
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a preprint version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/75347

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16159813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/75347


Compact Implementations of Pairings

Anthony Van Herrewege1, Lejla Batina1,2, Miroslav Knežević1,
Ingrid Verbauwhede1, and Bart Preneel1

1 K.U. Leuven,
Dept. ESAT/COSIC & IBBT,

Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be

2 Radboud University Nijmegen,
Dept. Computing Science/Digital Security group,

Heyendaalseweg 135,
6525 AJ Nijmegen, The Netherlands

Abstract. The recent discovery of the constructive use of pairings in
cryptography has opened up a wealth of new research options into identity-
based encryption. In this paper, we will investigate the possible use of
pairings in constrained environments. The focus will be on an small, en-
ergy efficient ASIC implementation of an accelerator for the Tate pairing
over a supersingular curve.

The results are encouraging for further research. It is possible to obtain
an implementation of less than 30k gates. Furthermore, large energy ef-
ficiency improvements compared to other published designs are possible.

Keywords. Identity-based cryptography, elliptic curve cryptography,
Tate pairing, hardware accelerator, ASIC

1 Introduction

Ever since Shamir’s proposal [1] in ’84, there’s been an interest in identity-based
cryptography. Particularly Boneh and Franklin’s [2] discovery of the constructive
use of pairings for identity-based encryption has helped spur on new research
into possible applications and implementations.

Multitudes of protocols have seen the light, however, until recently the lack
of efficient hardware accelerators for the computationally expensive pairings was
always kind of a show-stopper towards implementing them. Thus most of the
published implementations have a focus on speed. Implementations for area-
and/or power-constrained devices were either deemed infeasible or just not in-
teresting enough.

In 2007 Oliveira et al. introduced their TinyTate [3] implementation. In 2008
the same authors presented TinyPBC [4] and NanoECC [5]. All three designs are
implementations of pairings (either the Tate or ηT ) on the AT128Mega microchip
of a Mica node [6], designed for deeply embedded networks. Thus it was proven



that pairings were indeed feasible for use in constrained environments, such as
sensor networks.

In this paper, we will investigate the feasibility of a hardware accelerator for
the Tate pairing in constrained environments. In Section 2 necessary parameters
will be defined and we will take a look at the pairing arithmetic. Section 3 consists
of a concise overview of the implementation’s hardware. Finally, results from
synthesis to an ASIC implementation will be presented along with comparisons
to existing implementations in Section 4. From these a conclusion will be drawn
in Section 5.

2 Parameters and arithmetic for the Tate pairing

In this section we will define all the parameters necessary to completely define
the Tate pairing calculation. We will also present the algorithm necessary for
the calculation and clarify some of the necessary arithmetic.

It should be mentioned here that, recently, variants on the Tate pairing have
been published, such as the ηT [7] and Ate [8] pairings. However, seeing as they
are very recent discoveries, we felt it more appropriate to focus on the better
known Tate pairing.

2.1 Definition of the Tate pairing

The Tate pairing e(P,Q) is defined as a mapping from two additive groups
G1, G2 to a multiplicative group GT . To be suitable for use in cryptography, it
should have the following three properties:

– Well-defined:
e(O, Q) = 1 ∀Q ∈ G2

e(P,O) = 1 ∀ P ∈ G1 .
(1)

– Non-degenerate:

∀ P ∈ G1, ∃Q ∈ G2 for which e(P,Q) 6= 1 . (2)

– Bilinear: ∀ P1, P2, P ∈ G1 and ∀Q1, Q2, Q ∈ G2:

e(P1 + P2, Q) ≡ e(P1, Q) · e(P2, Q)
e(P,Q1 + Q2) ≡ e(P,Q1) · e(P,Q2) .

(3)

The point O is the point at infinity on the elliptic curve E over which the pairing
is defined.

Instead of calculating the Tate pairing as proposed by Miller in ’86 [9], we
will be using an optimized version of Miller’s algorithm as proposed by Barreto
et al. [10]. The Tate pairing is then a mapping:

ê(P,Q) : E(Fq)[l]× E(Fq)[l] 7→ F∗qk/(F∗qk)l . (4)



The notation E(Fq)[l] meaning the group of points P ∈ E(Fq) for which lP = O.
The result of the pairing is an element of the equivalence group F∗qk/(F∗qk)l, in
which two elements a ≡ b iff a = bcl with c ∈ F∗qk . To eliminate this ambiguity,

we will elevate the result of the pairing to the power qk−1
l , the result of which

will be an lth root of unity.

2.2 Parameters

Before we can take a look at the arithmetic behind the Tate pairing computation,
some parameters need to be set. First and foremost, the elliptic curve and the
field over which it is defined need to be defined. Due to the simplicity of its
arithmetic (only XORing), we choose a field F2m . We are then forced to use the
curve [10]:

E : y3 + y = x3 + x + b, (5)

with b ∈ {0, 1}. We also define [11]:

δ =

{
b m ≡ 1, 7 (mod 8)
1− b m ≡ 3, 5 (mod 8)

ν = (−1)δ .

(6)

The value of b is set to whatever value maximizes the order of the curve:

#E(F2m) = 2m + ν
√

2m+1 + 1 . (7)

So, before the value of b can be decided on, m is to be set. We also define l = #E.
Considering that the final implementation should be as small as possible,

we settle on m = 163, which, according to [12], is equivalent in strength to
RSA(652). Although this is not very strong, if necessary, the hardware which
will be proposed in Section 3 can easily be adapted to larger fields. From [13]
the reduction polynomial is chosen to be

R = z163 + z7 + z6 + z3 + 1 . (8)

Now that these parameters have been set, we can see that b needs to equal
one.

The type of supersingular curve that’s being used has an embedding degree
k = 4. The result of the Tate pairing will thus be an element in F∗24m . We define
this field by means of tower extensions [14]:

F22m ∼= F2m [x]/
(
x2 + x + 1

)
F24m ∼= F22m [y]/

(
y2 + (x + 1)y + 1

)
.

(9)

Last, but not least, we need a distortion map φ:

φ(Q) : (xQ, yQ) 7→ (xQ + s2, yQ + xQs + t6) . (10)



The parameters s, t ∈ F2km need to be a solution to:{
s4 + s = 0
t2 + t + s6 + s2 = 0 .

(11)

One possible solution is: {
s = x + 1
t = xy .

(12)

2.3 Arithmetic

Miller’s algorithm as modified by Barreto et al. is listed in Algorithm 1. The
notation GA,B(S) signifies the evaluation of the point S in the equation for the
line though the points A and B.

Algorithm 1 Optimized Miller’s algorithm [10]
Require: l ∈ Z; P, Q ∈ E(F2m)[l]
Ensure: F = ê(P, Q) ∈ F∗2km

1: t← blog2(l)c
2: F ← 1
3: V ← P
4: for i = t− 1 to 0 do
5: F ← F 2 ·GV,V (φ(Q))
6: V ← 2 · V
7: if li = 1 and i 6= 0 then
8: F ← F ·GV,P (φ(Q))
9: V ← V + P

10: end if
11: end for

12: F ← F
2km−1

l

return F

The formula’s for the double and the add step were taken from [14]. Those
for the double step (lines 5 and 6) are:

λ = x2
V + 1

x2V = λ2

y2V = λ · (x2V + xV ) + yV + 1
GV,V (φ(Q)) = λ · (xφ + xV ) + (yφ + yV ),

(13)

and those for the add step (lines 8 and 9):
λ = yV +yP

xV +xP

xV +P = λ2 + xV + xP

yV +P = λ · (xV +P + xP ) + yP + 1
GV,P (φ(Q)) = λ · (xφ + xP ) + (yφ + yP ) .

(14)



The add step only needs to be executed once, in this case, since

l = #E = 2163 + 282 + 1 . (15)

The division in the add step is calculated with an inversion, which is cal-
culated with Fermat’s little theorem. One inversion takes 9 multiplications and
162 squarings.

The final exponentiation FM is split up as in [11]:

M =
24m − 1

l

=
(22m + 1)(22m − 1)

l

= (22m − 1)(2m − 2
m+1

2 + 1)

= (22m − 1)(2m + 1) + (1− 22m)2
m+1

2

(16)

3 Hardware implementation

In this section we propose a hardware architecture that executes Miller’s al-
gorithm as it was shown in the previous section. The circuit should be both
compact and energy efficient, so the focus will not be on speed. In the next
section this design will be synthesized as an ASIC implementation.

3.1 Restrictions

Since the design will be synthesized using the UMC 0.13 µm CMOS Standard
Cell LL library by Faraday Corporation [15], we first take a look at which cells
take up the largest area with that technology. A listing is given in Table 1. It’s
clear that the usage of both flip-flops (registers) and multiplexors should be kept
to a minimum.

Table 1. Area of cells in an ASIC circuit (0.13 µm low leakage technology by Faraday
Corporation [15])

Cell Area [GE]

D flip-flop (reset) 6
D flip-flop (no reset) 5,5
D latch 4,25
3 input MUX 4
2 input XOR 3,75
2 input MUX 2,25
2 input NAND 1
NOT 0,75



3.2 Arithmetic core

The core of the implementation is the MALU [16,17], which can calculate the
sum of two elements a, b ∈ F2m . Its design is shown in Fig. 1. For the given
parameters we need 167 XOR gates to construct this circuit. When refering to
the MALU, its only this circuit of XOR gates we refer to, not the complete F2m

wrapper, which we present in the next paragraph.

T . . .

B . . .

mode
. . .

. . . modu

. . . R

0

Fig. 1. Arithmetic core for addition and modular reduction in F2m

Building on this, we construct a wrapper that allows multiplication in F2m

as well. The result of a multiplication is calculated using the ‘shift-and-add’
technique. To be able to do this, we need one extra register T to store temporary
results. The circuit and its control logic is shown in respectively Fig. 2 and Fig. 3.
Note that when executing a multiplication, the input A needs to be shifted to
the left by one bit every clock cycle.

Instead of one MALU, multiple ones can be daisy-chained together to speed
up the calculation of a multiplication. When doing this, one should pick a number
of MALUs d for which m mod d equals one. That way, the result of both an
addition and a multiplication will be present at the same MALU’s output and
no extra multiplexers need to be added to the circuit.

3.3 Arithmetic unit for Miller’s algorithm

Finally, we create an arithmetic unit (AU) that contains memory and the afore-
mentioned arithmetic core. The general design is shown in Fig. 4. The next input
is used to signal that there’s either a new coordinate available at the input or
that the next part of the result should be put on the output.

Before we can correctly asses the merits of various memory designs, we need
to know how many registers we need. After writing out every calculation in
Miller’s algorithm, the minimum number of registers was found to be fifteen
registers. This excludes the one register in the F2m wrapper.

The basis for the memory is a compact design by Lee and Verbauwhede [18].
They propose a unidirectional circular shift register file in which the first two



start readyi−1 cycle

mode mode
+1

plus 1 plus one

A ready

T out

B
MALU
Core

mod

� 1

s2

s1

Band

Fig. 2. F2m arithmetic core

= m− 2

start

modereg

cyclereg

ready

start

mode

modereg

modereg

start
plus 1

plus 1reg

plus 1reg

readyi−1

modereg

Am−1

Band

start
ready
modu

modreg

start
mode
ready

s2a

start s2b

start
mode

Freset

ready s1

start cyclereset

Fig. 3. F2m arithmetic core - Control logic

registers are connected to the arithmetic core. Furthermore, it’s possible to swap
the contents of the first two registers. While this design is certainly about as small
as it gets, using it in a register file with fifteen registers is not really feasible for
a low power design. We will try to prove this in the next few paragraphs by
calculating the average number of write operations w that have to be executed
before every arithmetic operation. This number is directly proportional to the
energy consumed.

The numbers that follow are coarse estimates and should be interpreted as
such. Assume the size of the register file is n. First, calculate the average distance
r between two registers by dividing the sum of possible distances s by the number



start start
Control ready

next next

input Memory F2m Core

out

Fig. 4. Arithmetic unit for Miller’s algorithm

of possible combinations c:

s =
n−1∑
i=1

n∑
j=i+1

(j − i− 1) c =
n−1∑
i=0

i

=
n · (n− 1) · (n− 2)

6
= n · n− 1

2
,

(17)

thus:
r =

n− 2
3

. (18)

Now the average number of write operations w, which have to be executed be-
fore every arithmetic operation, can be calculated. First, calculate the average
number of cycles it takes to move the content of two registers to register one and
two. This is equal to rn. Multiplying this by the number of writes that have to
be executed each cycle, gives us w. Since register contents can only be shifted in
one direction, every cycle n shift operations will have to be executed, demanding
n write operations each. The result is

w = O(n3) . (19)

Now we will calculate w for a register file in which shifts in both directions
are possible. Again, we first calculate:

r =
1
n
·

n∑
i=1

min(j − 1, n− j + 1)

=
n− 1

4
.

(20)

In this case, the contents of non-adjacent registers can be swapped independently.
Thus, the average number of clock cycles will be equal to the average distance
to the start of the register file: n

2 . Every swap operation requires two write
operations and there’s two values to be moved to the front of the register file.
With all this in mind, we find

w = O(n) . (21)



reg1 reg2 reg3 reg4 . . . regn

Fig. 5. Register file design

Even though the resulting register file will be larger due to the addition of
muxes, we favor it due to its lower energy consumption. A diagram of the design
is shown in Fig. 5.

Notice that since the first register is connected to the arithmetic core’s input
A, it needs to be able to store its own value shifted to the left. Thus register one
will require a larger mux.

Using this register file design, the FSM to control the circuit consists of 553
states. Most of these are due to register contents having to be swapped around.

3.4 Optimizations

Since the arithmetic core is already very small, we will focus our optimization
efforts on the register file.

First of all, the reset inputs of as many registers as possible are removed.
As can be seen in Table 1, this will save 8.5% area compared to a register with
resets.

Clock gating is implemented for every register using the circuit shown in
Fig. 6. Compared to a clock gating circuit which ANDs the clock and enable
signal together, this one has the benefit of keeping the clock input high while
idle. As shown in [19] this reduces power consumption. Even though it can be
argued that for this register file design, power saving improvements will probably
be negligible, every little bit helps and we will use it.

enable

CLK

CLKCG

CLK

enable

CLKCG

Fig. 6. Power saving clock gating circuit

4 Results and comparison

In this section the synthesis results of the circuit will be presented. We will also
compare these results to implementations found in the literature. First, however,
a formula to determine the circuit’s calculation time will be given.



Unless mentioned otherwise, synthesis was done with Synapsis Design Vision
(version Y-2006.06) for a clock speed of 10 kHz and with the UMC 0.13 µm
CMOS Standard Cell LL library. Note that the power consumption estimates
are to be taken with a grain of salt, since it’s very hard for the synthesis tool to
come up with accurate numbers.

4.1 Calculation time

The amount of cycles it takes the circuit to calculate one pairing depends on the
size of the field F2m and the number of MALUs d used in the arithmetic core.
A formula for the number of cycles is

c = nswap + nadd + nmult · cmult

= 21681 + 4322 + 2998 ·
⌈m

d

⌉
,

(22)

with nswap being the number of cycles spend swapping registers, nadd the number
of additions (taking one cycle each) and nmult the number of multiplications
(taking cmult cycles each). The benefits of adding extra MALUs to the circuit
diminish due to the large constant factors present in the formula.

4.2 Synthesis results

The synthesis to an ASIC implementation was performed with Synopsys Design
Vision with the maximum area constrained to zero.

Table 2 contains a breakdown of the component area for the circuit with one
MALU. What’s striking is that the registers and controller contains 92% of the
circuit’s gates. The large size can be explained by the design of the register le,
which makes up for approximately 90% of the unit’s size. The register file is
composed of the sequential logic and around 80% of the combinatorial logic in
the arithmetic unit. It should also be noted that the area of one MALU is almost
negligible compared to the rest of the circuit. It is probably a good idea to add
some extra MALUs to speed up the calculations. We investigate this possibility
in the next few paragraphs.

A few implementations with multiple MALUs and a clock frequency of 10
kHz were synthesized, the results of which are listed in Table 3. As can be seen,
extra MALUs don’t add a lot of area. For example, the implementation with six
MALUs is only 12% bigger than the one with one MALU. Power consumption
also rises pretty slow, the implementation with six MALUs requires only 17%
more power. The lower power consumption for the implementations with two
MALUs is probably due to a quirk in the synthesis tool.

At a frequency of 10 kHz, it takes an implementation with one MALU 51.5
seconds to complete one pairing calculation. Since this is probably unacceptable
in a real-life application, Table 4 lists the synthesis results for two implemen-
tations that both take 50 ms to finish one calculation. It is obvious that the
implementation with two MALUs comes out a lot better, unless a small area is



Table 2. Component size breakdown for an implementation with one MALU

Component Area [GE]

MALU 458 1.7%
F2m core

Logic 783 2.8%
Registers 962 3.5%

Arithmetic unit
Combinatorial logic 13 044 47%
Sequential logic 12 487 45%

Total 27 734 100%

Table 3. Synthesis results for implementations with d MALUs

d Area [gates]
Power @ 10 kHz [nW] Time

savings
Dynamic Leakage

1 27 734 96 110
2 28 423 102% 90 94% 113 103% 47.2%
3 29 071 105% 103 107% 118 107% 62.9%
4 30 278 109% 108 113% 122 111% 71.1%
6 30 956 112% 112 117% 127 115% 78.6%
8 32 782 118% 122 127% 136 124% 82.7%
16 37 798 136% 162 169% 163 148% 88.5%
32 47 833 172% 212 221% 213 194% 91.5%

an extremely important factor. Due to the fact that its clock frequency is much
lower, power consumption is cut in half compared to the implementation with
one MALU.

Table 4. Synthesis results for two implementations with a calculation time of 50 ms

1 MALU 2 MALUs

Time [ms] 50 50 100%
f [MHz] 10.3 5.44 53%
Area [gates] 27 430 28 155 103%
Power [µW]

Dynamic 98.2 48.5 49%
Leakage 107 · 10−3 111 · 10−3 104%

4.3 Comparisons

Unfortunately, at the time of this writing, only three ASIC implementations had
been published. All of those three focus on speed and it is thus hard to com-



pare them to this design. Since neither Kammler et al. [20], nor Kömürcü and
Savas [21] list full specifications, it is impossible to compare against their im-
plementations. The implementation by Beuchat et al. [22] does come with full
specifications however, and it is thus with this implementation that comparisons
will be made. An overview is given in Table 5.

Since it is very difficult to fairly compare efficiency of different implementa-
tions we propose a new measure, energy efficiency per bit security. The formula
is given by

EE =
power× calc. time
security× scaling

. (23)

The lower the EE, the better. To shed a bit more light on this, we will explain
how this formula was conceived.

First of all, the use of power consumption speaks for itself. Furthermore,
when looking at energy efficient circuits, we often look at area as well. Since
the capacity of a circuit depends on its size and this in turn influences power
consumption, area is indirectly incorporated in the formula.

Secondly, when comparing two circuits that consume a similar amount of
power, generally the one that calculates the result fastest will be picked. Thus
we multiply by calculation time.

Next, instead of dividing by the number of bits in the output, which would
make the formula equal to power divided by throughput, we divide by secu-
rity level. This allows better comparisons between circuits which implement the
same algorithm for different field sizes (eg. pairings over F2163 and F397) or even
different algorithms (eg. RSA vs. ECC).

Finally, we divide the result by a scaling that allows us to compare different
technologies. For example, 0.13 µm has a scaling of 1. The older 0.18 µm tech-
nology on the other hand as a scaling of 4. Since the voltage V used in 0.18 µm
circuits is about

√
2 higher than for 0.13 µm and the capacity C around two

times larger, the power consumption P , given by

P = CV 2f, (24)

is around four times higher, thus the scaling of 4.
Of course, lots of other factors still don’t get taken into account this way.

However, we feel that the use of this new measure is acceptable, because of the
previously mentioned reasons.

It’s obvious that for use in constrained environments our design is better than
the design by Beuchat et al. With some more MALUs in the implementation,
the efficiency will be up to five times more energy efficient than theirs. In their
defense however, they focused heavily on speed and thus such results are to be
expected. It is certainly not the aim of the authors to make light of their work.

5 Conclusion

In this paper, we presented a hardware implementation for the calculation of
the Tate pairing in F2m . The design focused heavily on a small area and a



Table 5. Comparison of our implementation with other ASIC implementations

This work Beuchat
et al. [22]

1 MALU 2 MALUs

Field F2163 F2163 F397

Pairing Tate Tate ηT

Security [bit]? 652 652 922
Technology 0.13 µm 0.13 µm 0.18 µm
Area [gates] 27 430 28 155 193 765
f [MHz] 10.3 5.44 200
Calc. time [µs] 50 · 103 50 · 103 46.7
Power [mW] 98.3 · 10−3 48.6 · 10−3 672
Efficiency

ˆ
nJ
bit

˜
?? 7.54 3.73 8.5

? Taken from [11] which is by the same authors as [22].
?? The lower, the more energy efficient the implementation is. See text.

low energy consumption. An arithmetic core, which can be sped up without any
changes to the controller’s FSM, was shown. The memory register was optimized
for energy efficiency. Due to the flexibility of the arithmetic core, the size and
power consumption of the implementation can be fine-tuned in function of the
application.

The synthesis results are promising, it is possible to obtain an area smaller
than 30k gates. Furthermore, the energy efficiency of the circuit is up to five
times better than existing designs, making this design a prime candidate for
application in constrained environments.

Future work should focus on reducing the FSM’s footprint and improve the
design of the memory block. Optimal placements of the variables in the register
file might cut down on both power consumption and calculation time.

Furthermore, the use of larger field sizes should be investigated. Finally, the
implementation of new pairings such as the ηT and Ate pairing might prove
interesting. The calculation time required will be lower and since they are both
based on the Tate pairing, no changes to the underlying hardware should be
necessary.

Acknowledgments

The authors would like to thank dr. ir. Frederik Vercauteren for his patient
explanations of pairing mathematics.

This work was supported in part the IAP Programme P6/26 BCRYPT of
the Belgian State (Belgian Science Policy), by K.U.Leuven-BOF (OT/06/40),
by FWO grant G.0300.07, and by the European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II.



References

1. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Proceedings
of CRYPTO 84 on Advances in cryptology, New York, NY, USA, Springer-Verlag
New York, Inc. (1985) 47–53

2. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM
J. Comput. 32(3) (2003) 586–615

3. Oliveira, L.B., Aranha, D.F., Morais, E., Daguano, F., López, J., Dahab, R.: Tiny-
Tate: Computing the Tate Pairing in Resource-Constrained Sensor Nodes. In: Sixth
IEEE International Symposium on Network Computing and Applications, IEEE
Computer Society (2007) 318–323

4. Oliveira, L.B., Scott, M., López, J., Dahab, R.: TinyPBC: Pairings for authenti-
cated identity-based non-interactive key distribution in sensor networks. In: 5th
International Conference on Networked Sensing Systems. (2008) 173–180

5. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. European
conference on Wireless Sensor Networks (EWSN08) (2008)

6. Hill, J.L., Culler, D.E.: Mica: a wireless platform for deeply embedded networks.
Micro, IEEE 22(6) (2002) 12–24

7. Barreto, P.S.L.M., Galbraith, S.D., ÓhÉigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular Abelian varieties. Des. Codes Cryptography 42(3)
(2007) 239–271

8. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Trans-
actions on Information Theory 52 (2006) 4595–4602

9. Miller, V.S.: Short Programs for Functions on Curves. (1986)
10. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-

Based Cryptosystems. In: CRYPTO 02: Proceedings of the 22nd Annual Interna-
tional Cryptology Conference on Advances in Cryptology, Springer-Verlag (2002)
354–368

11. Beuchat, J.L., Brisebarre, N., Detrey, J., Okamoto, E., Rodrguez-Henrquez, F.: A
Comparison Between Hardware Accelerators for the Modified Tate Pairing over
F2m and F3m . In: Lecture Notes in Computer Science. Volume 5209., Springer
(2008) 297–315

12. Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. Journal of Cryp-
tology 14 (2001) 255–293

13. Certicom Corporation: SEC 2: Recommended Elliptic Curve Domain Parameters.
(september 2000)

14. Bertoni, G., Breveglieri, L., Fragneto, P., Pelosi, G., Sportiello, L.: Software imple-
mentation of Tate pairing over GF(2m). In: DATE 06: Proceedings of the confer-
ence on Design, automation and test in Europe, European Design and Automation
Association (2006) 7–11

15. Faraday Technology Corporation: 0.13µm Platinum Standard Cell Databook.
(2004)

16. Sakiyama, K.: Secure Design Methodology and Implementation for Embedded
Public-key Cryptosystems. PhD thesis, KU Leuven (december 2007)

17. Batina, L.: Arithmetic And Architectures For Secure Hardware Implementations
Of Public-Key Cryptography. PhD thesis, KU Leuven (2005)

18. Lee, Y.K., Verbauwhede, I.: A Compact Architecture for Montgomery Elliptic
Curve Scalar Multiplication Processor. In: WISA. Volume 4867 of Lecture Notes
in Computer Science., Springer (2007) 115–127



19. Müller, M., Wortmann, A., Simon, S., Kugel, M., Schoenauer, T.: The impact of
clock gating schemes on the power dissipation of synthesizable register files. In:
ISCAS (2). (2004) 609–612

20. Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras,
D., Ascheid, G., Leupers, R., Mathar, R., Meyr, H.: Designing an ASIP for Cryp-
tographic Pairings over Barreto-Naehrig Curves. In: Cryptology ePrint Archive,
Report 2009/056. (2009)

21. Kömürcü, G., Savas, E.: An Efficient Hardware Implementation of the Tate Pairing
in Characteristic Three. In: ICONS, IEEE Computer Society (2008) 23–28

22. Beuchat, J.L., Doi, H., Fujita, K., Inomata, A., Kanaoka, A., Katouno, M., Mambo,
M., Okamoto, E., Okamoto, T., Shiga, T., Shirase, M., Soga, R., Takagi, T.,
Vithanage, A., Yamamoto, H.: FPGA and ASIC Implementations of the ηT Pairing
in Characteristic Three. In: Cryptology ePrint Archive, Report 2008/280. (2008)


