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A B ST R A C T

Recently, we proposed an extension to the classical 
RASTA technique. The new method consists of classi­
cal RASTA filtering followed by a phase correction op­
eration. In this manner, the influence of the communi­
cation channel is as effectively removed as with classi­
cal RASTA. However, our proposal does not introduce 
a left-context dependency like classical RASTA. There­
fore the new method is better suited for automatic speech 
recognition based on context-independent modeling with 
Gaussian mixture hidden Markov models. In this pa­
per we introduce an implementation of phase-corrected 
RASTA suited for real-time processing. In the context 
of connected digit recognition over the phone using con­
text-independent phone-based models, we show that word 
error rate for this implementation is more than 20% lower 
compared to a real-time implementation of the cepstrum 
mean subtraction channel normalisation method.

1. IN T R O D U C T IO N
For automatic speech recognition (ASR) over the tele­
phone it is well-known that the recognition performance 
may be seriously degraded due to the transfer characteris­
tics of the handset microphone and the telephone channel
[1]. In order to reduce the influence of the linear filter­
ing effect of the communication channel, different channel 
normalisation (CN) techniques have been proposed (for 
example [2, 3, 4]). In two recent papers [5, 6] we pre­
sented a new, extended version of the classical RASTA 
filtering technique [3].

Classical RASTA filtering features two important prop­
erties: (1) attenuation at low modulation frequencies and
[2] enhancement of the dynamic parts of the spectrogram
[3]. The first property explains why classical RASTA fil­
tering is such an effective method for CN: In the cepstral 
or log-energy domain, linear filtering by a quasi-stationary 
communication channel gives rise to an additive constant 
bias term [1]. The attenuation at low modulation frequen­
cies effectively removes this DC-component. It has been 
suggested that the second property is also benificial for 
good recognition performance [3]. Recently, it was shown 
that the enhancement of the dynamic parts of the spec­
trogram obtained by classical RASTA represents a crude 
approximation of the effects of temporal forward mask­
ing in human auditory perception [7, 8]. Thus, classical 
RASTA may be viewed as a combination of CN and a 
crude model of human auditory time-masking.

The method we proposed in [5, 6] consists of classical 
RASTA filtering followed by a phase correction operation. 
The phase correction is chosen such tha t the frequency- 
dependent non-linear phase-shift of the classical RASTA

filter is compensated, while at the same time preserving 
the original magnitude response of the classical RASTA 
filter. In this manner phase-corrected RASTA effectively 
removes the influence of the communication channel and 
at the same time does not enhance the dynamic parts 
of the spectrogram (i.e. does not model human audi­
tory time-masking). In addition, phase-corrected RASTA 
removes the well-known left-context dependency intro­
duced by classical RASTA. Therefore, one may expect 
tha t the new CN method is better suited for ASR based 
on context-independent (Cl) modeling. In the context of 
connected digit recognition over the phone, we showed 
that indeed phase-corrected RASTA can outperform clas­
sical RASTA depending on the acoustic resolution of the 
models [6]. In addition, we showed that phase-corrected 
RASTA performs as well as cepstrum mean subtraction
[5]. These results were obtained while processing the u t­
terance as a whole. Clearly, such an implementation is not 
suited for a real-time application. In this paper, we dis­
cuss results for an implementation of the phase-corrected 
RASTA technique suited for real-time processing.

This paper is organised as follows. In section 2 we 
shortly describe the phase-corrected RASTA method and 
introduce an implementation suited for real-time process­
ing. Next, in section 3, the signal processing for our ex­
periments is described. The telephone database tha t we 
used for our experiments is discussed in section 4. After 
this, the topology of the hidden Markov models (HMMs), 
the way we performed training with cross-validation and 
the recognition syntax during testing are described in sec­
tion 5. The results of our recognition experiments are dis­
cussed in section 6. As we will see, these experiments show 
tha t a real-time implementation of the new CN method 
can outperform a real-time implementation of the cep­
strum mean subtraction method when using Cl HMMs. 
Finally, in section 7 we sum up the main conclusions.

2. PH A SE -C O R R E C T E D  R ASTA

Consider the signal shown in the upper panel of Figure 
1 (we took a synthetic signal instead of a real MFCC 
coordinate time series for didactic purposes). The sig­
nal is a sequence of seven stationary segments (’’speech 
states”) preceded and followed by a rest state (’’silence”). 
Notice that the speech states contain a constant overall 
DC-component (representing the effect of the communica­
tion channel). The RASTA filtered version of this signal 
is shown in the middle panel of Figure 1. Two important 
observations can be made. First, the DC-component has 
been effectively removed (at least for times larger than, 
say, 70 frames). Second, the shape of the signal has been 
altered.

W ith regards to the shape distortion the following can
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be noticed. First, the seven speech states of the signal that 
had a constant amplitude are now no longer stationary. 
Instead, the amplitude for each state shows a tendency 
to drift towards zero. Thus: RASTA filtering steadily 
decreases the value of cepstral coefficients in stationary 
parts of the speech signal, while the values immediately 
after an abrupt change are preserved. This explains the 
observation tha t the dynamic parts in the spectrogram 
of a speech signal are enhanced by RASTA filtering [3]. 
As a consequence of this drift, however, a description of 
the signal in terms of stationary states with well-located 
means and small variances becomes less accurate. Second, 
the mean amplitude of each state has become a function 
of the state itself as well as the amplitudes of states imme­
diately preceding it. This is the well-known left-context 
dependency introduced by the RASTA filter [3]. Because 
the absolute ordering of signal amplitudes is lost, states 
can no longer be straightforwardly characterised by their 
mean amplitude (compare speech states two, five and six 
before and after RASTA filtering in the upper and mid­
dle panel of Figure 1). For this reason, RASTA is less 
well suited when using Cl models (cf. the remarks in 
[3]). Finally, we mention a third aspect of the shape dis­
tortion for completeness (which we feel is less important 
though). Due to the small attenuation of high-frequency 
components, abrupt amplitude changes are smoothed.

time (frames) — >

Figure 1: Synthetic signal representing one of the cep­
stral coefficients in the feature vector. Upper panel: Orig­
inal signal containing a time-invariant DC-offset. Middle 
panel: RASTA filtered signal. Lower panel: Phase cor­
rected RASTA filtered signal.

In two recent papers [5, 6] we showed that the non­
linear phase response of the classical RASTA filter is the 
main cause of the shape distortions observed in the mid­
dle panel of Figure 1. Furthermore, we showed how an 
all-pass phase correction filter may be calculated, such 
tha t the phase distortion of the original RASTA filter is 
compensated, while at the same time preserving the origi­
nal magnitude response. The result of applying the phase 
correction filter is shown in the time-domain in the lowest 
panel of Figure 1. As can be seen, the shape of the phase- 
corrected RASTA filtered signal resembles the shape of 
the original signal much better compared to the RASTA 
filtered signal. The phase correction (1) removes the am­
plitude drift towards zero in stationary parts of the signal 
and (2) removes the left-context dependency. In other 
words, phase-corrected RASTA (1) does not feature en­

hanced spectral dynamics and (2) is better suited for Cl 
modeling.

The phase correction filter was implemented as a pole­
zero filter. Since this pole-zero filter was unstable, we 
applied the inverse of this pole-zero filter to the time- 
reversed signal after which a second time-reversal oper­
ation was performed [5, 6]. Clearly, this method cannot 
be used in a real-time application because the first time- 
reversal operation ideally requires tha t the whole signal is 
available.

The same problem arises in case CN is based on cep- 
strum mean subtraction (CMS). In tha t case a short win­
dow of fixed length (say) L frames preceding the current 
frame is commonly used in real-time applications (see for 
example [9]). In this manner a running mean is used in­
stead of the mean over the whole utterance. In practice 
this can be implemented as a FIR filter with coefficients 
bo = 1, bj = ^  for j  =  1 The  time domain effects 
of CMS(L=whole utterance) and CMS(L=45 frames) are 
shown together in the upper panel of Figure 2 (we again 
used the synthetic signal of Figure 1). Notice tha t the 
fixed length implementation CMS (45) introduces devia­
tions from the ideal CMS(whole) signal shape. Even for 
moments later than L (i.e. the length of the FIR filter) 
such deviations are present. Thus, the deviations are not 
transients of the filtering operation.

Figure 2: Upper panel: Time domain result of CMS 
applied over the whole utterance (dashed line) and using 
a finite length mean calculated over 45 frames (solid line). 
Lower panel: Time domain result of phase-corrected 
RASTA applied over the whole utterance (dashed line) 
and using a finite length estimate calculated over 45 
frames (solid line).

In case of our phase-corrected RASTA method (shorter: 
pcR), we followed an approach similar to the one dis­
cussed above for CMS. The implementation of pcR suited 
for real-time application also uses a fixed length window 
to do the time-reversal operation. The time-domain ef­
fects of pcR(whole) and pcR(45) are shown in the lower 
panel of Figure 2. As can be seen, these two curves are 
in good agreement with each other, although small differ­
ences are visible. In a number of recognition experiments 
using Cl HMMs we tested the performance of pcR(whole) 
and pcR(45). For comparison, we tested CMS(whole) and 
CMS(45) as well. The details of these experiments are de­
scribed in the next sections.

2



Table 1. Phonem ic transcriptions (colum n 2) and 
the num ber o f realisations (colum ns 3 till 6) of 
each digit.

digit transcription trn960 trn480 cv240 tst671
nul n Y 1 590 294 136 412
een e n 590 286 165 397

twee t w e 591 296 181 416
drie d r i 597 299 155 419
vier v i r 569 284 135 388
vijf v Ei f 573 273 124 402
zes z E s 578 301 136 400

zeven z e v Q n 582 270 130 380
acht a x t 554 297 151 374

negen n e x Q n 534 281 121 435

3. SIG NAL PR O C ESSIN G
Speech signals were digitized at 8 kHz and stored in A-law 
format. After conversion to a linear scale, preemphasis 
with factor 0.98 was applied. A 25 ms Hamming analy­
sis window tha t was shifted with 10 ms steps was used 
to calculate 24 filterband energy values for each frame. 
The 24 triangular shaped filters were uniformly distrib­
uted on a mel-frequency scale. Finally, 12 mel-frequency 
cepstral coefficients (MFCC’s) were derived. In addi­
tion to the twelve MFCC’s we also used their first time­
derivatives (delta-MFCC’s), log-energy (logE) and its first 
time-derivative (delta-logE). In this manner we obtained 
26-dimensional feature vectors. Feature extraction was 
done using HTK vl.4 [10].

We applied the CN techniques to the twelve MFCC 
coordinates of the feature vector in this paper. We used 
integration factor -0.94 [3] in case of our phase-corrected 
RASTA method. We always kept the original values of 
delta-MFCC’s, logE and delta-logE.

4. D A TA BA SE
The speech material for this experiment was taken from 
the Dutch POLYPHONE corpus [11]. Speakers were 
recorded over the public switched telephone network in 
the Netherlands. Handset and channel characteristics are 
not known; especially handset characteristics are known 
to vary widely. The speakers were selected in such a way 
tha t all major dialect backgrounds in the Netherlands are 
represented. None of the utterances used for training or 
test had a high background noise level.

Among other things, the speakers were asked to read a 
connected digit string containing six digits. We divided 
this set of digit strings in three parts. For training we re­
served a set of 960 strings, i.e. 80 speakers (40 females and 
40 males) from each of the 12 provinces in the Netherlands 
(denoted trn960 in short). An independent set of 240 u t­
terances (cv240; 120 females, 120 males) was set apart for 
cross-validation tests and was used during our training 
procedure. As a third independent set we took 671 u tter­
ances for final testing of the models (tst671; 341 females, 
330 males). (In principle we wanted to have 30 female and 
30 male speakers from each of the 12 provinces, but the 
very sparsely populated province of Flevoland provided 
only 11 female and 0 male test speakers for tst671). For 
proper initialisation of the models, we manually corrected 
automatically generated begin- and endpoints of each ut­
terance in the trn960 data set.

For the experiments in this paper we did not use all 
available training material. We restricted ourselves to us­
ing only half the amount of training data (i.e. 480 ut­
terances, trn480; 240 females, 240 males). We listed the 
number of available realisations of each digit for all of our 
data sets in columns 3 till 6 of Table 1.

5. M ODELS
5.1. M odel topology
The digit set of the Dutch language was described using 
18 Cl phone models. In addition, we used four models to 
describe silence, very soft background noise, other back­
ground noise and out-of-vocabulary speech, respectively. 
Each Cl model consisted of three states. The total num­
ber of different states describing the digit HMMs was 56. 
All HMMs were left-to-right, where only self-loops and 
transitions to the next state are allowed. The emission 
probability density functions were described as a continu­
ous mixture of 26-dimensional Gaussian probability den­
sity functions (diagonal covariance matrices). In order to 
be able to study the recognition performance as a func­
tion of acoustic resolution, we used mixtures containing 1,
2, 4 and 8 Gaussians for the emission probability density 
function of each state.
5.2. Training and recognition
The models were initialised starting from a linear seg­
mentation within the boundaries taken from the hand- 
validated segmentations. After this initialisation, an em­
bedded Baum-Welch re-estimation was used to further 
train the models. Starting with a single Gaussian emis­
sion probability density function for each state, 20 Baum- 
Welch iterations were conducted; the models resulting 
from each iteration cycle were stored. Next, the opti­
mal number of iterations was determined using the cv240 
data set. For the set of models with the best recognition 
rate, the number of Gaussians was doubled and again 20 
embedded Baum-Welch re-estimation iterations were per­
formed. This process of training with cross-validation was 
repeated until models with 8 Gaussians per state were ob­
tained.

During cross-validation as well as during recognition 
with data set tst671, the recognition syntax allowed for 
zero or more occurrences of either silence or very soft 
background noise or other background noise or out-of­
vocabulary speech in between each pair of digits. At the 
beginning and at the end of the digit string one or more 
occurrences of either silence or very soft background noise 
or other background noise or out-of-vocabulary speech 
were allowed.

6. E X PE R IM E N T S
We trained Cl HMMs using train set trn480 in the follow­
ing four experimental conditions: CMS(whole), CMS(45), 
pcR(whole) and pcR(45). In both pcR cases we used inte­
gration factor -0.94. We used test set tst671 to determine 
the recognition performance of each CN method as a func­
tion of the acoustic resolution. The recognition word error 
rate W E R  was defined as

W E R  = 1 N  — S  — I  — D
N  ’ (1)

where N  is the total number of digits tested and S,1, D 
are the number of substitutions, insertions and deletions, 
respectively.

We found no significant differences between 
CMS(whole), pcR(whole) and pcR(45), except when 1 
Gaussian per state was used. In tha t case, we found 
W ER(pcr(  45)) =  9.5%, W E R (C  M S  (whole)) = 8.0% 
and WER(pcR(whole)) = 7.3%. Figure 3 shows the re­
sults for pcR(45) and CMS(45). As can be seen, optimal 
performance is reached at an acoustic resolution corre­
sponding to 4 - 8 Gaussians per state. In this region
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pcR(45), pcR(whole) and CMS (whole) are equivalent and 
all perform significantly better than CMS(45). We found 
tha t WER for pcR(45) is more than 20% lower compared 
to CMS(45) when 8 Gaussians per state are used. In prac­
tical applications CMS(whole) and pcR(whole) cannot be 
used. Therefore, these experiments suggest that pcR(45) 
is the CN method to be preferred in actual applications.

# Gaussians/state — >

Figure 3: Recognition W ER for CMS(45) (X)  and 
phase-corrected RASTA(45) (O ) using Cl HMMs.

7. CO NCLUSIO NS

We have proposed a new extension to the classical RASTA 
CN technique. In our proposal the classical RASTA filter 
is followed by an all-pass phase correction filter. In this 
manner the left-context dependency introduced by the 
classical RASTA filter is removed, while at the same time 
DC-components are still as effectively removed. Experi­
ments using Cl HMMs for connected digit string recog­
nition over the phone, suggest tha t an implementation 
of phase-corrected RASTA suited for real-time applica­
tions (i.e. pcR(45)) is to be preferred over cepstrum mean 
normalisation based on a finite fixed window length (i.e. 
CMS (45)). In the region of 4 - 8 Gaussians per state, our 
experiments show that pcR(45) significantly outperforms 
CMS (45). We found tha t WER for pcR(45) is more than 
20% lower compared to CMS (45) when 8 Gaussians per 
state are used. In addition, we found tha t pcR(45) is as 
effective as the ideal CN method CMS(whole).
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