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Abstract
This paper describes the noise robust feature extraction meth­
ods developed by France Telecom and Alcatel for the noise 
robust front-end standardisation of ETSI Aurora. It is shown 
that both noise reduction methods give a substantial im­
provement when compared to a standard MFCC feature ex­
traction algorithm for speech recognition in noisy environ­
ments. In addition, blind equalisation and feature vector se­
lection were used for further improvement of recognition 
performance. Results are discussed for the ETSI Aurora 2 task 
and the SDC-Italian task as well. It was found that the combi­
nation of noise reduction with the proposed methods is capa­
ble to achieve around 50% reduction of the error rate. In the 
context of the open ETSI Aurora standardisation, two propos­
als were submitted based on these methods, they achieved the 
best results among all the proposals.

1. Introduction

Information services in mobile networks suffer from a lack of 
interaction mechanisms that allow for user friendly input. The 
aim of making mobile terminals smaller makes the handling 
of such services even more difficult, because only a small 
number of keys is available to input the information required 
by the service. Thus speech recognition may offer a crucial 
benefit. However, speech recognition over mobile networks 
suffers from several drawbacks: the voice signal is coded with 
different coding schemes, the presence of noise in the mobile 
environment and the degradation of the speech signal, due to 
errors on the radio link between terminal and base station. At 
the same time mobile phones offer powerful signal process­
ing. Against this background, ETSI has launched the 
AURORA project, to introduce distributed speech recognition 
(DSR), aiming at a standardised front-end algorithm that en­
hances recognition performance in noisy environments.

Besides the improvement of the recognition rate other 
criteria have been defined (such as the computational per­
formance, the delay introduced by front-end computations 
and the feature vector size) to allow processing of the front­
end within standard mobile terminals and of the acoustic de­
coding by the back-end recogniser with requirements similar 
to that of current technologies.

Moreover, the proposals should prove that they are inde­
pendent from the acoustic input channel (handsfree or close 
talk microphone). Therefore test situation have been defined,

where the recogniser is trained with close-talk speech data, 
while the testing is done with data recorded via the hands-free 
microphone. A blind equalisation module [1] eliminates the 
effects of differences between microphones and channels.

Finally transmission over the mobile network is costly. 
Thus, the integration of a voice activity detection (VAD) in 
the front-end, to avoid the transmission of silence frames -at 
least at the beginning of an utterance- should reduce network 
traffic. A VAD is also helpful for removing non-speech 
frames, which are often harmful for the recogniser in mis­
matched conditions.

The organisation of the paper is as follows. Section 2 and 
3 respectively describe the two noise reduction approaches 
that were developed, and their integration in the feature ex­
traction process. Section 4 recalls the blind equalisation mod­
ule, and section 5 summarises some computations currently 
done in the backend. Finally section 6 presents the experi­
ments, details the obtained results and discusses them.

2. Time domain noise reduction 
and feature extraction

2.1. Overview

Time domain noise reduction (TDNR) is applied prior to the 
Mel frequency cepstral computations, as indicated in Figure 
1. The speech signal after noise reduction is also used for 
computing the logarithm of the energy parameter. Blind 
equalisation is also part of the front-end and is described in 
section 4.

Feature vector

Figure 1: Block diagram o f the time domain noise re­
duction based front-end

2.2. Noise reduction

The noise reduction module operates in time domain. Its ar­
chitecture is shown in Figure 2. After offset compensation 
(Offcom block) several types of processing take place. First,



the spectrum is computed (Analysis block). A VAD module 
classifies frames as speech or non-speech (noise) by compar­
ing the SNR to a threshold. The SNR corresponds to the dif­
ference between the short-term and long-term signal log- 
energy estimates. The long-term estimate is updated when the 
VAD decides that the current frame corresponds to non­
speech and the energy of the current frame is used as the 
short-term estimate. In addition, a hangover of 50 ms is ap­
plied after any speech to non-speech transition. The hangover 
is only applied if the duration of the speech segment immedi­
ately before the transition is greater than 50 ms. This effec­
tively avoids that the hangover is applied after very short 
noise segments, that may be misclassified as speech.

ous front-end, the cepstral output data are normalised using a 
blind equalization algorithm. Figure 3 shows all processing 
blocks of the algorithm.

Figure 2: Block diagram o f time domain noise reduc­
tion module.

The output of the VAD is used to decide if the noise 
spectrum estimate has to be updated. An improved SNR esti­
mate is then obtained from a 2-step SNR estimation tech­
nique: the noise spectrum is used to compute a first estimate 
of the noiseless signal spectrum using a “decision-directed” 
approach. Then the noiseless signal spectrum is used to com­
pute a priori signal to noise ratio (SNR) in the different fre­
quency bands. A filter transfer function is computed from 
these SNR values, which is used to refine the estimate of the 
noiseless signal spectrum by applying in the frequency do­
main the filter transfer function on the noisy signal spectrum. 
Using this improved noiseless signal estimate, new SNRs in 
the frequency bands as well as an improved filter transfer 
function are computed.

The impulse response of the filter transfer function is then 
computed using an inverse Fourier transform. This impulse 
response is truncated to a length of 17 and a Hanning window 
is applied to the truncated impulse response. Truncation and 
windowing of the impulse response results in a smooth filter, 
that is highly beneficial for speech recognition performance. 
The noise-reduced signal is finally obtained by convolving 
the noisy input signal with the filter impulse response.

The noise-reduced signal is then used for computing the 
Mel-cepstrum coefficients (MFCC), using 20 ms signal win­
dows, and a frame shift of 10 ms. 12 coefficients are com­
puted per frame, plus the logarithm of the energy.

3. Frequency domain noise reduction 
and feature extraction

3.1. Overview

The proposed approach combines a standard MFCC feature 
extraction algorithm with a noise reduction scheme and an 
additional silence frame processing method. As in the previ-

Figure 3: Block diagram of the frequency domain 
noise reduction based front-end

The algorithm uses a frame length of 20 ms with 10 ms 
overlap. A pre-emphasis is performed on speech data and a 
Hamming window is applied, before a 256-point FFT is per­
formed. On this data the power spectral densities are trans­
formed to the Mel-filterbank outputs using 30 coefficients 
These coefficients provide the input for the frequency domain 
noise reduction algorithm (FDNR).

3.2. Noise reduction

The FDNR algorithm uses a modified maximum likelihood 
estimation [2], where the gain is calculated dependent on the 
estimated signal to noise ratio p k(t) for each band, whereas 
signal means here speech plus noise:

1e , (t) -  2 1 + Pk ( t)  - 1  

pk ( t)
P(Hi )+ Gmm [1 -  P(Hi )]

Gmin defines the minimum gain value to avoid spectral distor­
tions, that may result from occasional incorrect SNR estima­
tion. P(H1) denotes the a posteriori probability of the hypothe­
sis that a given frame is a noisy speech frame; it is derived 
from a priori SNR values n k (t) and the estimated SNR for the 
actual frame [2].

i | x k ( t)  ) =  e n  ( t) ' Io (2^ k (t) ' Pk (t) )■
1 +  e nk (t ) • I o (  n k (t) - P k (t) )

Io denotes the Bessel function of first order. The noise energy 
estimate is updated permanently without using VAD informa­
tion. Fixed values for the a priori SNR are used. For further 
improvement of recognition rate several tests were carried out 
with filtering the gain values in frequency and time domain, 
before applying it to the speech data. It can be expected that 
smoothing will reduce recognition errors due to spectral dis­
tortions caused by badly estimated SNR values. Smoothing in 
the frequency domain turned out to be very helpful for reduc­
tion of error rate, which can be explained by reduction of the 
distortion in static cepstral coefficients. Smoothing in time 
domain helped less, but still gave an improvement, which can 
be explained by reduction of distortion in the dynamic cepstral 
coefficients, such as velocity and acceleration parameters. For 
the frequency domain filtering a 9th order FIR filter was used, 
whereas the time domain filter is a 1th order IIR Filter.

3.3. Additional attenuation for silence periods

As the SDC databases contain a high percentage of noisy non­
speech signal portions, the number of insertion errorswas in-



creased dramatically. While for Aurora 2 with a small part of 
non-speech portions the percentage of insertion errors from 
the total error count is 10%, for the SDC databases this value 
is increased to about 50% . Thus, additional effort has to be 
spent in order to decrease the mismatch between trained word 
models and high noise non-speech signal portions. Especially 
for the log-energy parameter the mismatch is very large if 
training is done with clean, and testing with noisy speech. The 
solution we chose is to calculate an additional gain only dur­
ing non speech periods and appliedit to C0. For doing this a 
voice activity flag, based on the estimated SNR in three sub­
bands is generated. The subbands are created by splitting the 
Mel-domain into three parts with equal Mel-frequency range. 
Then the SNRs of each sub-band are compared to fixed 
thresholds and the VAD flag is set if one of the three sub­
bands SNR is above the threshold.

VAD = 1 if SNRi > threshi for at least one i = 1,2,3
0 else

A hangover of 5 frames is applied to the falling transition of 
the VAD-Flag. Then by using the VAD an additional gain is 
calculated for non-speech periods only. This gain is applied 
directly to C0.

4. Blind Equalisation

A description of the blind equalisation process is available in
[1]. This module reduces the convolutional distortion caused 
by the microphone and transmission channel.

The blind equalisation used relies on a LMS algorithm, 
which adjusts the cepstral coefficients according to the differ­
ence between the current cepstral vector and a reference cep- 
strum. The reference cepstrum corresponds to the cepstrum of 
a flat spectrum.

5. Backend
In our DSR front-end proposals, the noise reduction and the 
Mel-frequency cepstrum analysis are processed on the termi­
nal. Static coefficients are transmitted. Then a few computa­
tions are conducted on the server side (backend) prior ac­
cessing the decoder module. These computations include the 
calculation of the temporal derivatives and a selection of fea­
ture vectors.

First and second order temporal derivatives are computed 
on a 9 frame-window, centred over the current frame.

The feature vector selection process is described in details 
in [3]. Its role is to discard part of the noisy frames that often 
badly match with the "silence" models when there is a signifi­
cant mismatch between training and test conditions. A voice 
activity detector is used to detect the non-speech frames. Its 
decision is based on a comparison of the frame energy with an 
adaptive threshold. Contrary to [3] only noisy frames at the 
beginning of the file were dropped.

6. Experiments

6.1. Experimental setup

In order to evaluate the impact of TDNR and FDNR, we 
compared recognition performance with and without noise re­
duction modules on the Aurora 2 and SDC-Italian databases.

The Aurora 2 database [4] is a composition of the Tidigits 
database and noise data. Eight noise types at 7 SNR condi­

tions from clean to -5 dB were defined. Tidigits contains con­
nected digits spoken by American English talkers. Noise sig­
nals are recorded in several typical environments. Six test sets 
are provided for testing the performance with the HTK recog- 
niser.

The SDC-Italian database [5] is recorded in car environ­
ment with Italian talkers. Several environmental conditions 
(high speed, low speed, stopped, window open, ...) are used 
and data is collected from a close talk microphone and hands­
free microphone simultaneously. For the evaluation we used 
only the tests containing connected digits. Three test sets are 
provided (well matched, medium mismatched, highly mis­
matched) to asses the performance with the HTK recogniser.

6.2. Results

The basis for evaluating the gain of the noise reduction were 
simulations with both front-ends and noise reduction switched 
off. Tables 1 and 3 show the obtained results on Aurora 2, to­
gether with a comparison with the standard ETSI Aurora Mel- 
cepstrum front-end WI-007. It can be seen that even without 
noise reduction a relative improvement 15.7% (resp. 24.6%) 
were achieved. If the noise reduction is switched on this gain 
increases to 44.5% (resp. 44,6%) for FDNR (resp. TDNR) al­
gorithms.

Table 5 reports the results on the SDC Italian database. 
Results are given for the 3 test conditions: well-matched 
(WM), medium mismatched (MM) and high mismatched 
(HM).

Table 1 - Recognition performance on Aurora 2 
with C0 and without noise reduction

Absolute perform ance w ithout Noise reduction
Tra in ing Mode Set A Set B Set C Overa l l
M ult icond it ion 87,70 88,46 86,11 87,68

C lean Only 67 ,73 68,75 71,03 68,80
77,71 78,61 | 78 ,57 78,24

Perform ance relative to M el-cepstrum
Tra in ing Mode Set A Set B Set C Overa l l
M ult icond it ion -0,98 15,94 14,35 9,50

C lean Only 16,51 29,39 14,45 21,87

A verage 7,77 22,67 14,40 15,69

Table 2 - Recognition performance on Aurora 2 with 
C0 and frequency domain noise reduction algorithm

A b s o lu te  p e r f o r m a n c e  w ith  f r e q u e n c y  d o m a in  NR
T raining Mode Set A S et B Set C Overall
Multicondition 90 ,62 9 0 ,69 89 ,92 90,51
Clean Only 83 ,63 8 3 ,83 82 ,62 83,51

87,01

P e r fo r m a n c e  re la t ive  to M e l -c e p s t ru m
T raining Mode S et  A S et B Set C Overall
Multicondition 22 ,98 32 ,22 37 ,85 30 ,26
Clean Only 57 ,64 6 3 ,46 48 ,67 58 ,70

Average 40,31 4 7 ,84 43 ,26 44 ,48



Table 3 - Recognition performance on Aurora 2 
with logE and without noise reduction

Absolute performance
Training Mode Set A Set B Set C Overall
Multicondition S9,03% SS,9S% S5,00% SS,20%
Clean Only 74,44% 74,40% 74,27% 74,39%
Average S1,73% S1,69% 79,64% 81,29%

Performance relative to Mel-cepstrum
Training Mode Set A Set B Set C Overall
Multicondition 9,93% 19,70% 7,54% 13,30%
Clean Only 33,S7% 42,15% 24,01% 35,S7%
Average 21,90% 30,92% 15,77% 24,58%
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Table 4 - Recognition performance on Aurora 2 with 
logE and frequency domain noise reduction algorithm

Absolute performance
Training Mode Set A Set B Set C Overall
Multicondition 91,26% 90,6S% SS,6S% 90,51%
Clean Only S4,44% S3,S2% S1,54% S3,61%
Average S7,S5% S7,25% S5,11% 87,06%

Performance relative to Mel-cepstrum
Training Mode Set A Set B Set C Overall
Multicondition 2S,30% 32,12% 30,23% 30,30%
Clean Only 59,75% 63,45% 45,47% 5S,97%
Average 44,03% 47,7S% 37,S5% 44,63%

Figure 4 -  Noise reduction performances

7. Conclusion

This paper has presented two ways of achieving noise robust 
front-ends. Both include an efficient noise reduction module, 
which reduces the effect of the additive noise, and a blind 
equalisation module, which reduces the convolutional noise. 
In one case the noise reduction is done in the time domain, 
before computing the Mel-frequency cepstral coefficients, 
whereas in the other case the noise reduction module is part 
of the cepstral computation chain. Both approaches prove to 
be useful and achieve a noticeable error rate reduction 
(around 50% reduction) as compared to the baseline system.

Table 5 -  Recognition performance on SDC-Italian 
database

Absolute performance WM MM HM
Baseline (WIGG1) 93.64 81.G1 39.84
No NR & CG 94.98 81.18 56.11
No NR & loge 95.GG 83.1G 13.6G
FD NR & CG 96.3G 9G.11 83.6G
TD NR & logE 96.64 91.19 86.15

For SDC-Italian the results observed on Aurora 2 are con­
firmed, as both front-ends achieve significant improvements 
when switching the noise reduction on.

6.3. Discussion

Figure 4 compares the performances with and without noise 
reduction. The two complete front-ends, including noise re­
duction modules (whether TDNR or FDNR) provide rather 
similar performance on the various data base subsets. As 
compared to the performances without noise reduction, the 
improvement is small for the well-match conditions, gets 
larger for the medium mismatch conditions and is the most 
important for the high-mismatch conditions.
The second and third front-ends (No NR & C0, and No NR & 
Log E) include the blind equalisation that reduces the (con­
volution) channel effect. Compared to the baseline system, a 
large improvement is observed on the high-mismatch condi­
tions, where training and test conditions are very different.
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