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ABSTRACT

Context. Scientific exploitation of large variability databases can only be fully optimized if these archives contain, besides the actual
observations, annotations about the variability class of the objects they contain. Supervised classification of observations produces
these tags, and makes it possible to generate refined candidate lists and catalogues suitable for further investigation.
Aims. We aim to extend and test the classifiers presented in a previous work against an independent dataset. We complement the
assessment of the validity of the classifiers by applying them to the set of OGLE light curves treated as variable objects of unknown
class. The results are compared to published classification results based on the so-called extractor methods.
Methods. Two complementary analyses are carried out in parallel. In both cases, the original time series of OGLE observations of
the Galactic bulge and Magellanic Clouds are processed in order to identify and characterize the frequency components. In the first
approach, the classifiers are applied to the data and the results analyzed in terms of systematic errors and differences between the
definition samples in the training set and in the extractor rules. In the second approach, the original classifiers are extended with
colour information and, again, applied to OGLE light curves.
Results. We have constructed a classification system that can process huge amounts of time series in negligible time and provide
reliable samples of the main variability classes. We have evaluated its strengths and weaknesses and provide potential users of the
classifier with a detailed description of its characteristics to aid in the interpretation of classification results. Finally, we apply the
classifiers to obtain object samples of classes not previously studied in the OGLE database and analyse the results. We pay specific
attention to the B-stars in the samples, as their pulsations are strongly dependent on metallicity.

Key words. stars: variables: general – stars: binaries: general – techniques: photometric – methods: data analysis – methods: statistical

1. Introduction

In the last decade, astronomy witnessed several major advances.
The advent of large detection arrays, the operation of robotic
telescopes and the consolidation of high duty cycle space mis-
sions have provided astronomers with a wealth of observations
with unprecedented sensitivity in virtually the whole electro-
magnetic spectrum during long uninterrupted periods of time. At
the same time, the ever-growing storage capacity of digital de-
vices has made it possible to archive and make these enormous
datasets available. The consolidation of the Virtual Observatory
(VO) technology and the interoperability provided by its services
make it possible for the astronomer to work consistently on large
portions of the electromagnetic spectrum, combining different
data models (magnitudes, colours, spectra, radial velocities, etc).

The traditional procedures for data reduction and analysis
do not scale with the sizes of the available data warehouses.
Some of its components have been automated and can now be
carried out in a systematic way, but it is becoming evident that
optimal scientific exploitation of these databases requires the

� Variability catalogue is only available in electronic form at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or
via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/494/739

addition of information inferred from the observed data to en-
able the extraction of homogeneous (in some sense) samples of
observations for further specific studies that could not be applied
to the entire database. The process by which this added value is
extracted is widely known as Knowledge Discovery and relies
mostly on recent advances in the artificial intelligence fields of
pattern recognition, statistical learning or multi-agent systems.

The use of these new techniques has the particular advan-
tage that, once accepted that every search for a given type of
object is biased ab initio by the adopted definition of that class,
automatic classifiers produce consistent object lists according to
the same objective and stable criteria openly declared in the so-
called training set. We thus eliminate subjective and unquantifi-
able considerations inherent to, for example, visual inspection
and produce object samples comparable across different surveys.

Altogether, the integration of Computer Science techniques
(Grid computing, Artificial Intelligence and VO technology) and
domain knowledge (physics in this case), and the new possibil-
ities that this synergy offers are known as e-Science. Science
proceeds in much the same way as before; the e- prefix only pro-
vides the basis to approach more ambitious scientific challenges,
feasible on the grounds of more and better quality data.

In Debosscher et al. (2007, hereafter Paper I) we introduced
the problem of the scientific analysis of variable objects and
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Table 1. Published catalogues used in comparison with the outcome of our classifiers.

Variability class Source object Reference Number of objects
RR Lyrae LMC Soszynski et al. (2003) 5455 (RRab); 1655 (RRc); 272 (RRe); 230 (RRd)
RR Lyrae SMC Soszynski et al. (2002) 458 (RRab); 56 (RRc); 57 (RRd)
Cepheids LMC Udalski et al. (1999b) 1335
Cepheids SMC Udalski et al. (1999c) 2049

Double mode Cepheids LMC Soszynski et al. (2000) 81
Double mode Cepheids SMC Udalski et al. (1999a) 95

Pop. II Cepheids LMC Kubiak & Udalski (2003) 14
Pop. II Cepheids bulge Kubiak & Udalski (2003) 54

Eclipsing binaries LMC Wyrzykowski et al. (2003) 2580
Eclipsing binaries SMC Wyrzykowski et al. (2004) 1350
Eclipsing binaries LMC Groenewegen (2005) 178
Eclipsing binaries SMC Groenewegen (2005) 16
Eclipsing binaries Bulge Groenewegen (2005) 2053

Long period Variables LMC Soszynski et al. (2005) 3221
Mira Bulge Matsunaga et al. (2005) 1968
Mira Bulge Groenewegen & Blommaert (2005) 2691

Various Bulge Mizerski & Bejger (2002) 4597
δ-Scuti Bulge Pigulski et al. (2006) 193

proposed several methods to classify new objects on the ba-
sis of their photometric time series. The OGLE database (see
Sect. 2 for a summary of its objectives and characteristics) exem-
plifies some of the difficulties described in previous paragraphs.
Although not its principal target, the OGLE survey has produced
as a by-product hundreds of thousands of light curves of objects
in the Galactic bulge and in the Large and Small Magellanic
Clouds. These light curves have been analysed using the so-
called extractor methods. Extractor methods can be assimilated
to the classical rule-based systems where the target objects are
identified by defining characteristic attribute ranges (where at-
tribute is to be interpreted as any of the parameters used to de-
scribe the object light curves such as the significant frequencies,
harmonic amplitudes or phase differences) where these objects
must lie. In a subsequent stage, individual light curves are vi-
sually inspected and the object samples refined on a per object
basis.

In this work we also present an extension of the classifiers
defined in Paper I, to handle photometric colours. In Sect. 2 we
summarize the objectives and characteristics of the OGLE sur-
vey; Sect. 3 describes the sources and criteria used for the as-
signment of colours to the training set and Sect. 4 compares the
results of the application of the classifiers (both with and without
colours) to the OGLE database (bulge and Magellanic Clouds)
with object lists available in the literature (obtained by means
of extractor methods and human intervention) for a reduced set
of classes. Finally, we analyse the object lists obtained with our
classifiers for special classes in the realm of multiperiodic vari-
ables, not previously studied in an extensive way (to the best of
our knowledge) in the context of the OGLE database.

2. The OGLE database and its published catalogues
of variables

The Optical Gravitational Lensing Experiment (OGLE) is a long
term joint microlensing survey aimed at detecting the Galaxy
dark matter halo by its bending effect on the light coming from
background stars. As a by-product, the project has been gener-
ating light curves of millions of stars of varying signal-to-noise
ratiosx. The project has undergone several major upgrades. The
data treated here belong to the OGLE-II phase of the project.

The OGLE database at the time of writing contains time se-
ries of several hundred thousand variable objects, all of which
have been analysed by us, using the codes and techniques pre-
sented in Paper I. The bulge, LMC and SMC OGLE catalogues
have been searched for particular variability types in the past
(see Table 1) using extractor methods. In the following sections
we briefly describe, where possible, the extraction rules used in
the construction of each of the catalogues in order to provide
a proper framework for the analysis of the classification results
and to facilitate the explanation of possible discrepancies.

In Table 1 we include information on the number of objects
in each of the published catalogues. These numbers include dou-
ble detections in overlapping zones across different fields. We
include these double detections because they are represented by
independent light curves, and we are mainly interested in the
true/false positive/negative detection rates, not so much in the
objects lists themselves (except in the analysis of multiperiodic
variables).

The classifiers presented in Paper I and the colour exten-
sions presented here and discussed below were applied to the
OGLE LMC/SMC (Zebrun et al. 2001) and Galactic Bulge
(Wozniak et al. 2002) catalogues as downloaded from http://
bulge.astro.princeton.edu/~ogle/ogle2/dia/ and
ftp://bulge.princeton.edu/~ogle/ogle2/bulge_dia_
variables respectively. Again, these catalogues contain
duplicate entries that we kept for the same reasons as above.
According to Eyer (2002) and Eyer & Woźniak (2001), the
catalogues include spurious detections of variable objects. In
Eyer (2002), these spurious detections are discussed and several
systematic effects identified (chip perturbations, mirror realu-
minization and proximity to bright objects). In Eyer & Woźniak
(2001), the authors discover a type of artifact introduced by the
difference image analyses (DIA) consisting of the occurrence
of pairs of monotonic anti-correlated light curves as a result of
the presence of high proper motion stars in dense fields. The
impact of these artifacts is restricted to the Bulge fields and,
since i) they do not result in periodic signals and ii) systematic
trends are removed from the fits to the data (see Paper I), we do
not expect them to affect our results significantly.

The detailed study of the first type of artifacts is out of the
scope of this work. Nevertheless, it would be extremely inter-
esting to investigate how these artifacts are classified by our

http://bulge.astro.princeton.edu/~ogle/ogle2/dia/
http://bulge.astro.princeton.edu/~ogle/ogle2/dia/
ftp://bulge.princeton.edu/~ogle/ogle2/bulge_dia_variables
ftp://bulge.princeton.edu/~ogle/ogle2/bulge_dia_variables
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algorithms and, most importantly, the possibility of detecting
them as a separate group by using clustering techniques. This
is presently being studied as part of the Gaia effort to ensure a
robust data processing pipeline.

In the five following subsections we discuss the work in the
literature already done from the OGLE light curves. We regard
these “human” classification results as correct and compare our
automated results with them to evaluate the latter.

2.1. RR Lyrae variables

The selection of the RR Lyrae variables in the OGLE catalogues
was made in several stages (see Soszynski et al. 2002 for the
SMC; and Soszynski et al. 2003 for the LMC). In the first stage,
variable stars were identified on the basis of the standard de-
viation of all individual OGLE PSF measurements. Their light
curves were analysed using the Analysis of Variance (AoV)
algorithm and all objects showing statistically significant peri-
odic signals were then visually inspected and manually classified
into one of several classes. In the second stage, DIA photome-
try was used to select candidates with I magnitudes between 15
and 20 for the LMC (18.4 and 19.4 for the SMC), and with
standard deviations at least 0.01 mag above the median value
of the standard deviations of stars of equal brightness for the
LMC (0.02 for the SMC in the I band and 0.05 for the V band).
Again, periodic signals were searched for, and stars with periods
longer than 1 day and/or signal-to-noise ratios below 3.5 were
rejected. Then, Fourier analysis was performed and unspecified
rules were applied to extract each of the RR Lyrae subtypes.
Single mode pulsators were selected according to their posi-
tion in the log P − R21(= A12

A11
) and log P − amplitude diagrams,

where R21 =
A12
A11

is the amplitude ratio of the first two harmonics
of the first significant frequency. The separation of first over-
tone pulsators is based on a threshold of P > 0.26 d. Second
overtone pulsators were selected amongst stars with periods be-
low 0.3 days as those with low amplitude sinusoidal light curves,
which involves again visual inspection of the light curves one
by one. Finally, double mode pulsators were sought by select-
ing those stars with statistically significant second frequencies
at a ratio close to 0.745 of the first one. Again, all light curves
and power spectra were carefully inspected before they were in-
cluded in the double mode RR Lyrae stars catalogue.

Bulge RR Lyrae variables in Sumi (2004) were selected by
fitting an ellipse to the locus of stars in a diagram represent-
ing the ratio of the second to first harmonic amplitude (R21)
and the phase difference between these harmonics (φ21 or PH12
in Paper I; see e.g. Fig. 5), and using a hard threshold deci-
sion boundary, according to the method first proposed by Alard
(1996). The ellipse is centered on (4.5 rad, 0.43) with semi-major
axis a = 0.8 and semi-minor axis b = 0.17, and the angle be-
tween the horizontal and the major axis is −10 deg. These can-
didates have been further refined and analysed in a recent study
by Collinge et al. (2006).

2.2. Cepheids

The catalogues of Cepheid variables in the OGLE database
have been presented in Kubiak & Udalski (2003), Udalski et al.
(1999b) and Udalski et al. (1999c). In the identification of
Cepheids, objects with I magnitudes brighter that 19.5 (LMC)
and 20 (SMC) were selected for further analysis based on the
visual inspection of the light curves and their position in the
colour−magnitude diagram (CMD). The region occupied by

Cepheid pulsators has been defined by the authors to be upper
bounded by I < 18.5 and delimited in colour by 0.25 < V − I <
1.3. Objects with no available colours or colours to the right of
the red boundary were recovered if their light curves were con-
spicuously of the Cepheid type. Again, visual inspection of all
light curves was a main ingredient of the classification process.

Double mode Cepheids were identified amongst Cepheids
by fixing the range of allowed frequency ratios to 0.735 ± 0.02
(first overtone to fundamental mode) or 0.805 ± 0.02 (second to
first overtone) in the case of the prewhitened search for second
periods from Fourier Analysis, and the same ratios ±0.015 for
the application of the CLEAN algorithm (Roberts et al. 1987).
See Udalski et al. (1999a) and Soszynski et al. (2000) for the
SMC and LMC catalogues respectively.

The catalogue of Population II Cepheids in the bulge has
been presented in Kubiak & Udalski (2003). It is defined in the
period range between 0.6 and a few days and, again, the selection
was based on the visual inspection of the light curve shapes and
their similarities to those described by Diethelm (1983).

2.3. Eclipsing binaries

Eclipsing binaries in the Large and Small Magellanic Clouds
have been extracted using different methods. While the SMC
eclipsing binaries were identified on the basis of visual in-
spection of the folded light curves of all variable objects
(Wyrzykowski et al. 2004), LMC eclipsing binaries were pre-
selected by a neural network (Wyrzykowski et al. 2003). An ar-
tificial neural network was trained on two dimensional images
of folded light curves of the first field (LMC_SC1), selected to
separate unseen light curves into three main types: eclipsing, si-
nusoidal and saw-shape. The training proceeded until the mean
training error1 was below 10−8. Then, the refinement and sub-
classification of the eclipsing candidates was carried out by vi-
sual inspection of the folded light curves.

Groenewegen (2005) has constructed a catalogue of candi-
date eclipsing binary systems in the Galactic bulge suitable for
distance estimation (mainly detached systems), based on the sta-
tistical properties of the phased light curve and subsequent vi-
sual inspection. Furthermore, Mizerski & Bejger (2002) have
provided a list of candidate W UMa systems based on typical
values of the Fourier coefficients of their light curve decomposi-
tions calculated by Rucinski (1993).

2.4. Long period variables

Catalogues of Mira and semiregular Variables in the LMC have
been presented in Soszynski et al. (2004, 2005). The frequency
analysis was similar to the one described for all previous vari-
ability types and the selection criteria were based on the I band
magnitude (I < 17) and on the position in the period-NIR
Wessenheit index diagram. In this diagram, sequences C and C′
(see Wood et al. 1999) were identified as Miras and semiregu-
lar Variables. Furthermore, stars in the B sequence can also be
assigned to the Mira-semiregular category if the secondary pe-
riod falls in any sequence except sequence A. No quantitative
criterion was given to separate sequences in the plot, so the as-
signment of a star to any of the sequences is subjective.

1 This is the resampling error estimate mentioned in Paper I. Assessing
the error rates of a classifier by judging its performance on the same
examples used in its training produces overly optimistic estimates of
the error. These unrealistic estimates cannot be reproduced when the
classifier is applied to previously unseen objects.
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Fig. 1. Training set colours. Black dots indicate training set objects in the Galaxy whereas red circles correspond to the classes defined with OGLE
members, i.e. eclipsing binaries and double mode Cepheids and RR Lyrae stars.

Recently, Groenewegen & Blommaert (2005) and
Matsunaga et al. (2005) have published catalogues of Mira
variables in the Galactic bulge. The selection criterion in the
first case was simply based on I-band light curve amplitudes
(in the sense of peak-to-peak range) above 0.9 mag followed
by visual inspection, and resulted in a sample of 2691 objects.
In the second catalogue, the selection criteria were periods
above 100 days, amplitudes larger than 1.0 in the V magnitude
and θ values (the phase dispersion minimization regularity indi-
cator) below 0.6, followed by visual inspection. This resulted in
a sample of 1968 Mira variables in the OGLE bulge fields.

2.5. Delta Scuti stars in the Galactic bulge

Mizerski & Bejger (2002) and Pigulski et al. (2006) have pub-
lished lists of high amplitude δ Scuti (HADS) stars in the bulge
fields. In the first case (only the first bulge field), no criterion was
given for the selection of the 11 HADS candidates but reference
is made to the use of luminosities in the identification process.
In the second work, a HADS star was defined as a star with a
period less than 0.25 days for which at least one harmonic of
the main mode was detected and which was not an RR Lyrae
star or W UMa system (distinguished by means of the Fourier
coefficients and visual inspection of the light curve).

3. The extended classifier: using colour information

All objects in the bulge, LMC and SMC OGLE catalogues were
subject to the frequency analysis described in Paper I. The final
numbers of objects analysed with this method are 50708 in the
LMC, 14473 in the SMC and 214786 in the Galactic bulge.

In an effort to improve the performance of the classifiers
presented in Paper I, we have constructed alternative ones with
colour information added to the basic time series parameters de-
scribed therein. This is not a mere upgrade making the previous
release obsolete since many archives provide no colour infor-
mation for classification. This is the case, for example, for the
Optical Monitoring Camera onboard INTEGRAL, that has re-
turned thousands of light curves, only a small fraction of which
have diachronic colours available.

The process to incorporate photometric colours in the clas-
sifiers followed the same scheme described in Paper I for the
time series classifiers. For the training set presented there, a
search was conducted in the Hipparcos catalogue (Perryman &
ESA 1997) and SIMBAD in order to retrieve magnitudes in the
Johnson photometric system. Johnson’s colours for training set
objects from the OGLE database (double mode pulsators and
eclipsing binaries) were preferentially retrieved from the cata-
logues by Wyrzykowski et al. (2003), Soszynski et al. (2000),
and Soszynski et al. (2002). Additionally, the 2MASS catalogue

of Cutri et al. (2003) was searched for counterparts in order to
add the J−H and H −K colour attributes to the original training
set. The search was conducted imposing a 3 arcsec search radius
and quality flags A and/or B in the three bands.

Synchronicity between the observations in the different pass-
bands cannot be assured when only SIMBAD colours were avail-
able. This is especially relevant for the case of large ampli-
tude variables where observations in opposite phases of the light
curve can lead to totally erroneous colour indices. Fortunately,
the vast majority of training examples of large amplitude classes
are taken either from the HIPPARCOS/Tycho catalogue or from
the OGLE database itself, thus minimizing the impact of di-
achronic observations in our training set.

The inclusion of colour information was done separately for
several colour sets. In order to assess the relevance of the infrared
colours for the classification task, two versions of the train-
ing set (with and without 2MASS colours) were constructed.
Additionally, two versions of each training set (with and with-
out the B−V colour) were created. The reason for this is the fact
that we were not able to obtain B−V colours for a large fraction
of the OGLE bulge variables. Therefore, the assessment of the
classifier results conducted on bulge variables (see below) only
incorporates the V − I and 2MASS colours.

As a result, B − V , V − I, J − H and H − K colours were
obtained for at least 77% of the stars in the training set (1344
of 1754 instances). The exact sizes of each training set are as
follows:

1. V − I: 1602 instances;
2. B − V and V − I: 1592 instances;
3. V − I, J − H and H − K: 1348 instances;
4. B − V , V − I, J − H and H − K: 1344 instances.

Figure 1 shows two colour−colour diagrams for Johnson and
2MASS photometry of the training set.

Strömgren colours were also searched in the catalogue by
Hauck & Mermilliod (1998). Unfortunately, they were only
found to be available for a much smaller fraction (less than 50%)
of the training set and covering only certain variability classes,
leaving the less frequent ones almost unrepresented. A complete
classifier with ability to predict classes using Strömgren colours
has been developed only for multiperiodic variables, where the
impact of such information was found to be optimal, but will not
be the subject of analysis in the following.

Colours for the OGLE Galactic bulge, LMC and SMC ob-
jects used for testing were obtained from the 2MASS and OGLE
databases. 2MASS objects within a search radius of 3 arcsec
and quality flags A or B were assumed to be counterparts of
the OGLE objects. With these parameters, we retrieve 43351
instances (objects) with Johnson colours (B − V and V − I)
amongst the 50708 LMC objects (see Sect. 2), and 26720 with

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=1
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Fig. 2. Colour−colour diagrams of the eclipsing binaries in the Hipparcos (black dots) and OGLE (red circles) catalogues.
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combined Johnson and 2MASS colours; 12425 SMC objects
with Johnson colours and 6937 with Johnson and 2MASS
colours; and 137179 bulge objects with V − I (all of which
have 2MASS photometry too). The fraction of bulge objects with
B − V colours available was so small that we preferred to work
with V − I and 2MASS photometry alone.

We have found a systematic difference in the J − H colours
of eclipsing binaries in the Hipparcos sample and in the OGLE
LMC catalogue. Figure 2 shows two colour−colour diagrams of
Hipparcos and OGLE LMC eclipsing binaries in Johnson and
2MASS photometric bands respectively.

Visual inspection of the plots reveals what seems a selection
effect in the choice of eclipsing binaries for the training set. The
reason for choosing OGLE eclipsing systems (all from the LMC)
is their very good sampling quality. It seems that favouring high
signal-to-noise ratios has biased the sample towards blue objects
with an unexplained excess in the J − H colour. We have not
found a plausible explanation for the concurrence of both effects
but we expect to improve the eclipsing binaries prototypes in the
training set with new examples from the CoRoT database.

All objects from the OGLE database (either in the training
set or in the test set) have been dereddened using OGLE ex-
tinction maps: Udalski et al. (1999b) for the LMC and Udalski
et al. (1999c) for the SMC. Objects in the Galactic bulge were
dereddened using the extinction maps by Sumi (2004). The ex-
tiction values of OGLE field number 44 (missing in the orig-
inal work due to the lack of red clump giants well above
the V band detection limit) are approximated by the corre-
sponding values in the closest OGLE field (number 5). All
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Fig. 5. The φ21 − R21 plane of RRAB stars (90% decision threshold) in
the bulge. The ellipse shows the decision boundary adopted by Sumi
(2004) and Collinge et al. (2006).

extinction maps were combined with the classical CCM extinc-
tion curve by Cardelli et al. (1989). For bulge variables this ex-
tinction curve produces corrections indistinguishable from those
of Draine (2003) used by Groenewegen & Blommaert (2005)
in their analysis of Mira variables. Gordon et al. (2003) have
studied the validity of the classical CCM relationship for the
Magellanic Clouds. Figures 2−6 in their work seem to suggest
that the CCM curve is a safe approximation (to within the mea-
surement errors) of the Magellanic Clouds extinction curves in
the infrared bands considered here.

Unfortunately, the reddening correction applied to the colour
indices and described above will only produce strictly valid re-
sults for stars at the mean distance of the red clump giants used in
the derivation of the extinction maps.Our correction may be less

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=5
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accurate for other stars, but we do not have a better one available
at present.

4. Classification results

In the following, we will refer to the sets of objects classified
in one of the categories described in Sect. 2 as class samples
(e.g., the RR Lyrae sample or the Cepheids sample). In this sec-
tion we will compare the results obtained by the automatic clas-
sifiers with those found in the literature. We have applied the
battery of classifiers presented in Paper I and their extensions to
treat colour information, to the OGLE LMC/SMC (Zebrun et al.
2001) and bulge (Wozniak et al. 2002) variability archives. Full
results of the comparison of the statistical performance of the
different classifiers will be published in a specialized journal.
Here we only report on the overall best performing algorithm,
the multi-stage classifier based on Bayesian Networks (MSBN)
as well as on the Gaussian Mixtures classifier (GM), which was
described in Paper I. The latter is simpler in its design and inter-
pretation and works better than the former for the low-amplitude
multiperiodic pulsator classes SPB and γ-Doradus. It is thus best
suited to retrieve these types of asteroseismological targets (e.g.
Cunha et al. 2007, for a review). The MSBN classifier on the
other hand works better for the larger-amplitude monoperiodic
variables (including eclipsing binaries), and for the other types
of multiperiodic variables such as BCEP or DSCUT stars.

The multi-stage classifier based on Bayesian Networks
(MSBN) takes advantage of several feature selection steps
adapted to each classification problem. Trying to select a global
feature set for the classification of the entire set of 35 classes
results in a suboptimal trade-off because attributes crucial for
the separation of two classes close to each other in the param-
eter space can be irrelevant in identifying the remaining 33. On
the contrary, dividing the classification problem in several stages
where smaller problems are tackled allows for the particularized
selection of feature sets that are optimal in each step.

Several alternative groupings and orderings were attempted
and different algorithms tried in each step and the resulting per-
formances were either equal to or poorer using standard hypoth-
esis testing procedures. Although the search could never have
been exhaustive, the most reasonable combinations of groups of
classes, orderings and attribute selection techniques have been
explored, the one presented here resulting in the best overall
performance. The classification algorithms tried include neu-
ral networks, Bayesian networks, support vector machines and
Bayesian ensembles of neural networks; feature selection tech-
niques include the wrapper approach for those algorithms where
computation time made it feasible, and attribute set scores based
on correlation, mutual information and symmetrical uncertainty
between attributes and the class.

Table 2. Stellar variability classes and the code abbreviation used in
Paper I.

Class Abbreviation
Periodically variable supergiants PVSG

Pulsating Be-stars BE
β-Cephei stars BCEP

Classical Cepheids CLCEP
Beat (double-mode)-Cepheids DMCEP

Population II Cepheids PTCEP
Chemically peculiar stars CP

δ-Scuti stars DSCUT
λ-Bootis stars LBOO
SX-Phe stars SXPHE
γ-Doradus stars GDOR

Luminous Blue Variables LBV
Mira stars MIRA

Semi-Regular stars SR
RR-Lyrae, type RRab RRAB
RR-Lyrae, type RRc RRC
RR-Lyrae, type RRd RRD

RV-Tauri stars RVTAU
Slowly-pulsating B stars SPB

Solar-like oscillations in red giants SLR
Pulsating subdwarf B stars SDBV
Pulsating DA white dwarfs DAV
Pulsating DB white dwarfs DBV

GW-Virginis stars GWVIR
Rapidly oscillating Ap stars ROAP

T-Tauri stars TTAU
Herbig-Ae/Be stars HAEBE

FU-Ori stars FUORI
Wolf-Rayet stars WR
X-Ray binaries XB

Cataclysmic variables CV
Eclipsing binary, type EA EA
Eclipsing binary, type EB EB
Eclipsing binary, type EW EW

Ellipsoidal binaries ELL

The MSBN has four stages of dichotomic classifiers, one for
each of the main categories of classical variables: stage 1 to sep-
arate eclipsing from non-eclipsing variables; stage 2 to separate
Cepheids and non-Cepheids; stage 3 to separate the long pe-
riod variables from the rest, and stage 4 to separate RR Lyrae
variables from the rest (stage 6 is also dichotomic, but corre-
sponds to a more specialized level that separates long period
variables into the Mira and Semiregular types). It starts with
a first dichotomic classifier that attempts to separate eclipsing
binaries from all other variability types. The attribute set used
in the first and subsequent stages is listed in Table 3. The sec-
ond dichotomic stage separates the group of classes CLCEP,
PTCEP, RVTAU and DMCEP (see Table 2, an abridged ver-
sion of Table 2 in Paper I, for class abbreviations) from all other

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=6
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Table 3. Attributes used in each classification stage by the sequential classifier. Abbreviations used are as follows: log- f i represents the logarithm
of the ith frequency; log- f i- f j is the logarithm of the ratio f i/ f j; afi represents the sum of squares of the harmonic amplitudes in frequency i;
log-a f ih j-t is the logarithm of the total amplitude of the jth harmonic of the ith frequency; log-cr f i j is the logarithm of the jth ratio of harmonic
amplitudes of the ith frequency ( j = 0 corresponds to the ratio of the amplitude of the second harmonic over that of the first, j = 1, to the ratio
of the amplitude of the third harmonic over that of the first and so on); log-cr f ih j- f i′h j′ represents the logarithm of the amplitude ratio between
harmonics j and j′ of frequencies i and i′ respectively; pd f i j is the jth phase difference between the various harmonics of the ith frequency ( j = 0
corresponds to the first and second harmonics, j = 1, to the third and first harmonics, and so on); varrat represents the variance ratio defined in
Paper I.

Stage Classes and attributes
1 Eclipsing/non eclipsing

log- f 3, log- f 2- f 1, log-a f 1h1-t, log-cr f 10, log-cr f 15, log-cr f 20, log-cr f 25, log-cr f 32, log-cr f 33, pd f 12, pd f 13, pd f 14, pd f 23
2 Cepheids/non Cepheids

log- f 1, log- f 2- f 1, a f 1, a f 2, log-a f 1h1-t, log-a f 1h2-t, log-cr f 3h1- f 1h1, log-cr f 10, log-cr f 11, log-cr f 14, pd f 12, varrat
3 Red giants/non red giants

log- f 1, log- f 2, log- f 3, log- f 2- f 1, a f 1, a f 2, log-a f 1h1-t, log-a f 2h3-t, log-cr f 21, log-cr f 24, log-cr f 30
4 RR Lyrae/Non RR Lyrae

log- f 1, a f 1, log-a f 1h1-t, log-a f 3h1-t, log-cr f 3h1- f 1h1, log-cr f 11, log-cr f 14, pd f 12, pd f 13
5 CLCEP/DMCEP/PTCEP/RVTAU

log- f 1, log-a f 1h1-t, log-a f 2h3-t, log-a f 2h4-t, log-a f 3h4-t, log-cr f 12, log-cr f 32, pd f 12, varrat
6 MIRA/SR

a f 1, log-a f 1h1-t, log-a f 1h3-t, log-a f 2h4-t, log-a f 3h3-t, varrat
7 RRAB/RRC/RRD

log- f 1, log- f 2- f 1, a f 1, log-a f 1h2-t, log-cr f 2h1- f 1h1, log-cr f 10, pd f 12, varrat
8 PVSG BE BCEP CP DSCUT ELL GDOR HAEBE HMXB LBOO LBV PTCEP ROAP SPB SXPHE TTAU WR FUORI PSDB

log- f 1, log-a f 2h1-t, log-cr f 2h1- f 1h1, log-cr f 10, log-cr f 13

Table 4. Number of RR Lyrae stars according to the OGLE catalogues and correctly identified by the Gaussian Mixtures (GM) and multistage
Bayesian networks (MSBN) classifiers presented here. The table lists the number of stars in the OGLE catalogues with a clear counterpart in the
OGLE variability database and, subsequently, the fraction of these with available visible and visible+2MASS colours.

Catalogue Source Potential detections GM MSBN
NC +(B)VI +JHK NC +(B)VI NC +(B)VI +JHK

OGLE RR Lyrae LMC 2790 2558 137 2014 1819 2597 2457 117
OGLE RR Lyrae SMC 93 87 2 63 61 89 85 2
OGLE RR Lyrae bulge 70 69 69 61 61 61 61 53

classes. Then, a third classifier attempts to identify the group of
long period variables (MIRA and SR) and a fourth classifier sep-
arates RR Lyrae stars (RRAB, RRC and RRD) from the rest of
the classes. Complementary to these, there are specialized classi-
fiers that separate classes within groups. There is a classifier for
Cepheids that classifies CLCEP, PTCEP, RVTAU and DMCEP,
and equivalent classifiers for long period variables and RR Lyrae
stars. The subclassification of eclipsing binaries is made accord-
ing to the methodology described in Sarro et al. (2006). Finally,
there is a classifier that separates all other classes not included
in the groupings described above, i.e. irregular and most mul-
tiperiodic variables. The complete class probability vector for
an object is computed combining the output from all classifiers.
For example, the probability of belonging to class RRC is the
probability of not being an eclipsing binary (stage 1) times the
probability of not being a Cepheid (stage 2) times the probability
of not being a long period variable (stage 3) times the probability
of being an RR Lyrae pulsator (stage 4) times the probability of
being an RRC pulsating star (stage 7).

In the next sections, the classifiers are applied to the entire
list of objects flagged by the OGLE team as variable. Also, they
are applied to the object samples referenced in Sect. 2. Again, it
has to be born in mind that not all objects in the samples have
been identified by the algorithms described in Paper I as having
at least a significant frequency and therefore, the column named
“Total number of objects” in the following tables always refers
to this set of objects fulfilling the two criteria: being identified

in the literature as belonging to a variability class and with a
positive frequency identification.

In general, the three populations observed by OGLE (the
Galactic bulge and the Large and Small Magellanic Clouds) are
very different from a statistical point of view. In this work we
have found it clearer to illustrate the performance of the clas-
sifiers with plots of the LMC samples since they represent a
compromise in the number of stars in each sample, both suffi-
cient for statistical purposes and, at the same time, not so large
that the plots become uninterpretable. Equivalent plots for the
Galactic Bulge populations are included as online material (cor-
responding to the results presented by Mizerski & Bejger (2002)
for the first bulge field) while SMC figures can be obtained upon
request from the authors.

4.1. RR Lyrae stars

Table 4 summarizes results obtained with each of the classifiers
(GM and MSBN) on OGLE data without colours added (NC),
with B−V and V−I colours (+BVI) and with all colours (+JHK).
The experiments in the bulge did not include B − V for the rea-
sons explained in Sect. 3. The Gaussian Mixtures classifier only
makes use of the B − V colour index except in the bulge where
only the V − I colour index was used.

In the LMC, Soszynski et al. (2003) found 7612 RR Lyrae
stars. A search was performed in the OGLE variability database
using the coordinates provided by the authors in the electronic



746 L. M. Sarro et al.: Automated supervised classification of variable stars. II.

Table 5. Confusion matrix for the RR Lyrae subtypes. Each column
lists the number of objects of a given subtype (shown as column header)
classified as all possible subtypes.

GM MSBN
RRAB RRC RRD RRAB RRC RRD

RRAB 1913 1 0 2420 4 2
RRC 0 22 0 3 76 0
RRD 1 21 54 21 14 53

version of the catalogue. This search only produced photometric
time series for 2734 (plus 56 double mode pulsators published
in a separate catalogue). The situation is analogous to the SMC
where Soszynski et al. (2002) list a total of 571 RR Lyrae stars
but we are only able to identify corresponding entries in the vari-
ability database for 89 (plus 4 double mode pulsators that we will
not include in the study since these systems are part of the train-
ing set). We have found no explanation for this large discrepancy
and thus, in the following we compare our detection rate with
these total numbers (2790 for the LMC and 89 for the SMC).

In the LMC, the multistage classifier based on Bayesian
Networks correctly identifies as RR Lyrae 2597 of the 2790 stars
(93%) classified as such by the OGLE team. The percentage
increases to a 96% when BVI colours are used as attributes
for classification. In the SMC, the percentage increases up to
a 95.5% without colours and 98% with BVI colours. As could
be expected, the low signal to noise ratios of the 2MASS detec-
tions worsens the percentages down to 85% in the LMC while
the SMC detection rate is too low to draw significant conclu-
sions. In the bulge, the same classifier has a performance of
87−88% working on time series attributes alone (NC) or with
the V − I colour index added, and 77% when 2MASS colours
are incorporated.

The largest errors of the sequential classifier in these cat-
egory of variable stars are RR Lyrae systems misclassified as
double mode Cepheids or eclipsing binaries. This is interpreted
as the effect of overfitting to the training set, that is, as a conse-
quence of the fact that DMCEP (see Table 2 for abbreviations)
and eclipsing binaries are the only classes, together with double
mode RR Lyrae stars, whose training examples are taken from
the OGLE database. In this sense, the classifier is recognizing
similarities likely due to the observational setup of the OGLE
survey and common to the three classes whose prototypes are
taken from its database. The GM classifier is clearly more ro-
bust against overfitting as shown in the table and in the section
devoted to the analysis of Cepheid stars.

The RR Lyrae sample compiled by the OGLE team also pro-
vides subtype information. Therefore, we can further compare
the subclassification of RR Lyrae stars into one of its subclasses:
RRab, RRc and RRd. Table 5 summarizes the confusion ma-
trix obtained with the sequential classifier based on Bayesian
networks and with the GM classifier when applied to the LMC
sample without colours.

Obviously, the True Positive Rate (TPR) is not the only way
to measure the success of a classifier. The false positive rate
(FPR, the number of non members of the class mistakenly clas-
sified as such) for a given class is also a good measure that
quantifies the contamination degree of the resulting samples.
Unfortunately, we can only measure the FPR coming from the
OGLE sample classes other than RR Lyrae, described in Sect. 2.
However, we can find useful hints of the true FPR for exam-
ple by looking at the definition plots of the RR Lyrae class.
When applied to the whole of the LMC (SMC) database with

50708 (14473) instances, the sequential classifier finds 3019
(273) RRab candidates, 131 (18) RRc candidates and 335 (88)
RRd candidates. We again attribute the large numbers of double
mode pulsators to the use of OGLE examples of this class in the
training set. Figures 3 and 4 show the position of the LMC can-
didates produced by the Bayesian and Gaussian Mixtures classi-
fiers in the log(P) − R21 and log(P) − φ21 diagrams.

The plots were constructed with all instances that fulfilled
the condition that the class probability given the data (p(Ck|D))
was higher for RR Lyrae subtypes than for any other class.
The plots can be adapted to a given decision threshold: setting
p(Ck = RR Lyrae|D) > 0.9 in the sequential classifier, for exam-
ple, removes most of the conspicuous ghost frequencies around
log(P) = 0,−0.3,−0.5 (P in days) and most other stars not in the
dense loci of the RR Lyrae subtypes. Similar thresholds can be
defined for the GM classifier in terms of the Mahalanobis dis-
tance to the center of the cluster.

A comparison with the results by Collinge et al. (2006) is
shown in Fig. 5. As summarized in Sect. 2, they identify 1888
fundamental mode RR Lyrae candidates in the bulge plus 25 rep-
etitions in overlapping regions between fields. The MSBN clas-
sifier finds 1862 (97%) candidates inside the ellipse that defines
the RRab locus according to Sumi (2004). Besides these, the
MSBN classifier provides 756 new candidates, not all inside the
ellipse.

One may wonder where the new RR Lyrae candidates are
located in the parameter space. Since this space has a large num-
ber of dimensions, it will prove useful to project it onto planes
as with previous plots. Figure 6 shows two such projections onto
the log(P) − R21 and φ21 − R21 planes for stars in the LMC clas-
sified by the MSBN classifier as RR Lyrae, the latter plane be-
ing the one used by Collinge et al. (2006) to define the bulge
sample of RR Lyrae stars. The first plot shows superimposed
the contours of the probability density functions constructed us-
ing standard kernel methods applied to the RR Lyrae samples
provided by the OGLE team. Both plots clearly show how the
new candidates (with probabilities above 90%) fall mostly in the
RR Lyrae locus. Although a detailed analysis of all new candi-
dates in all the following categories is beyond the scope of this
article, we have randomly checked some folded light curves of
the new candidates such as those shown in Fig. 7. Most of the
new candidates have folded light curves similar to those in the
left and upper right panels of the figure with varying signal-to-
noise ratios. We show, for the sake of completeness, the folded
light curve of a star with a class assignment of RR Lyrae (with
a low probability, though) and characterized by a low statisti-
cal significance of the frequency detection. It helps us exemplify
why and how, imposing more stringent significance thresholds
on the frequency detection, we can remove poor quality candi-
dates from the lists.

4.2. Cepheids

Table 6 lists the results obtained for the LMC with the same clas-
sifiers tested in the previous section. In this case, the best perfor-
mances (achieved by the MSBN classifier) in the LMC are of
94% without colours, 99% with BVI photometry and 98% with
BVI plus JHK photometry. These performances are around 85%
in the SMC although the use of 2MASS photometry increases
the true positive rate back to 95%. In the bulge, we recover 93%
without colours, and 90% and 98% adding V − I and 2MASS
photometry respectively. We attribute the small decrease in per-
formance when the V − I colour index is used to insufficient
dereddening in the bulge fields.
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Fig. 7. I-band light curves of three candidates of the RR Lyrae category not identified as such in the OGLE catalogue (longer period candidates in
the upper and lower left plots and shorter period and lower signal-to-noise ratio in the upper right panel). The lower right plot is an example of a
low probability candidate with no conspicuous modulation of the light curve.

Table 6. Number of Cepheids according to the OGLE catalogues and correctly identified by the Gaussian Mixtures (GM) and multistage Bayesian
networks (MSBN) classifiers presented here. The table lists the number of stars in the OGLE catalogues with a clear counterpart in the OGLE
variability database and, subsequently, the fraction of these with available visible and visible+2MASS colours.

Catalogue Source Potential detections GM MSBN
NC +(B)VI +JHK NC +(B)VI NC +(B)VI +JHK

OGLE Cepheids LMC 1443 1313 1022 1065 891 1363 1298 1001
OGLE Cepheids SMC 1914 1838 598 1034 829 1617 1559 567
OGLE Cepheids bulge 54 49 49 44 36 50 44 48
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Fig. 8. The R21 − log(P) plane of classical Cepheids (red), RVTAU (green), PTCEP (blue) and DMCEP (magenta) in the LMC according to the
multistage (left) and GM (middle) classifiers and the OGLE team sample (right, only fundamental and first overtone classical Cepheids in red, and
DMCEP in magenta).

While the OGLE Cepheids sample only contains and distin-
guishes fundamental and first overtone pulsators, our classifier
identifies RVTAU and PTCEP systems. These are included in
the plots describing the automatic classifiers but not in the OGLE
sample plot (see Figs. 8, 9, 19, and 20). It is evident from these
plots that, as was indeed the case with the RR Lyrae systems, the
MSBN classifier is overfitted to the training set and tends to over-
estimate the probability of the classes represented in the training
set with examples taken from the OGLE database (double mode
Cepheids in this case, double mode RR Lyrae pulsators in the
previous one). This overfitting can also be detected in the analy-
sis of the new DMCEP candidates according to the MSBN clas-
sifier, which are mostly first overtone classical Cepheids close
in the hyperparameter space to the DMCEP locus, but lacking
the characteristic frequency ratio. Apart from this effect (that
can only be corrected when more examples of double mode pul-
sators from other surveys are available) we see that the MSBN
classifier incorrectly assigns the DMCEP class to a cluster of

RR Lyrae stars at log(P) ≈ −0.2 (P in days). This effect can be
traced back to the density of DMCEP and RRAB training exam-
ples in that region, but it is evident that this classifier is not ro-
bust enough and requires a better sampling of the density of ex-
amples there. We have tried several modifications of the design
presented in Sect. 3 in order to redraw the boundary between
double mode Cepheids and RR Lyrae stars. This seemingly sim-
ple task (both classes are linearly separable in several attributes
according to the training set) turned out to result in undesired
performance degradation (of the order of 15%) in the classical
Cepheid detection (or true positive) rate. Solutions to this prob-
lem included new hierarchy designs (separating Cepheids and
RR Lyrae systems at the same time), reordering of the partial
classifiers and several different attribute selection techniques. In
our opinion, the MSBN classifier described in Sect. 3 represents
a better global solution to the problem of automatic classifica-
tion of variable objects that needs further refinement at the fore-
mentioned boundary. The GM classifier on the contrary, has no

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=7
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Fig. 9. The φ21 − log(P) plane of classical Cepheids (red), RVTAU (green), PTCEP (blue) and DMCEP (magenta) in the LMC according to the
multistage and GM classifiers and the OGLE team sample (only fundamental and first overtone classical Cepheids in red, and DMCEP in magenta).

Table 7. Confusion matrix for the various Cepheids subtypes and the
classifiers applied to the LMC without using photometric colours. Each
column lists the number of objects of a given subtype according to the
OGLE catalogue (shown as column header) classified as all possible
subtypes.

GM MSBN
CLCEP DMCEP PTCEP CLCEP DMCEP PTCEP

CLCEP 731 0 7 1130 1 10
DMCEP 76 70 1 137 65 3
PTCEP 177 0 3 16 1 0
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Fig. 10. I-band light curves of OGLE050131.82-692319.0,
OGLE051759.78-691602.5 and OGLE053643.23-701030.7 folded
with the periods P = 3.3622, P = 3.5656 and P = 3.7675 respectively
and displaced vertically for clarity.

RR Lyrae contamination in the DMCEP candidate list despite
being constructed upon the same training set.

Table 7 shows the confusion matrices for the subtypes of
Cepheids common to the classifiers and OGLE catalogues. We
see how the MSBN higher detection rate has, as an undesired
side effect, a large number of misclassifications of classical
Cepheids as double mode. Also, it is unable to correctly identify
Population II Cepheids. Although there is also a sizable contam-
ination of CLCEP stars in the DMCEP group produced by the
GM classifier, the overfitting is less serious than in the MSBN
case. Unfortunately this improvement is also accompanied in the
GM classifier by a large FPR (False Positive Rate) in the PTCEP
class.

Even though no new DMCEP star has been found (most high
probability candidates turn out to be first overtone Cepheids), at
least some of the MSBN classifier candidates for the CLCEP
category seem promising. Again, a full detailed study of the new
candidates is beyond the scope of this work, but Fig. 10, show-
ing the folded light curves of three systems lying at the core of
the CLCEP locus, seems to suggest that there can be classical
Cepheids missed by the OGLE team. The number of CLCEPs
missed by the traditional method cannot be too large because
there are only 20 new candidates with a probability above 90%.
Of course, lowering the probability threshold can provide more
extended (but less safe) candidate lists.

4.3. Eclipsing binaries

Table 8 shows a comparison between the OGLE sample of
eclipsing binaries and the samples obtained by our classifiers.
We have preferred not to include the subtype classification of
eclipsing binaries (EA/EB/EW) because, in our opinion, the
boundaries between them are not sufficiently well defined in
terms of quantifiable criteria and thus result in large error rates
not justified in terms of real classification errors.

The good performance of the classifiers for this problem-
atic class is remarkable. Figures 11 and 12 corresponds to SMC
objects classified as eclipsing binaries with a probability above
90% (for the MSBN classifier) because the LMC eclipsing vari-
ables were used in the training set and thus, performance es-
timates based on the same cases used for training would have
a strong optimistic bias. The MSBN classifiers recovers 75%
of the OGLE sample without incorporating colour information
(73% using B − V and V − I and 43% adding 2MASS colours)
but, most remarkably, it recovers 97% of the bulge sample by
Groenewegen (2005) (95% using V − I and 92% adding 2MASS
colours). These percentages are even larger than those obtained
for the LMC on a set of systems used to train the classifier, as
explained above.

As was the case with the double mode Cepheids, having
used OGLE observations of eclipsing binaries in the definition or
training set results in overfitting and a strong tendency to classify
other variability types as eclipsing binaries. This can be detected
as a sizable number of objects similar to RR Lyrae stars and clas-
sical Cepheids mistakenly classified as eclipsing binaries. They
are easily detected by the large phase differences between the
various harmonics (these objects do not appear in Fig. 11 be-
cause they have class probabilities well below 90%).

The lack of systems with sinusoidal light curves and low R21
ratio, specially around log(P) ≈ 0 is also evident from the plots.
This hypothesis is confirmed by two facts: the distribution of
the R21 ratio amongst OGLE eclipsing binaries misclassified by
the MSBN classifier (though multimodal) has the strongest com-
ponent below R21 = 0.2; second, the astonishing true positive
detection rate in the Groenewegen (2005) sample is due to its
being composed exclusively of detached systems (see Fig. 21),
because its main objective was to obtain candidates for distance
determination.

As with previous variability types, the classifiers provide
candidate lists that include objects not in the published refer-
ence samples. In this case, the 90%-confidence lists comprise
3122 candidates in the LMC, 1216 in the SMC and 14610 in the
Galactic bulge. Of these, 990 are new candidates in the LMC
not in any of the published lists (330 and 11739 in the SMC
and Galactic bulge respectively). As a check for these new can-
didates, we have plotted some of the systems with the longest
periods and the largest R21 ratios amongst the SMC candidates
(see Fig. 13). On the left column plots we show confirmed can-
didates of the category of eclipsing binaries while the rightmost

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=9
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Table 8. Number of eclipsing binary systems according to the OGLE and Groenewegen catalogues and correctly identified by the Gaussian
Mixtures (GM) and multistage Bayesian networks (MSBN) classifiers presented here. The table lists the number of systems in the two catalogues
with a clear counterpart in the OGLE variability database and, subsequently, the fraction of these with available visible and visible+2MASS
colours.

Catalogue Source Potential detections GM MSBN
NC +(B)VI +JHK NC +(B)VI NC +(B)VI +JHK

OGLE eclipsing binaries LMC 2631 2467 210 1613 1528 2296 2072 150
OGLE eclipsing binaries SMC 1387 1316 153 824 809 1045 967 65

Groenewegen (2005) eclipsing binaries LMC 173 162 27 80 77 132 108 10
Groenewegen (2005) eclipsing binaries SMC 16 15 8 8 8 9 8 1
Groenewegen (2005) eclipsing binaries bulge 3034 2611 2611 2599 2271 2951 2477 2394
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Fig. 11. The R21 − log(P) plane of eclipsing binaries for the SMC. From left to right, the MSBN and GM samples and the OGLE catalogue.
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Fig. 12. The φ21 − log(P) plane of eclipsing binaries for the SMC. From left to right, the MSBN and GM samples and the OGLE catalogue.

column shows one possible example of instrumental effects (top;
the dimming of the star always associated with the end of a series
of observations) and one example of a more complicated system
with various causes contributing to the light curve variability. As
with all previous categories, we do not claim that all these new
sources have to be treated as confirmed cases but rather as strong
candidates upon which further selection criteria can be applied
in order to obtain manageable candidate lists.

4.4. Long period variables

Long period variables (LPVs) constitute the class where the most
significant discrepancies are found. As shown in Table 9, the
MSBN classifier barely recovers 50% of the LMC OGLE sam-
ple of Mira and Semiregular variables. The reason is two-fold:
first, many of the OGLE long period variables (17% and 45%
in the OGLE LMC and Bulge samples respectively) are missed
in the frequency calculation step where the sampling frequency
(≈1 c/d) prevails over the stellar pulsation, thus providing first
and subsequent frequencies in error. Second, there is a lack of
low amplitude Miras and semiregular stars with periods of less
than 150 days in the training set, and those are the main con-
tribution to the missing LPVs. Figure 23 shows a comparison
between the first frequency amplitude of Miras and semiregu-
lars in the training set and in the OGLE LMC sample. In this
regime, the number of examples is so low that it is indeed less
than that of the LBV or Periodically Variable B- and A-type
supergiant (PVSG) classes, the main contributors to the False
Negative Rate (misclassified Mira and Semiregular stars accord-
ing to the OGLE sample). Therefore, there is a clear need to

extend the training set representation of the Mira and
Semiregular classes in this region of the parameter space.
The situation is different for the Matsunaga et al. (2005) and
Groenewegen & Blommaert (2005) candidate lists where the
true positive rates increase to 87%. We interpret this increase
in performance as a confirmation of the hypothesis put forward
above given the absence of low amplitude variables with peri-
ods below log P ≈ 2.2 in these lists. Unfortunately, the lack of
low period-low amplitude Miras and semiregulars is not visible
in Fig. 14 due to the crowd of stars in the plot.

As expected, the inclusion of Johnson photometry in the in-
ference process corrects the low performance of the classifiers
in the OGLE LMC case and increases the TPR up to 94% (98%
when 2MASS photometry is included). This effect can be easily
understood given the strong relevance (in the sense commonly
accepted by the Statistical Learning community) of these at-
tributes. In the bulge samples, the increase in performance in-
troduced by the usage of colour indices reaches a value of 83%
in the OGLE sample and 99.8% in the sample by Matsunaga
et al. (2005), both using V − I and 2MASS photometry.

Using a confidence threshold of 90%, we find 67 new can-
didates in the LMC and 990 in the Galactic Bulge. As in all
previous cases, visual inspection of the position of the new can-
didates in several 2D projections confirms the adequacy of their
parameters for the class definitions in the training set and refer-
ence samples. Random inspection of some candidates indicates
that most of the new candidates are semiregular pulsators often
affected by long term trends in the mean brightness and several
frequency components.
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Fig. 13. Example light curves of new systems classified as eclipsing binaries and not in the reference samples.

Table 9. Number of long period variables (LPV) according to the Matsunaga et al. (2005) and Groenewegen & Blommaert (2005) catalogues,
and correctly identified by the Gaussian Mixtures (GM) and multistage Bayesian networks (MSBN) classifiers presented here. The table lists the
number of systems in the two catalogues with a clear counterpart in the OGLE variability database and, subsequently, the fraction of these with
available visible and visible+2MASS colours.

Catalogue Source Potential detections GM MSBN
NC +(B)VI +JHK NC +(B)VI NC +(B)VI +JHK

OGLE LPV LMC 3472 2735 2552 407 2060 1718 2576 2508
OGLE LPV bulge 273 156 156 84 111 69 122 130

Miras (Matsunaga et al. 2005) bulge 1882 1291 1291 1498 1291 1642 1279 1289
Miras (Groenewegen & Blommaert 2005) bulge 1999 871 871 1648 858 1734 845 852
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Fig. 14. The A11 − log(P) plane for long period variables in the LMC according to (from left to right) the multistage and GM classifiers and the
OGLE team sample.

4.5. Multiperiodic variables

It is clear that both classifiers perform well for the majority of
the classes considered above. However, most of these classes
contain monoperiodic (radial) pulsators, or eclipsing binaries.
Our classification scheme also included several multiperiodic
classes. Multiperiodic variables are amongst the most scientif-
ically interesting classes in relation to asteroseismic studies of
the stellar structure and evolution, see e.g. Kurtz (2006) for a re-
view. Nevertheless, they have not been thoroughly studied in the
OGLE variable databases.

4.5.1. Pulsating B-stars in the Magellanic clouds

We could not compare our results for those classes with exist-
ing results in such an extensive way. These classes have been
much less studied up to now, mainly because their detection is
less obvious in the OGLE data. Since they are relevant for as-
teroseismology, we present here the results obtained with both

classifiers for 3 classes of massive intrinsically bright multiperi-
odic pulsators: β-Cephei stars (BCEP), slowly pulsating B-stars
(SPB), and periodically variable super giants (PVSG). We limit
ourselves to these classes, since the other well-known multi-
periodic classes contain much fainter stars, making their detec-
tion even more difficult in the OGLE data for the Magellanic
clouds. Because single-band light curve information is usually
not sufficient to identify those objects in an unambiguous way,
we only consider here the classification results obtained with
the additional colour attributes B − V (and V − I) included for
both classifiers. We also place the new candidate variables in the
HR diagram. This could be done only for the LMC and SMC
variables, since B − V colours, V magnitudes and distances are
only available for those objects. For the Bulge data, only V − I
and 2MASS colours are available, and the distance is unknown.
However, the Bulge sample is larger and contains brighter ob-
jects, so detection of those variables (based on their light curve)
is more likely in this sample (if they are present). We present
some of the best candidates in the Bulge in the next section, by

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=14
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Fig. 15. HR-diagram for both the SMC and LMC. The black dots represent the total sample of variable stars for which colours were available. The
coloured dots represent those variables classified as BCEP, SPB, and PVSG with the MSBN method. A lower limit of 0.5 was used for the class
probabilities. The encircled dots (in the respective class colours) represent objects classified as such with both classifiers. The BCEP instability
strips are plotted in orange for visibility. For the right panel, the SPB and BCEP instability strips are shown for Z = 0.02 (outer borders) and
Z = 0.01 (inner borders). For the left panel, the SPB and BCEP instability strips are shown again for Z = 0.02 (outer borders), and also the SPB
instability strip for Z = 0.005 (inner borders). The PVSG instability strip corresponds to Z = 0.02.

showing their phase plots (made with the dominant frequency
we detected) and listing some of their light curve parameters.
The samples are much too large to check all the candidates (this
is out of the scope of this work), but the full classification results
with both classifiers will be made available electronically.

The best candidate pulsators are shown in the HR-diagrams
for both the Small and the Large Magellanic cloud. The distances
used to construct the diagrams are as follows: D(SMC) = 60.6±
2.97 kpc (Hilditch et al. 2005), and D(LMC) = 48.1 ± 3.70 kpc
(Macri et al. 2006). To convert the V magnitudes of the objects
into absolute luminosities log(L/L�), we used the value of 4.75
for the Sun’s absolute bolometric magnitude. Bolometric cor-
rections and effective temperatures (log Teff) were obtained us-
ing the corrected empirical transformations described in Flower
(1996). Typical errors for log(L/L�) and log Teff have been de-
rived, taking the uncertainties on the distance, the V magni-
tudes and the B − V colours into account. Theoretical instabil-
ity strips for β-Cephei (Stankov & Handler 2005), SPB (de Cat
2002) and PVSG stars (Lefever et al. 2007) are shown. For de-
tails on the derivation of the strips, we refer to Miglio et al.
(2007), Saio et al. (2006), and references therein. The PVSG
instability strip is for post-TAMS models with non-radial mode
degree values l = 1 and l = 2. The SPB and BCEP instability
strips are obtained with the OP opacity tables (giving the widest
strips), with metallicity values Z ranging from 0.005 to 0.02, and

non-radial mode degree values l = 0 to 3. Overshooting is
included (α = 0.2 Hp), and stellar masses up to 18 M� were
considered. Only main sequence models were included, and an
initial hydrogen mass fraction X = 0.7 has been used. We plot in-
stability strips for different Z values, to show how the instability
domains are expected to shrink when Z decreases, and to show
the difference in metallicity between the LMC and the SMC. For
the plots of the results for the LMC, the SPB and BCEP instabil-
ity strips are shown for Z = 0.02 (outer borders) and Z = 0.01
(inner borders). For the plots of the results for the SMC, the SPB
and BCEP instability strips are shown again for Z = 0.02 (outer
borders), and also the SPB instability strip for Z = 0.005 (inner
borders). The BCEP instability strip for Z = 0.005 disappears
(Miglio et al. 2007). The PVSG instability strip in both cases
corresponds to Z = 0.02. The position in the HR diagram of the
new candidates found with our classifiers, relative to these insta-
bility strips, provides a reliability check of the excitation models.

The whole sample of variable stars in the LMC and SMC
with colours available is shown in Figs. 15 and 16 (small black
dots).

The new candidate pulsators for the 3 B-type classes, and the
corresponding instability strips, are shown in colour. Note that
the BCEP instability strip is shown in orange (BCEP candidates
are in green), for visibility. Objects having the same class label
with both classifiers are encircled.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=15
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Fig. 16. HR-diagram for both the SMC and LMC. The black dots represent the total sample of variable stars for which colours were available.
The coloured dots represent those variables classified as BCEP, SPB, and PVSG with the GM method. An upper limit of 3.5 was used for
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classifiers. The BCEP instability strips are plotted in orange for visibility. For the right panel, the SPB and BCEP instability strips are shown for
Z = 0.02 (outer borders) and Z = 0.01 (inner borders). For the left panel, the SPB and BCEP instability strips are shown again for Z = 0.02 (outer
borders), and also the SPB instability strip for Z = 0.005 (inner borders). The PVSG instability strip corresponds to Z = 0.02.

Since every object will be assigned to one of the classes in
our supervised classification scheme, contamination in the clas-
sification results is to be expected, e.g., not all stars classified
as belonging to one of the BCEP, SPB, or PVSG classes will be
real members of those classes. This is not a drawback, however,
since our class assignments are probabilistic, and allow us to im-
pose limits on the class probabilities. This way, we can select the
most probable candidates only.

The MSBN classifier provides relative probabilities for an
object to belong to any of the classes. Figure 15 shows all the
objects having a probability of belonging to the BCEP, SPB, or
PVSG classes higher than 0.5, obtained with this classifier. Note
that most SPB candidates are situated above their instability do-
mains (higher luminosity), taking into account the errors bars.
Their position on the temperature scale is within the expected
range, because the B − V colour was used as a classification at-
tribute. Objects far from this pre-defined range are given a low
class-probability and will not be present in our selections.

The GM classifier provides relative probabilities, and, in ad-
dition, the Mahalanobis distance to the center of the most prob-
able class. This distance can effectively be used to retain only
the objects that are not too far from the class center in a sta-
tistical sense. It can be used together with the probabilities, in
order to select the best candidates. For the GM classifier, using
only the probability values is usually insufficient to select the

best candidates. Consider the case e.g., where the probability for
one class is 99%. This high probability value seems to indicate
a very certain class assignment. However, these are only relative
probabilities, and, even though the probability for the class is
very high, the object might still be very far away from the class
center. If this is the case, the Mahalanobis distance will have a
large value, and one has to conclude that the object is not a good
candidate to belong to the class after all. To guide us in choos-
ing a meaningful cutoff value for the Mahalanobis distance D,
we can use the fact that D2 is chi-square distributed for multi-
normally distributed classification parameters (the basis of the
GM classifier). The number of degrees of freedom p is equal to
the number of classification attributes. Given the Mahalanobis
distance D to the class, we can use this property to test the like-
lihood of finding a distance larger than D, under the assumption
that the object belongs to the class. Note that for p > 2, which is
the case for the GM classifier, the chi-square distribution will not
be monotonically decreasing with increasing value of D2. This
means that very small values of D are unlikely as well, and we
should perform a two-tailed hypothesis test.

Figure 16 shows the HR diagrams with the results of the
GM classifier, for the SMC and LMC, again with the vari-
ables classified as BCEP, SPB, PVSG, and their respective in-
stability strips shown in colours. All these candidate variables
have a Mahalanobis distance to the class center of less than 3.5

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=16
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Fig. 17. The R21 − log(P) plane of RRAB (red), RRC (green) and RRD stars (blue) in the Galactic Bulge, according to the multistage Bayesian
networks (left) and Gaussian Mixtures classifiers (middle) and the OGLE catalogue (right).
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Fig. 18. The φ21 − log(P) plane of RRAB (red), RRC (green) and RRD stars (blue) in the Galactic Bulge, according to the multistage Bayesian
networks (left) and Gaussian Mixtures classifiers (middle) and the OGLE catalogue (right).
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Fig. 19. The R21− log(P) plane of classical Cepheids (red), RVTAU (green), PTCEP (blue) and DMCEP (magenta) in the Galactic Bulge according
to the multistage and GM classifiers and the OGLE team sample (only fundamental and first overtone classical Cepheids in red, and DMCEP in
magenta).

(dimensionless, similar to a distance in terms of sigma in the one
dimensional case). Objects having the same class label with both
classifiers are encircled. The same remarks as for the MSBN re-
sults apply here: most SPB candidates are situated at higher lu-
minosities than expected for this type of variable.

The g-mode and p-mode pulsations in SPB and BCEP stars,
respectively, are caused by the κ-mechanism, acting in the par-
tial ionization zones of iron-group elements. This mechanism
thus strongly depends on the presence of those heavy elements,
and hence on the metallicity of the stellar environment. It was
previously believed that the BCEP and SPB instability strips
nearly disappear for metallicities Z smaller than 0.006 and 0.01
(Pamyatnykh 1999). However, the recent results presented in
Miglio et al. (2007), and used in this work, show that an SPB
instability strip can still exist for Z as low as 0.005. They do not
predict BCEP pulsations at such a low metallicity value, though.
Since the metallicity of the SMC is estimated to be between
Z = 0.001 and Z = 0.004 (Maeder et al. 1999), we would not ex-
pect to find any BCEP or SPB pulsations here. However, several
independent investigations have shown that SPB and BCEP pul-
sators are nevertheless present in low metallicity environments
such as the LMC and even the SMC. Examples are given in
Kołaczkowski et al. (2004), Pigulski & Kołaczkowski (2002),
Karoff et al. (2008) and Diago et al. (2008). Our classification
results for the OGLE LMC and SMC data support those con-
clusions and suggest that even more candidates than found so
far exist. In total, we find 15 SPB and 48 BCEP candidates in
the LMC, and 20 SPB and 24 BCEP candidates in the SMC. As

is expected, more pulsators are found in the metal-richer LMC.
Note that a large number of BCEP candidates are situated in the
higher parts of the SPB instability strips, both for the SMC and
LMC. Overlap between the instability strips is present in that
area, and stars can show similar pulsation characteristics there.
The relatively large errors on the position in the HR diagram
(see the crosses in the plots) should be kept in mind also. As
mentioned above, we see that SPB candidates appear at higher
luminosities than expected, taking into account the error bars.
This is the case for both the LMC and SMC, and with both
the MSBN and GM classification results. Since the Magellanic
clouds contain evolved stars, we suggest that some of these SPB
candidates could in fact be B-type PVSG stars. In Waelkens et al.
(1998), it was suggested that the pulsations in those stars could
be gravity modes excited by the κ-mechanism, similar to the
BCEP and SPB stars. This is confirmed in Lefever et al. (2007),
where a sample of B-type PVSG stars is investigated in detail.
Typical pulsation periods for those variables are in the range
1−20 days, so an overlap with the typical period range for SPB
stars is present. One may wonder why those objects are then
not classified as PVSG with our classifiers. The PVSG class is
a very heterogeneous class, containing both B-type and A-type
pulsators (note that the shown PVSG instability strip is only for
B-type stars). Moreover, they show pulsations over a wide range
of frequencies and amplitudes. This translates into a large spread
of this class in our classification parameter space. The PVSG
class overlaps with the SPB class in parameter space, but has a
lower probability density of objects at the locations overlapping
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Fig. 21. The R21−log(P) plane of eclipsing binaries for the Galactic Bulge. From left to right, the MSBN and GM samples and the OGLE catalogue.
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Fig. 22. The φ21−log(P) plane of eclipsing binaries for the Galactic Bulge. From left to right, the MSBN and GM samples and the OGLE catalogue.
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with the SPB class. This implies that a potentially good PVSG
candidate, but with properties close to those of SPB stars, will
most likely be classified as SPB and not as PVSG. Candidate
PVSG variables are shown in Figs. 15 and 16. There is a large
discrepancy between the numbers found by the MSBN and the
GM classifiers. This is a consequence of the poor definition of
this class. A visual check of the phase plots did not reveal con-
vincing candidates, in addition to the high-luminosity BCEP and
SPB candidates.

The SPB and BCEP candidates present in our selection lists
and having the same classification with both classifiers are most
likely good candidates. For those objects, we made phase plots
with the dominant frequencies ( f1) and list some of their light
curve properties. Note that the typical pulsation frequencies for
SPB stars are situated around 1 c/d. The 1 c/d frequency is unfor-
tunately also a spurious frequency often detected in the OGLE

data, due to the daily gaps in the observations (the OGLE win-
dow function). Since this frequency is often significant, care
must be taken not to interprete these as real pulsation frequen-
cies. We could exclude the most likely spurious detections by
checking the phase plots: if the plots show clear gaps, we are
probably dealing with a spurious frequency (though in some
cases, we might have a real pulsation frequency very close
to 1 c/d).

Figures 25 and 26 show phase plots of candidate BCEP and
SPB stars in the SMC. The OGLE identifier and the value of
the dominant frequency are shown. Some of their properties are
listed in Tables 11 and 12 respectively. Figures 27 to 29 show
the phase plots of candidate BCEP and SPB stars in the LMC
data. Their properties are listed in Tables 13 and 14. The tables
also list the value of the second detected frequency f2, one of the
classification attributes used.

4.5.2. The Galactic bulge

To the best of our knowledge, the OGLE team only produced a
candidate list for the class of δ Scuti pulsators, in the first field of
the bulge and, unfortunately, only of the high amplitude candi-
dates, usually monoperiodic (see for example McNamara 2000).
Ten out of 11 systems listed in the catalogue by Mizerski and
available to us are correctly identified as δ Scuti stars by the
MSBN classifier and the eleventh (bul_sc1_1323) has a period
of 6.7 h, which is slightly above the range of periods found for
this class. The system is classified as RRD. With the GM classi-
fier, 7 out of 11 systems are classified as δ Scuti stars.

Pigulski (private communication) has kindly provided us
with candidate lists of several types of multiperiodic pulsators

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=20
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=21
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=22
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=23
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Fig. 24. The A11 − log(P) plane of long period variables for the Galactic Bulge. From left to right, the MSBN and GM samples and the Mizerski
and Groenewegen catalogues.

Table 10. Summary of the class assignments for objects in Pigulski’s lists (private communication) for both the GM and the MSBN classifier.

Pigulski class Potential detections PVSG BCEP DSCUT GDOR SPB PVSG BCEP DSCUT GDOR SPB
GM MSBN

Light curve attributes
HADS 190 10 6 119 2 0 0 7 119 0 1

BCEP-DSCUT 225 3 12 12 73 16 5 54 74 8 14
SPB-GDOR 623 22 27 4 194 239 188 0 0 74 157

Light curve attributes plus V − I
HADS 167 17 8 97 0 1 9 16 92 4 1

BCEP-DSCUT 180 12 57 5 10 14 3 96 27 0 17
SPB-GDOR 490 59 54 8 103 188 99 91 32 13 109

Table 11. Basic light curve and physical properties of SMC stars clas-
sified as BCEP with both the MSBN and the GM method. The dom-
inant frequency f1, the second frequency f2, the effective temperature
log Teff and the luminosity log(L/L�) are listed. The estimated preci-
sion on the frequencies is about 0.001 c/d or smaller. Note that log Teff

and log(L/L�) are listed with more digits than the estimated precision,
with the only purpose to allow readers to locate the objects in the HR
diagrams. The same remark applies to the following tables also. Several
of these stars might be evolved pulsators, termed PVSG here, rather
than BCEP.

Object identifier f1 (c/d) f2 (c/d) log Teff log(L/L�)
OGLE004223.98-731651.4 3.108 3.124 4.31 4.58
OGLE004349.89-730902.3 4.068 7.151 4.38 4.96
OGLE004526.51-733014.2 5.001 7.521 4.19 2.56
OGLE004656.01-730451.9 5.612 8.576 4.42 4.34
OGLE004700.88-732255.1 3.015 9.123 4.25 4.53
OGLE004711.20-731223.9 3.631 3.735 4.22 3.51
OGLE004854.15-725639.0 5.772 1.006 4.27 3.28
OGLE004910.22-731455.1 2.999 0.135 4.31 4.61
OGLE004916.12-725945.6 5.039 4.986 4.37 2.56
OGLE005032.70-732734.5 3.986 5.609 4.35 4.09
OGLE005150.13-724136.3 1.477 0.739 4.46 3.88
OGLE005337.24-723117.2 3.850 0.001 4.26 3.60
OGLE005504.33-730739.6 5.205 5.410 4.14 3.10
OGLE010000.61-722352.8 4.241 3.008 4.35 4.62
OGLE010052.21-720455.7 2.265 2.006 4.40 4.11
OGLE010140.61-724251.5 1.886 0.943 4.45 4.08
OGLE010302.31-720836.1 0.641 0.298 4.32 4.49
OGLE010335.87-720321.8 0.051 0.355 4.43 5.19
OGLE010508.45-715955.1 4.873 2.251 4.20 3.67
OGLE010700.06-721502.7 8.928 7.743 4.27 3.80
OGLE010733.16-723334.1 6.181 1.409 4.17 3.12
OGLE010739.61-721543.0 3.060 1.002 4.24 4.43
OGLE010740.39-725059.7 7.663 1.057 4.44 5.19
OGLE010851.50-722708.3 1.005 0.010 4.45 4.48

prior to publication, as well as an extended list of high ampli-
tude δ Scuti (HADS) stars across all OGLE bulge fields (Pigulski
et al. 2006). We have applied the same procedure described
above to these lists in order to assess the performance of the
classifiers in detecting multiperiodic pulsators. In the following,

Table 12. Basic light curve and physical properties of SMC stars clas-
sified as SPB with both the MSBN and the GM method. The dominant
frequency f1, the second frequency f2, the effective temperature log Teff

and the luminosity log(L/L�) are listed. Several of these stars might be
evolved pulsators, termed PVSG here, rather than SPB.

Object identifier f1 (c/d) f2 (c/d) log Teff log(L/L�)
OGLE004522.52-732811.1 0.995 6.800 4.06 3.49
OGLE004553.80-730754.7 0.019 0.286 4.07 3.72
OGLE004633.16-731048.0 1.304 2.792 4.07 3.41
OGLE004709.37-731317.8 1.535 0.488 4.10 3.65
OGLE004854.37-732844.1 0.969 1.001 4.04 3.88
OGLE004855.91-732519.0 0.998 1.005 4.11 3.89
OGLE004940.01-732128.8 0.986 0.493 4.08 3.36
OGLE004954.18-731815.8 1.006 0.002 4.05 3.67
OGLE005048.72-732316.4 1.086 1.163 4.10 3.39
OGLE005123.10-730614.7 2.005 3.127 4.05 3.09
OGLE005212.33-731838.2 1.004 6.006 4.08 4.19
OGLE005228.58-723926.2 1.004 0.273 4.11 3.38
OGLE005304.91-725218.9 1.524 2.254 4.07 4.35
OGLE005720.47-723014.9 0.723 1.620 4.06 3.27
OGLE010126.00-723601.6 1.216 0.998 4.11 3.20
OGLE010211.58-720854.0 1.542 0.001 4.09 3.12
OGLE010325.80-725726.8 1.291 1.368 4.03 3.12
OGLE010603.65-723901.6 1.777 0.003 4.08 3.15
OGLE010646.84-721948.7 1.292 0.999 4.14 3.67
OGLE010741.81-722701.7 1.004 3.009 4.11 3.67

we describe the results obtained with the time series attributes
plus the V − I colour index.

Table 10 shows the main contributors to the confusion matrix
constructed by assuming Pigulski’s class assignments. His re-
sults are grouped in three catalogues: the high amplitude δ Scuti
stars (HADS) group, the mixed slowly pulsating B/ γ Doradus
group, and the β Cephei/δ Scuti group. Again, the classifiers are
capable of retrieving a significant fraction of the HADS candi-
dates (63% with both the GM and MSBN classifier respectively).
These numbers decrease for the mixed groups (11−57% for the
BCEP/DSCUT list and 70−37% for the SPB/GDOR one with
the GM and MSBN classifier respectively), although it has to be
beared in mind that the frequency detection algorithm assigns

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=24
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Table 13. Basic light curve and physical properties of LMC stars classi-
fied as BCEP with both the MSBN and the GM method. The dominant
frequency f1, the second frequency f2, the effective temperature log Teff

and the luminosity log(L/L�) are listed. Several of these stars might be
evolved pulsators, termed PVSG here, rather than BCEP.

Object identifier f1 (c/d) f2 (c/d) log Teff log(L/L�)
OGLE053446.82-694209.8 4.052 8.120 4.29 3.29
OGLE053000.79-700001.4 4.009 2.991 4.24 2.62
OGLE053001.28-695156.2 5.075 6.642 4.21 2.82
OGLE053029.80-693036.2 0.006 0.001 4.46 3.51
OGLE053041.82-701442.6 0.113 0.045 4.22 3.11
OGLE053216.86-695902.1 0.048 0.357 4.42 3.58
OGLE052729.46-701355.8 4.622 2.018 4.12 2.58
OGLE052731.23-695708.9 6.960 4.350 4.28 3.12
OGLE052732.90-695252.9 7.981 4.201 4.26 2.90
OGLE052803.27-692943.6 1.001 5.273 4.34 3.12
OGLE052816.89-692345.4 3.856 3.831 4.30 2.86
OGLE052819.15-692745.7 4.272 0.725 4.16 2.01
OGLE052512.44-701415.9 3.030 1.010 4.47 3.74
OGLE052639.59-692947.7 4.702 4.124 4.36 3.49
OGLE052235.15-693511.9 8.241 0.011 4.28 3.03
OGLE052241.72-693421.1 0.299 9.976 4.21 2.96
OGLE052409.45-691416.0 2.517 2.537 4.22 3.05
OGLE052437.12-694054.3 3.873 2.005 4.38 3.61
OGLE052023.34-692132.9 4.429 4.440 4.29 3.08
OGLE052101.88-691222.8 1.746 0.040 4.25 3.10
OGLE052213.28-692821.8 0.517 0.960 4.22 3.15
OGLE052213.32-692925.3 1.997 2.040 4.28 4.68
OGLE051817.84-693259.6 3.534 0.001 4.39 3.53
OGLE051958.91-692206.0 0.239 0.359 4.32 3.67
OGLE051536.91-692843.7 5.695 9.192 4.18 2.97
OGLE051538.66-691003.9 7.107 0.002 4.22 3.32
OGLE051608.32-694424.0 2.005 0.205 4.38 4.24
OGLE051648.14-692503.8 7.952 8.938 4.50 4.82
OGLE051651.63-693011.5 4.542 7.476 4.40 4.64
OGLE051659.40-690854.9 3.010 6.453 4.28 4.03
OGLE051722.22-692554.7 3.550 1.003 4.35 3.26
OGLE051429.19-690419.5 7.939 0.100 4.29 3.58
OGLE051116.49-691029.3 3.657 5.256 4.45 4.70
OGLE051120.77-692547.7 5.007 1.005 4.21 3.39
OGLE050640.25-692330.6 3.628 3.860 4.21 3.05
OGLE050554.42-682244.0 8.833 9.227 4.29 3.40
OGLE050628.25-682536.2 0.998 2.013 4.31 4.01
OGLE050648.06-683801.0 5.773 3.042 4.28 4.65
OGLE050709.53-685840.9 0.998 0.112 4.24 3.90
OGLE050719.86-690738.7 4.785 6.116 4.30 3.13
OGLE050350.33-685842.2 1.005 1.186 4.35 4.36
OGLE050451.67-690353.5 1.006 1.970 4.24 3.39
OGLE050059.70-691206.0 4.009 6.219 4.26 2.97
OGLE053556.39-694206.4 4.786 3.779 4.41 5.09
OGLE053718.74-701336.2 0.023 1.011 4.26 4.65
OGLE054037.25-700909.2 1.006 1.852 4.29 3.74
OGLE054139.11-702938.7 6.171 2.096 4.27 4.14
OGLE054532.69-704523.9 7.008 4.788 4.16 2.67

spurious frequencies to 23% of the stars in the BCEP/DSCUT
sample, and 13% of the SPB/GDOR sample. The remaining er-
rors are inherently connected to the physical properties for the
stars in these classes, which imply overlap in the characteris-
tics of their pulsations. An example is the occurence of both
short-period p-modes and long-period g-modes in BCEP stars
(e.g. Handler et al. 2004, 2006) and the only vague separation
of the p-mode frequencies of evolved BCEP and DSCUT stars,
from the g-mode frequencies of young SPB and GDOR stars, re-
spectively, particularly when frequency shifts due to rotation are
taken into account.

Table 14. Basic light curve and physical properties of LMC stars clas-
sified as SPB with both the MSBN and the GM method. The dominant
frequency f1, the second frequency f2, the effective temperature log Teff

and the luminosity log(L/L�) are listed. Several of these stars might be
evolved pulsators, termed PVSG here, rather than SPB.

Object identifier f1 (c/d) f2 (c/d) log Teff log(L/L�)
OGLE052848.51-694726.2 0.998 2.006 4.09 3.24
OGLE052526.06-695226.9 1.001 8.362 4.19 2.86
OGLE052629.22-700000.6 0.998 1.003 3.96 3.40
OGLE051259.38-691853.9 0.999 1.014 4.08 2.77
OGLE051448.80-685739.1 1.004 0.992 4.18 3.11
OGLE050812.19-685432.5 1.004 1.005 4.17 3.18
OGLE050851.08-684737.8 1.477 8.872 4.10 2.74
OGLE050713.75-690725.9 1.976 6.631 4.06 3.69
OGLE050259.73-692328.6 1.004 0.999 4.05 3.06
OGLE050422.37-685533.5 1.004 1.006 3.99 2.81
OGLE050452.11-691652.8 0.007 0.990 4.10 2.87
OGLE050458.68-690227.0 0.024 0.049 4.01 2.89
OGLE050502.21-685846.5 0.999 0.031 4.11 3.06
OGLE050014.17-692514.1 0.937 2.082 4.05 3.14
OGLE050030.25-692403.8 1.438 3.278 4.15 3.14

Table 15. Basic light curve and physical properties of Galactic Bulge
stars classified as SPB with the GM method. The dominant fre-
quency f1, the second frequency f2 and the V − I colour index are listed.
Several of these stars might be evolved pulsators, termed PVSG here,
rather than SPB.

Object identifier f1 (c/d) f2 (c/d) V − I (mag)
bul_sc2_925 0.948 1.003 −0.10

bul_sc2_2345 1.004 2.340 0.02
bul_sc11_1513 0.189 1.004 0.01
bul_sc13_2365 0.943 1.003 0.09
bul_sc13_2562 0.605 0.999 −0.01
bul_sc13_2892 0.998 0.001 −0.15
bul_sc15_3070 1.213 1.271 −0.13
bul_sc18_761 1.157 0.003 0.16
bul_sc21_959 1.662 0.831 −0.06

bul_sc26_1601 1.347 1.477 −0.04
bul_sc26_4146 1.123 0.002 −0.07
bul_sc27_3377 1.368 1.332 0.00
bul_sc30_6556 0.880 0.720 −0.15
bul_sc31_3026 0.304 0.003 −0.03
bul_sc33_3521 0.529 2.005 0.11
bul_sc35_4012 1.473 0.001 −0.03
bul_sc40_1507 0.970 1.653 −0.11
bul_sc41_1193 0.809 0.346 −0.10
bul_sc47_137 0.719 7.064 0.09
bul_sc49_552 0.972 0.486 −0.10

It is also interesting to note the effect of including the
V − I colour in the classification of these samples. The percent-
age of recovered HADS decreases down to 58 and 55% for the
GM and MSBN classifiers respectively, in the case of the MSBN
classifier due to the fact that a significant fraction of Pigulski’s
candidates have low values of the V − I colour, in the range
usually assigned to BCEP stars. For the BCEP/DSCUT sam-
ple, both classifiers not only improve their overall recovery rate
(68% and 34% for the MSBN and GM classifiers respectively)
but also correctly separate BCEP from DSCUT stars accord-
ing to their V − I colours. Finally, for the SPB/GDOR sample,
both classifiers decrease the recovery rate (59% and 25% for the
GM and MSBN classifiers respectively), but it has to be beared
in mind that these numbers are measuring the recovery rate of
the combined stages of period detection plus classification. In
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Table 16. Basic light curve and physical properties of Galactic Bulge
stars classified as GDOR with the GM method. The dominant fre-
quency f1, the second frequency f2 and the V− I colour index are listed.
Several of these stars might be evolved pulsators, termed PVSG here,
rather than SPB.

Object identifier f1 (c/d) f2 (c/d) V − I (mag)
bul_sc4_5065 0.995 0.002 0.37

bul_sc19_3109 0.385 0.001 0.21
bul_sc19_3728 1.278 1.279 0.41
bul_sc21_3228 0.196 0.202 0.41
bul_sc26_2103 0.998 5.933 0.77
bul_sc27_2306 0.259 0.001 0.58
bul_sc30_4772 0.995 0.001 0.62
bul_sc31_2365 1.830 2.850 0.21
bul_sc39_1284 0.327 5.159 0.31
bul_sc40_1078 0.351 0.827 0.57
bul_sc40_2348 0.224 0.447 0.39
bul_sc42_3291 1.005 3.156 0.43
bul_sc46_1533 1.005 2.004 0.71
bul_sc46_333 1.335 0.343 0.63

bul_sc46_1736 1.261 0.744 0.33

Table 17. Basic light curve and physical properties of Galactic Bulge
stars classified as BCEP with the GM method. The dominant fre-
quency f1, the second frequency f2 and the V− I colour index are listed.

Object identifier f1 (c/d) f2 (c/d) V − I (mag)
bul_sc3_2467 5.439 0.502 −0.17
bul_sc4_2551 6.180 5.727 −0.22
bul_sc8_1872 6.722 3.361 0.19
bul_sc8_2209 3.195 1.598 −0.30

bul_sc13_2358 5.845 4.696 −0.09
bul_sc13_1304 5.836 0.001 0.09
bul_sc19_5136 3.925 4.021 −0.37
bul_sc20_695 5.862 5.598 −0.25

bul_sc20_1078 3.238 1.003 −0.20
bul_sc20_2911 5.230 0.001 0.03
bul_sc23_3766 3.914 0.001 −0.31
bul_sc23_4796 3.622 1.003 −0.08

bul_sc24_46 6.825 6.324 −0.23
bul_sc25_1345 4.307 2.154 0.11
bul_sc32_2392 5.367 0.001 0.20
bul_sc33_4525 3.530 1.004 0.14
bul_sc39_4825 5.534 2.767 0.08
bul_sc39_5858 4.629 1.002 −0.20
bul_sc40_864 4.812 3.406 0.04

bul_sc41_3659 2.990 6.334 −0.24
bul_sc45_585 4.169 2.085 −0.09
bul_sc47_198 5.017 4.016 0.07
bul_sc48_785 4.163 2.082 −0.30
bul_sc49_399 3.688 0.001 −0.12

this case, the period detection algorithm assigns spurious peri-
ods, above a hundred days, to the 14% of the SPB/GDOR sam-
ple with colour index V − I available. Furthermore, the colour
spread in the SPB/GDOR sample covers the unusually large
range −2.4 < V − I < 1.3. In this sense, the unexpected large
number of objects in the SPB/GDOR sample classified as BCEP
by the MSBN classifier is due to only five training set examples,
characterized by colour indices V − I ≈ 0.4, lower than those
found in the SPB training examples, and frequencies in the SPB
range (1 cycle/day), rather than in the higher frequency range,
typical of p-modes in BCEP stars. Removal of these training set
examples decreases the number of misclassifications to a 1%.

Table 18. Basic light curve and physical properties of Galactic Bulge
stars classified as DSCUT with the GM method. The dominant fre-
quency f1, the second frequency f2 and the V − I colour index are listed.

Object identifier f1 (c/d) f2 (c/d) V − I (mag)
bul_sc1_3589 9.709 9.712 0.29
bul_sc2_4007 8.765 9.394 0.30
bul_sc2_4935 5.721 7.060 0.32
bul_sc4_479 5.356 1.001 0.49

bul_sc4_5876 4.427 1.046 0.44
bul_sc4_6907 3.213 0.001 0.35
bul_sc4_9043 3.865 1.932 0.26
bul_sc7_1088 6.348 8.270 0.33
bul_sc8_1815 4.378 2.189 0.35
bul_sc8_482 6.891 8.896 0.43

bul_sc13_1715 3.789 3.696 0.29
bul_sc13_7 7.138 0.001 0.40

bul_sc14_1998 5.145 1.002 0.47
bul_sc14_876 5.555 0.002 0.48
bul_sc16_1715 6.219 2.152 0.35
bul_sc17_1515 5.104 1.006 0.44
bul_sc17_1555 3.066 1.001 0.49
bul_sc17_2448 8.361 2.000 0.45
bul_sc17_3858 6.295 1.002 0.28
bul_sc18_199 4.964 0.001 0.45
bul_sc18_3424 9.140 8.811 0.36
bul_sc18_5551 6.063 3.032 0.38
bul_sc20_5198 3.826 1.913 0.42
bul_sc23_1378 8.193 9.588 0.59
bul_sc27_1904 4.930 0.001 0.44
bul_sc27_3229 8.570 0.004 0.38
bul_sc28_1248 4.773 4.783 0.33
bul_sc28_154 1.916 1.917 0.37
bul_sc30_6118 6.123 0.001 0.30
bul_sc30_6223 3.758 3.676 0.32
bul_sc31_1252 5.487 4.484 0.46
bul_sc32_2590 7.919 7.917 0.36
bul_sc33_1333 9.260 1.994 0.32
bul_sc34_1078 3.701 3.695 0.34
bul_sc34_3999 3.915 4.149 0.33
bul_sc34_4029 7.418 8.626 0.41
bul_sc34_5165 6.796 6.796 0.53
bul_sc36_5882 6.047 0.022 0.36
bul_sc38_2549 5.535 2.767 0.36
bul_sc38_3471 8.259 9.703 0.34
bul_sc38_4195 6.067 9.403 0.31
bul_sc39_111 8.155 4.321 0.42
bul_sc39_1158 9.377 8.019 0.40
bul_sc39_3123 9.555 7.550 0.22
bul_sc39_465 3.884 3.879 0.30
bul_sc39_6887 7.057 9.193 0.41
bul_sc40_3918 4.941 0.001 0.36
bul_sc41_2753 5.435 2.717 0.49

4.5.3. New candidates in the Bulge

Here, we present a selection of Bulge objects classified as
DSCUT, BCEP, SPB or GDOR, with the GM classifier, and not
present in the respective combination lists made by Pigulski.
These objects all have a respective class probability above 0.8
and a Mahalanobis distance to the class center below 2.7.
Figures 30 to 34 show their phase plots made with f1. The OGLE
Bulge identifiers are shown, and the values of f1 in cycles per
day. Light curve parameters and V − I colour indices are listed
in Tables 15 to 18. The most obvious spurious detections (hav-
ing a value of f1 very close to 1 c/d) were removed from our
selections. We stress that these are candidate lists obtained with
probabilistic class assignments. Further investigation is needed
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Fig. 25. Phase plots of variables in the SMC classified as BCEP with both the MSBN and the GM method. The OGLE identifier is shown, and the
dominant frequency, used to fold the light curves, in units of cycles per day (c/d).

to reach more certainty about the true nature of those objects.
Significant overlap is present between the pulsation properties of
the GDOR/SPB and BCEP/DSCUT classes, which is the reason
why Pigulski did not make the distinction in his lists. We expect

this to be reflected in our candidate lists as well, e.g. some SPB
candidates might be GDORs and vice versa, and the same for
the BCEP/DSCUT classes. Apart from some inherent overlap
between these classes, this is mainly a limitation of the current

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809918&pdf_id=25
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Fig. 26. Phase plots of variables in the SMC classified as SPB with both the MSBN and the GM method. The OGLE identifier is shown, and the
dominant frequency, used to fold the light curves, in units of cycles per day (c/d).

classification attributes that we can use (e.g. the absence of a
good colour), and the quality of the light curves.

As opposed to selections made with extractor methods, we
can have objects in our list having rather atypical light curve pa-
rameters for that particular class. These can be borderline cases,
and in some cases, misidentifications. As was mentioned earlier,
however, stronger limits can be imposed on the class probabil-
ities and/or the Mahalanobis distance, to retain only the most
typical candidates. In doing so, the samples will be purer, but,
on the other hand, interesting border cases can be missed.

5. Conclusions

In the past few years, the world of astronomy has seen a rev-
olution taking place with the advent of massive sky surveys
and large scale detectors. This revolution cannot be fully ex-
ploited unless automatic methods are devised in order to pre-
process the otherwise unmanageably large databases. Otherwise,
the efforts of the astronomical community will have to focus on
repetitive uninteresting data processing rather than in the solu-
tion of the scientific questions that motivate the efforts. In this

work we have presented a scenario with many interesting open
questions for research (distance estimator calibration, stellar in-
teriors, galactic evolution...), i.e. that of stellar variability, where
automatic procedures for data processing can help astronomers
concentrate on the solution to these problems. We have devel-
oped automatic classifiers that, in a matter of seconds or minutes,
can automatically assign class probabilities to hundreds of thou-
sands of variable objects, and we have proved that these proba-
bilities are highly reliable for the set of classical variables best
studied in the literature. These experiments are repeatable and
thus free from human subjectivity. The classifiers show minor
discrepancies with the classifications used as a reference in this
work (as explained in previous sections) and these discrepancies,
when due to the classifiers themselves, need to be corrected for.
Until then, users of the publicly available classifiers have to be
aware of these minor pitfalls when interpreting their results.

The results presented here suggest that further steps can be
taken in the analysis of the resulting samples. Two obvious steps
are the search for correlations between subsets of attributes not
necessarily of dimension 2, and the study of density plots and
clustering results in order to explore the substructure within each
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Fig. 27. Phase plots of variables in the LMC classified as BCEP with both the MSBN and the GM method. The OGLE identifier is shown, and the
dominant frequency, used to fold the light curves, in units of cycles per day (c/d).

variability class. This is the subject of ongoing research in the
framework of the CoRoT, Kepler and Gaia missions.

The training set and the classifiers are only the first opera-
tional versions developed for the optimization of on-going and
future databases such as CoRoT, Kepler or Gaia. Obviously, both

the training set and the classifiers will greatly benefit from the
analysis of these future databases, especially for those classes
underrepresented in terms of the real prevalences. This is where
the improvement and correction of the discrepancies mentioned
in the previous paragraph will take place. They must be oriented
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Fig. 28. Phase plots of variables in the LMC classified as BCEP with both the MSBN and the GM method. The OGLE identifier is shown, and the
dominant frequency, used to fold the light curves, in units of cycles per day (c/d).

towards obtaining a class definition (training) set that better re-
produces the real probability densities in parameter space (the
probability of a variable object of class Ck having a certain set
of attributes such as frequencies, amplitudes, phase differences,

colours, etc.). Furthermore, it must be made more robust against
overfitting by combining data from various surveys/instruments
in such a way that the sampling properties (including measure-
ment errors) have as little an impact on the inference process as
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Fig. 29. Phase plots of variables in the LMC classified as SPB with both the MSBN and the GM method. The OGLE identifier is shown, and the
dominant frequency, used to fold the light curves, in units of cycles per day (c/d).

possible. We believe that this paper is a crucial starting point in
the sense that we have proved the validity of the classifier predic-
tions, and, at the same time, we have identified and pointed out
the source of its limitations, thus showing the path to more com-
plete and accurate classifiers. Obviously, it is in the non-periodic
and rarer classes that there is more room for improvement.

Finally, there is ongoing development of new versions of the
classifiers adapted to handle spectral information making use of
VSOP data (Dall et al. 2007) and including one of the features of
Bayesian Networks that make them especially suitable for their
integration in the framework of Virtual Observatories, i.e. their

capacity to draw inferences based on incomplete (missing) data.
We strongly believe that the probabilistic foundations of these
models (at the basis of these capabilities) provide astronomers
with explanations of the inference process very much in line with
the reasoning usually used in astronomy.

In this work We have concentrated on the validation of the
developed classifiers, using the OGLE database. This database
contains a large number of light curves of different variabil-
ity types. Existing extractor-type results for the classical pul-
sators and eclipsing binaries allowed us to judge the quality of
our classification results. Our classifiers also identified candidate
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Fig. 30. Phase plots of variables in the Galactic Bulge classified as SPB with the GM method, and not present in the list of Pigulski. The OGLE
identifier is shown, and the dominant frequency, used to fold the light curves, in units of cycles per day (c/d).

new members for some of those classes. Little had been done
up to now on the multiperiodic pulsators, the most interesting
targets from an asteroseismological point of view. The OGLE
data are not optimally suited to study those variables, but some

types could be studied and discovered. Our classifiers have iden-
tified 107 candidate B-type pulsators (SPB, BCEP and PVSG)
in the Magellanic clouds. Those candidates were placed on the
HR diagram, to see how they are situated with respect to the
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Fig. 31. Phase plots of variables in the Galactic Bulge classified as GDOR with the GM method, and not present in the list of Pigulski. The OGLE
identifier is shown, and the dominant frequency, used to fold the light curves, in units of cycles per day (c/d).

instability strips of B-type pulsators. This allowed us to con-
clude that the present instability computations are incomplete
and that their improvement probably needs new input physics.
In practice, we provide here a list of new candidate variables of

multiperiodic classes (DSCUT, BCEP, SPB and GDOR), includ-
ing several in the Bulge. A more in-depth analysis of these candi-
dates is needed, but this is outside the scope of this classification
work.
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Fig. 32. Phase plots of variables in the Galactic Bulge classified as BCEP with the GM method, and not present in the list of Pigulski. The OGLE
identifier is shown, and the dominant frequency, used to fold the light curves, in units of cycles per day (c/d).
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Fig. 33. Phase plots of variables in the Galactic Bulge classified as DSCUT with the GM method, and not present in the list of Pigulski. The OGLE
identifier is shown, and the dominant frequency, used to fold the light curves, in units of cycles per day (c/d).
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Fig. 34. Phase plots of variables in the Galactic Bulge classified as DSCUT with the GM method, and not present in the list of Pigulski. The OGLE
identifier is shown, and the dominant frequency, used to fold the light curves, in units of cycles per day (c/d).
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