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ABSTRACT

Acoustic backing-off was recently proposed as an operationalisa
tion of missing feature theory for increased recognition robustness. 
Acoustic backing-off effectively removes the detrimental influence 
of outlier values from the local decisions in the Viterbi algorithm 
without any kind of explicit outlier detection. In the context of con
nected digit recognition over telephone lines, it is shown that with 
more than 30% of the static mel-frequency cepstral coefficients dis
turbed, acoustic backing-off is capable of reducing the word er
ror rate by one order of magnitude. Furthermore, our results indi
cate that the effectiveness of acoustic backing-off is optimal when 
dispersion of distortions due to acoustic feature transformations is 
minimal.

1. INTRODUCTION

Recently, it was shown that missing feature theory can be used 
for improved robustness of automatic speech recognition (ASR) 
systems [1], [2]. According to missing feature theory, recogni
tion performance in adverse conditions can be maintained at the 
level for undisturbed conditions provided that a sufficient number 
of acoustic features remain intact. The work in [2] provided a proof 
of concept: If  an ASR device has prior information that some fea
tures are corrupted, and if its scoring procedure is such that cor
rupted features can be discarded, it is made very robust against dis
tortions. In [3] we proved that missing feature theory can be used 
in conventional ASR without the need for prior knowledge about 
which features are corrupted. To this aim acoustic backing-off was 
introduced to limit the impact of possibly corrupted features in the 
scoring of the likelihood of alternative hypotheses. A similar ro- 
bustifying effect was obtained as in [2]. Moreover, it was argued 
that the newly proposed acoustic backing-off (ACBOFF) method 
will work with any feature set, not just spectral features.
In this paper we extend the work of [3] in two directions. First, 
we present results of a study where we compared the effect of 
ACBOFF for disturbed and undisturbed feature vectors consisting 
of mel-frequency cepstral coefficients (MFCC’s) as a function of 
the ACBOFF tuning parameter. Unlike the experiments described 
in [3], we applied the distortions to the acoustic features prior to 
channel normalisation and taking the first time-derivate. The re
sults confirm the capacity of ACBOFF to restore recognition accu
racy even when a substantial part of the MFCC’s is disturbed. 
Already in [3] we pointed out that the performance gain of

ACBOFF is strongly dependent on the proportion of disturbed co
efficients. Many physically realistic distortions in speech signals 
are local in the spectro-temporal space. However, many of the 
parameter transforms used in the front-ends of today’s ASR sys
tems imply some form of spectro-temporal smearing. As the sec
ond extension we therefore investigate how the performance gain 
of ACBOFF is related to two routinely applied parameter transfor
mations, i.e., the discrete cosine transform (DCT) and channel nor
malisation (CN). The results of these experiments help to explain 
why these transforms may have undesirable side effects under some 
types of adverse acoustic conditions.
In section 2 we explain the theory underlying ACBOFF, section 3 
describes the experimental set-up that we used, section 4 gives the 
major results and we formulate our conclusions in section 5.

2. THEORY

We assume that we have a set of independent measurements of a 
stochastic process at time instant which constitute an observation 
vector , with dim( ) . In addition, we assume that we 
have distinct classes (states) from which the
stochastic process originates.
Viterbi decoding needs some measure for local distance to identify 
the best path through the search space:

diociSj ,x(t))  = -log[p( £,•)] +
K
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where dioc(Sj, x (i))  is the local distance function (LDF),p(Sj) is 
the probability of being in class , and denotes the
likelihood of observing feature value xu (t) according to coordinate 

of class .
Any procedure which limits the impact of distortions and other 
outliers on the LDF should help to diminish the effects of pa
rameters with values that are widely beyond what was observed 
during training (cf. [2], [4], [5]). In a study in the field of 
speaker recognition [6] it was proposed to hard limit the cost func
tion at ¡1 ±  3a. In [3] we proposed to limit the contribution 
of a -possibly corrupted- parameter observation to the LDF by 
means of a backing-off procedure. We compute the contribution 
p(xk(t)\Sjk)  inEq. (1) as follows

- lo g ^ æ /e ^ I S jü ]  «  — log[ap(xk(t)\Sjk) +  (1 — ct)pok], (2)



with a backing-off value ( ) and the
parametric approximation of . Mixtures of continu
ous probability density functions (pdf’s) have appeared to be very 
powerful and effective in ASR devices to describe .

is the (constant) probability that an arbitrary observation falls 
beyond the central portion of the distribution. The fact that we 
have chosen to be independent of state , ensures that the 
contribution of a corrupted observation to almost all pdf’s be
comes equal and the parameter is effectively discarded for this 
frame. For a full explanation we refer the reader to [3]. The right 
hand side of Eq. (2) is a continuous and continuously differen
tiable function. This eliminates the need to branch towards qual
itatively different processes if an observation exceeds some neces
sarily arbitrary threshold. Thus, we have effectively removed the 
need for explicit and error prone procedures for detecting outliers.
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Figure 1: Contribution to local distance without (dashed line) and 
with (solid lines) ACBOFF for different values of a . Vertical lines 
indicate the boundaries of the region | <  3.

Fig. 1 shows the effect on the LDF of ACBOFF for different val
ues of a  (solid curves), where we have used a single univariate 
Gaussian pdf for describing p(xk{t) | Sjk ). As can be seen, decreas
ing the value of results in decreasing the range of observation 
values where the contribution to the L D Fp(*i(t)|S ji;) is actually 
sensitive. In other words: By tuning a  we tune the ‘receptive field’ 
of the emission pdf in our models.

3. EXPERIMENTAL SET-UP

We carried out our experiments with a connected digit recogniser 
trained for telephone speech. We artificially modified the acoustic 
vectors of the test utterances. The modifications we used are an
alytically tractable and easy to model, rather than physically real
istic. In fact, these distortions are not intended to model specific 
real-life situations. Compared to adding certain types of noise to 
the original waveforms, our methodology allows us to better pursue 
our aims: (1) to investigate the potential power of our implemen
tation of missing feature theory and (2) to investigate the impact 
of DCT and CN on the effectiveness of missing feature theory to

robustify ASR systems.

3.1. Database

The speech material for our experiments was taken from the Dutch 
POLYPHONE corpus [7]. Speakers were recorded over the public 
switched telephone network in the Netherlands. For training we re
served a set of 480 connected digit strings, where each string con
tained six digits. For cross-validation during training [8] we used 
240 utterances. The models were always evaluated with 671 inde
pendent test utterances.

3.2. Signal processing

A 25 ms Hamming window shifted with 10 ms steps and a pre
emphasis factor of .98 were used to calculate 24 filter band en
ergy values, uniformly distributed on a mel-frequency scale (cov
ering 0 - 2143.6 mel). Next, 12 MFCC’s were computed. In addi
tion we used the first time-derivatives (delta-MFCC’s), log-energy 
(logE) and its first time-derivative (delta-logE), making for 26
dimensional feature vectors. Finally, we either applied cepstrum 
mean subtraction (CMS) or phase-corrected RASTA (pcR) [8] to 
the twelve MFCC’s in order to normalise for channel variations. In 
both cases, we used the off-line version of the CN technique, i.e. 
using the whole utterance. The pre-processing steps in going from 
24 log-energy bands to 12 channel normalised MFCC’s and their 
corresponding delta’s are shown in Fig. 2.

level 1 level 2 level 3 level 4

Figure 2: Schematic diagram showing the different acoustic pre
processing steps for coordinates depending on MFCC’s in our fea
ture vectors. The logE and delta-logE coordinates are not shown in 
this diagram. indicates taking the first time-derivative. Level 
indicates the position in the pre-processing where distortions may 
be introduced.

3.3. Acoustic distortion types

We used two different types of distortions for the experiments in 
this paper. As a first level 2 type distortion we randomly selected 
N sei out of 12 MFCC coordinates. For all feature vectors in a test 
utterance the same coordinates were disturbed, but for each 
test utterance a new random selection was made. We denote this 
distortion type in short as RC. Using all available training data, we 
first determined the distribution of observation values for each indi
vidual coordinate. In each distribution, we determined a threshold 
value such that of the observations was lying above this
threshold. A coordinate selected to be distorted was assigned a 
value , with a constant. We used in all of the RC
experiments in this paper and we always used , which
amounts to distorting more than 30% of the MFCC coordinates. 
As the second type, we disturbed a sub-set of the log-energy band



values. This type of distortion takes place at level 1. For each band 
the maximum value was determined using all training data. For all 
frames in the test data the original value was replaced by the value 
corresponding to 10 dB below the maximum observed for that band 
if the original value was below this threshold, else the original value 
was kept. For the experiments in this paper we always applied the 
distortion to the first seven log-energy bands. This may be inter
preted as a crude way of modeling a low-frequency additive noise 
(hence the short name: LF). Also in this case about 30% of coordi
nates was distorted.

3.4. Models

The ten words of the Dutch digits can be described with 18 context 
independent phone models. In addition we used four models for 
silence, very soft background noise, other background noise and 
out-of-vocabulary speech. For our most simple description, each 
phone unit was represented as a left-to-right hidden Markov model 
(HMM) consisting of three states, with the emission pdf of each 
state in the form of a single Gaussian pdf and only self-loops and 
transitions to next state. For these models the total number of dif
ferent states was 66 (54 for the phones plus 12 for the noise mod
els).
Contrary to the common modus operandi, we did not train multi
mixture Gaussian HMM’s. Instead, right after the mixture split 
of our best single-Gaussian HMM’s, we immediately rewrote each 
3-state, double Gaussian HMM into the equivalent six-state, sin
gle Gaussian HMM with transitions allowed according to the 
topology-equivalence. In this manner we trained HMM’s with a 
total of 66, 132 & 264 single Gaussian densities, with diagonal co
variance matrices. For all experiments in this paper the models 
were trained only once, using undisturbed features.

4. RESULTS AND DISCUSSION

4.1. Level 2 distortions

In a first experiment we investigated the effectiveness of ACBOFF 
as a function of the backing-off parameter a . We compared recog
nition results for undisturbed and RC distorted feature vectors (cf. 
Fig. 3AB). As points of reference we also established recognition 
accuracy for undisturbed and RC distorted feature vectors without 
ACBOFF. The reference results are indicated in Fig. 3AB as the 
isolated short line segments in the right section of each pannel. In 
all cases, pcR was used for CN.
The results in Fig. 3AB clearly indicate that the RC distortion has 
a very large impact: WER jumps from 3.0% to 68.8% for HMM’s 
with a total of 264 Gaussian pdf’s. As can be seen, ACBOFF is 
highly effective in restoring much of the original recognition ac
curacy. For the 264 pdf HMM’s ACBOFF reduces WER to 8.2%, 
which corresponds to a relative WER reduction of . For this 
specific level 2 distortion the optimum value for appears to be 
around for each number of Gaussian densities that we tested 
( ). At that optimum backing-off value, recog
nition performance for the undistorted feature vectors starts to de
teriorate: The WER is increased to 3.7% for the 264 pdf HMM’s. 
The gap between the two curves at this point may be interpreted as 
the effective loss in information due to the distortion. These results

show that ACBOFF is a highly effective implementation of missing 
feature theory, capable of achieving a relative WER reduction well 
above .

Figure 3: Recognition results as a function of backing-off para
meter — ¿05(1 — a). Lines connecting ‘x ’: undisturbed condition. 
Lines connecting ‘o’: distorted condition. Results for A: HMM’s 
with a total of 132 Gaussian pdf’s, RC distortion; B: 264 pdf’s, RC 
distortion; C: 132 pdf’s, LF distortion; D: 264 pdf’s, LF distortion.

4.2. Level 1 distortions

In the experiments reported on in [3] only level 4 distortions were 
applied. In the experiment described above, distortions were at 
level 2. None of these levels is physically realistic, but they have 
the advantage that they allow us to limit the distortions to a sub
set of the acoustic features used for recognition. In most real- 
world conditions, however, it is highly likely that distortions will be 
present in all cepstral coefficients: Even if only a small sub-set of 
the log-energy bands is distorted, the use of the DCT for obtaining 
the MFCC’s will effectively smear the distortion over all cepstral 
coefficients. In addition to this within-vector dispersion, a temporal 
smearing will result from the use of CN and A . In the next two sub
sections we investigate the interaction between these spectral and 
temporal smearing phenomena and the effectiveness of ACBOFF 
as an implementation of missing feature theory.

Spectral Smearing To investigate the effects of spectral smear
ing we determined recognition performance with and without 
ACBOFF using the LF level 1 distortion and pcR for CN. The re
sults are shown in Fig. 3CD. As can be seen the WER without 
ACBOFF for this level 1 distortion is well below the level found 
for the level 2 distortion shown in Fig. 3AB (compare 3C to 3A 
and 3D to 3B). For HMM’s with 264 Gaussians in total we found 
WER=40.0%. Thus, judging from the WER values obtained with
out ACBOFF, it would appear that our LF level 1 distortion is less 
severe than the RC level 2 distortion that we investigated. As can 
be seen in Fig. 3CD, however, applying ACBOFF for our level 1 
distortion does not give any improvement and even degrades the re
cognition performance somewhat. Ofcourse, the level 1 and level 2 
distortions that we applied are not related to each other in a way that



Table 1: WER results in % for different combinations of experi
mental set-ups.

features a  =  1 a  =  0.9
original, pcR 3.0 3.7

original, CMS 3.0 4.2
disturbed, pcR 68.8 8.2

disturbed, CMS 90.1 7.4

would allow of straightforward analytical comparisons. Neverthe
less, we are confident that the inability of ACBOFF (or probably 
any other implementation of missing feature theory, for that mat
ter) to cope with this type of distortion can only be explained by 
the within-frame smearing caused by the DCT that affects all coef
ficients. This interpretation is in good agreement with [1], where it 
was already pointed out that missing feature theory does not allow 
application of an orthogonalisation transformation, because this vi
olates the assumption that some of the feature values remain unaf
fected by the distortion. One possible way to reduce within-vector 
dispersion caused by DCT was recently suggested in [9].

Temporal Smearing As a final experiment we repeated experi
ment 1, but using CMS for CN instead of pcR. Using the RC level 
2 type distortion in combination with CMS we again determined 
the optimum value for and found . For the models with
264 pdf’s in total the WER results are shown for pcR and CMS to
gether in Table 1 for the four different conditions that we evaluated. 
At a confidence level the difference between pcR and CMS 
WER values when using optimal ACBOFF is not significant, for 
the undisturbed as well as the disturbed condition.
As can be seen in Table 1, ACBOFF is capable of reducing WER 

in the distorted condition with CMS by . In other words: This 
is a reduction of WER by one order of magnitude.
When comparing the results for the two different CN techniques 
in Table 1, we observe a larger performance drop for CMS with
out ACBOFF. This may very well be explained by the fact that the 
CMS implementation that we used has an infinite impulse reponse. 
As a result, any local distortion will be distributed over the whole 
utterance. In the case of pcR, however, a local distortion will only 
be distributed over a limited number of neighbouring frames thanks 
to the finite impulse response of the pcR filter. As can be seen in 
Fig. 1, distortions causing larger outlier values make no difference 
when ACBOFF is being used, as long as the outlier values are lying 
outside the receptive field of the emission cost generator. This in
terpretation is well supported by the fact that WER is also restored 
in the case of CMS to a value that is not significantly different from 
the one obtained when pcR is used for CN. This result might very 
well be due to the fact that we used distortions such that a sub-set of 
the features was completely intact and all remaining feature-values 
were heavily distorted. Clearly, there are no doubt situations con
ceivable where some feature coordinates are mildly, others heavily 
and the rest not distorted. It remains an open question at this mo
ment, if in such situations dispersion of distortions along the time 
axis is important. This will be one of the subjects of future research.

5. CONCLUSIONS

We studied the use of acoustic backing-off as a way to implement 
missing feature theory in the framework of an otherwise straight
forward HMM recogniser. With ACBOFF the decoder does not 
need prior knowledge about which features are potentially dis
torted. In fact, it does not need any kind of explicit ’outlier de
tection’. When ACBOFF is applied to feature vectors suffering 
from inherently unpredictable distortions we could still improve 
the WER by more than one order of magnitude. In fact, we restored 
WER to the level expected for the original undisturbed feature vec
tors with some of the components removed. Our recognition ex
periments indicate that feature vector transformations in the front
end of the ASR should avoid dispersion of local distortions along 
the within-vector dimension as well as along the temporal dimen
sion when using an implementation of missing feature theory for 
improved recognition robustness.
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