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Abstract
Recognising directory listings for national telephone number 
inquiry is slowly getting within reach for modern ASR tech
nology. Two key factors for a successful system design are (1) 
optimal extent of lexical modelling and (2) an effective utter
ance rejection method. In this paper we show how a choice 
for the first has consequences for the second.

We have taken the approach of building a lexicon with 
multiword expressions for the most frequently requested tele
phone listings, stepwise extended with filler words and less 
frequently addressed listings. In doing so, we keep track of 
the consequences that different Out of Vocabulary (OOV) 
rates have on two diverging keyphrase rejection schemes. Ex
perimental results on field data clearly show that tasks with 
high OOV rates benefit most from acoustic confidence meas
ures, while tasks with low OOV rates are better off with N- 
best list-based rejection schemes.

1. Introduction
In the framework of the EC-sponsored project SMADA 
(Speech-driven Multimodal Automatic Directory Assistance), 
we are investigating the feasibility of adopting ASR technol
ogy in a service for nation-wide Directory Asssistance (DA). 
To make automation feasible, callers must first be prompted 
to say the type of listing (residential or business), next to give 
the city name and then to specify the name of a private person 
or a public agency, referred to as ‘residential listing’ and 
‘business listings’ throughout this paper.

Automatically recognising names in DA is complicated in 
a number of ways.

1. the set of possible person or public agency names is 
very large,

2. the frequency distribution of requested listings is de
pendent on both location and time, and

3. especially for public agencies, there are often numer
ous possible expressions to refer to it.

When constructing a lexicon for a task like this, it is evi
dent that optimal size is subject to a trade-off between cover
age completeness and lexicon perplexity. The impact of the 
latter is amplified by the fact that callers often use spontane
ous, brief, and ungrammatical sentences. In other words, it is 
difficult to capture the language in a model and thus to steer 
the process of selecting the right lexicon entry.

This consideration led us to the idea to build a lexicon 
with a small set of items we want to recognise, verify and ex
tract information from. The lexicon covers the expressions 
(indicated as ‘keyphrases’ in the remainder of the paper) that 
refer to the X most frequently requested listings (FRLs). Han

dling these listings automatically amounts to a large propor
tion of automation of the service. This lexicon can be ex
tended with items we merely want to model. One could call 
the latter set ‘specified garbage’; it is just there to capture 
(some of) the incoming speech, but not to deduce information 
from.

Nevertheless, as a consequence of the problems men
tioned above, many keyphrases are incorrectly recognised. 
Therefore, early rejection of keyphrases that may have been 
incorrectly recognised is an indispensable element of system 
design. In this paper we will examine the relation between the 
coverage of lexical modelling and the efficacy of different 
rejection schemes.

In order to reduce the complexity and the size of this 
problem, we will focus on a subset of our development mate
rial in this paper. Our corpus only contains listing requests 
where the caller answered the first question ‘For which city?’ 
with ‘Rotterdam’. Additionally, we only investigate the de
gree of coverage of the lexicon used by the recogniser; no 
attempts are made to use knowledge sources like the time of 
the day or the day of the week that the request was recorded.

The problem addressed in this paper can now be formu
lated as follows: How can the largest possible proportion of 
the top X FRLs be recognised with a confidence that is high 
enough for further automatic handling? We decompose this 
problem into two elementary questions:
- What is the effect of Out of Vocabulary (OOV) items on 

recognition performance?
- How much is the quality of different keyphrase rejection 

schemes influenced by the OOV rate?
The rest of this paper is organised as follows. In Section 2 

we will discuss the two rejection schemes that will be used. 
Section 3 describes other features of our method. In Section 4 
and 5 we will present the results and discussion. Finally, we 
summarise our method and draw conclusions in Section 6.

2. Keyphrase Rejection
The focus of the present paper is on the relation between the 
OOV rate of a recognition task and the suitability of key
phrase rejection (KR) methods. A suitable method rejects in
correctly recognised keyphrases as accurately as possible, i.e. 
without discarding too much of the correctly recognised data. 
We consider two methods. The first, to be referred to as N- 
best based [1][2][3], accepts a recognised keyphrase only if 
there is agreement upon its semantic information in a limited 
N-best list. The other, LLR based [4] [5], computes phone 
and word confidence scores on the basis of frame-level Log 
Likelihood Ratios (LLRs) of the most likely sentence hy
pothesis, and accepts or rejects the keyphrases on the basis of 
the calculated confidence scores.
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2.1. N-best based method 2.3. Com parison

In this method, we assume that a word graph is generated 
during recognition. We further assume that for every arc 
(word) in the graph, there is an acoustic likelihood score 
available. We process the word graph with a keyphrase spot
ter. Depending on keyphrase content, the grammar of the key
phrase spotter returns a filler (empty value) or one or more 
semantically relevant attributes. In our case, an attribute is a 
unique representation of one of the top X FRLs. This helps to 
solve the problem that business listings can be referred to in 
different ways. Next, we extract an attribute-annotated sen
tence N-best list from the wordgraph, while preserving the 
according acoustic sentence likelihood scores. The decision to 
accept or reject the semantic result of the recognition depends 
on the degree of unanimity in the contents of the N-best list.
In this approach the restriction criteria applied when building 
the N-best list are a key element to set the balance of false 
accepts and false rejects. After all, the less restrictive criteria 
one uses, the more candidates in the list, the smaller the prob
ability of agreement, the more false rejects and vice versa. 
The only parameter that we will investigate here to control the 
depth of the N-best list is the maximum distance to the acous
tic likelihood score of the first best sentence that list members 
are allowed to have

2.2. LLR-based method

The other method, LLR-based, only considers the most likely 
sentence hypothesis, for which an ‘acoustic’ confidence score 
is computed for the keyphrase (if any) that it contains. We 
reject keyphrases with a confidence score lower than an a- 
priori set threshold value.

The score is obtained by using two acoustic models for 
each phone token in the keyphrase [4][5]. The first, to be in
dicated with ‘target model’, is equal or highly similar to the 
model used for recognition. The other, the ‘anti-model’, mod
els all phones with which the phone under consideration is 
easily confused. For the feature vectors that are assigned to 
the phones of a keyphrase during recognition, we compute 
two likelihood scores with the corresponding target- and anti
models. The phone-level average of the ratio of these two 
frame-scores is also known as the Phone Likelihood Ratio. It 
represents the degree to which the hypothesised phone token 
is more likely to belong to the target than to its confusable 
competitors.

The Phone Likelihood Ratio score may be interpreted as a 
phone confidence measure (PCM). The PCMs of the N(W) 
phonemes of a word W are subsequently combined into a 
word confidence score C(W) according to formula (1).

C (W  ) = - l n  
a

1 N(W ) a ■ PCM, (1)

With this weighting a minority of poor PCMs is enough 
to lower the whole word score. The constant a  controls the 
sensitivity to local mismatches. In all of our experiments we 
used a  = 0.4. As a consequence, words that have been sub
stituted with phonetically close (and thus confusable) words, 
may still be rejected for having local mismatches, as opposed 
to a simple average, where a couple of poor PCMs would not 
stand out sufficiently.

The reason why we have chosen for the two KR methods de
scribed above, is that we consider them to be mutual extremes 
in a certain sense; the LLR-based method starts with phone 
units and likelihood distances at state-level. The other method 
takes semantic attributes with sentence-level scores as a 
starting point.

3. Method

3.1. Material

The material used for our experiments is a subset of the Dutch 
Directory Assistance Corpus (DDAC2000) [6]. Our research 
focuses on the part of the corpus that comprises the response 
to the prompt for the person or business name for all calls that 
pertained to the city of Rotterdam. In the present work, we 
will look at the top 190 FRLs for Rotterdam, that make up 
about 30% of all requests. One of the names is ‘unknown’; it 
covers for situations where a caller says that (s)he doesn’t 
know the name of the listing. The total corpus contains 3,121 
utterances.

Recordings were made from the public switched tele
phone network. The signal was sampled at 8 kHz and stored 
in a-law format. Acoustic pre-processing comprised extracting 
14 MFCCs (c0..c13) and their first-order derivatives from 16 
ms Hamming windowed frames, with a 10 ms shift.

3.2. Accoustic and language models

Acoustic models were trained on 42,101 short utterances of 
the Dutch Polyphone database [6]. The HMM set consists of 
37 tristate monophone models, one tristate noise and one sin
gle state silence model. In each state, acoustic variance is 
modelled by a mixture pdf of maximally 32 Gaussians. The 
decoder operated as a continuous speech recogniser and all 
lexicon items could be chosen equiprobably, i.e. we used a 
zerogram language model for recognition.

3.3. Lexica

Since we want to investigate the suitability of KR methods for 
different OOV rates of the recognition task, lexicon coverage 
is the independent variable in our experiment. We decrease 
coverage by excluding a growing proportion of words used in 
the test utterances from the lexicon, making sure that the least 
frequently occurring word types are the first to be removed. 
However, in every lexicon we leave a set of 3 entries for filled 
pauses and noise and 891 (multi)word expressions intact. This 
set of expressions pertains to the top 190 FRLs. The majority 
of these expressions were created by hand on the basis of in
tuition. This fixed sublexicon covers only 26.2% of the 7,664 
word tokens in the test corpus. The four experimental condi
tions are summarised in Table 1.

3.4. LLR models

This section describes how we defined and trained target and 
anti-models to compute the LLR based confidence scores.

For the anti-models, it is necessary to know with which 
phonemes each phoneme is typically confused. To determine 
the set of most confusable phones, the training corpus was 
segmented by the recogniser. Each phone was then scored 
against the models for all other phones. In this way, we ob-



Lexicon Description size %OOV
rdam0%oov top 190 FRL expressions completed with all other word types of the test corpus 3466 0%
rdam10%oov top 190 FRL expressions completed with the most frequently occurring word 

types such that 90% of the word tokens are covered
2700 10%

rdam20%oov top 190 FRL expressions completed with the most frequently occurring word 
types such that 80% of the word tokens are covered

1934 20%

rdam190 top 190 FRL expressions 894 73.8%

3.5. Evaluation metrics

We use error-based metrics to evaluate the performance of our 
recognisers. Keyphrase Error Rate (KER) and Word Error 
Rate (WER) will all be computed with formula (2):

Error Rate = (I + S + D) / N * 100% (2)

where N is the total number of items, I the number of inser
tions, S substitutions and D deletions. Sentence Error Rate 
(SER) will also be evaluated.

For both rejection schemes, we use the same evaluation 
measure, viz. Rejection Error Rate (RER):

RER(T) = (D + fr(T) + fa(T)) / N * 100% (3)

where T is a rejection threshold and N is the total number of 
items. fr(T) is the number of falsely rejected items (a correctly 
recognised keyphrase or sentence was rejected) and fa(T) is 
the number of falsely accepted items (an inserted or substi
tuted keyphrase was accepted). We will compute minimal 
RER on keyphrase (RERk) and on sentence (RERs) level. A 
rejected sentence is considered falsely rejected when it con
tains at least one keyphrase. An accepted sentence is falsely 
accepted when all of the keyphrases are incorrect.

As pointed out in Section 2, the ‘threshold’ lies in differ
ent domains for the two keyphrase rejection schemes. In the 
LLR-based case, it is a real number, to which the outcome of
(1) is compared. In the N-best case, it is a parameter that 
specifies the maximal likelihood score distance between the 
first best sentence and any other N-best list member. We will 
show a figure of RERs plotted against several threshold values 
for both methods.

4. Results
This section presents the results of the experiments outlined 
in the previous sections. Table 2 shows the recognition per
formance for the best sentence. As can be seen, KER always 
exceeds 100%. The smaller the coverage of the lexicon, the 
more this can be ascribed to insertion errors.

Table 1: Experimental lexica

tained a phoneme confusion list for each phone type. We used 
these lists in the following procedure.

We used the alignment described in the previous para
graph to compute a state-level likelihood score for each fea
ture vector. Next, we computed phone scores by averaging 
frame scores at phone level. The tristate target models were 
subsequently trained on the best scoring 95% of all tokens, in 
order to reduce risk that mislabelled train tokens are included.
During training, the state level segmentation of the material 
was kept unaltered. Then we trained single state anti-models 
on the best scoring 20% tokens of the 8 most confusable pho
neme types. Target and anti-models are HMMs, each having 
mixture pdfs of maximally 32 Gaussians per state.

Lexicon SER KER WER
rdam0%oov 61.5% 131.2% 65.5%
rdam10%oov 66.0% 167.6% 71.4%
rdam20%oov 69.3% 205.5% 77.0%
rdam190 82.4% 380.7% 94.8%

Table 2: Recognition Error Rates (best sentence only)

Table 3 displays SER and WER for all experimental con
ditions when evaluating the whole wordgraph rather than just 
the best sentence. For now, we highlight just the fact that even 
when we use a lexicon that covers all word tokens of the test 
corpus, 30% of the correct words still do not appear in the 
wordgraph.

Lexicon SER WER
rdam0%oov 36.7% 30.0%
rdam10%oov 46.3% 37.2%
rdam20%oov 55.1% 45.0%
rdam190 79.6% 89.2%

Table 3: Recognition Error Rates (wordgraph)

Table 4 shows the rejection error rates after optimalisation 
of the threshold.

Lexicon
LLR-based Nbest-based

RERs RERk RERs RERk
rdam0%oov 20.4% 72.6% 17.2% 63.0%
rdam10%oov 21.7% 77.5% 17.7% 65.6%
rdam20%oov 23.0% 81.7% 18.6% 68.7%
rdam190 25.7% 89.8% 27.2% 102.3%

Table 4: Rejection Error Rates

Finally, Figures 1 and 2 show RERs as a function of the 
threshold value for the LLR-based and Nbest-based methods. 
We have no plots for RERk, but we do remark that the curves 
of RERs and RERk are more or less parallel, having an opti
mal value for the same T in each of the four test conditions.

5. Discussion
The first thing to notice in Table 2 is the value of KER for 
lexicon rdam190. It can easily be explained: when trying to 
recognise key phrases where no different names were spoken, 
we end up with a keyword for almost every utterance. The 
number of insertion errors surpasses the number of actually 
spoken keywords, which leads to error rates >> 100.

Another remarkable figure is the WER in the condition 
where none of the test utterances contain OOV items. Table 2 
shows that very often the right word is not selected in the best
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Figure 1: RERs(T) for the LLR-based measure Figure 2: RERs(T) for the Nbest-based measure

sentence, which may improve when using a more sophisti
cated language model. However, Table 3 shows that 30% of 
the spoken words do not appear in the word graph at all. In 
additional experiments the results of which are not reported in 
detail, we have seen that this is not caused by overrestrictive 
pruning criteria of the word graph generation, so we have no 
explanation for this phenomenon yet.

In [3] we hypothesised that the N-best method has a 
drawback that is compensated by the LLR-based method. It 
may happen that OOV utterances lead to word graphs with 
only one, obviously incorrect path. ‘Agreement’ in an N-best 
list with length 1 is automatically 100% and this inevitably 
leads to false accepts. Table 4 shows that the LLR-based re
jection scheme performs better than the N-best method when 
the lexicon contains only the top 190 listing names. However, 
if the OOV rate is reduced by extending the lexicon, the per
formance of the N-best based method improves substantially. 
Our explanation is that the words added to the lexicon help to 
describe the formerly OOV speech better, or at least pose a 
threat to an erroneously hypothesised keyword. This de
creases the number of false accepts much more than it in
creases the number of false rejects. A decrease in both RERk 
and RERs is the result.

Figure 2 shows that each RER stays the same beyond a 
certain threshold value. An explanation may be that all hy
potheses in the original word graph have the common prop
erty that they are within the pruning criteria of the search 
beam used for recognition. It appears that this is a ‘hidden’ 
criterion for composing the N-best list as well. Beyond the 
concerned threshold value, the word graph has no more can
didates that can cause rejection of the first best sentence. No 
more false rejects and false accepts are introduced, causing 
RER to stay the same. The results in Table 3 confirm this, as 
indicated by the limited number of correct sentences in the 
word graph.

So far even the best results in Table 4 are not good 
enough for operational DA services. However, there are sev
eral ways in which both recognition and rejection perform
ance can be improved. Recognition performance can be im
proved by training context dependent models, instead of the 
context-independent models used in the experiments reported 
here. The performance of the LLR-based rejection scheme can 
be improved by computing acoustic confidence scores for all

entries of the N-best list, and reordering the list on the basis 
of the confidence measures.

6. Summary and conclusions
In this paper we have compared the performance of an LLR- 
based and an Nbest-based rejection scheme under four artifi
cially created OOV rate conditions.

LLR-based measures are suitable for cases where an OOV 
item is recognised as an in-vocabulary word. Acoustic confi
dence measures will eliminate most of the ‘best yet wrong’ 
hypotheses. On the other hand, the N-best method has the 
advantage that it can handle acoustically similar hypotheses 
with incompatible semantic values. For the LLR-based meas
ures, a confusable hypothesis may fit the speech signal so 
well, that it is not capable to ‘notice’ the substitution. Here is 
where the N-best method excels.
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