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ACOUSTIC BACKING-OFF
AS AN IMPLEMENTATION OF MISSING FEATURE THEORY
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ABSTRACT

Acoustic backing-off was recently proposed as an operationalisa-
tion of missing feature theory for increased recognition robustness.
Acoustic backing-off effectively removes the detrimental influence
of outlier values from the local decisions in the Viterbi algorithm
without any kind of explicit outlier detection. In the context of con-
nected digit recognition over telephone lines, it is shown that with
more than 30% of the static mel-frequency cepstral coefficients dis-
turbed, acoustic backing-off is capable of reducing the word er-
ror rate by one order of magnitude. Furthermore, our results indi-
cate that the effectiveness of acoustic backing-off is optimal when
dispersion of distortions due to acoustic feature transformations is
minimal.

1. INTRODUCTION

Recently, it was shown that missing feature theory can be used
for improved robustness of automatic speech recognition (ASR)
systems [1], [2]. According to missing feature theory, recogni-
tion performance in adverse conditions can be maintained at the
level for undisturbed conditions provided that a sufficient number
of acoustic features remain intact. The work in [2] provided a proof
of concept: If an ASR device has prior information that some fea-
tures are corrupted, and if its scoring procedure is such that cor-
rupted features can be discarded, it is made very robust against dis-
tortions. In [3] we proved that missing feature theory can be used
in conventional ASR without the need for prior knowledge about
which features are corrupted. To this aim acoustic backing-off was
introduced to limit the impact of possibly corrupted features in the
scoring of the likelihood of alternative hypotheses. A similar ro-
bustifying effect was obtained as in [2]. Moreover, it was argued
that the newly proposed acoustic backing-oft (ACBOFF) method
will work with any feature set, not just spectral features.

In this paper we extend the work of [3] in two directions. First,
we present results of a study where we compared the eftect of
ACBOFF for disturbed and undisturbed feature vectors consisting
of mel-frequency cepstral coefficients (MFCC’s) as a function of
the ACBOFF tuning parameter. Unlike the experiments described
in [3], we applied the distortions to the acoustic features prior to
channel normalisation and taking the first time-derivate. The re-
sults confirm the capacity of ACBOFF to restore recognition accu-
racy even when a substantial part of the MFCC’s is disturbed.
Already in [3] we pointed out that the performance gain of

ACBOFF is strongly dependent on the proportion of disturbed co-
efficients. Many physically realistic distortions in speech signals
are local in the spectro-temporal space. However, many of the
parameter transforms used in the front-ends of today’s ASR sys-
tems imply some form of spectro-temporal smearing. As the sec-
ond extension we therefore investigate how the performance gain
of ACBOFF is related to two routinely applied parameter transfor-
mations, i.e., the discrete cosine transform (DCT) and channel nor-
malisation (CN). The results of these experiments help to explain
why these transforms may have undesirable side effects under some
types of adverse acoustic conditions.

In section 2 we explain the theory underlying ACBOFF, section 3
describes the experimental set-up that we used, section 4 gives the
major results and we formulate our conclusions in section 5.

2. THEORY

We assume that we have a set of independent measurements of a
stochastic process at time instant ¢+ which constitute an observation
vector x(#), with dim(x) = K. In addition, we assume that we
have J distinct classes (states) S;, 7 = 1,...,J from which the
stochastic process originates.

Viterbi decoding needs some measure for local distance to identify
the best path through the search space:

dloc(sj7x(t)) = -lOg[p(SJH +
+ " {=loglp(es (1)]S;0)]}, (1)
k=1

where dj,.(S;, x(t)) is the local distance function (LDF), p(S;) is
the probability of being in class S;, and p(z(t)|S;i) denotes the
likelihood of observing feature value zz, (¢) according to coordinate
k of class Sj;.

Any procedure which limits the impact of distortions and other
outliers on the LDF should help to diminish the effects of pa-
rameters with values that are widely beyond what was observed
during training (cf. [2], [4], [5]). In a study in the field of
speaker recognition [6] it was proposed to hard limit the cost func-
tion at g + 3o. In [3] we proposed to limit the contribution
of a —possibly corrupted— parameter observation to the LDF by
means of a backing-off procedure. We compute the contribution
p(zr(£)|Sir) in Eq. (1) as follows

—log[p(zx()|Sjx] = — loglap(er(®)[Sjr) + (1 — a)por], (2)



with & a backing-off value (0 < a < 1) and p(z(t)|S;z) the
parametric approximation of p(xz(#)|S;%). Mixtures of continu-
ous probability density functions (pdf’s) have appeared to be very
powerful and effective in ASR devices to describe p(xx (1)|5;5).
por 1s the (constant) probability that an arbitrary observation falls
beyond the central portion of the distribution. The fact that we
have chosen pg, to be independent of state j, ensures that the
contribution of a corrupted observation to almost all pdf’s be-
comes equal and the parameter is effectively discarded for this
frame. For a full explanation we refer the reader to [3]. The right
hand side of Eq. (2) is a continuous and continuously difteren-
tiable function. This eliminates the need to branch towards qual-
itatively different processes if an observation exceeds some neces-
sarily arbitrary threshold. Thus, we have effectively removed the
need for explicit and error prone procedures for detecting outliers.
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Figure 1: Contribution to local distance without (dashed line) and
with (solid lines) ACBOFF for different values of «. Vertical lines

indicate the boundaries of the region [22£| < 3.

Fig. 1 shows the effect on the LDF of ACBOFF for different val-
ues of « (solid curves), where we have used a single univariate
Gaussian pdf for describing p(xy (£)|S;%). Ascan be seen, decreas-
ing the value of « results in decreasing the range of observation
values where the contribution to the LDF p(x (£)|S;5) is actually
sensitive. In other words: By tuning « we tune the ‘receptive field’
of the emission pdf in our models.

3. EXPERIMENTAL SET-UP

We carried out our experiments with a connected digit recogniser
trained for telephone speech. We artificially modified the acoustic
vectors of the test utterances. The modifications we used are an-
alytically tractable and easy to model, rather than physically real-
istic. In fact, these distortions are not intended to model specific
real-life situations. Compared to adding certain types of noise to
the original waveforms, our methodology allows us to better pursue
our aims: (1) to investigate the potential power of our implemen-
tation of missing feature theory and (2) to investigate the impact
of DCT and CN on the effectiveness of missing feature theory to

robustify ASR systems.

3.1. Database

The speech material for our experiments was taken from the Dutch
POLYPHONE corpus [7]. Speakers were recorded over the public
switched telephone network in the Netherlands. For training we re-
served a set of 480 connected digit strings, where each string con-
tained six digits. For cross-validation during training [8] we used
240 utterances. The models were always evaluated with 671 inde-
pendent test utterances.

3.2. Signal processing

A 25 ms Hamming window shifted with 10 ms steps and a pre-
emphasis factor of .98 were used to calculate 24 filter band en-
ergy values, uniformly distributed on a mel-frequency scale (cov-
ering 0 - 2143.6 mel). Next, 12 MFCC’s were computed. In addi-
tion we used the first time-derivatives (delta-MFCC’s), log-energy
(logE) and its first time-derivative (delta-logE), making for 26-
dimensional feature vectors. Finally, we either applied cepstrum
mean subtraction (CMS) or phase-corrected RASTA (pcR) [8] to
the twelve MFCC’s in order to normalise for channel variations. In
both cases, we used the oft-line version of the CN technique, i.e.
using the whole utterance. The pre-processing steps in going from
24 log-energy bands to 12 channel normalised MFCC’s and their
corresponding delta’s are shown in Fig. 2.
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Figure 2: Schematic diagram showing the different acoustic pre-
processing steps for coordinates depending on MFCC’s in our fea-
ture vectors. The logE and delta-logE coordinates are not shown in
this diagram. A indicates taking the first time-derivative. Level 4
indicates the position in the pre-processing where distortions may
be introduced.

3.3. Acoustic distortion types

We used two different types of distortions for the experiments in
this paper. As a first level 2 type distortion we randomly selected
Nger out of 12 MFCC coordinates. For all feature vectors in a test
utterance the same N;.; coordinates were disturbed, but for each
test utterance a new random selection was made. We denote this
distortion type in short as RC. Using all available training data, we
first determined the distribution of observation values for each indi-
vidual coordinate. In each distribution, we determined a threshold
value 7} such that 0.05% of the observations was lying above this
threshold. A coordinate k selected to be distorted was assigned a
value T}, with ¢ a constant. We used ¢ = 0.75 in all of the RC
experiments in this paper and we always used N;e; = 4, which
amounts to distorting more than 30% of the MFCC coordinates.

As the second type, we disturbed a sub-set of the log-energy band



values. This type of distortion takes place at level 1. For each band
the maximum value was determined using all training data. For all
frames in the test data the original value was replaced by the value
corresponding to 10 dB below the maximum observed for that band
if the original value was below this threshold, else the original value
was kept. For the experiments in this paper we always applied the
distortion to the first seven log-energy bands. This may be inter-
preted as a crude way of modeling a low-frequency additive noise
(hence the short name: LF). Also in this case about 30% of coordi-
nates was distorted.

3.4. Models

The ten words of the Dutch digits can be described with 18 context
independent phone models. In addition we used four models for
silence, very soft background noise, other background noise and
out-of-vocabulary speech. For our most simple description, each
phone unit was represented as a left-to-right hidden Markov model
(HMM) consisting of three states, with the emission pdf of each
state in the form of a single Gaussian pdf and only self-loops and
transitions to next state. For these models the total number of dif-
ferent states was 66 (54 for the phones plus 12 for the noise mod-
els).

Contrary to the common modus operandi, we did not train multi-
mixture Gaussian HMM’s. Instead, right after the mixture split
of our best single-Gaussian HMM’s, we immediately rewrote each
3-state, double Gaussian HMM into the equivalent six-state, sin-
gle Gaussian HMM with transitions allowed according to the
topology-equivalence. In this manner we trained HMM’s with a
total of 66, 132 & 264 single Gaussian densities, with diagonal co-
variance matrices. For all experiments in this paper the models
were trained only once, using undisturbed features.

4. RESULTS AND DISCUSSION

4.1. Level 2 distortions

In afirst experiment we investigated the effectiveness of ACBOFF
as a function of the backing-off parameter «. We compared recog-
nition results for undisturbed and RC distorted feature vectors (cf.
Fig. 3AB). As points of reference we also established recognition
accuracy for undisturbed and RC distorted feature vectors without
ACBOFF. The reference results are indicated in Fig. 3AB as the
isolated short line segments in the right section of each pannel. In
all cases, pcR was used for CN.

The results in Fig. 3AB clearly indicate that the RC distortion has
a very large impact: WER jumps from 3.0% to 68.8% for HMM’s
with a total of 264 Gaussian pdf’s. As can be seen, ACBOFF is
highly effective in restoring much of the original recognition ac-
curacy. For the 264 pdf HMM’s ACBOFF reduces WER to 8.2%,
which corresponds to a relative WER reduction of 88%. For this
specific level 2 distortion the optimum value for « appears to be
around 0.9 for each number of Gaussian densities that we tested
(—log({l — a) = 2.3). At that optimum backing-off value, recog-
nition performance for the undistorted feature vectors starts to de-
teriorate: The WER is increased to 3.7% for the 264 pdf HMM’s.
The gap between the two curves at this point may be interpreted as
the effective loss in information due to the distortion. These results

show that ACBOFF is a highly effective implementation of missing
feature theory, capable of achieving a relative WER reduction well
above 80%.
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Figure 3: Recognition results as a function of backing-off para-
meter —log(1 — ). Lines connecting ‘x*: undisturbed condition.
Lines connecting ‘o’: distorted condition. Results for A: HMM’s
with a total of 132 Gaussian pdf’s, RC distortion; B: 264 pdf’s, RC
distortion; C: 132 pdf’s, LF distortion, D: 264 pdf’s, LF distortion.

4,2. Level 1 distortions

In the experiments reported on in [3] only level 4 distortions were
applied. In the experiment described above, distortions were at
level 2. None of these levels is physically realistic, but they have
the advantage that they allow us to limit the distortions to a sub-
set of the acoustic features used for recognition. In most real-
world conditions, however, it is highly likely that distortions will be
present in all cepstral coefficients: Even if only a small sub-set of
the log-energy bands is distorted, the use of the DCT for obtaining
the MFCC’s will effectively smear the distortion over all cepstral
coefficients. In addition to this within-vector dispersion, a temporal
smearing will result from the use of CN and A. In the next two sub-
sections we investigate the interaction between these spectral and
temporal smearing phenomena and the eftectiveness of ACBOFF
as an implementation of missing feature theory.

Spectral Smearing To investigate the effects of spectral smear-
ing we determined recognition performance with and without
ACBOFF using the LF level 1 distortion and pcR for CN. The re-
sults are shown in Fig. 3CD. As can be seen the WER without
ACBOFF for this level 1 distortion is well below the level found
for the level 2 distortion shown in Fig. 3AB (compare 3C to 3A
and 3D to 3B). For HMM’s with 264 Gaussians in total we found
WER=40.0%. Thus, judging from the WER values obtained with-
out ACBOFF, it would appear that our LF level 1 distortion is less
severe than the RC level 2 distortion that we investigated. As can
be seen in Fig. 3CD, however, applying ACBOFF for our level 1
distortion does not give any improvement and even degrades the re-
cognition performance somewhat. Of course, the level 1 and level 2
distortions that we applied are not related to each other in a way that



Table 1: WER results in % for different combinations of experi-
mental set-ups.

features a=1 oa=09
original, pcR 3.0 37
original, CMS 3.0 4.2
disturbed, pcR 68.8 8.2
disturbed, CMS 90.1 7.4

would allow of straightforward analytical comparisons. Neverthe-
less, we are confident that the inability of ACBOFF (or probably
any other implementation of missing feature theory, for that mat-
ter) to cope with this type of distortion can only be explained by
the within-frame smearing caused by the DCT that affects all coef-
ficients. This interpretation is in good agreement with [1], where it
was already pointed out that missing feature theory does not allow
application of an orthogonalisation transformation, because this vi-
olates the assumption that some of the feature values remain unaf-
fected by the distortion. One possible way to reduce within-vector
dispersion caused by DCT was recently suggested in [9].

Temporal Smearing As a final experiment we repeated experi-
ment 1, but using CMS for CN instead of pcR. Using the RC level
2 type distortion in combination with CMS we again determined
the optimum value for v and found « = 0.9. For the models with
264 pdf’s in total the WER results are shown for pcR and CMS to-
gether in Table 1 for the four different conditions that we evaluated.
At a 95% confidence level the difference between pcR and CMS
WER values when using optimal ACBOFF is not significant, for
the undisturbed as well as the disturbed condition.

As can be seen in Table 1, ACBOFF is capable of reducing WER
in the distorted condition with CMS by 92%. In other words: This
is a reduction of WER by one order of magnitude.

When comparing the results for the two different CN techniques
in Table 1, we observe a larger performance drop for CMS with-
out ACBOFF. This may very well be explained by the fact that the
CMS implementation that we used has an infinite impulse reponse.
As aresult, any local distortion will be distributed over the whole
utterance. In the case of pcR, however, a local distortion will only
be distributed over a limited number of neighbouring frames thanks
to the finite impulse response of the pcR filter. As can be seen in
Fig. 1, distortions causing larger outlier values make no difference
when ACBOFF is being used, as long as the outlier values are lying
outside the receptive field of the emission cost generator. This in-
terpretation is well supported by the fact that WER is also restored
in the case of CMS to a value that is not significantly different from
the one obtained when pcR is used for CN. This result might very
well be due to the fact that we used distortions such that a sub-set of
the features was completely intact and all remaining feature-values
were heavily distorted. Clearly, there are no doubt situations con-
ceivable where some feature coordinates are mildly, others heavily
and the rest not distorted. It remains an open question at this mo-
ment, if in such situations dispersion of distortions along the time
axis is important. This will be one of the subjects of future research.

5.  CONCLUSIONS

We studied the use of acoustic backing-off as a way to implement
missing feature theory in the framework of an otherwise straight-
forward HMM recogniser. With ACBOFF the decoder does not
need prior knowledge about which features are potentially dis-
torted. In fact, it does not need any kind of explicit *outlier de-
tection’. When ACBOFF is applied to feature vectors suffering
from inherently unpredictable distortions we could still improve
the WER by more than one order of magnitude. In fact, we restored
WER to the level expected for the original undisturbed feature vec-
tors with some of the components removed. Our recognition ex-
periments indicate that feature vector transformations in the front-
end of the ASR should avoid dispersion of local distortions along
the within-vector dimension as well as along the temporal dimen-
sion when using an implementation of missing feature theory for
improved recognition robustness.
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