but it might
not have proved the thing that you thought you proved, so in that sense it

Formalizing Arrow’s theorem 21

then is incorrect. (This has happened in the Isabelle system once. There was a
definition of a prime number being a number with precisely two divisors, and
several formalized lemmas about this notion. However, the ‘mistake’ was that the
numbers in this formalization were integers, which meant that prime numbers p

had four divisors: 1, p, −1 and −p. All those theorems, which were of the form ‘if
we have a prime number, then it has the following properties’ in fact were true,
as there were no ‘prime numbers’. Still, one could not consider those theorems
to be really flawless.) A proof assistant can establish that if the definitions are
correct, then the theorem is correct, but it cannot establish that the definitions
themselves are correct.

Bugs in the proof assistant also might be a reason that a proof might be
incorrect despite it having been formalized, but this is not a significant risk (and
it will even be smaller in the long term) for the following four reasons:

– First of all, bugs in a proof assistant are similar to bugs in a compiler. In
practice, when a program is wrong it hardly ever is caused by compiler bugs.
When you write a program and it does not behave the way you expect it to,
you do not expect compiler bugs to be the cause. And proof assistant bugs
are even less harmful than compiler bugs, as a compiler need to generate
object code, while a proof assistant just needs to ‘generate’ a Boolean value
(whether the proof is correct or not), which generally is a simpler process.
And people try to make their formalizations correct, so it is not that the
formalizer is working against the proof assistant.
I do not know of a proof of a false statement ever accidentally having been
accepted by a proof assistant because of bugs in the system. Certainly there
have been bugs that allowed one to prove false statements. But in that
case those ‘proofs’ were contrived examples, and not real proofs that people
believed to be correct. Also, every time a bug in a proof assistant was found
the library of the system still was okay after the bug had been fixed.
The correctness of a proof assistant is similar to the correctness of a compiler
in another way. The fact that the system has behaved correctly on many
many inputs gives a lot of trust in the system.
(There is an asymmetry here. Every time the kernel of a system is modified,
it might have become incorrect. Now the system will be tested on its library,
which means that if it starts to reject correct formalizations, this has a
large probability of being noticed. However, generally there will not be a
regular dual test to investigate whether it has started accepting incorrect
formalizations.)

– Then there is a very powerful method to further minimalize the risk of a
proof assistant giving the wrong answer: to use a micro-kernel architecture.
In this approach one has only a very small part of the proof assistant (the
logical kernel) guarantee the correctness of the mathematics. This is also
called the LCF architecture, after the LCF system from the seventies that
used this approach for the first time. Yet another name for this approach
is the de Bruijn criterion (although in the proposal of N.G. de Bruijn from

22 Freek Wiedijk

which this name was derived, the kernel was not part of the program but a
separate checker.)
The current serious system that has the smallest kernel in this style, is the
HOL Light system by John Harrison. Its logical kernel is only 394 lines long
(less than 20 pages of code, of which about half is comments.)

– Another way to reduce the risk of mistakenly accepting a proof is the ap-
proach of multiple implementations. This is not used so much in its pure
form. However, there are systems to convert the mathematical library of
one system to be usable in another [Naumov et al 2001, Obua & Skalberg
2006, Asperti et al 2007], and then the second system rechecks the library
of the first, which is a form of having multiple implementations.
This approach also is applicable to reduce worries about the correctness
of the compiler and processors that are used to run the proof assistant.
One can gain confidence in the correctness of the behavior of the proof
assistant by using different compilers for the same programming language
(this often is made more difficult by the fact that the system is written for a
specific language for which only one compiler exists) and run it on different
architectures.

– And finally one can prove the (kernel of the) system to be correct, and not
just on paper but as a formalization. This has not really been done yet
for a serious proof assistant, but it will happen in the foreseeable future.
Currently there already have been experiments with correctness proofs of
simplified versions of logical kernels, like the Coq in Coq project [Barras &
Werner 1997, Barras 1999] and the HOL in HOL project [Harrison 2006].
(Of course there is a circularity in using a system to verify its own correctness.
However, the trust that one gains about the correctness in this way clearly
is orders of magnitudes higher than the trust that one can have without.)
Also proof assistant technology is sufficiently advanced that serious compilers
and processors can be proved correct using a proof assistant. This again
allows one to get the certainty of a proof being correct closer to that of India
existing.

Another possible problem, which takes us back to philosophy, is that the logical
foundation of the system might turn out to be inconsistent (i.e., that one can
prove false theorems from it). Consider a proof assistant based on Cantor’s naive
set theory (which is inconsistent because it has the Russell paradox) or one based
on Martin-Löf’s first version of type theory (which is called type-in-type: this
system is inconsistent because of Girard’s paradox). If one formalizes a proof in
such a system, strictly speaking one would not have established anything, as any
statement can be proved in such a system. Still, even if one only has checked a
proof in a system that is inconsistent, but where one needs to work very hard
to exploit that inconsistency, it does not seem a serious possibility that one will
do so accidentally.

Formalizing Arrow’s theorem 23

10 How do we know that this really is Arrow’s theorem?

According to the previous section one should not seriously worry about whether
the theorem that was proved holds or not. However, one could worry about
whether it actually was Arrow’s theorem. It might be the case that we made a
mistake in the statement of the theorem in such a way that it states something
different from Arrow’s theorem. It might for instance be the case that the as-
sumptions that we put in the statement happened to be contradictory, leaving
the statement vacuously true.

It is not possible to be utterly certain that in the definitions of the notions
and the statement of the theorem no mistakes were made, but there are three
ways in which we still can be reasonably certain about this:

– First of all, we generally can keep the statement simple, and the chain of def-
initions of the notions in the statement reasonably short. This is one reason
for not wanting to introduce too much terminology (which was the approach
described in Section 4 that I aborted after a short while), but to leave the
content of the statement explicit.
The definitions that occur in the Mizar statement of Arrow’s theorem (that
was given on page 8) are for the orders and preorders:

reserve A for non empty set;

reserve a,b,c for Element of A;

definition

let A;

func LinPreorders A means

for R being set holds R in it iff

R is Relation of A & (for a,b holds [a,b] in R or [b,a] in R) &

(for a,b,c st [a,b] in R & [b,c] in R holds [a,c] in R);

end;

definition

let A;

func LinOrders A -> Subset of LinPreorders A means

for R being Element of LinPreorders A holds R in it iff

for a,b st [a,b] in R & [b,a] in R holds a = b;

end;

reserve o for Element of LinPreorders A;

definition

let A,o,a,b;

pred a <=_o, b means

[a,b] in o;

end;

notation

let A,o,a,b;

synonym b >=_o, a for a <=_o, b;

antonym b <_o, a for a <=_o, b;

antonym a >_o, b for a <=_o, b;

end;

24 Freek Wiedijk

If one traces back from these definitions and from the statement of the
theorem, one also encounters the notions of

• the types of the elements and subsets of a given set
• pairs (written [a,b])
• relations over a given set A
• cardinality of finite sets as a natural number
• the order relation ≤ on the natural numbers
• the number 3

These all are very standard notions in the Mizar library MML, that have
been used in a very large number of formalizations, and therefore one can
really trust that their formalized definitions correspond to the standard ones.

– Second, one can ‘justify’ the formal definitions in the formalization by prov-
ing many lemmas about them. For instance the Arrow formalization proves
eleven lemmas (labeled Th3 to Th13) about orders and preorders.
The fact that it is possible to prove many familiar properties of the notions
that are defined, gives some confidence that the formal definitions corre-
sponds to our intuitive understanding of them.

– Third, the fact that one can accurately follow the informal proof in the for-
mal system is evidence that the formal notions correspond to the original
versions. The fact that we were able to exactly follow John Geanakoplos’
proof is evidence that the formal notions that we are reasoning about are in
fact the notions that occur in that proof.

When I first started on the formalization of Arrow’s theorem, it took me a while
to find the exact right formal statement that corresponded to the statement from
the paper. This surprised me! I had thought that it would be quite apparent what
the right statement would be. However, it turned out that there were various
possible formal interpretations, and that only ‘the right one’ made the formal
proof work.

The fact that the statement is about preorders (that is, the preferences that
it reasons about allow ‘ties’ between alternatives) made this even harder.

For example, at first I had interpreted the property of respecting unanimity
to be the fact that if every individual has a ≤ b, then the group preference
also has a ≤ b. However, that turned out to be the wrong reading! With this
interpretation the theorem does not even hold, as in that case one can for the
group preferences take all alternatives to be equivalent. All the properties then
are satisfied without there having to be a dictator. (The alternative interpreta-
tion of a < b for every individual implying a < b for the group turned out the
right one. To my surprise, that interpretation is not stronger than the wrong
interpretation. Each of them can be true with the other one being false.)

As another example I wondered whether it would be sufficient to just take
the simple

for p,p’,a,b st

for i holds a <_p.i, b iff a <_p’.i, b

holds a <_f.p, b iff a <_f.p’, b)

Formalizing Arrow’s theorem 25

as the interpretation of independence of irrelevant alternatives instead of

for p,p’,a,b st

for i holds (a <_p.i, b iff a <_p’.i, b) & (b <_p.i, a iff b <_p’.i, a)

holds a <_f.p, b iff a <_f.p’, b)

which is now in the formalization. That would have worked. However it would
have made the theorem stronger, as this simpler statement is a more restrictive
property.

There is a third interpretation issue that I missed at first. The proof in John
Geanakoplos’ paper does not establish full dicatorship. If the dictator takes two
elements to be equivalent, then the proof does not guarantee that the group also
takes them to be equivalent. This means that the dictator can force elements
apart, but not together. (This problem does not occur in the variant of the
theorem in the next section.)

11 A variant of the theorem

After I finished the formalization of the proof by John Geanakoplos, I won-
dered whether this was the strongest result possible. It seemed to me that if one
restricts the options of the individuals more, then it becomes even stronger.

For this reason I considered the theorem in which the group was allowed
to have ties between the alternatives, but the individuals were not allowed this
freedom.

After some thought it seemed clear to me that this did not help much: if
one could have a non-dictatorship rule for that situation, then one could extend
it to preferences with ties by consistently breaking any ties in the individuals’
preferences first (according to some fixed order on the alternatives) and then
feeding that variant into the rule.

However, I was not entirely certain that I was not deluding myself with this
argument. For this reason I decided to formalize this argument in Mizar too.
That is, I then derived from the statement that I already had proved the variant
(lines 530–532 and 977–984):

reserve A,N for finite non empty set;

reserve a,b for Element of A;

reserve i,n for Element of N;

reserve p,p’ for Element of Funcs(N,LinOrders A);

reserve f for Function of Funcs(N,LinOrders A),LinPreorders A;

theorem

(for p,a,b st for i holds a <_p.i, b holds a <_f.p, b) &

(for p,p’,a,b st

for i holds a <_p.i, b iff a <_p’.i, b

holds a <_f.p, b iff a <_f.p’, b) &

card A >= 3 implies

ex n st for p,a,b holds a <_p.n, b iff a <_f.p, b

26 Freek Wiedijk

This is almost the same as the original, but with orders for the individuals’
preferences, instead of preorders.

Also, because of this modification, the property of being independent of ir-
relevant alternatives could now be phrased a bit more economically. Just to be
sure I made no mistake with this, the fact that for orders the simpler statement
is equivalent to the larger statement was also proved as a lemma (lines 479–482):

theorem

for o,o’ being Element of LinOrders A holds

((a <_o, b iff a <_o’, b) & (b <_o, a iff b <_o’, a)) iff

(a <_o, b iff a <_o’, b)

Deriving this variant on Arrow’s theorem from the one in John Geanakoplos’
paper took quite a bit more work than I had expected from my informal under-
standing of the argument. This part of the formalization is lines 975–1120.

12 A journal of formalizations

The library of Mizar formalizations has two versions:

– A computer library of Mizar input text. This is called the Mizar Mathe-
matical Library or MML. Another name for it is the Journal of Formalized
Mathematics or JFM. The name depends on whether one thinks of it as a
computer library or as a mathematical journal.
Each formalization is in the MML in two versions:
• The full formalization (called the ‘article’). In the case of the Arrow

formalization, this is the file arrow.miz.
• An automatically generated version of the formalization (called the ‘ab-

stract’) in which all proofs have been removed. In the case of the Arrow
formalization, this is the file arrow.abs.

– A paper journal with abstracts in the English language (everything but the
proofs), that are fully automatically generated from the Mizar input. This
journal is called Formalized Mathematics or FM. Although in practice no
one ever looks at these abstracts (everyone uses the MML files), it is nice
that it exists too.

The version of the formalization of Arrow’s theorem in Formalized Mathemat-
ics is slightly over three pages long [Wiedijk 2007a]. The statement of Arrow’s
theorem in this ‘pretty-printed’ version of the formalization is (on page 173):

3. Arrow’s Theorem

For simplicity, we follow the rules: A, N are finite non empty sets,
a, b are elements of A, i, n are elements of N, p, p′ are elements of
(LinPreorders A)N , and f is a function from (LinPreorders A)N into
LinPreorders A.

We now state the proposition

Formalizing Arrow’s theorem 27

(14) Suppose that

(i) for all p, a, b such that for every i holds a <p(i) b holds a <f(p) b,
(ii) for all p, p′, a, b such that for every i holds a <p(i) b iff a <p′(i) b

and b <p(i) a iff b <p′(i) a holds a <f(p) b iff a <f(p′) b, and
(iii) card A ≥ 3.

Then there exists n such that for all p, a, b such that a <p(n) b holds
a <f(p) b.

The fact that the Mizar group calls Formalized Mathematics a journal, and even
sends the authors reprints of the abstracts that are published in it, is a bit
misleading. A journal is meant to be read, while this text generation is just a
nice tour de force, with no one ever really looking at the abstracts after they
have been printed. In a certain sense, the ‘journal’ called Formalized Mathematics
mainly is there to satisfy university administrators who want to see publications.

However, related to this there is a real issue. Writing a formalization can
be a lot of work, and it is important that it is done to exercise the technology.
However, the academic credit that a researcher gets out of it is minor. One can
publish a small report about it, but that is not in proportion to the amount of
work that went into it. (Recently a new journal called Journal of Formalized
Reasoning was started by Andrea Asperti, to be a platform for reports about
formalizations. However, until now it has not had many submissions.)

13 Referee reports for a formalization

Generally libraries of formalizations (like the contribs of the Coq system and
the Archive of Formal Proofs for Isabelle) are just collections of formalizations
without much attention to unity and quality. The Mizar people are taking this
aspect more seriously than the other proof assistant communities, but still the
Mizar library is quite inhomogeneous.

Recently the Mizar community has decided to pay more attention to this
aspect. I was very surprised that after I submitted my work on Arrow’s theorem
to their library, instead of just getting a nice ‘thank you for your work, we will
add it to our library’ e-mail, I got referee reports. It suddenly felt surpringly
much like submitting a article to a scientific journal.

I got three referee reports that gave my formalization the following judg-
ments:

– Confidence: A, A, A

A = very confident
B = quite confident
C = not very confident

28 Freek Wiedijk

– The decision: B, A, A

A. accept as is (editorial changes only, can be done by the editor)
B. accept, requires changes by the author to be approved by the editor
C. reject, substantial author’s revisions needed before resubmission for

another review
D. decision delayed, MML revision needed
E. reject, no hope of getting anything of value

– Presentation: 2, 2, 3
– The quality of formalization: 2, 2, 3
– Significance for MML: 3, 2, 3

0 – very poor
1 – poor
2 – good
3 – very good

Apart from these judgments, the referees had some objections:

– All referees thought that I had divided the formalization in too many sub-
sections. (This is done in Mizar using the keyword ‘begin’.) For instance the
first referee wrote:

In my opinion, the number of sections is too high as for file with no
more than 1200 lines; it is o’k for the Mizar article, in ‘Formalized
Mathematics’ it will look rather ugly.
I would expect some more material in here but I let Editors to decide
what to do.

Apparently this referee also thought the article was too short. (I had been
trying to keep the formalization as short and compact as possible. If I had
written a less compact formalization, I would not have gotten this criticism.)

– The first referee did not like it that I had introduced my own version of
orders and preorders, instead of using the already existing definitions in the
Mizar library:

Main shortcoming of the formalization is that the Mizar apparatus is
not fully used; instead of the ordering wrt the relation, appropriate
structure can be used. Also redefinition for ‘Orders’ seems to be un-
necessary. I understand however that the point is in the one-to-one
translation from its informal counterpart.

However, I had to introduce my own definitions to get the notation that I
wanted. I could have used some definitions from the library in them, but then
I just would have had a bit more work to translate between those definitions
and mine, and it would not have made the definitions that I added more
useful to others.

Formalizing Arrow’s theorem 29

– The third referee had an issue related to a technical point that I had been
fighting with. I needed the ‘p.i’ that occur in the formalization to have the
appropriate type, in order for them to work with the ‘a <_o, b’ notations.
However, the definitions in the Mizar library did not give me the right types.
(Specifically: variables that have type Element of LinOrders A also automat-
ically have type Element of LinPreorders A, and if p has type Element of

Funcs(N,LinOrders A), then p.i automatically gets type Element of LinOr-

ders A. However, the expression p.i did not get type Element of LinPreor-

ders A.)
To get around this problem with the Mizar type system, I had added the
‘redefinition’ (lines 27–37):

definition

let A,B’ be non empty set;

let B be non empty Subset of B’;

let f be Function of A,B;

let x be Element of A;

redefine func f.x -> Element of B;

. . .
end;

(To express my irritation with the fact that the Mizar library made the
types behave in a difficult to understand way, I had put a comment ‘Mizar
weirdness’ in front of this. The first referee thought that this was ‘too infor-
mal’.)
Now the third referee wanted me (for a reason that I still do not fully grasp)
to use a different notation for function application with this redefinition:

I would rather use a new notation for the redefinition of Element:

notation

let A,B’ be non empty set;

let B be non empty Subset of B’;

let f be Function of A,B;

let x be Element of A;

synonym f(.)x for f.x;

end;

Keeping the original notation might be troublesome for people using
the definition in other articles. It may override other redefinitions.
I have attached corrected text. I do not insist on ’(.)’, maybe the
Author could find something better.

My reaction to this was that I found it completely unacceptable to have to
use a different notation for the very standard function application opera-
tion, just because I needed it to have the correct type. It would mean doing
something very bad (using strange notation for something common) to pre-
vent the possibility of something a little bad (a definition being hidden) from
happening.

30 Freek Wiedijk

When I submitted the formalization I had expected to have been finished with
it already, and I did not feel like putting in much more time. For this reason I
just addressed the first point by reducing the number of subsections and making
my comments a bit more polite. Then I mailed the Mizar people that essentially
I had no interest in addressing the other two points and that they could take it
or leave it. After which they took it.

14 Conclusions

14.1 Formalization can be useful outside mathematics and

computer science

Outsiders to the field of formalization might expect that its use is restricted to
mathematical logic and computer science, or maybe also to pure mathematics,
but not beyond that. The example from this paper shows otherwise.

It is important for formalization technology to be widely applicable, that this
technology is exercised in many different domains. The formalization presented
in this paper can be seen as being part of that effort.

I believe that in any field where one reasons in a mathematical style, even in
an applied science like economics, one can make good use of proof assistants.

14.2 Possible future work

There are various ways in which one might continue the work described in this
paper.

One might also try to formalize the other two proofs from the Three Brief
Proofs of Arrow’s Impossibility Theorem.

The Gibbard-Satterthwaite theorem, is generally mentioned together with Ar-
row’s theorem. Therefore it is natural to formalize this theorem after formalizing
Arrow’s theorem. This is what both Tobias Nipkow and Peter Gammie did.

After I finished my formalization, Krzysztof Apt pointed out to me Philip
Reny’s Arrow’s Theorem and the Gibbard-Satterthwaite Theorem: A Unified Ap-
proach [Reny 2000]. In this article both Arrow’s theorem and the Gibbard-
Satterthwaite theorem are proved, with both proofs next to each other in two
columns, showing how closely they are related. It would be interesting to inves-
tigate whether one could do the same thing in Mizar, that is, to have two Mizar
proofs run in parallel in a similar manner.

Of course one also can look into formalization of other theorems from eco-
nomics. There are many other theorems from the field of social choice theory
(like the ones in [Taylor 2005]) that one could formalize.

A nice theorem outside of social choice theory that might be interesting for
formalization is a theorem by Kenneth Arrow called the Arrow-Debreu theorem
[Varian 1992]. Krzysztof Apt already sent me a chapter from a set of course
notes that explains this proof [Papadimitriou 2008]. The Arrow-Debreu theorem
happens to be a direct consequence of Brouwer’s fixed point theorem, which

Formalizing Arrow’s theorem 31

already has been formalized in various proof assistants. However, the version of
this theorem in Mizar is not the n-dimensional simplex version that is needed for
the Arrow-Debreu theorem, but just a 2-dimensional version. This means that
the real work in formalizing the Arrow-Debreu theorem in Mizar would be to
formalize the more-dimensional generalization of Brouwer’s fixed point theorem.

14.3 Investing into formalization

Formalization is a relatively labor-intensive activity, but on the other hand it
is not impossibly difficult. The work reported on in this paper altogether took
about one work-week (including the false start). Writing the final formalization
took about three work-days, which in between other kinds of work took slightly
over one week.

The fact that the project described here only took this modest amount of
time strongly suggests that more people should look into formalizing their work.
This will allow them to be able to then really trust their results, and to gain a
very precise understanding of their proofs.

Acknowledgments. Thanks to Krzysztof Apt for suggesting the project to me.
Thanks to Tobias Nipkow and Peter Gammie for telling me about their formal-
izations in Isabelle/HOL and for helpful comments. Thanks to the referees of
the Mizar library for their feedback on my work. Thanks to the referees of this
journal for many helpful comments on this paper.

References

[Arrow 1950] Kenneth Arrow. A Difficulty in the Concept of Social Welfare. Journal

of Political Economy, 58(4):328–346, August 1950.
[Asperti et al 2007] Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, and Ste-

fano Zacchiroli. Crafting a Proof Assistant. In Thorsten Altenkirch and Conor
McBride, editors, Types for Proofs and Programs, International Workshop, TYPES

2006, Nottingham, UK, April 18-21, 2006, Revised Selected Papers, volume 4502
of Lecture Notes in Computer Science, pages 18–32. Springer, 2007.

[Bancerek & Rudnicki 2003] Grzegorz Bancerek and Piotr Rudnicki. A Compendium
of Continuous Lattices in Mizar. Journal of Automated Reasoning, 29(3–4):189–
224, 2003.

[Barras 1999] Bruno Barras. Auto-validation d’un système de preuves avec familles

inductives. Thèse de doctorat, Université Paris 7, November 1999.
[Barras & Werner 1997] Bruno Barras and Benjamin Werner. Coq in Coq. 〈http:

//pauillac.inria.fr/~barras/coqincoq.ps.gz〉.
[Blazy et al 2006] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal Verifi-

cation of a C Compiler Front-end. In FM 2006: Int. Symp. on Formal Methods,
volume 4085 of Lecture Notes in Computer Science, pages 460–475. Springer, 2006.

[Fox 2003] Anthony Fox. Formal Specification and Verification of ARM6. In David A.
Basin and Burkhart Wolff, editors, Theorem Proving in Higher Order Logics, 16th

International Conference TPHOLs 2003, Rome, Italy, September 8-12, 2003, Pro-

ceedings, volume 2758 of Lecture Notes in Computer Science, pages 25–40. Springer,
2003.

32 Freek Wiedijk

[Geanakoplos 2001] John Geanakoplos. Three Brief Proofs of Arrow’s Impossibility
Theorem. Technical Report 1123RRR, Cowles Foundation, June 2001.

[Gonthier 2006] Georges Gonthier. A computer-checked proof of the Four Colour The-
orem. 〈http://research.microsoft.com/~gonthier/4colproof.pdf〉, 2006.

[Harrison 1995] John Harrison. HOL Done Right. 〈http://www.cl.cam.ac.uk/users/
jrh/papers/holright.ps.gz〉, 1995.

[Harrison 2006] John Harrison. Towards self-verification of HOL Light. In Ulrich
Furbach and Natarajan Shankar, editors, Proceedings of the Third International

Joint Conference IJCAR 2006, volume 4130 of Lecture Notes in Computer Science,
pages 177–191, Seattle, WA, 2006. Springer.

[Harrison 2008] John Harrison. Formalizing an Analytic Proof of the Prime Number
Theorem (extended abstract). In Richard Boulton, Joe Hurd, and Konrad Slind,
editors, Tools and Techniques for Verification of System Infrastructure, pages 17–
22, London, 2008. The Royal Society.

[Leroy 2006] Xavier Leroy. Formal Certification of a Compiler Back-end, or: Program-
ming a Compiler with a Proof Assistant. In POPL’06, Charleston, South Carolina,
USA, 2006.

[Naumov et al 2001] Pavel Naumov, Mark-Oliver Stehr, and José Meseguer. The
HOL/NuPRL Proof Translator: A Practical Approach to Formal Interoperabil-
ity. In R.J. Boulton and P.B. Jackson, editors, The 14th International Conference

on Theorem Proving in Higher Order Logics, volume 2152 of LNCS, pages 329–345.
Springer-Verlag, 2001.

[Nipkow 2008] Tobias Nipkow. A Bit of Social Choice Theory in HOL: Arrow and
Gibbard-Satterthwaite. In Richard Boulton, Joe Hurd, and Konrad Slind, editors,
Tools and Techniques for Verification of System Infrastructure, page 9, London,
2008. The Royal Society.

[Obua & Skalberg 2006] Steven Obua and Sebastian Skalberg. Importing HOL into
Isabelle/HOL. In Ulrich Furbach and Natarajan Shankar, editors, IJCAR, volume
4130 of Lecture Notes in Computer Science, pages 298–302. Springer, 2006.

[Papadimitriou 2008] Christos Papadimitriou. CS294-1 Algorithmic Aspects of Game
Theory, Lecture 2: January 23, 2008. 〈http://www.cs.berkeley.edu/~kunal/
cs294-1-lec2.ps〉.

[Reny 2000] Philip Reny. Arrow’s Theorem and the Gibbard-Satterthwaite Theorem:
A Unified Approach, June 2000.

[Routley 1979] Richard Routley. Repairing Proofs of Arrow’s General Impossibility
Theorem and Enlarging the Scope of the Theorem. Notre Dame Journal of Formal

Logic, XX(4), October 1979.
[Taylor 2005] Alan D. Taylor. Social Choice and the Mathematics of Manipulation.

Outlooks. Cambridge University Press, 2005.
[Varian 1992] Hal R. Varian. Microeconomic Analysis. W. W. Norton, 3rd edition,

1992.
[Wiedijk 2004] Freek Wiedijk. Formal Proof Sketches. In Stefano Berardi, Mario

Coppo, and Ferruccio Damiani, editors, Types for Proofs and Programs: Third

International Workshop, TYPES 2003, Torino, Italy, April 30 – May 4, 2003,

Revised Selected Papers, volume 3085 of LNCS, pages 378–393, 2004.
[Wiedijk 2007] Freek Wiedijk. Writing a Mizar article in nine easy steps. 〈http:

//www.cs.ru.nl/~freek/mizar/mizman.pdf〉, 2007.
[Wiedijk 2007a] Freek Wiedijk. Arrow’s Impossibility Theorem. Formalized Mathe-

matics, 15(4):171–174, 2007.

