
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is an author's version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/74977

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16159443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/74977


In: Proc. ICSLP-96, pp. 2332-2335, 1996 1

COMPARISON OF CHANNEL NORMALISATION TECHNIQUES 
FOR AUTOMATIC SPEECH RECOGNITION OVER THE PHONE

Johan de Veth (1) & Louis Boves (1,2)

(1) Department of Language and Speech, University of Nijmegen,
P.O. Box 9103, 6500 HD Nijmegen, THE NETHERLANDS 

(2) KPN Research, P.O. Box 421, 2260 AK Leidschendam, THE NETHERLANDS

ABSTRACT

We compared three different channel normalisation (CN) meth­
ods in the context of a connected digit recognition task over the 
phone: ceptrum mean substraction (CMS), RASTA filtering and the 
Gaussian dynamic cepstrum reprsentation (GDCR). Using a small 
set of context-independent (CI) continuous Gaussian mixture hid­
den Markov models (HMMs) we found that CMS and RASTA out­
performed the GDCR technique. We show that the main cause for 
the superiority of CMS compared to RASTA is the phase distortion 
introduced by the RASTA filter. Recognition results for a phase- 
corrected RASTA technique are identical to those of CMS. Our re­
sults indicate that an ideal cepstrum based CN method should (1) 
effectively remove the DC-component, (2) at least preserve modu­
lation frequencies in the range 2-16 Hz and (3) introduce no phase 
distortion in case CI HMMs are used for recognition.

1. INTRODUCTION

For automatic speech recognition over telephone lines it is well- 
known that recognition performance can be seriously degraded due 
to the transfer characteristics of the communication channel. In or­
der to reduce the influence of the linear filtering effect of the tele­
phone handset and telephone line, different channel normalisation 
(CN) techniques have been proposed [for example 1,2,3,4]. Several 
studies addressed the question of the relative effectiveness of differ­
ent CN approaches [for example 5,6]. These studies were often lim­
ited to the extend that it was only established which CN technique 
was to be preferred. In this paper, we focus on the question why one 
approach is preferred over another.

We studied three different CN techniques in the context of a con­
nected digit recognition task: cepstrum mean substraction (CMS) 
[1], RASTA filtering [2,3], and the Gaussian dynamic cepstrum rep­
resentation (GDCR) [4]. For this task, we used hidden Markov 
models (HMMs) with Gaussian mixture densities describing the 
output probability density function of each state. Because we fo­
cussed attention on the question of what makes a CN technique a 
succesful one, we did not investigate the use of different types of 
acoustic parameter representations. Rather, we resticted ourselves to 
mel-frequency cepstral coefficients, log energy and their first time­
derivatives.

This paper is further organised as follows. In section 2 we describe 
our feature extraction method. Next, in section 3, the telephone data­
base that we used for our experiments is discussed. The topology of 
the HMMs, the way we performed training with cross-validation and 
the recognition syntax during testing are described in section 4. The 
recognition experiments are discussed in section 5. We will focus 
on the phase distortion introduced by the RASTA technique as this 
is the key difference between RASTA and CMS. We will show that 
removal of the phase distortion of the RASTA filter leads to a sig­
nificant increase of recognition performance when using CI HMMs. 
Finally, in section 6 we sum up the main conclusions.

2. SIGNAL PROCESSING

Speech signals were digitized at 8 kHz and stored in A-law format. 
After conversion to a linear scale, preemphasis with factor 0.98 was 
applied. A  25 ms Hamming analysis window that was shifted with
10 ms steps was used to calculate 24 filterband energy values for 
each frame. The 24 triangular shaped filters were uniformly distrib­
uted on a mel-frequency scale. Finally, 12 mel-frequency cepstral 
coefficients (MFCC’s) were derived. We did not apply liftering, be­
cause we were using continuous Gaussian mixture density HMMs 
with diagonal covariance matrices [7]. In addition to the twelve 
MFCC’s we also used their first time-derivatives (delta-MFCC’s), 
log-energy (logE) and its first time-derivative (delta-logE). In this 
manner we obtained 26-dimensional feature vectors. Feature ex­
traction was done using HTK v1.4 [8]. We applied three CN tech­
niques to the twelve MFCC coordinates of the feature vector in this 
paper. We either used RASTA with integration factor 0.98 [2,3], or 
the GDCR approach [4] or CMS [1]. We kept the original values of 
delta-MFCC’s, logE and delta-logE.

3. DATABASE

The speech material for this experiment was taken from the Dutch 
POLYPHONE corpus [9]. Speakers were recorded over the public 
switched telephone network in the Netherlands. Handset and chan­
nel characteristics are not known; especially handset characteristics 
are known to vary widely. Among other things, the speakers were 
asked to read a connected digit string containing six digits. We di­
vided this set of digit strings in two parts. For training we reserved 
a set of 960 strings, i.e. 80 speakers (40 females and 40 males) 
from each of the 12 provinces in the Netherlands (denoted trn960
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T a b le  1: Phonemic transcriptions (column 2) and the number of re­
alisations (columns 3 till 7) of each digit.

digit transcription tm960 trn480 tst911 tst240
nul n Y 1 590 294 548 136
een e n 590 286 562 165

twee t w e 591 296 597 181
drie d r i 597 299 574 155
vier v i r 569 284 523 135
vijf v Ei f 573 273 526 124
zes z E s 578 301 536 136

zeven z e v Q n 582 270 510 130
acht a x t 554 297 525 151

negen n e x Q n 534 281 556 121

in short). An independent set of 911 utterances (tst911; 461 females, 
450 males) was set apart for testing. (In principle we again wanted to 
have 40 female and 40 male speakers from each of the 12 provinces, 
but the very sparsely populated province of Flevoland provided only 
21 female and 10 male test speakers). For proper initialisation of the 
models, we manually corrected automatically generated begin- and 
endpoints of each utterance in the trn960 data set. We did not always 
use all training and testing material. Most of the time, we used only 
half the amount of training data (i.e. 480 utterances, trn480; 240 fe­
males, 240 males). For cross-validation during training we used a 
subset o f240 utterances taken from the test set (tst240; 120 females, 
120 males). For evaluation of the models when training was com­
pleted we always used the full test set tst911. We list the number of 
available realisations of each digit for all of our data sets in columns
3 till 6 of Table 1.

4. MODELS

4.1. Model topology

The digit set of the Dutch language was described using 18 con­
text independent (CI) phone models (see second column of Table 
1). Furthermore, we used four models to describe silence, very soft 
background noise, other background noise and out-of-vocabulary 
speech, respectively. Each CI model consists of a three state, left- 
to-right HMM, where only self-loops and transitions to the next 
state are allowed. The emission probability density functions are de­
scribed as a continuous mixture of 26-dimensional Gaussian prob­
ability density functions (diagonal covariance matrices). In order 
to be able to study the recognition performance as a function of 
acoustic resolution, we used mixtures containing 1, 2, 4, 8, 16 and 
32 Gaussians for the emission probability density function of each 
state.

4.2. Training and recognition

The CI phone models were initialised starting from a linear seg­
mentation within the boundaries taken from the hand-validated word 
segmentations. After this initialisation, an embedded Baum-Welch 
re-estimation was used to further train the models. Starting with a 
single Gaussian emission probability density function for each state, 
20 Baum-Welch iterations were conducted; the models resulting

from each iteration cycle are stored. Next, the optimal number of it­
erations was determined using the tst240 data set. For the set of mod­
els with the best recognition rate, the number of Gaussians was dou­
bled and again 20 embedded Baum-Welch re-estimation iterations 
were performed. This process of training with cross-validation was 
repeated until models with 32 Gaussians per state were obtained.

During cross-validation as well as during recognition with data set 
tst911, the recognition syntax allowed for zero or more occurrences 
of either silence or very soft background noise or other background 
noise or out-of-vocabulary speech in between each pair of digits. At 
the beginning and at the end of the digit string one or more occur­
rences of either silence or very soft background noise of other back­
ground noise or out-of-vocabulary speech were allowed.

5. EXPERIMENTS

5.1. Comparison three CN methods

We trained models with up to 32 Gaussians per state using data set 
trn480. Four different sets of feature vectors were used to assess the 
effectiveness of CN: no CN, RASTA CN, GDCR CN and CMS CN. 
The best performing model sets according to the cross-validation 
data set tst240, were evaluated using test set tst911. The propor­
tion of digits correct (i.e. the number of digits correctly recognized 
divided by the total number of digits in the test set) is shown as a 
function of the number of Gaussians per state in Figure 1. For the 
amount of test digits that we used, the confidence interval is 

at a proportion of digits correctly recognized of 
respectively.

F ig u r e  1: Recognition performance for four CN approaches: x =  
CMS, O =  RASTA, +  =  GDCR, * =  no CN.

Figure 1 clearly indicates that CN improves the recognition perfor­
mance for each acoustic resolution that we tested. The improve­
ments relative to the system without CN are significant at the 
confidence level in case of RASTA and CMS, but they are not for 
GDCR. Notice further that the recognition performance increases 
monotonically as a function of the acoustic resolution in all four 
cases. Note, however, that in all cases the improvements are not sig­
nificant for 16 and 32 Gaussians per state. In other words, 8 Gaus-
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sians per state appears to be sufficient for our connected digit recog­
nition task. As a consequence, two different regions may be dis­
cerned on the acoustic resolution scale according to Figure 1. In the 
region up to 8 Gaussians per state recognition performance may be 
increased by either increasing acoustic resolution or applying a CN 
technique like RASTA or CMS. Above 8 Gaussians per state, how­
ever, increasing acoustic resolution does not result in any significant 
performance increase, whereas CN is still effective.

Using the RASTA filtered acoustic feature vectors, we conducted an 
experiment to verify that we used enough training data. To this aim 
models were trained with the trn960 data set. We did not observe a 
significant change in recognition performance. Therefore, we con­
cluded that data set trn480 was indeed large enough.

5.2. RASTA vs. CMS in the time domain

According to the results in Figure 1, it appears that the different 
CN techniques that we studied can be ordered as follows: CMS 
RASTA > GDCR > no CN, where we used the symbol ”> ” to in­
dicate better CN effectiveness. The question is now of course: How 
can we understand this ordering? In [7], we argued that the RASTA 
filter frequency response preserves modulation frequencies in the 
maximally sensitive region of human auditory perception (2-16 Hz,
[10]) much better compared to GDCR, especially in the region be­
low 5 Hz. This preservation of modulation frequencies may very 
well explain the superiority of CMS and RASTA over GDCR. In or­
der to see what causes the difference in recognition performance be­
tween RASTA and CMS, (which is significant at the 95 % level for 
systems with 2 and 4 Gaussians per state), we will take a detailed 
look at the effects of both techniques in the time domain.

We consider the signal shown in the upper panel of Figure 2 (we 
took a synthetic signal instead of a real MFCC coordinate time se­
ries for didactic purposes). The signal is a sequence of seven station­
ary segments (”speech states”) preceded and followed by a rest state 
(”silence”). Notice that the signal contains a constant overall DC- 
component (representing the effect of the communication channel). 
The RASTA filtered version of this signal is shown in the middle 
panel of Figure 2. Two important observations can be made. First, 
the DC-component has been effectively removed (at least for times 
larger than, say, 70 frames). Second, the shape of the signal has been 
altered.

With regards to the shape distortion we remark the following. First, 
the seven speech states of the signal that had a constant ampli­
tude are now no longer stationary. Instead, the amplitude for each 
state shows a tendency to drift towards zero. Thus: RASTA filter­
ing steadily decreases the value of cepstral coefficients in station­
ary parts of the speech signal, while the values immediately after an 
abrupt change are preserved. This explains the observation that the 
dynamic parts in the spectrogram of a speech signal are enhanced by 
RASTA filtering the cepstral coefficients [3,6]. As a consequence of 
this drift, however, a description of the signal in terms of stationary 
states with well-located means and small variances becomes less ac­
curate. Second, the mean amplitude of each state has become a func­
tion of the state itself as well as the amplitudes of states immediately 
preceding it. This is the well-known left-context dependency intro­

duced by the RASTA filter [3,11]. Because the absolute ordering 
of signal amplitudes is lost, states can no longer be straightforward 
identified by their mean amplitude (compare speech states two, four 
and seven before and after RASTA filtering in the upper and mid­
dle panel of Figure 2). For this reason, RASTA is less well suited 
when using CI models [cf. the remarks in 11]. Finally, we mention 
a third aspect of the shape distortion for completeness (which we feel 
is much less important though). Due to the small attenuation of high- 
frequency components, abrupt amplitude changes are smoothed.
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F ig u r e  2 : Synthetic signal representing one of the cepstral coeffi­
cients in the feature vector. Upper panel: Original signal containing 
a time-invariant DC-offset. Middle panel: RASTA filtered signal. 
Lower panel: Phase corrected RASTA filtered signal.

CMS has only one effect in the time domain: the DC-component is 
removed while the signal shape is exactly preserved (the signal is 
simply shifted as a whole). So, maybe the significant difference in 
performance between CMS and RASTA might be explained by the 
preservation of shape in the time domain in case CMS was used.

5.3. Phase correction for RASTA

In order to test this, we conducted a recognition experiment with an 
extended version of the RASTA filtering technique. We used the 
method decribed in [12] to do a phase correction on each MFCC 
coefficient after the RASTA filter was applied. We choose the 
phase correction such that the frequency dependent phase shift of 
the RASTA filter was exactly compensated, while at the same time 
preserving the original magnitude response of the RASTA filter by 
using an all-pass filter. The effect of the phase correction is shown 
in the lowest panel of Figure 2. As can be seen, the shape of the 
phase-corrected RASTA filtered signal resembles the shape of the 
original signal much better compared to the RASTA filtered signal. 
The phase correction (1) removes the amplitude drift towards zero in 
stationary parts of the signal and (2) removes the left-context depen­
dency. In other words, phase-corrected RASTA (1) does not feature 
enhanced spectral dynamics and (2) is probably better suited for CI 
modeling.

We replaced the twelve MFCC’s by twelve phase-corrected RASTA 
filtered MFCC’s and trained new models using the same data sets 
trn480 and tst240 for training and cross-validation as before. Fi­
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nally, we established the recognition performance using test set 
tst911. The results are shown in Figure 3, together with our previous 
results for CMS and RASTA. Figure 3 clearly shows that the per­
formance of the phase-corrected RASTA features is identical to the 
CMS performance. Therefore, we conclude that our hypothesis was 
correct: The most important difference between CMS and RASTA 
is the phase distortion introduced by the RASTA filter, which is re­
flected in the time domain as a shape distortion of the signal. If the 
RASTA filter is adapted such that its phase distortion is exactly com­
pensated while at the same time preserving the original magnitude 
response, the recognition performance becomes identical to the per­
formance for CMS.

F ig u r e  3: Recognition results for CMS (x ), RASTA (O) and phase- 
corrected RASTA ( ).

We also conclude the following. It has been often suggested [3,6] 
that RASTA techniques provide better recognition performance be­
cause the spectral dynamics are enhanced. Our analysis shows that 
this enhancement is caused by the phase distortion of the RASTA 
filter. When we removed the phase distortion, we removed the en­
hancement of spectral dynamics. However, the recognition per­
formance did not go down in our experiments (on the contrary). 
Therefore, the argument should be reconsidered that the success of 
RASTA filtering techniques should be attributed to the enhancement 
of spectral dynamics. Our experiments suggest that removal of the 
DC-component is the most important feature of RASTA.

Finally, taking our findings for CMS, RASTA and GDCR together, 
we can formulate three constraints that an ideal cepstrum based CN 
technique should satisfy: (1) the DC-component should be effec­
tively removed, (2) the magnitude response should be preserved in 
the range of 2-16 Hz, which is the maximally sensitive region of hu­
man auditory perception, and (3) the technique should not introduce 
any phase distortion when combined with CI modeling.

6. CONCLUSIONS

We compared three different CN methods in the context of a con­
nected digit recognition task over the phone. Using a small set of 
CI continuous Gaussian mixture HMMs, we showed that CMS and 
RASTA outperform the GDCR technique. Furthermore, we showed 
that the main cause for the superiority of CMS compared to RASTA

is the phase distortion introduced by the RASTA filter. The recog­
nition results for a phase-corrected RASTA technique were identi­
cal to those of CMS. Our results suggest that the ability of RASTA 
to effectively remove the DC-component is more important than the 
enhancement of spectral dynamics.
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