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ABSTRACT

Phase-corrected RASTA is a new technique for channel nor­
malization that consists o f classical RASTA filtering followed 
by a phase correction operation. In this manner, the channel 
bias is as effectively removed as with classical RASTA, with­
out introducing a left context dependency. The performance 
o f the phase-corrected RASTA channel normalization technique 
was evaluated for a continuous speech recognition task. Us­
ing context-independent hidden Markov models we found that 
phase-corrected RASTA reduces the best-sentence word error 
rate (WER) by 23% compared to classical RASTA. For context- 
dependent models phase-corrected RASTA reduces W ER by 15% 
compared to classical RASTA.

1. INTRODUCTION

In order to reduce the linear filtering effect o f communication 
channels, different channel normalization (CN) techniques have 
been proposed (e.g. [1, 2, 3]). Recently, a new, extended ver­
sion o f the classical RASTA filtering technique was proposed and 
tested in the context o f connected digit recognition over the tele­
phone [4, 5,6]. The results o f these connected digit string experi­
ments showed that the recognition performance o f phase-correct­
ed RASTA (pcR) is equivalent to the performance o f cepstrum 
mean subtraction (CMS). In addition, it was concluded that the 
new CN method is better suited for context-independent model­
ing than classical RASTA (clR), because it removes the left con­
text dependency introduced by clR.
The connected digit string experiments suffered from an impor­
tant limitation. In the digit vocabulary the average number o f dif­
ferent contexts for each phone is small. Therefore, the impact o f 
introducing a left context dependency by using clR is limited. This 
explains that clR is still capable o f outperforming applying no CN 
and the gain as a result o f switching from clR to pcR is small when 
using context-independent models. This could also explain why 
we did not find significant differences between the different CN 
methods that we studied when we used context-dependent mod­
els. [6]. Enlarging the test set would reduce the confidence re­
gions such that possible differences could yet become visible in 
the case o f context-dependent models. However, staying in the 
connected digit domain could never have taken away the limita­
tion due to the small number o f different contexts for each phone. 
In this paper, we report on experiments using phase-corrected 
RASTA for a continuous speech recognition task. In this task

the average number o f different contexts for each phone is much 
higher. In  addition, the amount o f training and testing data we 
used is much larger. For these reasons, the new task is better 
suited to test the effectiveness o f different CN techniques relative 
to each other. Especially the effects o f using context-dependent 
vs. context-independent models can be well established with the 
new set-up. Thus, this CSR task will provide a thorough check on 
our original claims about phase-corrected RASTA [6].
This paper is organised as follows. The telephone database that we 
used for our experiments is described in section 2. In section 3, the 
signal processing for our experiments is described. The topology 
o f the hidden Markov models (HMMs), the way these were trained 
and the recognition task are described in section 4. The results o f 
our recognition experiments are discussed in section 5. Finally, in 
section 6 we sum up the main conclusions.

2. DATABASE

The speech material for these experiments was collected with an 
on-line version o f a spoken dialogue system which provides public 
transport information in the Netherlands. This system is an adap­
tation o f a German prototype developed by Philips Research Labs 
[7,8]. Speakers were recorded over the public switched telephone 
network in the Netherlands. Speakers, handset and channel char­
acteristics are not known.
A  total o f 33,471 utterances was collected. For training we 
reserved 25,104 utterances (83,876 words corresponding to 8.9 
hours o f speech excluding leading, intermediate and trailing silent 
portions o f the recordings). The remaining 8,358 utterances 
(28,048 words corresponding to 3.0 hours speech) were set apart 
as an independent test set. None o f the utterances used for training 
or test had a high background noise level.
The average number o f words per utterance is 3.3; this is rather 
low, especially when it is compared to ATIS, Wall Street Journal 
or North American Business News. The short utterances are quite 
normal in real dialogues between callers and operators in informa­
tion services. The language o f the corpus is Dutch; the speech was 
spontaneous and unprepared.

3. SIGNAL PROCESSING

Speech signals are in A-law format. A fter conversion to a linear 
scale, preemphasis with factor 0.98 was applied. A  25 ms Ham­
ming window that was shifted with 10 ms steps was used to calcu­
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late 24 filterband energy values for each frame. The 24 triangular 
shaped filters were uniformly distributed on a mel-frequency scale 
(covering 0 - 2143.6 mel). Finally, 12 mel-frequency cepstral co­
efficients (M FCC’s) were derived [9]. In  addition to the twelve 
M FCC’s we also computed before CN was applied the twelve 
first time-derivatives (delta-MFCC’s), log-energy (logE) and its 
first time-derivative (delta-logE). In this manner we obtained 26­
dimensional feature vectors.
We applied CN only to the twelve MFCC coordinates o f the fea­
ture vector. We kept the original values o f delta-MFCC’s, logE 
and delta-logE. For CMS the vector o f average cepstral coeffi­
cients was calculated over the whole utterance (i.e., including 
leading, intermediate and trailing silent portions o f the recorded 
signal). We used clR with integration factor -0.94 [2]. For pcR 
we used the same integration factor in combination with a phase- 
correction filter [4, 5, 6]. During the time-reversal operations re­
quired for the phase-correction we used the whole utterance [6].

-500 0 500
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Figure 1: Impulse response of the phase-corrected RASTA filter.

The impulse response o f the pcR filter is shown in Figure 1. Due 
to the zero-phase pcR filter characteristic, the impulse response is 
essentially symmetric. Symmetry o f the impulse response was re­
ported to be one of the key features o f optimally designed filters 
that were calculated in a data-driven approach based on linear dis­
criminant analysis [10].

4. MODELS

4.1. Training context-independent models

37 context-independent phone models were trained. In addition, 
we used one model for all sorts o f noise and one model to describe 
silence. The phone models and the noise model consisted o f six 
hidden Markov states, where states 2, 4 and 6 shared the emis­
sion probability density function with states 1, 3 and 5, respec­
tively. A  single-state HMM was used for the silence model. All 
HMMs were left-to-right where only self-loops, transitions to the 
next state or to the next state plus one were allowed. The emis­
sion probability density functions were described as a continuous 
mixture o f 26-dimensional Gaussian probability density functions 
(diagonal covariance matrices). In  order to be able to study the 
recognition performance as a function o f acoustic resolution, we

used mixtures which contained 4, 8, 16 and 32 Gaussians. With a 
total o f 115 HM M  states we arrived at CI-HMM systems contain­
ing a total o f 460, 920, 1840 and 3680 Gaussian densities respec­
tively.
The training lexicon contained 1415 words. Models were ini­
tialised using a linear segmentation within the speech portions o f 
the signal, as determined with a silence-speech detector. A fter ini­
tialisation a fixed number of Viterbi optimisation passes was used 
to further train the models. As a next step the number o f Gaus- 
sians per state was doubled. To this aim a K-means clustering al­
gorithm was applied using the segmentations obtained in the pre­
vious Viterbi pass [7]. After splitting, again Viterbi optimisation 
was applied. This process o f successive splitting and subsequent 
Viterbi optimisation was repeated until we obtained models with 
32 Gaussians per state.

4.2. Training context-dependent models

In order to define context-dependent HMMs we determined all 
different contexts for each phone in our training material and used 
a state-tying mechanism to avoid the risk o f undertraining. To this 
aim each phone in our database was considered to consist o f three 
segments, where the first segment corresponded to the first two 
HMM states, the second segment to states 3 and 4, and the last 
segment to states 5 and 6. For clustering segments it was assumed 
that the first segment only depends on the phone immediately to 
the left o f the phone under consideration, the middle segment is in­
dependent of the context and the last segment only depends on the 
phone immediately right to the phone under consideration. During 
clustering word boundaries were regarded as a special phone. As 
a consequence, we did not model cross-word context. The number 
o f independent CD phone units to train models for was determined 
by specifying the minimum number o f observations o f a phone in 
a particular left or right context.
In a set o f tuning experiments we determined the optimum num­
ber o f CD phone units for the training database described above. 
O f course, the same lexicon was used as for the contect indepen­
dent models. We found that the recognition performance was not 
critically sensitive to the number o f CD phone units. All data in 
this paper are based on a system with 388 CD phone units. This 
choice allows us to compare CI-HMMs and CD-HMMs with ap­
proximately equal numbers of Gaussian densities. We trained CD- 
HMMs with 1, 2, 4 and 8 Gaussians per state. In this manner we 
arrived at CD-HMM systems with a total o f 388, 776, 1552 and 
3104 Gaussian densities respectively.
For each CD-HMM system we jointly optimized the word en­
trance penalty and the language model factor. In order to avoid 
optimization on the actual test set, we used a jack-knifing proce­
dure with the number o f sub-sets N  =  4. We wanted to be able to 
compare results for the CD-HMM systems to those obtained for 
the CI-HMM systems. For this reason we used exactly the same 
division into sub-sets in both cases when we evaluated the recog­
nition performance. In the case o f the CI-HMMs we did not use 
the jack-knifing procedure to determine the optimal values o f the 
word entrance penalty and the language model factor. The optimal 
values for the CI-HMMs were copied from a previous version of 
the CSR [8].
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4.3. Recognition

The recognition lexicon contained 983 words. 1.2% of the words 
in the test set were out-of-vocabulary. During recognition the 
acoustic models were combined with unigram and bigram lan­
guage models derived from the training data. The test set perplex­
ity o f the recognition task was 36.7. For our evaluations we re­
stricted ourselves to the single best recognized sentence. The best- 
sentence word error rate (WER) was defined as

W E R  =  S  +  ®  +  1 x  100%, (1)

where N  is the total number o f words in the test set, S denotes the 
total number of substitution errors, D the total number o f deletion 
errors and I the total number o f insertion errors. The W ER values 
presented in this paper were obtained by averaging over the WER 
values obtained for those test utterances that were not used to find 
the optimal values for the word entrance penalty and the language 
model factor.

5. RESULTS AND DISCUSSION

5.1. Results for CI-HMMs

We trained and tested CI-HMMs for four different conditions: no 
channel normalization (NCN), clR, CMS over the whole utterance 
and pcR over the whole utterance. The WER is shown in Figure 
2 as a function o f the total number o f Gaussians used. Figure 2 
shows that clR deteriorates recognition performance compared to 
NCN. Apparently, removing the channel bias by using clR at the 
same time introduces so much left context dependency that the po­
tential CN gain is completely annihilated. The results for pcR in­
dicate that the poor performance o f classical RASTA is a direct 
consequence o f the phase distortion introduced. By removing the 
phase distortion the recognition performance is significantly and 
substantially improved compared to clR. A t the highest total num­
ber o f Gaussians in our CI-HMM approach the W ER is reduced by 

relative to clR. Furthermore, pcR recognition performance 
is significantly better compared to NCN (except at the suboptimal 
models corresponding to 4 Gaussians per state). Finally, it can be 
seen that CMS appears to be preferred over pcR for CI-HMMs 
corresponding to 4 and 8 Gaussians per state. However, for more 
complex acoustic models the performance differences become in­
significant and pcR performs as well as CMS.
The results shown in Figure 2 are in good agreement with the re­
sults we reported earlier in the context o f a connected digit recog­
nition task [5,6]. In that case we also found that pcR was capable 
o f outperforming clR, that pcR was preferred over NCN and that 
pcR and CMS performance showed no significant difference. The 
only qualitative difference between the results for the connected 
digit recognition task and those reported here is the fact that clR 
performed significantly better than NCN in the case o f connected 
digit recognition. However, this may be explained by the small 
number o f different phoneme contexts in the Dutch digit vocabu­
lary: based on 18 monophones the number o f different phone con­
texts is as low as .
One may expect that the deteriorating effect o f introducing the left 
context dependency by using clR is a function o f the number of 
different contexts in the vocabulary: The larger the number o f dif­
ferent contexts, the larger this effect. In the case o f the connected

digits the number o f different contexts is small. As a result the 
balance is still positive between the performance gain due to the 
channel bias removal on the one hand and the performance loss 
due to enhancement o f the left context dependencies while using 
CI-HMMs on the other: For connected digit recognition clR out­
performs NCN. In addition, there is a gain by applying the phase 
correction but it is small.
We determined the number o f different phone contexts observed 
in the training set for the continous speech recognition task. 
Based on 37 monophones we found different phone con­
texts. W hen compared to the digit recognition task this is more 
than times larger. As a consequence, the loss in recognition 
performance due to enhancement o f the left context dependencies 
will be more important. Apparently, in our continuous speech re­
cognition task this effect is now so large that it has become more 
important than the gain due to the channel bias removal. There­
fore, for medium and large vocabulary continuous speech recog­
nition clR does not improve recognition performance compared 
to NCN, while the gain is substantial when switching from clR to 
pcR or to CMS. Summing up, we obtain consistent results for two 
independent recognition tasks that differ considerably.

Figure 2: Recognition accuracy for clR ( ), pcR ( ) and 
CMS( ), compared to the feature set without CN ( ) when using 
CI-HMMs.

5.2. Results for CD-HMMs

We repeated the comparison o f CN techniques using CD-HMMs 
instead o f CI-HMMs. The average WER results as a function of 
the total number o f Gaussian densities are shown in Figure 3 for 
CD-HMMs with up to 8 Gaussians per state.
W hen using clR in the case o f CD-HMMs one would expect that 
the loss o f recognition performance due to enhancement o f the 
left context is diminished, because different contexts are modelled 
with different states. W hen every individual left context could 
be modelled independently this effect would be at its maximum 
strength and the net result would be that one only has the gain in 
recognition performance due to the channel bias removal. How­
ever, in addition to the CD phone units there are a number of phone 
segments representing left contexts that are clustered during the 
state-tying.
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In our CD-HMMs we used 167 CD units for modeling different 
left contexts. This is 14.2 times smaller than the total number 
o f different phone contexts present in our training data, but 4.4 
times larger than the number o f different units we used to model 
the left contexts in our CI-HMM models. Based on these figures, 
one would expect that the performance o f clR for our CD-HMMs 
would be more effective than in the case o f CI-HMMs. As can be 
seen in Figure 3 the difference between clR and NCN has become 
smaller than the one we observed for CI-HMMs. For our best CI- 
HMMs we found that clR decreases recognition performance by 

when compared to NCN. In the case o f our best CD-HMMs 
the performance only drops . Thus we indeed observe some 
gain when switching from CI- to CD-HMMs in the case of clR, but 
this improvement is limited due to the state-tying mechanism that 
we used to avoid undertraining. In  fact the gain is too small such 
that we still do not benifit from the channel bias removal o f clR in 
this case. This suggests that increasing the number o f CD-HMM 
units could maybe further reduce the negative effect o f combining 
different left contexts to the extent that clR would eventually out­
perform NCN.
A s a second result it can be seen in Figure 3 that introducing the 
phase-correction immediately brings the recognition performance 
curve very close to the one for CMS (except at the models corre­
sponding to 1 Gaussian per state). For the CD-HMMs correspond­
ing to 8 Gaussians per state WER is improved by 15% when clR 
is replaced by pcR. This is in good agreement with the results o f 
pcR obtained for CI-HMMs.
The present set o f experiments indicates that a successful CN 
method should not introduce any phase distortion if  CD-HMMs 
are used and the training data is not sufficient to model the left 
context dependency for all relevant contexts. This result is in good 
agreement with the conclusions in [4, 5, 6].

Figure 3: Recognition accuracy for clR (x ) , pcR (★) and 
CM S(«), compared to the feature set without CN (o) when using 
CD-HMMs.

6. CONCLUSIONS

ance consistently gave the best results, but the difference with pcR 
is not sigificant. No CN yields better results than clR, due to the 
left context dependency introduced by the classical RASTA filter. 
Context dependent HMMs appear to reduce the detrimental effect 
o f the left context dependency to some extent, but not enough to 
bridge the gap that separates it from CMS and pcR completely. 
Apparently, modeling artefacts o f the RASTA filter is not the most 
effective use o f limited amounts o f training data. Finally, the con­
clusions o f this study are in good agreement with the ones obtained 
in the context o f connected digit recognition [4, 5,6]. This under­
lines the importance o f the phase response of CN filters, in addi­
tion to their magnitude response.
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