
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/75338

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16159804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/75338

Collected Size Semantics
for Functional Programs over Polymorphic

Nested Lists ?

O. Shkaravska, M. van Eekelen, A. Tamalet

Institute for Computing and Information Sciences
Radboud University Nijmegen

Abstract. Size analysis is an important prerequisite for heap consump-
tion analysis. This paper is a part of ongoing work about typing support
for checking output-on-input size dependencies for function definitions
in a strict functional language. A significant restriction for our earlier re-
sults is that inner data structures (e.g. in a list of lists) all must have the
same size. Here, we make a big step forwards by overcoming this lim-
itation via the introduction of higher-order size annotations such that
variate sizes of inner data structures can be expressed.

1 Introduction

Bound on the resource consupmtion of programs can be used, and are often
needed, to ensure correctness and security properties, in particular in devices
with scarce resources as mobile phones and smart cards. Both the memory and
the time consumption of a program often depend on the sizes of input and
intermediate data. Here, we consider size analysis of strict functional programs
over polymorphic lists. A size dependency of a program is a size function that
maps the size of inputs onto the sizes of the corresponding output. For instance,
the typical size dependency for a program append, that appends two lists of
length n and m, is the function append(n,m) = n+m.

This paper is devoted to collecting size dependencies using multivalued size
functions. Multivalued size functions can be defined by conditional multiple-
choice rewriting rules [13]. These multivalued size functions are used to annotate
types. They make it possible to express that there can be more than one possible
output size (like e.g. in the case of inserting an element to a list if it is not there
already: the result will either have the same size or it will be one element larger).

Consider e.g. the program insert : (α× α→ Bool)× α× Ln(α)→ Linsert(n)(α)
that inserts an element z of the type α in a list l, if this list does not contain an
element z′, such that the relation g(z, z′) holds:

insert(g, z, l) = match l with | Nil⇒ Cons(z, Nil)
| Cons(hd, tl)⇒ if g(z, hd) then l

else Cons(hd, insert(g, z, tl))

? This work is part of the AHA project [16] which is sponsored by the Netherlands
Organisation for Scientific Research (NWO) under grant nr. 612.063.511.

Its size dependency insert(n) represents the length of the output corresponding to
an input of the length n. It is given by (where

∣∣ separates alternative rewriting
rules):

` insert(0)→ 1
n ≥ 1 ` insert(n)→ n

˛̨
insert(n− 1) + 1

However, the type system from [13] only covers programs over ‘matrix-like’
structures, e.g. Ln(Lm(α)) leaving no way to express variate sizes of internal
lists. This substantially restricted application of the approach, since the case of
programs over lists of lists with variate lengths is the most frequent one.

In this paper, we remove that restriction and generalise the approach to cover
all polymorphic programs over lists for which the size(s) of an output depend only
the size of first-order inputs. Below, we first introduce the approach using a con-
crete example. We use an ML-like strict language which is defined in Section 2.
In Section 3 we define the type system which allows size variables of higher-order
kinds, such that, e.g., a size variable M in the type Ln(LM (α)) represents the
size M(pos) of an internal list depending on its position pos in the outer list,
where 0 ≤ pos ≤ n − 1. Moreover, we extend (checking and inferring of) mul-
tivalued size functions allowing them to be defined with higher-order rewriting
rules. We define soundness and sketch its proof. Section 4 gives a procedure for
the generation of polynomial lower and upper bounds and a set of polynomials
that covers the function defined by the higher-order rewriting rules. Section 5
relates our work to other resource analysis work.

Informal Sketch of the Approach Consider the function concat, which
given a list of lists appends all the inner lists:

concat(l) = match l with | Nil⇒ Nil
| Cons(hd, tl)⇒ append(hd, concat(tl))

The expected annotated type for concat is Ln(LM (α))→ Lconcat(n,M)(α) where n
and M are size variables of types N (naturals) and N → N , respectively and
its size function concat(n, M) is defined by the following rewriting rules

` concat(0, M)→ 0 (1)
n ≥ 1̀ concat(n, M)→M(0) + concat(n− 1, λ pos. M(pos + 1)) (2)

where the first argument, n, of concat is the length of a “master” list of lists and
the second argument, M , is a function that returns the size of an element at
a given position pos in the master list. The head of a list is assumed to have
position 0.

Consider the following expression: concat [[1, 2, 3], [4, 5]]. Here, n = 2 and M
is instantiated with a concrete function M0 defined in a tabular way: M0(0) = 3,
M0(1) = 2 and M0(pos) for pos ≥ 2 is arbitrary. We are now interested in
calculating the result size defined by concat(2, M0):

concat(2, M0)→M0(0) + concat(1, λ pos. M0(pos+ 1))
→ 3 + (λ pos. M0(pos+ 1))(0)+

concat(1− 1, λ pos′.
`
(λ pos. M0(pos+ 1))(pos′ + 1)

´
)

= 3 +M0(0 + 1) + concat(0, λ pos′. M0((pos′ + 1) + 1)))
= 3 +M0(1) + concat(0, λ pos′. M0(pos′ + 2))
= 3 +M0(1) + 0 = 3 + 2 + 0 = 5

2

However, a user often prefers to deal with closed-form size dependencies (i.e.
without recursion) rather than with size functions given in the form of rewriting
rules. We cannot always infer precise closed-forms but we will show that we can
infer closed forms for polynomial lower and upper bounds of multivalued size
functions. We focus on piecewise polynomial bounds, i.e., bounds that can be
described by a finite number of polynomial families. Given a set of conditional
multiple-choice rewriting rules, we show how to infer lower and upper bounds
that define an indexed family of polynomials. Such a family fully covers the size
function induced by the rewriting rules, in the sense that for each input, there
is a polynomial in the family that describes the size of the output.

In order to generate such bounds for general nested lists we need a nontrivial
extension of the method described in [13]. In that work, size variables in rewriting
rules are instantiated with finite numbers, whereas in this work we need to
instantiate size variables of higher kinds with finite multivalued maps.

Here, we extend this methodology by instantiating size variables like M in
concat(n,M), of higher-order kinds, with finite multivalued maps. Consider how
to infer size bounds for concat. Assume that the size of inner lists is at most
n′. Then, the expected inferred result is {j}0≤j≤nn′ “covering” the range of
concat(n,M).

First, note that for fixed n and n′ the map M will be finite and is “cov-
ered” by a finite multivalued map φ that sends any position to {0, . . . , n′}. For
instance, on n = 2 and n′ = 3 the finite-multivalued-map variable φ is instan-
tiated to φ0, such that φ0(0) = φ(1) = {0, 1, 2, 3} and φ0 is not defined on
pos ≥ 2. We will write finite multivalued maps as ordered sequences, so, e.g. φ0

is 〈{0, 1, 2, 3}, {0, 1, 2, 3}〉
From this point of view, concat in the “finite world” is presented by a function

xconcaty over finite sets and finite multivalued maps. The rewriting rules for
xconcaty are obtained by the obvious translation of the rewriting rules for concat.

` xconcaty(0, φ)→ 0
n ≥ 1̀ xconcaty(n, φ)→ φ(0) +{} xconcaty(n− 1, φ+1)

where φ+ := λ pos. φ(pos + 1) is the 1-position-left shift for the finite sequence
of sets presenting φ, and +{} is the elementwise addition of the elements of two
sets. Note that for the sake of convenience n and 1 represent the singletons {n}
and {1} respectively.

Now we want to infer a lower bound concatl and an upper bound concatu
such that the family {concatl + j}0≤j≤concatu−concatl approximates concat. As in [13],
the inferred family may not be an approximation of the actual output size, for
instance, because the actual degree of bounds is higher than the one we have
chosen. For that reason, there is a repeated procedure that starts with degree
zero, infers, checks and finishes if the inferred family also checks correctly. If not
it increments the degree and repeats the procedure. Now for the sake of brevity,
assume that the first two steps (degrees zero and one) of this procedure have
already been performed and that we are in the third step assuming degree two.

3

Assume that concatl and concatu are polynomials with degree d = 2. A bound
on the size of an output for concat depends on two parameters, n and n′. So,
an upper bound is a polynomial of degree two of two variables: concatu(n, n′) =
γ20n

2 + γ11nn
′ + γ02(n′)2 + γ10n+ γ01n

′ + γ00. Hence, to find concatu one must
know its value in 6 points. The same holds for concatl. We evaluate the rewriting
rules for xconcaty in 6 points Let’s start with n = n′ = 1. Then φ is instantiated
to 〈{0, 1}〉.
xconcaty(1, 1)→ 〈{0, 1}〉(0) +{} xconcaty(1− 1, 〈{0, 1}〉+1)

= {0, 1}+{} xconcaty(0, 〈〉)→ {0, 1}+{} {0} = {0, 1}
So, xconcaty(1, 1) = {0, 1}. Similarly, xconcaty(2, 1) = {0, 1, 2}, xconcaty(3, 1) =
{0, 1, 2, 3}, xconcaty(1, 2) = {0, 1, 2}, xconcaty(2, 2) = {0, 1, 2, 3, 4} and finally
xconcaty(1, 3) = {0, 1, 2, 3}. Pick up the maximal values in these sets to define
the right-hand side of the system of linear equations for the coefficients γij :

γ20 + γ02 + γ11 + γ10 + γ01 + γ00 = 1
. . .
γ20 + 9γ02 + 3γ11 + γ10 + 3γ01 + γ00 = 3

The solution is (0, 0, 1, 0, 0, 0), so concatu(n, n′) = nn′. The similar system of
concatl has all zeros on its right-hand side. So, the coefficients for concatl are all
zeros. The inferred family is then {j′}0≤j′≤nn′ .

Checking that the family obtained is indeed an approximation is done by
checking the first-order predicate constructed in the following way. First, substi-
tute in (1) and (2) the function applications for the corresponding approxima-
tions, the symbol → for ⊇, and + for +{}:

n = 0̀ {j′}0≤j′≤nn′ ⊇ {0}
n ≥ 1̀ {j′}0≤j′≤nn′ ⊇ {j}0≤j≤n′ +{} {j′′}0≤j′′≤(n−1)n′

Unfolding the definition of set inclusion gives the valid first-order predicates:
∀ n. n = 0 ` ∃ j′. j′ = 0 ∧ 0 ≤ j′ ≤ nn′
∀ j j′′.n ≥ 1 ∧ 0 ≤ j ≤ n′ ∧ 0 ≤ j′′ ≤ (n− 1)n′̀ ∃ j′. j′ = j + j′′ ∧ 0 ≤ j′ ≤ nn′

So, the inferred bounds of concat are accepted by the type checker, the loop is
finished at d = 2 and the informal sketch of our approach is finished.

2 Language

The type system is designed for a strict functional language over integers, booleans
and (polymorphic) lists. Language expressions are defined by the grammar below
where c ranges over integer and boolean constants False and True, x and y denote
program variables of integer and boolean types, l ranges over lists, z denotes a
program variable of a zero-order type, g ranges over higher-order program vari-
ables, unop is a unary operation, either − or ¬, binop is one of the integer or
boolean binary operations, and f denotes a function name.

Basic b ::= c | unop x | x binop y | Nil | Cons(z, l) | f(g1, . . . , gl, z1, . . . , zk)
Expr e ::= b | if x then e1 else e2 | let z = b in e1

| match l with | Nil⇒ e1
| Cons(zhd, ltl)⇒ e2

| letfun f(g1, . . . , gl, z1, . . . , zk) = e1 in e2

4

The syntax distinguishes between zero-order let-binding of variables and higher-
order letfun-binding of functions. We prohibit head-nested let-expressions and re-
strict subexpressions in function calls to variables to make type checking straight-
forward. Program expressions of a general form may be equivalently transformed
into expressions of this form. We consider this language as an intermediate lan-
guage where a general language like ML may be compiled into.

3 Type System

We consider a type system constituted from zero-order and higher-order types
and typing rules for each program construct. Size annotations represent lengths
of finite lists. Syntactically, size annotations are (higher-order) arithmetic ex-
pressions over constants, size variables and multivalued-function symbols. Let R
be a numerical ring used to express and solve the size equations. Constants and
size variables are layered :

– The layer zero is empty. It corresponds to the unsized types Int, Bool and
α,where α is a type variable. Elements of these types have no size annota-
tions.

– The first layer is the type R(1) = R of numerical zero-order constants (i.e.
integers) and size variables, denoted by a and n, respectively (possibly deco-
rated with subscripts). They represent lengths of outermost lists. Examples
are L5(α) with a = 5, or Ln(L5(α)).

– The second layer consists of numerical first-order constants and variables of
type R(2) = R → R, denoted by B and M , respectively. They represent
lengths of nested lists in a list. For instance, in the typing l : Ln(LM (α)) the
function λ pos.M(pos) represents the length of the pos-th list in the master
list l. Indexes start at 0, so M(0) is the length head of the master list, and
M(n − 1) is the length of its last element. Constants of the type R → R
may be defined by an arithmetic expression or by a table. For instance, in
[[1, 2], [3, 4, 5], []] the length of the master list is a = 3 and B is given by
the table B(0) = 2, B(1) = 3, B(2) = 0. For pos ≥ 2 , B(pos) may be any
arbitrary number.

– In general, the s-th layer consists of numerical (s−1)-th-order constants and
variables of type R(s) = R → R(s−1), denoted by as and ns. They represent
lengths of lists of “nestedness” s. For instance in l : Ln1(. . . Lns(α) . . .) the
function ns(i1) . . . (is−1) represents the length of the is−1-th list in the is−2-
th list in ... in the i1-th list of the master list l.

Let R∗ denote the union
⋃∞
s=1R(s) and let n∗ range over size variables of R∗.

Let n∗ denote a vector of variables (n∗1, . . . , n
∗
k) for some k ≥ 0.

Layering is extended to multivalued size functions, according to their return
types (but not their parameter types):

– A function of the layer 1 is a function f : (R∗)k → 2R for some k ≥ 0 that
represents all possible sizes (depending on parameters from (R∗)k) of outer

5

lists. For instance, if f(n) = {n, n + 1} in l : Lf(n)(α), then the length of
l is either n or n + 1. This annotation is given in the output type of the
function insert : (α × α → Bool) × α × Ln(α) → Linsert(n)(α). The function
insert, given a predicate g : α×α→ Bool, an element z : α and a list l : Ln(α),
inserts the element in the list if and only if there is no element in the list
l related to z via g. Another example has been given in the introduction:
in the output type of the function concat : Ln(Lm(α)) → Lconcat(n,M)(α),
we have a function concat : R(1) × R(2) → 2R. Here concat(0,M) = 0 and
concat(n,M) = M(0) +M(n− 1, λ pos.M(pos + 1)) for n ≥ 1.

– A function of the layer s is a function of the type (R∗)k → (R → . . .→ R→
2R) that maps parameters from (R∗)k to s− 1-order multivalued functions
of the type R → . . . → R → 2R. Its value f(n∗)(pos1) . . . (poss−1) defines
all possible sizes of the poss−1 list in the poss−2-th list ... in the pos1-the list
of the master list.

If a function is single-valued, we will omit the set brackets on its output. As an
example, consider the function definition for tails : Ln(α)→ Ltails1(n)(Ltails2(n)(α))
that creates the list of all non-empty tails of the input list:

tails(l) = match l with | Nil⇒ Nil
| Cons(hd, tl)⇒ let l′ = tails(tl) in Cons(l, l′)

For instance, on [1, 2, 3] it outputs [[1, 2, 3], [2, 3], [3]]. It is easy to see that
tails1 : R → 2R is the identity tails1(n) = n and tails2 : R → (R → 2R) for n ≥ 1
is defined by tails2(n)(pos) = n− pos, if 0 ≤ pos ≤ n− 1.

tails2(n)(0) = n
tails2(n)(1) = n− 1, if n ≥ 1
tails2(n)(pos) = n− pos, if 0 ≤ pos ≤ n− 1
tails2(n)(pos) = arbitrary if pos ≥ n
A size expression p is constructed from size constants, variables, multivalued-

function symbols and operations of all layers. We will denote functions of the first
and second layers via f and g, respectively. Admissible operations are arithmetic
operations +, −, ∗, λ-abstraction and application. Layering is defined for size
expressions as it has been defined for multivalued size functions. A size expression
is of layer s if it returns a value of order s − 1 of type R → . . . → R → 2R.
When necessary, we denote a size expression of the layer s via ps.

p1 ::= a |n, m | f(p1, . . . , pk) | p2(pos) | p2(pos − 1) | p2(0) | p1
1{+,−, ∗}p1

2

p2 ::= B |M | g(p1, . . . , pk) | p3(pos) | p3(pos − 1) | p3(0) | p3
+1

ps+1 ::= as |ns | fs(p1, . . . , pk) | ps+1(pos) | ps+1(pos − 1) | ps+1(0) | ps+1

where pos is a special variable of typeR used to denote the position of an element
in a list, and p+1 abbreviates λ pos. p(pos). We also assume that constants (e.g.
a) and size variables (e.g. n) represent singleton sets.

Zero-order annotated types are defined as follows:
τ0 ::= Int | Bool | α
τs
′, s ::= Lps′ (Lps′+1(. . . Lps(τ

0) . . .)) for 1 ≤ s′ ≤ s,
τs ::= τ1, s

6

where α is a type variable. It is easy to see that τs
′, s = Lps′ (τ

s′+1, s). The types
τ0 and τs are types of program expressions, but τs

′, s are only used in definitions
and proofs but not in function types.

Let τ ranges over zero-order types. The sets TV (τ) and SV (τ) of type
and size variables of a type τ are defined inductively in the obvious way. All
empty lists of the same underlying type represent the same data structure.
So, SV (L0(τ)) = ∅ forall τ and L0(Lm(Int)) represents the same structure as
L0(L0(Int)).

Zero-order types without type variables or size variables are ground types:

GroundTypes τ• ::= τ such that SV (τ) = ∅ ∧ TV (τ) = ∅

The semantics of ground types is defined in Section 3.1. Here we give some
examples: L2(Bool), L2(LB(Bool)), and Lconcat(2, B)(Bool), where B(pos) = pos on
0 ≤ pos ≤ 1. It is easy to see that concat(2, B) = {0} + {1} = {1}. Examples of
their inhabitants are [True, True], [[], [True]] and [True], respectively. Examples
of non-ground types are α, Ln(Int), Ln(LM (Bool)) and Lconcat(n,M)(Bool) with
unspecified n and M .

Let τ◦ denote a zero-order type where size expressions are all size variables
or constants, like, e.g., Ln(α) and Ln(LM (α)). Function types are then defined
inductively:

FunctionTypes τf ::= τf1 × . . .× τ
f
k′ × τ

◦
1 × . . .× τ◦k → τ0

where k′ may be zero (i.e. the list τf1 , . . . , τ
f
k′ is empty) and SV (τ0) contains only

size variables of τ◦1 , . . . , τ
◦
k .

Multivalued size functions f in the output types of function signatures in
general are defined by conditional rewriting rules, as we have seen in the intro-
duction. It is desirable to find closed forms for functions defined by such rewriting
rules.

A context Γ is a mapping from zero-order variables to zero-order types. A
signature Σ is a mapping from function names to function types. The definition
of SV (−) is straightforwardly extended to contexts:

SV (Γ) =
⋃

x∈dom(Γ)

SV (Γ (x))

3.1 Heap Semantics

In our semantic model, the purpose of the heap is to store lists. Therefore, a heap
is a finite collection of locations ` that can store list elements. A location is the
address of a cons-cell consisting of a head field hd, which stores a list element,
and a tail field tl, which contains the location of the next cons-cell of the list,
or the NULL address. Formally, a program value is either an integer or boolean
constant, a location or the null-address, and a heap is a finite partial mapping
from locations and fields into program values:

7

Address adr ::= ` | NULL ` ∈ Loc
Val v ::= c | adr c ∈ Int ∪ Bool
Heap h : Loc ⇀ {hd, tl}⇀ Val

We will write h.`.hd and h.`.tl for the results of applications h ` hd and h ` tl,
which denote the values stored in the heap h at the location ` at its fields hd and
tl, respectively. Let h.`.[hd := vh, tl := vt] denote the heap equal to h everywhere
but in `, which at the hd-field of ` gets the value vh and at the tl-field of ` gets
the value vt.

The semantics w of a program value v with respect to a specific heap h and a
ground type τ• is a set-theoretic interpretation given via the four-place relation
v |=h

τ• w. Integer and boolean constants interpret themselves, and locations
are interpreted as non-cyclic lists. Let p1(n∗0) denote the set of values of some
expression p1 applied to some values n∗0. Then

c |=h
Int∪ Bool c

NULL |=h
L
p1(n∗0)(τ

•) [] iff 0 ∈ p1(n∗0)

` |=h
L
p1(n∗0)(τ

•) whd :: wtl iff h.`.hd |=h|dom(h)\{`}
τ•(0) whd,

h.`.tl |=h|dom(h)\{`}
L
p1(n∗0)−1(τ•+1) wtl

where h|dom(h)\{`} denotes the heap equal to h everywhere except in `, where
it is undefined, (ps)+1 and τ+1 are abbreviations for λ pos. ps(pos + 1) and
λ pos. τ(pos + 1), respectively and the application of a type to a first-layer size
expression τ(p1) is defined as follows:

τ0(p1) = τ0

τ1, s(p1) = τ1, s

(Lps′ (τ
s′+1 s))(p1) := Lps′ (p1)(τ

s′+1 s(p1)), for s′ ≥ 2

The length−(−) : Heap ⇀ Address ⇀ N of a non-cyclic chain of cons-
cells in a heap is defined by induction in a usual way: lengthh(NULL) = 0 and
lengthh(`) = 1 + lengthh|dom(h)\{`}

(h.`.tl). Note that the function lengthh(−) does
not take sharing into account, in the sense that the actual total size of allocated
shared lists is less than the sum of their lengths. Thus, the sum of the lengths of
the lists provides an upper bound on the amount of memory actually allocated.

Lemma 1 (Consistency of model relation). The relation adr |=h
Lp1(n∗0)(τ

•) w

implies that lengthh(adr) ∈ p1(n∗0).

The proof is done by induction on the relation |=.

3.2 Operational semantics of program expressions

The operational semantics is standard. It extends the semantics from [14] with
higher-order functions.

We introduce a frame store as a mapping from program variables to pro-
gram values. This mapping is maintained when a function body is evaluated.

8

Before evaluation of the function body starts, the store contains only the actual
parameters of the function. During evaluation, the store is extended with the
variables introduced by pattern matching or let-constructs. These variables are
eventually bound to the actual parameters. Thus there is no access beyond the
current frame. Formally, a frame store s is a finite partial map from variables to
values, Store s : ProgramVars ⇀ Val .

Using a heap, a frame store and mapping C (closures) from function names
to function bodies, the operational semantics of program expressions is defined
inductively in a standard way. The rules are as follows:

c ∈ Int ∪ Bool
s; h; C ` c c; h

OSCons
s; h; C ` z s(z); h

OSVar

s; h; C ` Nil NULL; h
OSNil

s(hd) = vhd s(tl) = vtl ` /∈ dom(h)

s; h ` Cons(hd, tl) `; h[`.hd := vhd, `.tl := vtl]
OSCons

s(x) = True s; h; C ` e1 v; h′

s; h; C ` if x then e1 else e2 v; h′
OSIfTrue

s(x) = False s; h; C ` e2 v; h′

s; h; C ` if x then e1 else e2 v; h′
OSIfFalse

s; h; C ` e1 v1; h1 s[z := v1]; h1; C ` e2 v; h′

s; h; C ` let z = e1 in e2 v; h′
OSLet

s(l) = NULL s; h; C ` e1 v; h′

s; h; C ` match l with | Nil⇒ e1
| Cons(hd, tl)⇒ e2

 v; h′
OSMatch-Nil

h.s(l).hd = vhd h.s(l).tl = vtl

s[hd := vhd, tl := vtl]; h; C ` e2 v; h′

s; h; C ` match l with | Nil⇒ e1
| Cons(hd, tl)⇒ e2

 v; h′
OSMatch-Cons

s; h; C[f := ((g1, . . . , gk′ , z1, . . . , zk)× e1)] ` e2 v; h′

s; h; C ` letfun f(g1, . . . , gk′ , z1, . . . , zk) = e1 in e2 v; h′
OSLetFun

s(z′1) = v1 . . . s(z′k) = vk
C(f) = (g1, . . . , gk′ , z1, . . . , zk)× ef

[z1 := v1, . . . , zk := vk]; h; C ` ef [g1 := f1, . . . , gk′ := fk′] v; h′

s; h; C ` f(f1, . . . , fk′ , z′1, . . . , z
′
k) v; h′

OSFunApp

9

3.3 Typing rules

A typing judgement is a relation of the form D, Γ `Σ e : τ , i.e. given a set
of constraints D, a zero-order context Γ and a higher-order signature Σ, an
expression e has a type τ . The set D of disequations and memberships is relevant
only when a rule for pattern-matching and constructors are applied. When the
nil-branch is entered on a list Lp1(n∗)(α), then D is extended with 0 ∈ p1(n∗).
When the cons-branch is entered, then D is extended with m ≥ 1, m ∈ p(n∗),
where m is a fresh size variable in D. When a constructor is applied, D is
extended with position-delimiting disequations.

Given types τ = Lp1(n∗)(. . . Lps(n∗)(α) . . .) and τ ′ = Lp′1(n∗)(. . . Lp′s(n∗)(α) . . .),
let the entailment D ` τ → τ ′ abbreviate the collection of rules that (condition-
ally) rewrite p1(n∗)→ p′1(n∗) etc.:

D ` p1(n∗)→ p′1(n∗)

D, m1 ∈ p′1(n∗), 0 ≤ pos ≤ m1 − 1 ` p2(n∗)(pos)→ p′2(n∗)(pos)
m1, pos are fresh for D

D,

m1 ∈ p′1(n∗), 0 ≤ pos1 ≤ m1 − 1,
m2 ∈ p′2(n∗)(pos1), 0 ≤ pos2 ≤ m2 − 1

ff
`

p3(n∗)(pos1)(pos2)→
p′3(n∗)(pos1)(pos2)

m1, pos1, m2, pos2 are fresh for D
. . .

D,

8<:
m1 ∈ p′1(n∗), 0 ≤ pos1 ≤ m1 − 1, . . . ,
ms ∈ p′s−1(n∗)(pos1) . . . (poss−1),
0 ≤ poss ≤ ms − 1

9=;̀

ps(n∗)(pos1) . . . (poss)→
p′s(n∗)(pos1) . . . (poss)

m1, pos1, . . . , ms, poss are fresh for D

The typing judgement relation is defined by the following rules:

D, Γ `Σ ı : Int
IConst

D, Γ `Σ b : Bool
BConst

D ` τ ′ → τ

D, Γ, z : τ `Σ z : τ ′
Var

D ` τ ′ → L0(τ)

D, Γ `Σ Nil : τ ′
Nil

D ` τ ′ → Lp1(n∗)+1(τ ′2)
D ` τ ′2(0)→ τ1
1 ≤ m ∈ p1(n∗), 1 ≤ pos ≤ m; D ` τ ′2(pos)→ τ2(pos − 1)

D, Γ, hd : τ1, tl : Lp1(n∗)(τ2) `Σ Cons(hd, tl) : τ ′
Cons

where n is fresh in D,Γ, τ1, τ2. Note, that the obvious naive version of this rule,
with the judgement D, Γ, hd : τ, tl : Lp1(n∗)(τ) `Σ Cons(hd, tl) : τ ′ in the
conclusion and the side condition D ` τ ′ → Lp1(n∗)+1(τ), is less general. It does
not allow the length of hd, if it is a list, to differ from the length of the internal
lists of tl. For instance, the naive version is not applicable to the constructor
over hd : L5(α) and tl : Ln(L6(α)), whereas the presented rule accepts the type
Ln+1(Lλ pos.g(pos)(α)), where g(0) = 5 and g(pos) = 6 for 1 ≤ pos ≤ n.

Moreover, backward application of the Cons-rule to n ≥ 1; l : Ln(α), l′ :
Ltails1(n−1)(Ltails2(n−1)(α)) `Σ Cons(l, l′) : Ltails1(n)(Ltails2(n)(α)) allows to infer the

10

rewriting rules for the sizes of the inner lists of the output for tails:

n ≥ 1 ` tails2(n)(0)→ n
n ≥ 1, 1 ≤ pos ≤ n ` tails2(n)(pos)→ tails2(n− 1)(pos − 1)

The If-rule “collects” the size dependencies of both branches:

D ` τ → τ1 | τ2
Γ (x) = Bool D, Γ `Σ et : τ1 D, Γ `Σ ef : τ2

D, Γ `Σ if x then et else ef : τ
If

z /∈ dom(Γ) D, Γ `Σ e1 : τz D, Γ, z : τz `Σ e2 : τ

D, Γ `Σ let z = e1 in e2 : τ
Let

D, 0 ∈ p1(n∗), Γ, l : Lp1(n∗)(τ) `Σ eNil : τ
′ hd, tl 6∈ dom(Γ)

D, m ≥ 1 ∈ p1(n∗), Γ, hd : τ(0), l : Lp1(n∗)(τ), tl : Lp1(n∗)−1(τ+1) `Σ eCons : τ ′

D; l : Lp1(n∗)(τ) `Σ
match l with | Nil⇒ eNil

| Cons(hd, tl)⇒ eCons
: τ ′

Match

where n′ /∈ SV (D). Note that if in the Match-rule p1 is single-valued, the state-
ments in the nil and cons branches are p1(n∗) = 0 and p1(n∗) ≥ 1, respectively.

Σ(f) = τf1 × . . .× τ
f
k′ × τ

◦
1 × · · · × τ◦k → τ0

Σ(g1) = τf1 , . . . , Σ(gk′) = τfk′
z1 : τ◦1 , . . . , zk : τ◦k `Σ e1 : τ0 Γ `Σ e2 : τ ′

Γ `Σ letfun f(g1, . . . , gk′ , z1, . . . , zk) = e1 in e2 : τ ′
LetFun

Σ(f) = τf1 × . . .× τ
f
k′ × τ

◦
1 × . . .× τ◦k → τ0

the type of gı is an instance of the type τfı ;
D ` τ → σ(τ0) D ` C

D, Γ, z1 : τ1, . . . , zk : τk `Σ f(g1, . . . , gk′ , z1, . . . , zk) : τ
FunApp

where σ is an instantiation of the formal size variables with the actual size expres-
sions, and C consists of equations between size expressions that are constructed
in the following way. If τ◦ı = L(. . . Lns(τ◦′) . . .) and τı = L(. . . Lpsı (n∗)(τ

′) . . .),
then σ(ns) := psı (n

∗). If τ◦ı = τ◦ı′ , then the corresponding size expressions are
equal, that is C contains psı = psı′ . Further, if τ◦ı = L(. . . Las(τ◦′) . . .), then C
contains psı (n

∗) = as. Eventually σ(τ0) for τ0 = L(. . . Lf(...,ns,...)(. . . L(α) . . .) . . .)
is defined as L(. . . Lf(...,ps(n∗),...)(. . . L(α) . . .) . . .).

As an example of a case when C is needed, consider a call of a function
scalarprod : Lm(Int)× Lm(Int) → Int on actual size arguments l1 : Ln+1(Int) and
l2 : Lm−1(Int). Then C contains n+1 = m−1. It will hold if D contains n = m−2.

Example 1: inferring rewriting rules for concat In the introduction we
have given the rewriting rules defining the type for concat : Ln(LM (α)) →
Lconcat(n,M)(α), where

` concat(0,M)→ 0
n ≥ 1 ` concat(n,M)→M(0) + concat(n− 1, λ pos.M(pos + 1))

11

Now we show how the typing rules are used to infer this rewriting system. We
apply the rules as in a subgoal-directed backward-style proof.

1. The LetFun rule defines the main goal: l : Ln(LM (α)) `Σ econcat : Lconcat(n,M)(α),
where econcat denotes the body of concat.

2. Apply the Match-rule. In the nil-branch we obtain the subgoal
n = 0; l : Ln(LM (α)) `Σ Nil : Lconcat(n,M)(α).

3. Continue with the nil-branch. Apply the Nil rule and obtain n = 0 ` Lconcat(n,M)(α)→
L0(τ?).

4. Instantiate τ? = α. Unfold the definition of type rewriting: n = 0 ` concat(n,M)→
0.

5. Now, consider the cons-branch. The subgoal there is
n ≥ 1; hd : LM (α)(0), tl : Ln−1(LM (α)+1) `Σ append(hd, concat(tl)) : Lconcat(n,M)(α).
(Note that in contexts we omit variables on which the expression does not depend.)

6. Unfold the definition of application of a type to a first-level expression and the
definition for (−)+1:
n ≥ 1; hd : LM(0)(α), tl : Ln−1(LM+1(α)) `Σ append(hd, concat(tl)) : Lconcat(n,M)(α).

7. The expression in the judgement above is a sugared let-construct. So, we apply the
Let-rule. In the binding we get the goal: n ≥ 1; tl : Ln−1(LM+1(α)) `Σ concat(tl) :

τ?.
8. Using FunApp-rule we instantiate the type τ? := Lconcat(n−1,M+1)(α).
9. Therefore, the subgoal for the let-body is

n ≥ 1; hd : LM(0)(α), l′ : Lconcat(n−1,M+1)(α) `Σ append(hd, l′) : Lconcat(n,M)(α).
10. Apply the FunnApp-rule. In this rule use the type append : Ln1(α′) × Ln2(α′) →

Ln1+n2(α′) and σ(n1) := M(0), σ(n2) := concat(n− 1,M+1). We obtain the predi-
cate
n ≥ 1 ` Lconcat(n,M)(α)→ LM(0)+concat(n−1,M+1)(α).

11. Unfold the definition of type rewriting and the definition of the operation(−)+1:
n ≥ 1 ` concat(n,M)→M(0) + concat(n− 1, λ pos.M(pos + 1)).

Example 2: inferring rewriting rules for tails Now we want to infer the
rewriting rules for the size annotations in the type tails : Ln(α)→ Ltails1(n)(Ltails2(n)(α)).
Recall, that the closed forms of the annotations are tails1(n) = n and n ≥ 1, 0 ≤
pos ≤ n − 1 ` tails2(n)(pos) = n − pos, respectively. In this example we show
how output lists of lists are treated.

1. The LetFun rule defines the main goal: l : Ln(α) `Σ etails : Ltails1(n)(Ltails2(n)(α)),
where etails denotes the body of tails.

2. Apply the Match-rule. In the nil-branch we obtain the subgoal
n = 0; l : Ln(α) `Σ Nil : Ltails1(n)(Ltails2(n)(α)).

3. Continue with the nil-branch. Apply the Nil rule and obtain
n = 0 ` Ltails1(n)(Ltails2(n)(α))→ L0(τ?).

4. Trivially, instantiate τ? := Ltails2(n)(α). Unfold the definition of the type rewriting:
n = 0 ` tails1(n)→ 0.
Note, that the rewriting rules for tails2(n) in this branch are absent, since n1 ∈
{n = 0}, 0 ≤ pos ≤ n1 − 1 is an empty set.

5. Now, consider the cons-branch. The subgoal there is
n ≥ 1; l : Ln(α), tl : Ln−1(α+1) `Σ Cons(l, tails(tl)) : Ltails1(n)(Ltails2(n)(α)).
(Again, that in contexts we omit variables, on which the expression in the typing
judgement under consideration does not depend.)

12

6. In the type of tl unfold the definition of (−)+1:
n ≥ 1; l : Ln(α), tl : Ln−1(α) `Σ Cons(l, tails(tl)) : Ltails1(n)(Ltails2(n)(α)).

7. The expression in the judgement above is a sugared let-construct. So, we apply the
Let-rule. In the binding we have the subgoal: n ≥ 1; tl : Ln−1(α) `Σ tails(tl) : τ?.

8. Using FunApp-rule we instantiate the type τ? := Ltails1(n−1)(Ltails2(n−1)(α)).
9. Therefore, the subgoal for the let-body is

n ≥ 1; l : Ln(α), z : Ltails1(n−1)(Ltails2(n−1)(α)) `Σ Cons(hd, z) : Ltails1(n)(Ltails2(n)(α)).
10. Apply the Cons-rule. We obtain the predicates

n ≥ 1 ` Ltails1(n)(Ltails2(n)(α))→ Ltails1(n−1)+1(τ2)
n ≥ 1 ` τ2(0)→ Ln(α)
n ≥ 1, 1 ≤ pos ≤ n ` τ2(pos)→ (Ltails2(n−1)(α))(pos − 1)

11. Trivially, instantiate τ2 := Ltails2(n)(α). We obtain

n ≥ 1 ` Ltails1(n)(Ltails2(n)(α))→ Ltails1(n−1)+1(Ltails2(n)(α))
n ≥ 1 ` (Ltails2(n)(α))(0)→ Ln(α)
n ≥ 1, 1 ≤ pos ≤ n ` Ltails2(n)(α)(pos)→ (Ltails2(n−1)(α))(pos − 1)

12. Unfold the definition of type-typewriting. For tails1 we obtain n ≥ 1 ` tails1(n) =
tails1(n − 1) + 1, and for tails2, unfolding the definition of application of a type to
a first-layer expression, we obtain

n ≥ 1 ` tails2(n)(0)→ n
n ≥ 1, 1 ≤ pos ≤ n ` tails2(n)(pos)→ tails2(n− 1)(pos − 1)

It is easy to see that tails1(n) = n is a closed form for the obtained rewriting
system for f : tails1(0) = 0 and tails1(n) → tails1(n− 1) + 1 with n ≥ 1. Further,
tails2(n)(pos) = n−i for 0 ≤ pos ≤ n−1 solves the rewriting system for g. Indeed,
by induction on n ≥ 2, tails2(n)(pos) = tails2(n−1)(pos−1) = (n−1)−(pos−1) =
n − i for i ≥ 1, with the base tails2(1)(0) = 1, and having tails2(n)(pos) = n for
pos = 0.

3.4 Semantics of typing judgements (soundness)

The set-theoretic semantics of typing judgements is formalised later in this sec-
tion as the soundness theorem, which is defined by means of the following two
predicates. One indicates if a program value is valid with respect to a certain
heap and a ground type. The other does the same for sets of values and types,
taken from a frame store and a ground context Γ •:

Valid val(v, τ
•, h) = ∃w. v |=h

τ• w
Valid store(vars, Γ •, s, h) = ∀x∈vars . Valid val(s(x), Γ •(x), h)

Let a valuation εs map size variables to constants of the layer s, and let an
instantiation η map type variables to ground types:

Valuation εs : SizeVariabless → (R→ . . .→R→ 2R)
Instantiation ηs : TypeVariabless → τ•s

Let ε and η be the direct sums of some ε1, . . . , εk and η1, . . . , ηk respectively. We
will usually write the application of η and ε as subscripts. For example, η(ε(τ))
becomes τηε and ε(D) becomes Dε. Note that D contains no type variables and
hence Dη = D. Valuations and instantiations distribute over size functions in
the following way: (Lp(n∗)(τ))ηε = Lp(n∗ε)(τηε).

13

Lemma 2 (Rewriting preserves model relation (i.e. implies set-theoretic
inclusion of types)). Let D(n) ` τ → τ ′. Let a valuation ε and a type instan-
tiation η be such that v |=h

τ ′ηε
w and Dε hold. Then v |=h

τηε w holds as well.

Proof. Induction on |= . The case where v is an integer or a boolean is straight-
forward since τ ′ and τ will be Int or Bool, respectively.

Let τ = Lp1(n∗)(τ ′′) and τ ′ = Lp1(n∗)(τ ′′′) for some τ ′′ and τ ′′′, and let
ε(n∗) = n∗0.

Assume v = NULL. Then 0 ∈ p′1(n0) and w = []. Since p1(n∗0)→ p′1(n∗0), that
is p′1(n∗0) ⊆ p1(n∗0), we have 0 ∈ p1(n∗0) and v |=h

τηε [].

Now assume that v = ` and w = whd :: wtl , where h.`.hd |=h|dom(h)\{`}
τ ′′′ηε

whd

and h.`.tl |=h|dom(h)\{`}
Lf′(n0)−1(τ ′′′ηε) wtl . Since there is n ∈ p1(n∗0) with n ≥ 1 (because we

are in the non-empty case), we have D ` τ ′′ → τ ′′′, from which follows that D `
τ ′′+1 → τ ′′′+1. Then, by induction, h.`.hd |=h|dom(h)\{`}

τ ′′ηε(0) whd . Since p1(n∗)→ p′1(n∗),

we have that p1(n∗)− 1→ p′1(n∗)− 1, and by induction h.`.tl |=h|dom(h)\{`}
Lp′1(n∗0)−1((τ ′′+1)ηε)

wtl . ut

This lemma may seem counterintuitive on a first sight because it looks like
a type preservation lemma where the type τ and τ ′ are swapped. However, a
rewriting rule is different from an evaluation step. The idea behind this lemma
is that on a rewriting rule there are several choices on the left hand side (τ) and
one in particular is chosen to obtain the right hand side (τ ′). So, if a value has
type τ ′, it also has type τ .

Informally, the soundness theorem states that, assuming that the zero-order
context variables are valid, i.e., that they indeed point to lists of the sizes men-
tioned in the input types, then the result in the heap will be valid, i.e., it will
have the size indicated in the output type.

Theorem 1 (Soundness). For any store s, heaps h and h′, closure C, expres-
sion e, value v, context Γ , quantifier-free formula D, signature Σ, type τ , size
valuation ε, and type instantiation η such that

– dom(s) = dom(Γ), ε : SV (Γ) ∪ SV (D)→ R and η : TV (Γ)→ τ•,
– Dε holds,
– s; h; C ` e v; h′ and D, Γ `Σ e : τ ,
– Valid store(dom(s), Γηε, s, h),

then v is valid according to its return type τ in h′, i.e., Valid val(v, τηε, h′).

Proof. The proof is done by induction on the size of the derivation tree for the
operational-semantic judgement. This is possible because we assume that the
evaluation of e termintates (with a value v). We have to show that Valid val(v, τηε, h′),
i.e., that there is a w such that v |=h′

τηε w. This is proved for each of the
operational-semantic rules.

14

OSNull: In this case e = Nil, v = NULL and h′ = h. From the Nil typing rule
we have that D ` τ → L0(τ ′). According to the definition of rewriting rule,
τ = Lp(n∗)(τ ′′) for some p, n∗ and τ ′′, where p(n∗)→ 0. But then p(n∗ε)→ 0
and hence 0 ∈ p(n∗ε). But then from the definition of model relation we get
that NULL |=h′

L
p(n∗ε)(τ

′′
ηε)

[] and thus NULL |=h′

τηε [].

OSVar: In this case e = z, v = s(z) and h′ = h. Since dom(s) = dom(Γ), there
is a τ ′ such that Γ (z) = τ ′, and because Valid store(dom(s), Γηε, s, h), there
is a w such that s(z) |=h

τ ′ηε
w. Now from the Var typing rule, D ` τ → τ ′.

Since Dε holds, we can now apply the Lemma 2 to obtain v |=h′

τηε w.

OSCons: In this case e = Cons(hd, tl), v = ` for some location ` /∈ dom(h) and
h′ = h.`.[hd := s(hd), tl := s(tl)].
From the Cons typing rule we have that hd : τ1 and tl : Lp1(n∗)(τ2), and the
judgements D ` τ ′ → Lp1(n∗)+1(τ ′2), D ` τ ′2(0) → τ1 and n ∈ p1(n∗), 1 ≤
pos ≤ n,D ` τ ′2(pos)→ τ2(pos − 1). Since Valid store(dom(s), Γηε, s, h), there
exist whd and wtl such that s(hd) |=h

τ1ηε whd and s(tl) |=h
Lp1(n∗ε)(τ2ηε)

wtl .

Therefore, h′.`.hd |=h
τ1ηε whd and h′.`.tl |=h

Lp1(n∗ε)(τ2ηε)
wtl .

It is easy to see that h = h′|dom(h′)\{`}, thus, h′.`.hd |=h′|dom(h′)\{`}
τ1ηε s(hd) and

h′.`.tl |=h′|dom(h′)\{`}
Lp1(n∗ε)(τ2ηε)

s(tl). From the judgement D ` τ ′2(0)→ τ1 and Lemma 2,

h′.`.hd |=h′|dom(h′)\{`}
τ ′2ηε(0) whd . Now we want to show that h′.`.tl |=h′|dom(h′)\{`}

Lp1(n∗ε)+1(τ ′2ηε)

wtl , and then by the definition of model relation we can obtain the desired
result: ` |=h′

τηε whd :: wtl .
The judgement n ∈ p1(n∗), 1 ≤ pos ≤ n,D ` τ ′2(pos) → τ2(pos − 1). is
equivalent to n ∈ p1(n∗), 1 ≤ pos ≤ n,D ` τ ′2(pos + 1) → τ2(pos). Re-
call that τ+1 is defined as λ pos. τ(pos + 1), thus we have the judgement
n ∈ p1(n∗), 1 ≤ pos ≤ n,D ` (τ ′2)+1(pos) → τ2(pos). Now by definition of
rewriting rules, n ∈ p1(n∗), 1 ≤ pos ≤ n,D ` Lp1(n∗)((τ ′2)+1) → Lp1(n∗)(τ2).

Instantiating Lemma 2 with this judgement and h′.`.tl |=h′|dom(h′)\{`}
Lp1(n∗ε)(τ2ηε)

wtl , we

get h′.`.tl |=h′|dom(h′)\{`}
Lp1(n∗ε)+1(τ ′2ηε)

wtl .

OSIfTrue: In this case e = if x then e1 else e2, with s(x) = True and s; h; C `
e1 v; h′. From the If typing rule we get that D, Γ `Σ e1 : τ1, D, Γ `Σ
e2 : τ2 and D ` τ → τ1 | τ2. Since e1 is evaluated in the same context as
e (s; h; C), we can use the induction hypothesis to get Valid val(v, τ1ηε, h′).
Since by definition of D ` τ → τ1 | τ2, D ` τ → τ1, using Lemma 2 we
obtain Valid val(v, τηε, h′).

OSIfFalse: Similar to the true case.

OSLet: In this case e is let z = e1 in e2, where s; h; C ` e1 v1; h1 and
s[z := v1]; h1; C ` e2 v; h′. From the Let typing rule we have that
z /∈ dom(Γ), D, Γ `Σ e1 : τ ′ and D, Γ, z : τ ′ `Σ e2 : τ . Applying the induc-

15

tion hypothesis to the antecedents of the operational semantics, we get that
Valid val(v1, τ

′
ηε, h1) and that if Valid store(dom(s[z := v1]), Γηε∪{z : τ ′ηε}, s[z :=

v1], h1) then Valid val(v, τηε, h′).
Fix some z′ ∈ dom(s[z := v1]). If z′ = z, then Valid val(v1, τ

′
ηε, h1) implies

Valid val(s[z := v1](z), τ ′ηε, h1). If z′ 6= z, then s[z := v1](z′) = s(z′). Shar-
ing of data structures in the heap is benign (no destructive pattern match-
ing and assignments), hence h|R(h, s(z′)) = h1|R(h, s(z′)). Thus, we have that
s(z′) |=h

Γηε(z′)
w′z implies s(z′) |=h1

Γηε(z′)
w′z and then s[z := v1](z′) |=h1

Γηε(z′)
wz′ .

So, Valid val(s[z := v1](z′), Γηε(z′), h1). Hence, Valid store(dom(s[z := v1]), Γηε∪
{z : τ ′ηε}, s[z := v1], h1) and we can now apply the induction hypothesis.

OSMatch-Nil: In this case e = match l with | Nil ⇒ e1 | Cons(hd, tl) ⇒ e2

where s(l) = NULL and s; h; C ` e1 v; h′. From the Match typing rule
we have that l : Lp1(n∗)(τ ′) and D, 0 ∈ p1(n∗), Γ ′, l : Lp1(n∗)(τ ′) `Σ e1 : τ .
From Valid store(dom(s), Γηε, s, h) we get Valid val(s(l), Lp1(n∗ε)(τ ′ηε), h) and since
s(l) = NULL, from the definition of model relation we get that 0 ∈ p1(n∗).
Therefore, the typing judgement about e1 reduces to D, Γ ′, l : Lp1(n∗)(τ ′) `Σ
e1 : τ , where Γ = Γ ′, l : Lp1(n∗)(τ ′ηε). We can now apply the induction hypoth-
esis to obtain Valid val(v, τηε, h′).

OSMatch-Cons: In this case e = match l with | Nil ⇒ e1 | Cons(hd, tl) ⇒
e2. The typing context has the form Γ = Γ ′ ∪ {l : Lp1(n∗)(τ ′)}. From the
operational semantics we know that h.s(l).hd = vhd and h.s(l).tl = vtl , that
is, s(l) 6= NULL. Due to the validity of s(l) and Lemma 1, there exists n0 ≥
1 ∈ p1(n∗ε). From the validity s(l) |=h

Lp1(ε(n∗))(τ
′
ηε)

whd :: wtl , the validities of

vhd and vtl follow: vhd |=h
τ ′ηε(0) whd and vtl |=h

L
p1
n∗ε
−1((τ ′ηε)+1) wtl .

From the Match typing rule we have that D,n0 ≥ 1 ∈ p1(n∗); Γ ′′ `Σ e2 :
τηε, where Γ ′′ = Γ ∪ {hd : τ ′(0), tl : Lp1(n∗)−1(τ ′+1)}.
From Valid store(dom(s), Γηε, s, h) and the results above, we obtain that
Valid store(dom(s′), Γ ′′ηε, s

′, h), where s′ = s[hd := vhd][tl := vtl]. With ε′ =
ε[n0 := lengthh(s(l))], the induction hypothesis yields Valid val(v, τηε′ , h′).
Now, since n0 /∈ SV (τ) (and thus, τηε = τηε′), we have Valid val(v, τηε, h′).

OSLetFun: Here e = letfun f(f1, . . . , fk′ , z′1, . . . , z
′
k) = e1 in e2, where s; h; C[f :=

((g1, . . . , gk′ , z
′
1, . . . , z

′
k) × e1)] ` e2 v; h′. From the LetFun typing rule

we have that Γ `Σ e2 : τ . Applying the induction hypothesis to these judge-
ments with the same η and ε, we obtain Valid val(v, τηε, h′) as desired.

OSFunApp: In this case e = f(f1, . . . , fk′ , z′1, . . . , z
′
k), where C(f) = (g1, . . . , gk′ ,

z′1, . . . , z
′
k) × e1) and [z1 := v1, . . . , zk := vk]; h; C ` ef [g1 := f1, . . . , gk′ :=

fk′] v; h′. We want to apply the induction hypotesis to this judgement.
Since all functions called in e are defined via letfun, there must be a node in
the derivation tree of the original typing judgement of the form True, y1 :
τ◦, . . . , yk : τ◦k `Σ ef : τ0. Trivially, the domains of the frame store [y1 :=
v1, . . . , yk := vk] and the context y1 : τ◦, . . . , yk : τ◦k coincide.
Take η′ and ε′ such that

16

– η′(α) = η(τα), where τα is such that α is replaced by τα in the instanti-
ation σ of the signature in this application of the FunApp-rule.

– ε′(nij) = ε(fij), where nij is replaced by fij in the instantiation σ of the
signature in this application of the FunApp-rule.

True holds trivially on ε′. From the induction hypothesis we have that if
Valid store((y1, . . . yk), (y1 : τ◦1 η′ε′ , . . . , yk : τ◦k η′ε′), [y1 := v1, . . . , yn := vn], h)
then Valid val(v, τ0η′ε′ , h′).
From Valid store(dom(s), Γηε, s, h) we get the validity of the values of the
actual parameters: vi |=h

Γηε(li)
wi for some wi, with 1 ≤ i ≤ k. Since

Γηε(li) = τ◦i η′ε′ , the left-hand side of the implication holds, and one obtains
Valid val(v, τ0 η′ε′ , h′). It is easy to see that

σ(τ0)) = ηε(τ0[. . . α := τα . . .][. . . nij := fij . . .]) =
τ0[. . . α := η(τα) . . .][. . . nij := ε(fij) . . .] = τ0 η′ε′

Therefore, we obtain Valid val(v, σ(τ0 ηε), h′) and using the rule D ` τ →
σ(τ0) we obtain Valid val(v, τηε, h′) by Lemma 2.

ut

4 Inferring Families of Polynomials

Consider a multivalued size function f over variables n∗ given by (recursive)
rewriting rules. Our aim is to obtain a closed form (i.e. a recursion-free from)
of f . It is clear that this is not always possible. In this section, we show how to
obtain an approximation of the closed form of f by constructing a family (i.e. a
set) that includes the range of f .

Let n ⊆ n∗ be the list of all first-layer variables of n∗. For any variable nsl ∈ n∗
of a layer s ≥ 2, let its range be given in the form T (nsl) = {pl(n, n′, i)}Ql(n,n′,i),
which is a short cut for {pl(n0, n

′
0, i) | ∃ i. Ql(n0, n

′
0, i)}. Here Q is a first-order

arithmetic predicate and n′ are fresh w.r.t. n. We introduce fresh size variables
like n′ and assumptions as the one above if we know nothing about ns, where s ≥
2. In general such default assumptions are of the form range(ns) ⊆ {i}n′1≤i≤n2 .

We will show how, given a conditional rewriting rule with the l.h.sD1(n∗,m)∧
D2(m, pos), to obtain {p(n, n′, i)}Q(n,n′,i) such that if for all higher-layer vari-
ables range(ns) ⊆ T (ns) and D1(n∗,m) holds then f (n∗) ⊆ {p(n, n′, i)}Q(n,n′,i).

Sometimes it is convenient to consider more specific estimates, where posi-
tions are mentioned explicitly. For instance, tails2(n)(pos) = n − pos for n ≥ 1
and 0 ≤ pos ≤ n − 1. Such position-aware estimates may be used to obtain
tight position-free bounds on the overall size of the output structure. This is
done by summations over positions. In the example above we have that the
overall length of the internal lists is Σn−1

pos=0tails2(n − pos) = Σn−1
pos=0(n − pos) =

Σn
l=1l =

n(1 + n)
2

. This is definitely more precise than the position-free estimate

tails2(n) ⊆ {i}0≤i≤n. In general, position-aware estimates for bound of inter-
nal lists have the form “range(ns) ⊆ T (ns) ∧D(n, n′, pos) implies f (n∗)(pos) ⊆
{p(n, n′, pos, i)}Q(n,n′,pos,i)∧D(n,n′,pos)”.

compositions!

17

4.1 Generating a candidate family to cover the range of a size
function

Our main assumption is that for any fixed n0, n
′
0 the sets T (nsl) are finite.

For instance, for n′ = 3 the range of M is included into the set
(
T (M) =

{i}0≤i≤n′
)
n′:=3

= {0, 1, 2, 3}. Moreover, for fixed n and n′ the function M is re-
duced to the finite multivalued map φ such that φ(pos) is the set of all possible
lengths of the “inner” lists. E.g. with n = 2 and n′ = 3 we have φ instantiated
as φ(0) = φ(1) = {0, 1, 2, 3}.

With fixed n and n′ the function f is translated to an auxiliary function xf y
over finite sets and maps. For instance, concat(n,M) becomes xconcaty(n, φ) →
φ(0) +xconcaty(n−1, φ+1). Now we show how to translate f to the function xf y,
which will be used later to obtain a family of polynomials that possibly covers
the range of f .

Rewriting rules for an auxiliary function over finite sets We are going
to introduce auxiliary functions of type

(FiniteSet,FiniteMMap)∗ → FiniteSet where (FiniteSet,FiniteMMap)∗ is
a finite Cartesian product of finite sets and finite multivalued maps. Binary
arithmetic operations are lifted to sets: if ~ is one of the arithmetic operations
+,−, ∗, then µ1 ~{} µ2 := {x~ y}x∈µ1∧y∈µ2 .

A finite multivalued map is a mapping from positions to finite sets:

FiniteMMap : Positionsd1 → . . .→ Positionsdk → FiniteSet

where Positionsdl = {0, . . . , dl − 1}. An example of finite multivalued maps is
〈{1, 2, 3}, {1}〉, which sends 0 to {1, 2, 3} and 1 to {1}. We denote a multivalued
map via φ and µ denotes either a finite map or set. There is an empty map
denoted via 〈 〉. The only operation over multivalued maps, which is relevant to
our task, is left shift [−]+k sending 〈µ0, . . . , µd−1〉 to 〈µk, . . . , µd−1〉.

Symmetrically, to mirror constructor application we could have used concate-
nation operation on finite multivalued maps. However, we do not use concatena-
tion here. The reason is that this operation is defined explicitly via the rewriting
rules in the antecedent of the Cons-rule, so it is not a part of the syntax of
size annotations. Therefore, here it will be not a part of the syntax of expres-
sions over finite sets and multivalued maps, but will be defined within rewriting
systems for functions over finite sets and multivalued maps, when necessary.

The straightforward translation x−y that maps size expressions onto expres-
sions over finite sets and finite multivalued maps is inductively defined on the
structure of size expressions. We define the translation x−y : SizeExpressions→
FiniteMMapSetExpressions as follows:

– first-layer constants represents themselves: xay := a;
– higher-layer constants, s ≥ 2 are translated into their restrictions: xasy :=
a′
s; since we fix the sizes of lists, then e.g. for s = 2 the map a′

2 represents
the restriction of the map a2 to the set {0, . . . ,max

(
p1(n∗)

)
− 1}, where the

expression p1 is given by the type Lp1(n∗)(La2(. . .));

18

for instance, xa2y = a2, where a′2(0) = 0 and a′2(1) = {0, 1} and a2 is taken
from the type Ln+2(La2(. . .)) with n := 0;

– positions pos and first-layer variables n are translated to themselves: xposy :=
pos and xny := n; they represent the corresponding singleton sets;

– for a higher-layer variable ns from the set of parameters n∗; where s ≥ 2, we
introduce a fresh variable φ: xnsy := φ;

– translation xp1~p2y := xp1y~{}xp2y is defined on first-layer size expressions;
– xp+1y := xpy+1, where p′ is a first-layer expression with no free occurrences

of pos;
– x(p)(pos)y := xpy(pos),
– xg(p1, . . . , pk)y := xgy(xp1y, . . . , xpky).

Given a rewriting rule f (ns11 , . . . n
sk
k)(pos1 . . . poss−1) → p for a numerical

multivalued function f , we construct the corresponding rewriting rule for xf y
as xf y(xns11 y, . . . xn

sk
k y)(pos1 . . . poss−1)→ xpy. For instance, the rewriting rule

n ≥ 1, 0 ≤ pos ≤ n − 1 ` tails2(n)(pos) → tails2(n − 1)(pos − 1) is translated to
n ≥ 1, 0 ≤ pos ≤ n− 1 ` xtailsy2(n)(pos) → xtailsy2(n− 1)(pos − 1).

Generating a family Consider a brunch of f , defined by the rule D1(n∗,m)∧
D2(m, pos) ` f (n∗)(pos) → p. We will construct an estimate for the range of f
in the form {fl(n, n′)(pos) + i}0≤i≤fu(n,n′)(pos)−fl(n,n′)(pos), where fl(n, n′)(pos) ≤
f (n∗)(pos) ≤ fu(n, n′)(pos). We show now how to compute candidates for bounds
fl and fu if they are polynomial. First, we need to assume their degree(s) d.

1. Choose
(
V+d
d

)
points (n0, n

′
0, pos0), for which there existsm such thatD1(n∗,m)∧

D1(m, pos) holds, that uniquely define a polynomial of degree d with V =
|n|+ |n′|+ |pos0| variables. We have discussed how to choose such points in
[17]. For instance, assuming d = 2 for concatl, u(n, n′) we take the finite set of
test points (n0, n

′
0) {(1, 1) as (2, 1), (3, 1), (1, 2), (2, 2), (1, 3)}. For instance,

assuming d = 1 for tails2 l(n)(pos) and tails2 u(n)(pos) we take the set of test
points (n0, pos0) as {(2, 0), (2, 1), (3, 0)}.

2. For each (n0, n
′
0, pos0) from the set of test points do:

(a) for any nsl ∈ n∗ assign φl := λ pos ′.{pl(n0, n
′
0, i)}Ql(n0,n′0,i)

, which is a
constant multivalued map; e.g. φ := 〈{0, 1}〉 for M in concat(n,M) with
n = 1, n′ = 1. ; for instance, for xconcaty, with n = 2 and n′ = 3 we have
n(2,3) = {n} = {2} and φ(2,3) = 〈{0, 1, 2, 3}, {0, 1, 2, 3}〉;

(b) compute xf y(n, φ)(pos) using the rewriting rules; e.g.

xconcaty(n(2,3), φ(2,3)) → φ(2,3)(0) +{} xconcaty(n(2,3) − 1, φ(2,3) +1) =
{0, 1, 2, 3}+{} xconcaty(2− 1, 〈{0, 1, 2, 3}, {0, 1, 2, 3}〉+1) =
{0, 1, 2, 3}+{} xconcaty(1, 〈{0, 1, 2, 3}〉)→
{0, 1, 2, 3}+{} {0, 1, 2, 3}+{} xconcaty(1− 1, 〈{0, 1, 2, 3}〉+1) =
{0, 1, . . . , 6}+{} xconcaty(0, 〈〉)→
{0, 1, . . . , 6}+{} {0} = {0, 1, . . . , 6}

yet another example is xtailsy2(2)(1)→ xtailsy2(2−1)(1−1) = xtailsy2(1)(0)→
1.

19

(c) assign fmin(n0, n
′
0, pos0) := min

(
xf y(n0, n

′
0, pos0)

)
and fmax(n0, n

′
0, pos0) :=

max
(
f ′(n0, n

′
0, pos0)

)
; e.g. concatmin(1, 3) := 0 and concatmax(1, 3) := 3;

also tails2,min(2, 1) = tails2,max(2, 1) = 1.
(d) add to the lists of equations w.r.t. the coefficients of fl and fu the equa-

tions with fmin(n0, n
′
0, pos0) and fmax(n0, n

′
0, pos0) on the r.h.s., respec-

tively; e.g., tails2 u(2, 0) defines 2au,10+au,01+au,00 = tails2 max(2, 1) = 1.
3. Solve the linear systems for the coefficients fl and fu. For instance, solving

the system for concatl(n, n′) and concatu(n, n′) gives concatl(n, n′) = 0 and
concatu(n, n′) = nn′; for tails2 we obtain tails2 l(n, pos) = tails2 u(n, pos) =
n−pos. Thus, we have obtained polynomial lower and upper bounds for the
size function f .

4. On the previous step we have obtained the bounds for the size function f ,
from which construct a family of polynomials in the form given in the begin
of this subsection.
If the size function is of the first layer, we output the family as it is. For
instance, for concat we return {i}0≤i≤nn′ .
If f is of the layer s ≥ 2, then the bounds depend on positions pos. In this
case, replace pos with new indices j to obtain {fl(n, n′, j) + i}Q′(n,n′,m,j)
where Q′ abbreviates 0 ≤ i ≤ fu(n, n′, j) − fl(n, n′, j) ∧D2(m, j). Note that
D2(m, j) consists of disequations of the form 0 ≤ j ≤ m − 1 or 1 ≤ j ≤ m.
Replace m that belongs to the set p(n∗)(pos1) . . . (poss−1) with the already
derived upper bound for this set. For instance, for xtailsy2(n) we obtain
{n − j}1≤j≤n−1 on n ≥ 1. The family is completed to {n − j}0≤j≤n−1 by
xtailsy2(n)(0) = n.

5. The return family needs to be checked. The checking is done by reducing
rewriting rules to set inclusions and, eventually, to first-order predicates. The
reduction has been sketched in the introduction. For more detail, see 4.2.
If a type-checker accepts the family then the job is done. Otherwise we need
to analyse the failure. Rejection may happen if either the program’s size
bounds are not polynomial, or we have chosen wrong parameter d and/or
the set of test points. We may repeat the procedure for a larger d and/or
other test points (see [17] for a discussion on how to choose test points for
such procedures).

4.2 Checking if a given family covers the range of a function

To give a sufficient condition for a given family of polynomials to cover the range
of the function f we first need to fill-in the specification table T for functions g
that occur in the rewriting rules for f and their variables (formal parameters).

Informally, the problem of checking if a family of polynomials T (f (n∗)) “cov-
ers” a given multivalued function f amounts to checking if for any computa-
tion path for f (n∗)(pos) the result will be in (T (f (n∗)). In other words, for any
rewriting rule D ` f (n∗)(pos)→ p the following inclusion holds: D ` T (f (n∗)) ⊇
range(p), given that the range each higher-layer size variable ns ∈ n∗ is T (ns).

Let n∗g be the list of the formal size parameters of g and ng ⊆ n∗g are first-layer
variables. The table is constructed as follows.

20

– if nsg ∈ n∗g, where s ≥ 2, then T (nsg) is given in the form {p(ng, n′g, i)}Q(ng,n′g,i)
,

where n′g are fresh first-layer size variables, and a polynomial p(ng, n′g, i) and
a predicate Q(ng, n′g, i) are
• either given by a user,
• or are set by default to {i}0≤i≤n′g or {i}ng ′1≤i≤ng ′2 ;

– T
(
g(n∗g)

)
has the form {p(ng, n′g, i)}Q(ng,n′g,i)

. Note, that we treat higher-
layer constants as functions, that is their specifications must be present in
the table as well, in the form T (a) = {p(i)}Q(i). In principle, the range of a
may be generated automatically and then there is no need to add it to the
table T . To avoid technical overhead we do not consider this otimisation in
the presented work and leave it for the future.

For instance, the table T , which is used to check the family {i}0≤i≤nn′ for
concat, contains T (++, n1, n2) = n1 + n2, T (M) = {i}0≤i≤n′ , T (concat, n, n′) =
{i}0≤i≤nn′ .

Let n∗ be the set of the free size variables of f . Let rhs(f) denote the condi-
tions from the rewriting rules defining f . The set rhs(f) consists of memberships
like m ∈ p(n∗), position restrictions like 0 ≤ pos ≤ m− 1 (from the definition of
type rewriting) or 1 ≤ pos ≤ m (a side condition of the cons-rule) and disequa-
tions m ≥ 1 (a side condition of the constructor-rule and of cons-branch in the
match-rule).

Definition 1. The specification T (f (n∗)) is valid if and only if given that the
specifications of all functions g 6= f used in its definition are valid, if n∗, pos are
s.t. f (n∗)(pos) terminates, then

∧
ns∈n∗, s≥2 n

s(pos) ⊆ T (ns) implies f (n∗)(pos) ⊆
T
(
f (n∗)

)
.

Let pn∗,pos denote a size expression with free size variables n∗ and free posi-
tion variables pos. The result of its application to some values x∗, xpos is denoted
via pn∗,pos(x∗, xpos).

Next, we define a range map L−M : SizeExpression → IndexedPolynomial ×
1stOrderPredicate, where the first-order predicate in the image delimits the in-
dices of the polynomial. Let LpM1 and LpM2 stay for the first projection (the
polynomial) and the second projection (the predicate that bounds the indices)
of LpM, resp. A correct range map LpM is defined by induction over the structure
of its argument p, which is an expression with free size variables n∗:

– for a first-layer constant a the range map is defined obviously as LaM := {a};
– LasM := T (as), where s ≥ 2;
– for a first-layer variable n from the set of parameters n∗ the range map is

defined as LnM := {n},
– for a higher-layer variable ns from the set of parameters n∗, where s ≥ 2,

the range map is defined by the spec. table, LnsM := T (ns);
– if ~ is one of the arithmetic operations +,−, ∗, then

Lp1 ~ p2M := Lp1M~{} Lp2M;
– Lp(0)M := LpM;

21

– Lp(pos)M := LpM;
– Lp(pos − 1)M := LpM;
– Lp+1M := LpM;
– in a function call g(p1

1, . . . , p
1
k, p
′
1, . . . p

′
k′) we match the actual parameters

with the fromal parameters ng, n′g of the specification

T
(
g(n∗g)

)
= {p(ng1, . . . , ngk, n

′
g, j)}Q(ng,n′g,j)

First, note that since the function call terminates, then there must be a
rewriting rule Dg ` g(n∗g)(pos) → pg applicable for this call. From what
follows that if we replace in Dg the formal parameters n∗g with the cor-
responding actual size expressions, then the result of the replacement D′g
should be valid on the actual size expressions.
Now continue as follows:
1. we first (inductively) compute the range sets Lp1

l M of the first-layer actual
parameters p1

l , where 1 ≤ l ≤ k;
2. after that we (inductively) compute the range sets Lp′lM of the higher-layer

actual parameters p′l, where 1 ≤ l ≤ k′;
3. after that the most difficult part of the matching “formal vs. actual

parameters” is to be done: finding a substitution σ : FreshSizeVar →
IndexedPolynomial×1stOrderPredicate, such that for all formal nsgl, with

T (nsg l) = {p′′l (ng, n′g, j
′
)}Q′′l (ng,n′g,j

′
), the following inclusion must be

provable from D′g:

Lp′lM ⊆ {p′′l (Lp1M1, . . . , LpkMk, σ1(n′g), j
′
)}
Q′′l (Lp1M1, . . . , LpkMk, σ1(n′g), j

′
)∧∧k

l=1Lp
1
l M2∧∧k′

l=1 σ2(n′g l)

For the sake of convenience we denote the last set via Lp′lMσ.
Finding a substitution σ is the most difficult part of the procedure. It is
a source of undecidability of inference in general, since it amounts to the
instantiation of existential quantifiers in Peano arithmetic. However, in
some cases (e.g. for linear predicates) finding a substitution may be done
automatically.

4. eventually

Lg(p1
1, . . . , p

1
k, p
′
1, . . . p

′
k′)M :=

{p(Lp1
1M1, . . . , Lp1

kM1, σ1(n′g), j)}Q(Lp1
1M1, . . . , Lp1

kM1, σ1(n′g), j)∧∧k
l=1Lp

1
l M2 ∧

∧k′
l=1 σ2(n′g l)

Sometimes, for the sake of convenience, the polynomial p and the delimiting
predicate Q form the specification T (program(n∗)) = {p(n, n′, i)}Q(n,n′,ibar) are
denoted via LprogramM1 and LprogramM2 respectively.

22

As an instance, consider the r.h.s. of the rewriting rule n ≥ 1 ` concat(n,M)→
M(0) + concat(n− 1,M+1).

LM(0) + concat(n− 1,M+1)M =
LM(0)M +{} Lconcat(n− 1,M+1)M =
LMM +{} {LconcatM1(Ln− 1M1, σ1(n′), i)}LconcatM2(Ln−1M1,σ1(n′),i)∧σ1(n′) =
{i}0≤i≤n′ +{} {i}0≤(n−1)n′

where σ(n′) = {n′}. Note that the scope of an index limited to the set it is
“attached” to.

Another example shows that substitutions for fresh size variables n′g are not
always identities as in the example above. Consider the composition concat(tails(l))
with l be of the type Ln(α). We want to check the rough but still sound estimate
concat ◦ tails(n) ⊆ {i}0≤i≤n2 . We have concat ◦ tails(n) → concat(n, tails2(n)). We
already know that T (concat(n,M)) = {i}0≤i≤nn′ for T (M) = {i}0≤i≤n′ . Now we
need to match T (M) with the annotation of the actual parameter Ltails2(n)(α).
We know that T (tails2(n)) = {i}0≤i≤n, so we assume σ(n′) = {n}. Indeed,
Ltails2(n)M = {i}0≤i≤n ⊆ σ(T (M)) = {i}0≤i≤σ(n′), thus σ is a valid substitution.

Lemma 3 (Consistency of range map: basic). Given an expression pn∗,pos ,
if the specifications T (g(n∗)) of all the functions g that occur in it are valid, then
for all n∗, n′, pos, such that

∧
ns∈n∗, s≥2 n

s(pos) ⊆ T (ns) and pn,pos(n∗, pos)
terminates, the inclusion pn∗,pos(n∗, pos) ⊆ Lpn∗,posM holds.

Proof. Fix n∗, pos, such that pn∗,pos terminates on them. The proof is done by
induction on the structure of pn∗,pos .

– The statement of the lemma for the base cases (constants and variables) fol-
lows directly from the definition of L−M and the validity of the specifications
for the higher-layer variables and constants.

– Let pn∗,pos ≡ p1 n∗,pos~p1 n∗,pos . By induction assumption, pl n∗,pos(n∗, pos) ⊆
Lpl n∗,posM, where l = 1, 2. From the definition

pn∗,pos(n∗, pos) := p1 n∗,pos(n∗, pos)~{} p2 n∗,pos(n∗, pos)

it follows that pn∗,pos(n∗, pos) ⊆ Lp1 n∗,posM~{} Lp2 n∗,posM := Lpn∗,posM.
– Let pn∗,pos ≡ p′n∗,pos0, pos(0). By induction assumption, p′n∗,pos0, pos

(n∗, 0, pos) ⊆
Lp′n∗,pos0, pos

M. Therefore,

pn∗,pos(n∗, pos) = p′n∗,pos0, pos
(n∗, 0, pos) ⊆

Lp′n∗,pos0, pos
M =def. of L−M

Lp′n∗,pos0, pos
(0)M =sructure of p

Lpn∗,posM
– The other cases, where p is an application of another size expression to a

position, are treated similarly.
– Let pn∗,pos ≡ [p′n∗,pos, pos′]+1 for some p′, where pos = (pos, pos ′). Therefore,
pn∗,pos(n∗, pos) = p′n∗,pos, pos′(n

∗, pos + 1, pos ′) According to the induction
assumption, p′n∗,pos, pos′(n

∗, pos + 1, pos ′) ⊆ Lp′n∗,pos, pos′M. According to the
definition of L−M, the last set is equal to L[p′n∗,pos, pos′]+1M, which is exactly
Lp′n∗,pos, pos′M.

23

– Consider the function call

[g(p1
1, . . . , p

1
k, p

′
1, . . . , p

′
k′)](n, pos) :=

g
(
p1

1(n, pos), . . . , p1
k(n, pos), p′1(n, pos), . . . , p′k′(n, pos)

)
According to the actual-parameter listing, a formal parameter nsl of g is
instantiated with the actual parameter expressed by p′ln∗,pos . The similar
holds for the first-layer formal and corresponding actual parameters. Now we
want to apply the validity of T (g(n∗g)). Instantiate n′g l with σ(n′g l) from the
definition of L−M for the function call under consideration. Further, according
to the induction assumption for the actual parameters p′ln∗,pos(n∗, pos) and
the definition of σ we obtain

p′ln∗,pos(n∗, pos) ⊆ Lp′ln∗,posM ⊆
{p′′l (Lp1M1, . . . , LpkMk, σ1(n′g), j

′
)}
Q′′l (Lp1M1, . . . , LpkMk, σ1(n′g), j

′
)∧∧k

l=1Lp
1
l M2∧∧k′

l=1 σ2(n′g l)

This is exactly means, that the actual parameters satisfy the specifications
for the corresponding higher-layer variables of g . Therefore, we are allowed
to apply the validity of T (g) and obtain:

[g(p1
1, . . . , p

1
k, p

′
1, . . . , p

′
k′)](n, pos) ⊆

{p(Lp1
1M1, . . . , Lp1

kM1, σ(n′g)1, j)}Q(p11,...,p
1
k,σ(n′g)1,j)∧σ(n′g)2∧

Vk
l=1 p

1
l M1)

where the last set is exactly Lg(p1
1, . . . , p

1
k, p

′
1, . . . , p

′
k′)M according to the

definition of L−M.

Given a collection of a right-hand side conditions D or its instances by actual
parameters, let LDM denote the result of substituting of size expressions p, which
occurs in D, for the corresponding sests LpM.

Lemma 4 (Consistency of range map). Given an expression pn∗,pos , let the
specifications T (g(n∗g)) of all the functions g that occur in it be valid, except may
be the specification T (f (n∗f)) for f , for which we do not know if it is valid or not.
Let for each rewriting rule D ` f (n∗)(pos)→ pf the inclusion LDM ` T (f (n∗)) ⊇
Lpf M holds. Then for all n∗, n′, pos, such that

∧
ns∈n∗, s≥2 n

s(pos) ⊆ T (ns) and
pn,pos(n∗, pos) terminates, the inclusion pn∗,pos(n∗, pos) ⊆ Lpn∗,posM holds.

Proof. It is done by induction on the deepness of the recursion in the calls of f
occuring in pn∗,pos(n∗, pos).

– If the depness d = 0, then f does not occur in p. Hence, we apply Lemma 3
directly.

– Let the deepness d ≥ 1. Run the inductive proof on the structure of p.
• If p is NOT a call of f , then the proof schema is the same as for the

corresponding clause of Lemma 3.

24

• Consider a function call

[f (p1
1, . . . , p

1
k, p

′
1, . . . , p

′
k′)](n, pos) :=

f (p1
1(n, pos), . . . , p1

k(n, pos), p′1(n, pos), . . . , p′k′(n, pos))

Since this call terminates, there must be a rule D ` T (f (n∗f)) → pf
applicable for the actual parameters of the call. According to the actual-
parameter listing, a formal parameter nsl is instantiated with the actual
parameter expressed by p′ln∗,pos . The similar holds for the first-layer
formal and corresponding actual parameters and the corresponding in-
stance of D should hold, allowing us to use the rewriting rule. Applying
the rewriting rule we obtain

[f (p1, . . . , p
′
k′)](n

∗, pos) :=
f (p1(n∗, pos), . . . , p′k′(n

∗, pos)) =
pf (p1(n∗, pos), . . . , p′k′(n

∗, pos))

We may apply induction-on-the-deepness assumption, since the deep-
ness of the recursive calls of f in pf is one less then in p. Therefore,
pf (p1(n∗, pos), . . . , p′k′(n

∗, pos)) ⊆ Lpf (p1, . . . , p
′
k′)M.

Now, as we have pointed out above, D implies LDM. Therefore we may
apply the inclusion LDM ` T (f (n∗)) ⊇ pf , more precisely, its instantia-
tion with the first-layer actual parameters and σ(n′f) for the fresh size
variables, taken from the definition of L−M for unction calls. Thus, we
obtain that

pf (p1(n∗, pos), . . . , p′k′(n
∗, pos)) ⊆

Lpf (p1, . . . , p
′
k′)M ⊆

Lpf (p1, . . . , p
′
k′)Mσ ⊆ T (f (n∗f))σ =definition Lpn∗, posM

Theorem 2 (Checking). If all called in the definition of f functions g 6= f
have valid specifications T

(
g(n∗g)

)
, and for each rule D ` f (n∗)(pos1) . . . (poss−1)→

p the inclusion LDM ` T (f (n∗)) ⊇ LpM holds then the specification T
(
f (n∗)

)
is

also valid.

Proof. Fix some n∗, pos such that the function f is defined on them. It means
that there must be a rewriting rule applicable to these parameters, say, D `
f (n∗)(pos) → p. Since this rule is used as the first rule to compute f (n∗)(pos)
we obtain that f (n∗)(pos) = p. Form Lemma 4 we obtain f (n∗)(pos) ⊆ LpM.
From the condition of the lemma we have f (n∗)(pos) ⊆ T (f (n∗)).

5 Related Work

This research extends our work [14, 17, 15] about shapely function definitions
that have a single-valued, exact input-output polynomial size functions. Our
non-monotonic framework resembles [2] in which the authors describe monotonic
resource consumption for Java bytecode by means of Cost Equation Systems
(CESs), which are similar to, but more general than recurrence equations. CESs

25

express the cost of a program in terms of the size of its input data. In a further
step, a closed-form solution or upper bound can sometimes be found by using
existing Computer Algebra Systems, such Mathematica. This work is continued
by the authors in [1], where mechanisms for solving and upper bounding CESs
are studied. However, they do not consider non-monotonic size functions.

Our approach is related to size analysis with polynomial quasi-interpre-
tations [6, 3]. There, a program is interpreted as a monotonic polynomial ex-
tended with the max operation. To our knowledge, non-monotonic quasi-interpre-
tations have not been studied for size analysis, but only for proving termina-
tion [10]. In this work one considers some unspecified algorithmically decidable
classes of non-negative and negative polynomials and introduces abstract vari-
ables for the rest.

Hoffman and Jost have presented a heap space analysis [11] to infer linear
space bound of functional programs with explicit memory deallocation. It uses
type annotations and an amortisation analysis that assign a potential, i.e. hypo-
thetical free space, to data structures. The type system ensures that the potential
to the input is an upper bound on the total memory required to satisfy all allo-
cations. They have extended their analysis to object-oriented programs [12], al-
though without an inference proceudure. Brian Campbell extended this approach
to infer bounds on stack space usage in terms of the total size of the input [7],
and recently as max-plus expressions on the depth of data structures [8]. Again,
the main difference with our work is that we not require linear size functions.

The EmBounded project aims to identify and certify resource-bounded code
in Hume, a domain-specific high-level programming language for real-time em-
bedded systems. In his thesis, Pedro Vasconcelos [18] uses abstract interpretation
to automatically infer linear approximations of the sizes of recursive data types
and the stack and heap of recursive functions written in a subset of Hume.

Several papers have studied programming languages with implicit computa-
tional complexity properties [9, 5]. This line of research is motivated both by the
perspective of automated complexity analysis and providing natural character-
isations of complexity classes like PTIME or PSPACE. Resource analysis may
also be performed within a Proof Carrying Code framework. In [4] the authors
introduce resource policies for mobile code to be run on smart devices and certify
resource bounds in a Proof Carrying Code system.

6 Conclusions and Future Work

We have presented a system that combines lower/upper bounds and higher-order
size annotations to express, type check and infer reasonable approximations for
polynomial size dependencies for strict functional programs using general lists.

Future work will include research on adding algebraic data types, making
a prototype possibly using dependent types, applying the prototype for larger
programs and transferring the results to an imperative object-oriented language.

26

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Up-
per Bounds for Recurrence Relations in Cost Analysis. In Static Analysis, 15-th
International Symposium, volume 5079 of LNCS, pages 221–237, 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In 16th European Symposium on Programming, ESOP’07, volume
4421 of LNCS, pages 157–172. Springer, 2007.

3. R. M. Amadio. Synthesis of max-plus quasi-interpretations. Fundamenta Infor-
maticae, 65(1-2):29–60, 2004.

4. D. Aspinall and K. MacKenzie. Mobile Resource Guarantees and Policies. In
G. Barthe, B. Grégoire, M. Huisman, and J.-L. Lanet, editors, CASSIS 2005, vol-
ume 3956 of LNCS, pages 16–36. Springer, 2006.

5. V. Atassi, P. Baillot, and K. Terui. Verification of Ptime Reducibility for System
F Terms: Type Inference in Dual Light Affine Logic. Logical Methods in Computer
Science, 3(4), 2007.

6. G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations, a way to
control resources. Theoretical Computer Science, 2009, to appear.

7. B. Campbell. Space Cost Analysis Using Sized Types. PhD thesis, School of Infor-
matics, University of Edinburgh, 2008.

8. B. Campbell. Amortised memory analysis using the depth of data structures. In
G. Castagna, editor, ESOP 2009, volume 5502 of LNCS, pages 190–204. Springer-
Verlag, 2009.

9. M. Gaboardi, J.-Y. Marion, and S. Ronchi Della Rocca. A logical account of
PSPACE. In 35th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages POPL 2008, San Francisco, January 10-12, 2008, Proceed-
ings, pages 121–131, 2008.

10. N. Hirokawa and A. Middeldorp. Polynomial interpretations with negative co-
efficients. In Artificial Intelligence and Symbolic Comp., volume 3249 of LNCS,
2004.

11. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order
functional programs. SIGPLAN Not., 38(1):185–197, 2003.

12. M. Hofmann and S. Jost. Type-based amortised heap-space analysis. In P. Sestoft,
editor, ESOP 2006, volume 3924 of LNCS, pages 22–37, 2006.

13. O. Shkaravska, M. van Eekelen, and A. Tamalet. Collected Size Semantics for
Functional Programs. In S.-B. Scholz, editor, Implementation and Application of
Functional Languages: 20th International Workshop, IFL 2008, Hertfordshire, UK,
2008. Revised Papers, LNCS. Springer-Verlag, 2008. to appear.

14. O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial Size Analysis
for First-Order Functions. In S. R. D. Rocca, editor, Typed Lambda Calculi and
Applications (TLCA’2007), Paris, France, volume 4583 of LNCS, pages 351–366.
Springer, 2007.

15. A. Tamalet, O. Shkaravska, and M. van Eekelen. Size Analysis of Algebraic Data
Types. In P. Achten, P. Koopman, and M. Morazán, editors, Trends in Functional
Programming Volume 9 (TFP’08). Intellect Publishers, 2009.

16. M. van Eekelen, O. Shkaravska, R. van Kesteren, B. Jacobs, E. Poll, and S. Smet-
sers. AHA: Amortized Heap Space Usage Analysis. In M. Morazán, editor, Selected
Papers of the 8th International Symposium on Trends in Functional Programming
(TFP’07), New York, USA, pages 36–53. Intellect Publishers, UK, 2007.

27

17. R. van Kesteren, O. Shkaravska, and M. van Eekelen. Inferring static non-
monotonically sized types through testing. In Proceedings of 16th International
Workshop on Functional and (Constraint) Logic Programming (WFLP’07), Paris,
France, volume 216C of ENTCS, pages 45–63, 2007.

18. P. B. Vasconcelos. Space Cost Analysis Using Sized Types. PhD thesis, School of
Computer Science, University of St. Andrews, August 2008.

28

