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Zusammenfassung  
 

Heutzutage werden große Anstrengungen unternommen die vielfältige Physik von 

Materialien mit interessanten magnetischen, elektronischen, optischen und 

photokatalytischen oder sogar multiferroischen Eigenschaften zu verstehen. Das 

Hauptziel ist es, die Leistung der Materialien für bestimmte Anwendungen zu 

verbessern oder sogar neue Mechanismen für Zukunftstechnologien, wie 

Wasserspaltung, Spintronik, Sensorik sowie Energiespeicherung und –umwandlung, 

zu finden. Im Rahmen dieser Dissertation wurden zwei dieser potentiell sehr 

vielversprechenden Verbindungen, die im Perowskit-Typ kristallisierenden Phasen 

(Bi1-xFex)FeO3 und der Mullit-Typ Bi2Fe4O9, synthetisiert und untersucht. Zunächst 

sollten die Synthesebedingungen verstanden werden, welche die resultierende 

Phasenzusammensetzung, entstehenden Strukturen und deren Eigenschaften 

maßgeblich beeinflussen. Das zweite Ziel war es, die Struktur-Eigenschafts-

Beziehungen basierend auf der mittleren Kristallitgröße, chemischen 

Zusammensetzung und Phasenzusammensetzung der Materialen zu untersuchen. 

Es wird gezeigt, dass das Phasensystem Bi2O3 – Fe2O3 sehr komplex und sensitiv 

gegenüber vielen Syntheseparametern wie z.B. dem Typ des Komplexbildners, dem 

pH-Wert sowie der Kalzinierungszeit und -temperatur ist. Des Weiteren wurde 

beobachtet, dass BiFeO3 und Bi2Fe4O9 von ~680 K bis ~920 K immer nebeneinander 

kristallisieren, weshalb in diesem Temperaturbereich eine geringe Energiedifferenz in 

der Stabilität dieser Phasen erwartet wird. Das Verhältnis von BiFeO3 : Bi2Fe4O9 

kann z.B. durch Einstellen des pH-Werts der Syntheselösung stark modifiziert 

werden. Darüber hinaus wurde während der Transformation eines röntgenamorphen 

Pulvers in polykristallines Bi2Fe4O9 (Kapitel 3)1 eine Zwischenphase (Bi1-xFex)FeO3 

gefunden. Bei Erhöhung der Temperatur wandelte sich diese graduell in die 

stöchiometrische BiFeO3-Phase um. Infolgedessen konnte der Anteil an Bi3+ und 

Fe3+ auf der A-Lage der Perowskit-Struktur (ABO3) durch Anpassung der 

Kristallisationszeit bei einer bestimmten Temperatur variiert und zwei Proben mit 

xFe = 0.15 und 0.25 hergestellt werden (Kapitel 4).2 Beide Strukturen, 

(Bi0.75Fe0.25)FeO3 und (Bi0.85Fe0.15)FeO3, zeigten interessantes super-

paramagnetisches Verhalten und signifikant veränderte kristallchemisch-

physikalische Eigenschaften in Bezug auf Polyederverzerrung, thermische 

Expansion, Debye-Temperatur, Schwingungseigenschaften und magnetisches 

Verhalten im Vergleich zu stöchiometrischem BiFeO3. Eine weitere Studie wurde der 
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Entwicklung der strukturellen, morphologischen und optischen Eigenschaften sowie 

den Schwingungseigenschaften von Proben mit variierenden BiFeO3 : Bi2Fe4O9 

Phasenverhältnissen gewidmet (Kapitel 5).3 Es zeigte sich, dass einige Proben 

funktionalisierte Oberflächen aufwiesen, die mit 4 – 13 nm großen Partikeln bedeckt 

waren. Deren Netzebenen ordneten sich während der transmissions-

elektronenmikroskopischen Messungen (TEM) bei der Interaktion mit dem 

Elektronenstrahl um. Außerdem zeigte die Studie, dass die Kombination aus der 

kürzlich vorgestellten “Derivative Absorption Spectrum Fitting” (DASF) Methode und 

der seit langem bekannten Tauc Methode ein brauchbares Werkzeug ist, um 

gleichzeitig die Bandlücke sowie die Natur des optischen Übergangs (direkt und 

indirekt) von Halbleitern zu bestimmen. Unter Gebrauch dieses Ansatzes wurde die 

Art des optischen Übergangs, was zuvor ein fortlaufendes Diskussionsthema war, für 

Bi2Fe4O9 als direkt bestimmt. Die Bandlücken der Materialien liegen zwischen 

1.80(1) eV und 2.75(3) eV. Darüber hinaus wurden die von der Kristallitgröße 

abhängigen Struktur-Eigenschafts-Beziehungen von Bi2Fe4O9 mittels struktureller 

und spektroskopischer Methoden (Kapitel 6)4 untersucht. Rietveld Analysen zeigten 

unter 122(2) nm eine erhebliche Veränderung der Gitterparameter a, b, c und der 

Mikroverspannungen als Funktion der mittleren Kristallitgröße. Gleichzeitig konnten 

große Verzerrungen der FeO4- und FeO6-Koordinationen, ein signifikantes 

Erweichen der Raman Moden und deren Verbreiterung, eine Abnahme der 

antiferromagnetischen Umwandlungsenthalpie sowie eine veränderte lokale 

Spinorientierung im Vergleich zum Bulk-Material in diesem Größenbereich 

festgestellt werden. 

(1)  Kirsch, A.; Murshed, M. M.; Gaczynski, P.; Becker, K.-D.; Gesing, T. M. 

Bi2Fe4O9: Structural Changes from Nano- to Micro-Crystalline State. Zeitschrift 

für Naturforsch. B J. Chem. Sci. 2016, 71 (5), 447–455. 

(2)  Kirsch, A.; Murshed, M. M.; Kirkham, M. J.; Huq, A.; Litterst, F. J.; Gesing, T. 

M. Temperature-Dependent Structural and Spectroscopic Studies of (Bi1-

xFex)FeO3. J. Phys. Chem. C 2018, submitted for publication. 

(3)  Kirsch, A.; Murshed, M. M.; Schowalter, M.; Rosenauer, A.; Gesing, T. M. 

Nanoparticle Precursor into Polycrystalline Bi2Fe4O9: An Evolutionary 

Investigation of Structural, Morphological, Optical, and Vibrational Properties. J. 

Phys. Chem. C 2016, 120 (33), 18831–18840. 

(4)  Kirsch, A.; Murshed, M. M.; Litterst, F. J.; Gesing, T. M. Structural, 

spectroscopic and thermoanalytic studies on Bi2Fe4O9: tunable properties 

driven by nano- and poly-crystalline states J. Phys. Chem. C 2018, submitted 

for publication. 
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Summary 
 

Nowadays, great efforts are made to understand the rich physics of materials that 

show interesting magnetic, electronic, optic, photocatalytic or even multiferroic 

properties. The main objective is to finetune the materials performance to certain 

applications or to even explore new possible mechanisms for future key technologies 

such as water splitting, spintronics, sensors as well as energy storage and 

conversion. Within the scope of this dissertation two of such potentially very 

promising compounds, perovskite-type (Bi1-xFex)FeO3 and mullite-type Bi2Fe4O9, 

were synthesized and studied. The primary focus was placed to understand the 

synthesis conditions that strongly influence the resulting phase composition, 

structures and corresponding properties. The second main focus was to study the 

structure-property relationships based on the average crystallite size, chemical 

composition and phase composition of the materials.  

It could be shown that the phase system Bi2O3 – Fe2O3 is very complex and sensitive 

to a lot of synthesis parameters such as the type of complexing agent, pH value as 

well as calcination time and temperature. Furthermore, BiFeO3 and Bi2Fe4O9 were 

observed to always crystallize side by side from ~680 K to ~920 K therefore a small 

energy difference in the stability of these phases is expected in this temperature 

range. The ratio of BiFeO3 : Bi2Fe4O9 for instance can be modified strongly by 

varying the pH value of the synthesis solution. In addition, an intermediate (Bi1-

xFex)FeO3 phase was found during the transformation of an X-ray amorphous powder 

into a polycrystalline Bi2Fe4O9 (chapter 3).1 Upon increasing temperature the (Bi1-

xFex)FeO3 structure gradually transformed into the BiFeO3 perovskite phase.1 

Consequently, we could vary the Bi3+ and Fe3+ content on the A-site of the perovskite 

structure (ABO3) by adjusting the crystallization time on a certain temperature and 

two samples with xFe = 0.15 and 0.25 were produced (chapter 4).2 Both 

(Bi0.75Fe0.25)FeO3 and (Bi0.85Fe0.15)FeO3 showed interesting superparamagnetic 

behaviour and significantly changed crystal-physico-chemical properties such as 

polyhedral distortion, thermal expansion, Debye temperature, vibrational and 

magnetic properties compared to the stoichiometric BiFeO3.2 A further study, was 

attributed to the evolution of the structural, morphological, optical and vibrational 

properties of samples with varying BiFeO3 : Bi2Fe4O9 phase ratios (chapter 5).3 It was 

found that some of the samples possessed functionalized surfaces covered by 

4 − 13 nm sized particles, whose lattice fringes rearranged by the interaction with the 
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electron beam during the TEM measurements.3 Besides that, the study indicated that 

the combination of the recently proposed derivative absorption spectrum fitting 

(DASF) method and the Tauc’s method, can be a suitable tool to concomitantly 

determine the band gap as well as the nature of transition (direct and indirect) of a 

semiconducting material.3 By using this approach the nature of optical transitions in 

Bi2Fe4O9 was found to be very likely attributable to direct transitions which was an 

ongoing topic of debate before.3 The band gaps of the materials were observed to 

range from 1.80(1) to 2.75(3) eV.3 Furthermore, the structure-property relationships 

depending on the crystallite size of Bi2Fe4O9 were studied using structural and 

spectroscopic methods (chapter 6).4 Rietveld analyses revealed a substantial change 

of lattice parameters a, b, c and micro-strain as a function of average crystallite size 

below 122(2) nm.4 At the same time huge distortions of both the FeO4 and FeO6 

coordinations, a significant mode softening and broadening of Raman lines, a 

decrease of the antiferromagnetic transition enthalpy and a changed local spin 

orientation in comparison to the bulk could be observed in the same size-regime.4 

 

(1)  Kirsch, A.; Murshed, M. M.; Gaczynski, P.; Becker, K.-D.; Gesing, T. M. 

Bi2Fe4O9: Structural Changes from Nano- to Micro-Crystalline State. Zeitschrift 

für Naturforsch. B J. Chem. Sci. 2016, 71 (5), 447–455. 

(2)  Kirsch, A.; Murshed, M. M.; Kirkham, M. J.; Huq, A.; Litterst, F. J.; Gesing, T. 

M. Temperature-Dependent Structural and Spectroscopic Studies of (Bi1-

xFex)FeO3. J. Phys. Chem. C, submitted for publication 2018. 

(3)  Kirsch, A.; Murshed, M. M.; Schowalter, M.; Rosenauer, A.; Gesing, T. M. 

Nanoparticle Precursor into Polycrystalline Bi2Fe4O9: An Evolutionary 

Investigation of Structural, Morphological, Optical, and Vibrational Properties. J. 

Phys. Chem. C 2016, 120 (33), 18831–18840. 

(4)  Kirsch, A.; Murshed, M. M.; Litterst, F. J.; Gesing, T. M. Structural, 

spectroscopic and thermoanalytic studies on Bi2Fe4O9: tunable properties 

driven by nano- and poly-crystalline states J. Phys. Chem. C 2018, submitted 

for publication. 
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Thesis structure 
 

The major focus of the research work presented in this dissertation is based on the 

investigation of the complex and sensitive phase system Bi2O3 – Fe2O3. A lot of 

efforts have been made to study the synthesis conditions, structure-property 

relationships, temperature-dependent behaviour and size-dependent properties of 

the multiferroic system BiFeO3 – Bi2Fe4O9. The thesis is mainly composed of journal 

articles published or submitted for publication that are listed in the next section. An 

introduction provides background information and key insights into the relevant 

literature addressed in subsequent chapters. It is followed by an experimental section 

where an overview of the synthesis conditions, the experimental methods and a 

declaration on the own contributions to the publications is given. The thesis can 

roughly be divided into two main parts: (1) Detailed investigations on the 

transformation of a nanocrystalline precursor into polycrystalline Bi2Fe4O9 and (2) the 

study of structure-property relationships based on the average crystallite size, 

chemical composition and phase composition. Chapter 2 is based on a manuscript in 

preparation reporting on the synthesis parameters that influence the resulting 

Bi2Fe4O9 precursors and calcined samples. Chapter 3 is a journal article reporting on 

the transformation of a nanocrystalline precursor material into a perovskite-type 

bismuth ferrate followed by a second transformation into mullite-type Bi2Fe4O9. The 

structural changes were mainly studied in situ and a metastable perovskite-type 

structure (Bi1-xFex)FeO3 with varying composition depending on the progress of 

crystallization was found. In a follow-up study, compounds with xFe = 0.15 and 0.25 

were synthesized and studied by ex situ as well as in situ experiments. These results 

were recently submitted for publication and are presented in chapter 4. The 

transformation of a nanocrystalline precursor into polycrystalline Bi2Fe4O9 was also 

studied by ex situ methods. A special focus was placed on the structural, 

morphological, optical and vibrational properties in dependence of the phase 

composition of the samples. These results are published in a journal article and 

described in detail in chapter 5. Chapter 6 is a journal article recently submitted for 

publication and reports on the size-dependent structural and physical properties of 

Bi2Fe4O9 using X-ray diffraction (XRD), TEM, thermal, optical and vibrational 

methods. The thesis ends with a concluding discussion and recommendations for 

future studies. All references are given separately for each chapter. 
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Chapter 1 

Introduction  
 

Worldwide, researchers and engineers permanently endeavor to improve and 

discover new technologies to face the grand challenges of today's society such as 

pollution control, healthcare, climate change and energy supply. Since materials limit 

the performance and size of devices the understanding and design of them play a 

key role in developing the relevant technologies. At present, most of them are based 

on materials in the microscale for instance in the field of biomaterials, electronics and 

fabrication of alloys and ceramics for mechanical applications. Richard Feynman’s 

talk "There's Plenty of Room at the Bottom" at the meeting of the American Physical 

Society in 19591 brought at the first time the inspiration for the field of nanoscience.2 

Nowadays, it is expected that nanotechnology will revolutionize many areas of the 

modern society like in medicine, biotechnology, electronics, information technology, 

communication technology and manufacturing.3 The physics of microcrystalline 

materials are mainly the same as that of macroscopic systems. Whereas, the 

properties of nanoscale materials of the same chemical composition can show 

enhanced optical, magnetic, mechanical and electronic properties relative to that of 

their corresponding bulk materials. These observations are attributed to the reduction 

in dimensionality that causes the domination of quantum effects and a greatly 

enlarged surface area. Furthermore, nanostructures can possess unusual forms of 

structural disorder and internal strain that can significantly alter the materials 

properties.4  

In the nano-size regime the physical properties are often found to depend on the size 

of a given system offering a good opportunity for tailoring the materials performance 

to certain applications. Several examples from literature showed how the materials 

can be tuned by the control of their size, for instance, the photoluminescence in 

organometal halide perovskite nanoplatelets5, piezoelectric effect in BaTiO3
6, 

magnetic properties in BiFeO3
7, catalytic performances of oxidation and reduction 

reactions on nanocatalysts8 and polar ordering in colloidal GeTe nanocrystals9. There 

even exist structures that develop new physico-chemical properties in the nanoscale 

e.g. superparamagnetic behaviour.10 Superparamagnetism is generally observed in 

very small magnetic materials such as magnetite.11 Due to fast fluctuations of the 

directions of magnetic moments, a superparamagnet behaves paramagnetically even 
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below the Curie or Néel temperature. It can highly be magnetized by an external 

magnetic field without showing a remanent magnetization after its removal.  

Another promising approach to feature key technologies is the control of coexisting 

and coupled ‘ferroic’ properties (such as ferroelectricity, ferromagnetism and 

ferroelasticity) by external stimuli.12,13 Those materials simultaneously exhibiting more 

than one of the ferroic order parameters are called multiferroics. Multiferroic 

properties can exist in multiphase systems11 but also in single-phased materials such 

as CuO14, lead-iron mixed perovskites (e.g. PbFe0.5Ta0.5O3, PbFe0.5Nb0.5O3)14, 

Cr2O3
14 and BiFeO3

15. Nevertheless, the existence of multiferroic properties in single-

phased materials is rare.13 Since 2003, the interest in materials possessing 

multiferroic properties has been growing rapidly as shown in Figure 1.  

 

Figure 1. Publications per year using the keywords ‘multiferroic’, ‘BiFeO3’ and 

‘Bi2Fe4O9’ (web of science). 

 

Many multiferroics only work at low temperatures making them impractical for 

commercial device applications, however some room-temperature (or near room-

temperature) multiferroics exist.14 Among them, BiFeO3 is by far the most studied and 

prominent structure since it is simultaneously ferroelectric and antiferromagnetic at 

room temperature16 with high Curie and Néel temperatures of ~1100 K and ~ 640 K, 

respectively.17 The publications per year almost reach the numbers of the ones to be 

concerned with the keyword ‘multiferroic’ (Figure 1). In spite of intense investigations 

on BiFeO3 in many forms - such as nanoparticles,7,18 single crystals,19 polycrystals20 
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and thin films15,21 - some of its physical properties are not fully understood. There 

have been ongoing debates on contradictory results7,18,22 and Catalan and Scott 

(2009)22 encouraged to conduct further systematic studies on the crystal chemistry, 

phase diagram, structure and dynamics of BiFeO3. Furthermore, great efforts have 

been made in recent years to enhance the already interesting properties of BiFeO3 

by substitution of the A and B site cations reviewed by Silva et al. (2011).23 BiFeO3 

crystallizes in space group R3c and can be described as a rhombohedrally distorted 

perovskite as shown in Figure 2. The structure exhibits an interesting canted 

magnetic spiral spin arrangement with a periodic length of 62 nm24 and at the same 

time a spontaneous polarization in the hexagonal c-direction.25  

 

 

Figure 2. Crystal structure of BiFeO3, showing some polyhedral coordinations and 

their connectivity. 

 

Besides the BiFeO3 structure, the Bi2O3 - Fe2O3 phase system possesses a further 

structure with quite interesting properties that is the mullite-type Bi2Fe4O9. Until today, 

this compound received little attention in literature in comparison with BiFeO3 (Figure 

1). Surprisingly, Bi2Fe4O9 is often only mentioned as an unwanted impurity in the 

synthesis of BiFeO3
23,26-29, although it is found to be the first experimental analogue 

of a geometrically frustrated Cairo pentagonal magnetic lattice30 and exhibits 
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multiferroic properties near room temperature.31 Besides that, interesting magnetic32, 

electronic33, optic34 and catalytic35 properties are reported as well. Bi2Fe4O9 

crystallizes in the orthorhombic space group Pbam in a mullite-type structure as 

depicted in Figure 3. It is built up from the typical edge-sharing octahedral chains 

along the c-axis that are connected by corner-shared Fe2O7 double tetrahedral units. 

As in BiFeO3, the 6s2 lone electron pair of Bi3+ is stereochemically active in 

Bi2Fe4O9.36 Furthermore, the structure shows an interesting crystal chemistry.37-40 

 

 

Figure 3. Crystal structure of Bi2Fe4O9, showing some polyhedral coordinations and 

their connectivity. 

 

The phase system Bi2O3 - Fe2O3 seems to be very sensitive since several 

compounds – such as Bi2Fe4O9
28, Bi25FeO40

28, Bi24Fe2O39
28, α-Bi2O3 or β-Bi2O3

41 and 

α-Fe2O3
42 - are reported to crystallize simultaneously depending on the synthesis 

conditions used. Jia et al. (2015)19 for instance revealed a very sluggish phase 

evolution behaviour for BiFeO3 supported by TEM and Monte Carlo simulations. 

Thus, the sensitivity of this system provides a great opportunity to finetune the 

materials properties to a large extent. 

The properties of a material obviously can be changed by tuning its dimensionality as 

well as substitution of elements in the crystal structure. But materials can also show a 

varying performance depending on the content of two or more phases and/or their 

degree of crystallinity. As an example, in the case of the photocatalytic active 

semiconductor TiO2 was found that a mixture of rutile and anatase (e.g.,1:3.4) is 
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more active than pure nanocrystalline anatase powder, although anatase is usually 

considered to be the active polymorph.43 Furthermore, Maity et al. (2013)44 reported 

on a superspin glass mediated giant spontaneous exchange bias in a nanocomposite 

of BiFeO3 - Bi2Fe4O9. These are two examples why it is also interesting to study the 

properties of phase mixtures besides pure-phase systems. 

Within the scope of this dissertation mainly the following questions were addressed: 

 Which synthesis parameters influence the formation of BiFeO3 and Bi2Fe4O9? 

 

 Is it possible to produce very small crystallites of Bi2Fe4O9 without the 

formation of BiFeO3? 

 

 What is happening during the transformation of a precursor material into 

polycrystalline Bi2Fe4O9? 

 

 How do the average crystallite size, chemical and phase composition change 

the physical properties of the materials? 
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Chapter 2 

Experimental overview 

Synthesis description 
 

The samples resulting from this dissertation were mainly synthesized by sol-gel 

methods using the corresponding metal nitrates and varying chelating agents. In 

general, after the dissolution of the metal nitrates into a solvent the solution is heated 

while stirring to a certain temperature for a defined time. This is followed by a drying 

step and subsequent grinding. Then the resulting precursors are calcined at defined 

temperatures and dwelling times. The general procedure is depicted in Figure 4. 

 

Figure 4. Scheme of general synthesis procedure mainly used in this works. 
 

To understand how the resulting structures and properties can be modified by the 

synthesis conditions several parameters were varied. These include:  

- type of complexing agent (glycerine, polyols, polyvinyl alcohols, sugar 

alcohols) 

- pH value 

- calcination time 

- calcination temperature 

- chemical composition 
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By varying these parameters 182 different precursor materials were synthesized in 

total. All the examined parameters were found to have a substantial influence on the 

resulting phase composition and their kinetics, structures and corresponding 

properties. In summary, due to the high sensitivity to the synthesis conditions and its 

very interesting and unique properties the system BiFeO3 – Bi2Fe4O9 provides a huge 

potential for tailoring the materials properties for certain applications. 

 

In the following section, selected examples are presented to give an impression of 

the various parameters that influence the resulting samples. For instance, Figure 5 

shows micrographs of six differently synthesized precursor materials of Bi2Fe4O9 

chemical composition with their corresponding XRD patterns. They were synthesized 

by the polyol process1-4 using polyols as high-boiling solvents heated under reflux. 

The polyols (e.g. ethylene glycol, diethylene glycol) also function as reducing agent 

and stabilizer to hinder particle growth.5 Their synthesis conditions are summarized in 

Table 1. The precursors vary in their particle size, morphology, structural composition 

and crystallinity. While sample a, b and d mainly exhibit agglomerates of uniform 

spherical particles sample c, e and f appear to be totally different (Figure 5). Sample 

c, for instance, possesses spherical agglomerates of ~25 μm beside cuboid like 

structures of bigger size (~80 μm) and sample f shows hollow spheres of ~1 μm. 

Furthermore, the XRD patterns differ strongly. Sample a, b and e are X-ray 

amorphous having no distinct reflections, whereas c, d and f clearly show crystalline 

parts (Figure 5). The reflections in sample c and d, for instance, can be assigned to 

elemental Bi in space group R3̅m6, whereas sample f also contains β-Bi2O3 in space 

group P4̅21c7. 

 

Table 1. Selected synthesis conditions of samples produced by the polyol process. 

Sample Solvent Synthesis time /min Synthesis temperature /K Additives 

A DEG 120 413 NaOH; stearic acid 
B DEG 120 423 - 

C DEG 
20 

1080 
120 

443 
473 
493 

No reflux 

D TEG 120 430 - 

E EG 
60 
240 

373 
416 

- 

F EG 120 443 No reflux 
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Figure 5. Precursor materials of Bi2Fe4O9 composition and their corresponding XRD 

patterns. The  synthesis conditions are given in Table 1. 

 

The influence of the solvent on the resulting precursor was studied systematically by 

varying the type of polyol. In this study different glycol ethers such as ethylene glycol 

(EG), diethylene glycol (DEG), triethylene glycol (TREG) and tetraethylene glycol 

(TEG) as well as mixtures of them were used. The XRD patterns of the 

corresponding Bi2Fe4O9 precursors are presented in Figure 6. In detail, 5 mmol 

Bi(NO3)3·5H2O and 10 mmol Fe(NO3)3·9H2O were dissolved into 0.35 mol polyol. The 

mixture was heated for two hours in a three-necked flask under reflux using a metal 
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bath at 423 K. After cooling down to ambient conditions, the suspension was 

separated by centrifugation and washed several times with acetone. The type of 

polyol used shows a strong influence on the resulting XRD patterns of the precursors 

(Figure 6). Almost all patterns show huge x-ray amorphous humps. Interestingly, the 

samples synthesized using a mixture of EG/DEG and EG/TREG have a higher 

degree of crystallinity. The pattern of the DEG sample shows no distinct reflections 

and the phase crystallizing when EG is used could not be assigned to a known 

phase. Elemental Bi in space group R3̅m6, however, could be identified in the 

samples synthesized in TREG and TEG. 

 

Figure 6. Bi2Fe4O9 precursor synthesized by the polyol method using different 

polyols. 

 

Besides the polyol process a substantial faster and easier sol-gel procedure was also 

investigated using polyvinyl alcohols (PVA) with different molecular weights or 

sorbitol as complexing agents. In general, the metal nitrates (5 mmol Bi(NO3)3·5H2O 

and 10 mmol Fe(NO3)3·9H2O) were dissolved in 40 mL of a 5%-solution of alcohol in 

deionized water. The mixture was heated in a beaker using a glycerine bath (353 –

373 K) until a solid foam or viscous gel was obtained. Then it was dried in an oven at 

523 K, grinded and calcined varying the calcination temperature and time. 

Following this procedure using sorbitol as the complexing agent, the influence of the 

pH value of the synthesis solution on the phase ratio of perovskite-type BiFeO3 to 
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mullite-type Bi2Fe4O9 in calcined samples (here 873 K for two hours) was studied. As 

depicted in Figure 7 the phase ratio can strongly be controlled by the pH value of the 

synthesis solution. The mullite-type Bi2Fe4O9 structure is found to preferentially 

crystallize in an acidic medium, whereas the amount of the perovskite-type structure 

clearly is higher in an alkaline medium. Furthermore, it was observed that sorbitol is 

complexing the Bi-cations very strongly which makes it possible to work even in a 

highly alkaline medium without the precipitation of bismuth hydroxide.  

 

Figure 7. Influence of pH value of the synthesis solution on the phase fraction of 

perovskite-type BiFeO3 and mullite-type Bi2Fe4O9 in samples heated at 873 K for two 

hours. 

 

The substitution of Fe in the initial chemical composition (Bi2Fe4O9) by other 

elements, for instance Al, Mn and Ga, not only influences the colour of the resulting 

compounds (exemplarily shown in Figure 8) but also change the kinetics and 

pathways of crystallization into the mullite-type structure. This could be shown for the 

solid solution system Bi2(Fe1-xAlx)4O9 in a recent study.8  

In general, it can be stated that both methods, the polyol process and sol-gel 

procedure using PVAs, provide a promising and versatile procedure to finetune the 

synthesis parameters and control the resulting phase composition and their kinetics, 

structures and corresponding properties of the samples produced. However, the sol-

gel procedure using PVAs provide some benefits compared to the polyol process. On 
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the one hand, the device setup is very easy and the procedure very fast. On the 

other hand, washing the samples synthesized by the polyol process is very time-

consuming since the polyols strongly adhere to the samples surfaces5 and several 

washing cycles with intermediate centrifugation steps are needed to obtain a dry 

powder that can be grinded and calcined. 

 

Figure 8. XRD patterns and optical appearance of solid solutions of Bi2(Fe1-xAlx)4O9 

synthesized using PVA and heated at 973 K for two hours. 
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Experimental methods 
 

The samples produced within the scope of this dissertation were characterized by the 

following methods. Furthermore, all cooperation partners and their conducted 

measurements are presented. 

 

In-house experiments at the Solid State Chemical Crystallography group of Prof. 

Gesing, Institute of Inorganic Chemistry and Crystallography, University of Bremen, 

Germany: 

 

 Synthesis 

 XRD (temperature-dependent and ambient conditions) 

 SEM 

 UV/Vis spectroscopy 

 FTIR spectroscopy 

 Raman spectroscopy (temperature-dependent and ambient conditions) 

 

TEM measurements at the Electron Microscopy group of Prof. Rosenauer, Institute of 

Solid State Physics, University of Bremen, Germany 

 

57Fe Mössbauer spectroscopy at the Solid State Chemistry group of Prof. Becker, 

Institute of Physical and Theoretical Chemistry, Technische Universität 

Braunschweig, Germany and the group of Prof. Litterst, Institute for Condensed 

Matter Physics, Technische Universität Braunschweig, Germany 
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Squid measurements at the group of Prof. Meyer, Institute of Inorganic Chemistry, 

Georg-August-Universität Göttingen, Germany 

 

Neutron diffraction experiments at the high-resolution instrument POWGEN of Dr. 

Ashfia Huq (lead instrument scientist) of the Chemical and Engineering Materials 

Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 

 
Synchrotron XRD experiments at the high-resolution powder diffractometer at 

beamline 11-BM at the Advanced Photon Source (APS), Argonne National 

Laboratory, USA 
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Abstract: Bi2Fe4O9 was synthesized using a polyol-mediated method. X-ray powder 

diffraction (XRD) revealed that the as-synthesized sample is nano-crystalline. During 

heating, the X-ray amorphous powder transformed into a rhombohedral perovskite-

type bismuth ferrate followed by a second transformation into mullite-type Bi2Fe4O9 at 

higher temperatures. This transformation was studied at in-situ conditions by 

temperature-dependent XRPD and 57Fe Mössbauer spectroscopy. The 57Fe 

Mössbauer spectra indicate the existence of two Fe3+ species at two different 

octahedrally coordinated sites leading to the conclusion that the as-synthesized 

powder of the polyol synthesis possesses a disordered (Bi1-xFex)FeO3 perovskite 

structure. Rietveld refinements have unambiguously supported this observation and 

this results suggest that one third of the Bi3+ sites are substituted by Fe3+ 

representing the initial chemical composition. This study has shown that as-

synthesized nano-materials are not always similar to the respective micro-crystalline 

ones.  

Keywords: crystal structure, nano-material, 57Fe Mössbauer spectroscopy, X-ray 

powder diffraction 

 

1. Introduction  

Bismuth ferrates, BiFeO3 and Bi2Fe4O9, have attracted great attention due to their 

electronic [1], optic [2], catalytic [3], and magnetic [4] properties making them suitable 

for advanced applications like photocatalysis [5, 6], photovoltaics [7, 8], and 

spintronics [9]. Bi2Fe4O9 is mainly studied as a gas sensor [10] and as a 

photocatalytically [11] active material. It also shows multiferroic properties near room-

temperature [12], interesting crystal chemistry [13 - 16] and temperature-dependent 

behavior [17] due to the stereochemically active Bi3+ 6s2 lone electron pairs (LEPs) 

[18]. Bi2Fe4O9 crystallizes in the orthorhombic space group Pbam with Z = 2 and 

possesses a mullite-type structure [14] featuring the typical chains of edge-sharing 

FeO6 octahedra parallel to the c-axis. The chains are cross-linked by corner-sharing 

Fe2O7 double-tetrahedra. The Bi atoms are located between the chains and their 

LEPs point toward the vacant sites of the channels [17, 18]. In the Bi2O3 – Fe2O3 

quasi-binary phase field co-crystallization of Bi2Fe4O9 and BiFeO3 is frequently 

observed [19 - 21]. 

BiFeO3 is mostly studied owing to its multiferroic properties at room-temperature and 

photocatalytic activity in the visible range of light [5, 22]. The widely studied BiFeO3 
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has a Néel temperature of ~ 640 K and a Curie temperature of ~ 1100 K [23]. The 

crystal structure of BiFeO3 as given in Figure 1 can be described in the space group 

R3c (Z = 2) as a rhombohedrally distorted perovskite. The tilting of the FeO6 

octahedra around the pseudo-cubic threefold <111> axis is a characteristic structural 

feature. The displacement of the Bi3+ and Fe3+ cations along this axis causes 

spontaneous polarization [24]. From the distorted 6-fold coordination of the Bi atoms 

with oxygen a stereochemical activity of the LEP can be assumed. 

 

 

Figure 1. Crystal structures of perovskite-type BiFeO3 in space group R3c (a) and of 

mullite-type Bi2Fe4O9 in space group Pbam (b). 

 

Zhang et al. [2] demonstrated that small crystallites of Bi2Fe4O9 exhibit higher 

photocatalytic activity. Therefore the synthesis and characterizations of this 

compound as nano-material up to ~30 nm is of special interest for improved 

photocatalytic efficiency. Bi2Fe4O9 was synthesized through a variety of synthesis 

methods including conventional solid state reaction [25], chemical co-precipitation [1], 

sol-gel [19] and EDTA routes [20], the glycerine method [13], and hydrothermal 

processes [26]. In this context, the polyol method [27, 28] provides a cost effective 

and easy method for the preparation of larger quantities of nano-crystalline samples. 

In the present study, a precursor was synthesized by the polyol method and 

characterized by Fourier transform infrared (FTIR) spectroscopy. The transformation 

of the perovskite-type (ABX3) to the mullite-type (A2B4X9) compound was studied via 

in-situ temperature-dependent powder X-ray diffraction (PXRD) and 57Fe Mössbauer 

spectroscopy.  
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2. Experimental  

2.1. Synthesis  

Samples were prepared by a polyol-mediated synthesis. In detail, 5 mmol 

Bi(NO3)3·5H2O (Sigma-Aldrich, ≥ 98%), 10 mmol Fe(NO3)3·9H2O (Sigma-Aldrich, ≥ 

98%) and 40 mmol NaOH (VWR Chemicals, 99.2%) were dissolved in 42 ml 

diethylene glycol (DEG) (AppliChem, 99%). The mixture was heated in a three-

necked flask under reflux using a metal bath at 423 K. After 2 hours 5 mmol stearic 

acid was added. After cooling down to ambient conditions, the solid product was 

separated by centrifugation and washed several times with acetone with intermediate 

centrifugation steps. For comparison samples were also synthesized hydrothermally 

at 473 K for 24 h in Teflon coated steel autoclaves. Two series of samples were 

produced. First the molar ratio of Bi(NO3)3·5H2O to Fe(NO3)3·9H2O was varied from 

1 : 2 to 2 : 2 in steps of 0.2 using always 10 mmol Fe(NO3)3·9H2O in 20 mL of a 

2 mol/L NaOH solution. Thereafter a molar 1 : 1 ratio was used increasing the NaOH 

concentration up to 12 mol/L in steps of 2 mol/L. After the heat treatment the samples 

where intensively washed with deionized water. This process was repeated three 

times before the samples were dried at 393 K for about 12 h.  

 

2.2. Spectroscopy  

The FTIR spectra were measured on a Bruker IFS 66v/S spectrometer using the 

standard KBr method (1 mg sample in 200 mg KBr) between 370 and 4000 cm–1. 

Background as well as sample spectra were obtained from 128 scans each with a 

spectral resolution of ca. 1 cm–1. The mode positions were determined by taking the 

point of the maximum intensity. The temperature-dependent 57Fe Mössbauer spectra 

were taken between 293 and 973 K in an atmosphere of flowing synthetic air using a 

standard transmission Mössbauer spectrometer (Halder) in the sinusoidal driving 

mode employing a 57Co/Rh γ-radiation source with a maximum activity of 1.91 GBq. 

The velocity scale was calibrated with an α-Fe absorber at room-temperature and the 

isomer shifts (IS) are stated relative to the center of this calibration. 

 

2.3. X-ray diffraction  

X-ray powder diffraction data were collected on a X’Pert MPD PRO diffraction system 

(PANalytical GmbH, Almelo, The Netherlands) equipped with Ni-filtered CuKα1,2 
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radiation (λα1,2 = 0.15406 nm, 0.15444 nm), a 0.25° divergence slit, a 0.5° antiscatter 

slit, a 0.04 rad soller slit in the primary beam and a X’Celerator detector system in the 

secondary beam in Bragg-Brentano geometry. Room-temperature data were 

measured between 5 and 85° 2θ with a step width of 0.0167° 2θ and a measurement 

time of 20 s per step. An HTK 1200N heating chamber (Anton Paar, Graz, Austria) 

was used for temperature-dependent measurements. Data were collected from 5 to 

100° 2θ with a step width of 0.0167° 2θ and a measurement time of 75 s per step. 

The temperature was increased stepwise from 300 to 1120 K in 20 K steps with an 

equilibration time of 5 minutes. The obtained data were refined using the Rietveld 

method (TOPAS V4.2, Bruker AXS, Karlsruhe, Germany). For the profile description 

the fundamental parameter approach was used, where the fundamental parameters 

were fitted against a LaB6 standard material.  

 

2.4. Scanning Electron Microscopy  

Scanning electron microscopy (SEM) was carried out on a JSM-6510 (JEOL GmbH, 

Munich, Germany) equipped with energy dispersive X-ray (EDX) analysis facilities 

and an XFlash Detector 410-M (Bruker AXS GmbH, Karlsruhe, Germany). To obtain 

quality data the samples were sputtered with a thin film of gold having a thickness of 

approx. 10 nm. EDX spectra were collected using an excitation voltage of 20 kV. 

 

3. Results and Discussion 

 3.1. Synthesis  

The synthesis of Bi2Fe4O9 using the hydrothermal method was described by Wang et 

al. [29]; the process strongly depends on the hydroxide concentration during the heat 

treatment at 373 K. The authors used a multi-step synthesis in which the metal 

nitrates were first dissolved in nitric acid, which was then brought, by adding slowly 

dropwise a KOH solution, to a pH = 8 leading to a precipitation of a brown solid. This 

solid was filtered, washed and transferred into a NaOH solution which was then 

treated hydrothermally. With a NaOH concentration of 2 mol/L they observed the 

formation of a perovskite phase. Note that the authors [29] took this as the beginning 

of the crystallization of Bi2Fe4O9, but from the reported diffraction pattern the 

formation of a perovskite is obvious. With increasing concentration the mullite-type 

phase was formed. To make the synthesis easier, we simply added the metal nitrates 
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to an aqueous NaOH solution and kept it at 473 K for 24 hours. For a first experiment 

a 2 mol/L NaOH solution with a Bi to Fe ratio of 1.2 : 2 was used to form the Bi2Fe4O9 

mullite-type phase. Rietveld refinements of XRPD data confirmed that the product 

consists of 67 wt% BiFeO3, 24 wt% Fe2O3 and 9 wt% Bi2Fe4O9. However, using a 

ratio of 1.4 : 2 as much as 93 wt% Bi2Fe4O9 was formed together with 7 wt% BiFeO3. 

A further increase of the molar ratio to 1.6 : 2 and 1.8 : 2 leads to pure well 

crystallized Bi2Fe4O9 phases as shown in Figure 2. The latter sample was used for 

further investigations. Increasing the cation ratio further to 1 : 1 and increasing the 

NaOH concentration at this ratio to 6, 9 or 12 mol/L leads to an increase of the 

average crystallite size, however, along with the formation of a few percent of the 

sillenite phase Bi25FeO39 [30]. 

 

 

Figure 2. Scanning electron micrographs of Bi2Fe4O9 synthesized by the 

hydrothermal method (a), by the polyol method (b) and the polyol sample obtained 

after the XRD heating measurements, showing Bi2Fe4O9 rods and needles (c & d). 

 

The synthesis of nanoscale metal oxides using the polyol method was described by 

several authors [28, 31, 32]. The metal precursors were heated in a high-boiling 
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alcohol such as most commonly used diethylene glycol (DEG) [31], ethylene glycol 

[22], triethylene glycol [33] and tetraethylene glycol [33] at elevated temperatures. 

Using this method various metal oxides can be produced showing particle sizes 

below ~100 nm [31, 33, 34]. However, to produce a crystalline sample a subsequent 

heat treatment is often required [19, 31, 35]. In this study, metal nitrates were chosen 

as metal precursors. They were dissolved in DEG in a three-necked flask followed by 

addition of 40 mmol NaOH. The temperature of the mixture was then ramped to the 

target reflux temperature of 423 K, concomitantly releasing NOx gases and forming a 

brown precipitate at 388 K. Notably, the reflux (423 K) started far below the boiling 

point of DEG (519 K) owing to the high content of hydrate water in the metal nitrates. 

The as-synthesized particles are spherical in shape and possess a size distribution 

ranging from 200 nm – 700 nm as shown by SEM micrograph analysis (Figure 2). X-

ray powder diffraction gave no clear Bragg reflections. However, well crystalline 

mullite-type Bi2Fe4O9 could be produced via a subsequent heat treatment. Whereas 

the hydrothermal synthesis nicely produced crystalline mullite-type material the 

structure of the polyol synthesized material could hardly be characterized due to the 

very small average crystallite size leading to very broad diffraction reflections as for 

an X-ray amorphous material.  

 

3.1. Spectroscopy  

Infrared spectroscopy  

The infrared spectrum of the hydrothermally synthesized sample corresponds to that 

reported earlier for Bi2Fe4O9 [36], whereas numerous different absorption bands are 

visible in the FTIR spectrum of the Bi2Fe4O9 nano-material synthesized by the polyol 

method as shown in Figure 3. Most of them are resulting from the (mainly organic) 

compounds used in the synthesis. The broad absorption bands at 3200 and  

1650 cm-1 can be assigned to water in the sample [37]. The NO3
- anions are 

evidenced by the sharp absorption feature at 1385 cm-1. The C-H stretching bands of 

stearic acid are represented by modes between 2850 and 2920 cm-1 [38], whereas 

the respective carboxyl groups could be identified by their modes at 1670 cm-1. 

Remaining DEG (after washing the samples with acetone) leads to the observation of 

C-O-C, C-OH and C-O vibrations with peak maxima at 1125(3), 1060(3) and 

900(3) cm-1, respectively [39]. Octahedral Fe-O stretching vibrations in bismuth 

ferrates are located in the region between 445 and 548 cm-1 (BiFeO3 [40]) and 
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between 437 and 471 cm-1 (Bi2Fe4O9 [36]). The appearance of absorption peaks 

around 500 cm-1 of the Bi2Fe4O9 nano-material could therefore be assigned to the 

Fe-O stretching of FeO6 octahedra. The assignments of the band positions of the 

vibrational modes of the hydrothermally synthesized mullite-type phase (Figure 3) 

agree well with those of Voll et al. [36]. In the spectrum of this sample an additional 

strong mode with the maximum intensity at 812(1) cm-1 belongs to the Fe-O-Fe 

stretching mode of the Fe2O7 double tetrahedral unit interconnecting the octahedral 

chains (as calculated for the isotypic aluminum compound [41]), which is absent in 

the polyol Bi2Fe4O9 nano-material material. 

 

Figure 3. Infrared spectra of Bi2Fe4O9 synthesized by the hydrothermal method (a) 

and precursor formed by the polyol method (b), diethylene glycol (DEG) (c), 

Bi(NO3)3·5H2O (d), and stearic acid (e). 

 

57Fe Mössbauer spectroscopy  

To get more insight into the coordination of the iron atoms in the synthesized 

samples, 57Fe Mössbauer data were collected at different temperatures. The fit of the 

room-temperature 57Fe Mössbauer spectrum of the polyol-synthesized sample (only 

polyol from now on) reveals the existence of two Fe3+ species in two different 

octahedrally coordinated sites, Table 1. The majority component shows exactly the 

same isomer shift (IS) as the octahedrally coordinated Fe-site in Bi2Fe4O9 [15]; thus 

identical coordination and similar bond lengths are expected. The minority 
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component shows a slightly higher IS, indicating a lower electron charge density at 

the nucleus, pointing to slightly larger bond lengths. The quadrupole splitting (QS) of 

the two octahedrally coordinated Fe-sites in the polyol material is significantly larger 

than that of the octahedrally coordinated site in Bi2Fe4O9 [15]. In this context, it is 

interesting to compare the present results with those of nano-crystalline BiFeO3. Park 

et al. [4] have studied the Mössbauer spectra of BiFeO3 perovskites with crystallite 

sizes between <14 nm and about 100 nm. The present Mössbauer spectroscopic 

parameters exhibit some similarity with those of the sample with <14 nm (Table 1), 

for example in respect to the relative signal area, indicating a similar distribution of 

iron over two inequivalent sites in the structure. As seen, also quadrupolar 

interactions take similarly large values indicating significant coordinative distortion in 

both materials. However, IS values of the nano-perovskite are significantly lower, 

indicating a higher electron charge density at the nucleus than in the polyol material. 

The large room-temperature linewidth (Γ = 0.4 mm s-1, Table 1) of the polyol material 

provides evidence of some kind of disorder around the two Fe-occupied sites. In 

conclusion, the polyol material appears to be of disordered nature and to possess an 

unknown local structure with two non-equivalent octahedral sites for Fe3+ occurring in 

an approximate 1 : 3 ratio. According to these signal intensities the material could, for 

instance, represent a (Bi2Fe)Fe3O9 perovskite. 

 

Table 1: Hyperfine parameters of room-temperature 57Fe Mössbauer spectra of 

Bi2Fe4O9 powder prepared by the polyol method, as compared to Bi2Fe4O9 

synthesized by the glycerine method [15] and to bulk and nano BiFeO3 [4]. 

Sample  
IS 1 /  
mm s-1  

QS 1 /  
mm s-1  

A 1 /  
%  

IS 2 / 
mm s-1  

QS 2 /  
mm s-1  

A 2 /  
%  

Γ /  
mm s-1  

polyol  0.38(1)  1.09(1)  27(1)  0.36(1)  0.70(1)  73(1)  0.40(1)  
hydrothermal  0.24(1)  0.95(1)  29(1)  0.36(1)  0.38(1)  29(1)  0.25(1)  
Bi2Fe4O9 [15]  0.23(1)  0.95(1)  50(1)  0.35(1)  0.37(1)  50(1)  0.22(1)  
BiFeO3 [4]  
bulk  

0.39(3)  -0.10(5)*  47(2)  0.38(3)  0.34(5)*  53(2)  0.35(2)  

BiFeO3 [4]  
<14 nm  

0.31(3)  1.29(5)  25(2)  0.33(3)  0.79(5)  73(2)  0.23(2)  

*Data from the magnetic bulk material represent the quadrupolar perturbation parameter ε = 
QS·(3cos2 θ – 1)/2, where θ is the angle between the direction of the principal component of 
the electric field gradient and the direction of the local magnetic field. 

 

Temperature-dependent Mössbauer spectra of the hydrothermal and polyol samples 

are shown in Figure 4. Whereas the thermal evolution of the 57Fe hyperfine 
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parameters in Bi2Fe4O9 prepared by the hydrothermal method is exactly the same as 

reported for bulk Bi2Fe4O9 [15], the parameters for the polyol sample show a different 

behavior. During heating the spectral features change between 573 and 773 K, 

showing evidence for structural changes leading to the appearance of two differently 

coordinated iron sites. The two sites of octahedral coordination of Fe3+ in 

(Bi2Fe)Fe3O9 transform into one tetrahedral and one octahedral site. Finally, at 973 K 

the spectrum is identical to that of Bi2Fe4O9 prepared by the hydrothermal method. 

The temperature dependence of isomer shifts (IS) and quadrupole splittings (QS) of 

Bi2Fe4O9 prepared by the polyol method is presented in Figure 5. 

 

Figure 4. Temperature-dependent 57Fe Mössbauer spectra of Bi2Fe4O9 powder 

materials prepared by the polyol (right) and hydrothermal method (left) in flowing 

synthetic air. The subspectrum shown in red is attributed to a small admixture of 

Fe2O3. 
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Figure 5: Temperature-dependent isomer shifts (IS) and quadrupole splittings (QS) 

of Bi2Fe4O9 prepared by the hydrothermal (left) and polyol method (right). 

 

3.2. Temperature-dependent X-ray powder diffraction  

The in-situ heating XRPD experiment of the as-synthesized polyol material showed a 

transformation from an X-ray amorphous powder into a rhombohedral perovskite-type 

structure at 680 K followed by a second transformation into Bi2Fe4O9 starting from 

800 K on as shown in Figure 6. Above 920 K the perovskite-structure cannot be 

detected anymore. The sharp reflections which appear at diffraction angles greater 

than 57° 2θ above 620 K are attributed to the sample holder due to mechanical 

shrinking of the powder sample.  
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Figure 6: Temperature-dependent diffraction patterns of the polyol material showing 

the transformation from as-synthesized amorphous powder into rhombohedral 

BiFeO3 and orthorhombic Bi2Fe4O9 (different scale range above 900 K for better 

visibility). 

 

Rietveld refinements of the temperature-dependent data of the polyol material were 

carried out using the structure model of Moreau et al. [42] for BiFeO3 with R3c 

symmetry and lattice parameters of a = 558.76(3) pm and c = 1386.7(1) pm in the 

hexagonal setting. Taking the results of the 57Fe Mössbauer study into account, Fe3+ 

and Bi3+ were both refined on the same 6a position (0, 0, 0(fixed)) whereas the 

second 6a position (0, 0, 0.2215(18) at 780 K) was taken as solely occupied by iron 

ions. The oxygen atoms were found on the 18b position (0.421(11), 0.011(8), 

0.952(5) at 780 K). With increasing temperature the (Bi1-xFex)FeO3 crystal structure 

was observed to be rapidly changing as depicted in Figure 7. The lattice parameter a 

increases from 561.4(4) pm (at 740 K) to 562.0(2) pm at 780 K and then decreases 

to 561.62(6) pm at 860 K as shown in Figure 8. The lattice parameter c of (Bi1-

xFex)FeO3 is significantly smaller than the one reported for BiFeO3 [42], supporting 

the site co-shared by Fe3+ and Bi3+. Accordingly, the shrinking of the lattice parameter 

can be explained in terms of the smaller ionic radius of Fe3+ [43]. Starting from 740 K, 

the lattice parameter c increases linearly with temperature from 1375(2) pm and 

approaches the value reported for BiFeO3 [42] at about 800 K (c = 1383(1) pm). 

Notably, this is the temperature at which the lattice parameter a as well as the strain, 

as shown in Figure 9, decrease rapidly. The unit cell volume increases linearly with 
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temperature. At 860 K, reflections appear (marked with crosses in Figure 7) that can 

be attributed to Fe-bearing sillenite Bi25FeO39 in space group I23 [30]. Above 920 K, 

neither reflections of sillenite nor of the perovskite structure can be detected. 

 

Figure 7. left panel: Temperature-dependent XRPD patterns from 680 to 920 K in 20 

K steps showing the evolution of (Bi1-xFex)FeO3 and Bi2Fe4O9 phases. Some intense 

reflections of the BiFeO3 (104) (110) and Bi2Fe4O9 phase (121) (211) are indicated by 

diamonds and stars, respectively. Reflections marked by a cross can be attributed to 

Bi25FeO39. Right panel: Magnified feature of a part of the left panel, showing the 

appearance and disappearance of reflections marked by the cross. 

 

Substitution of Fe3+ with an effective ionic radius of 64.5 pm [43] on the Bi position 

causes a high strain in the unit cell due to the much larger ionic radius of Bi3+ 103 pm 

[43]. The microstrain at 740 K could be refined to as much as 0.41(1)% giving further 

evidence that Bi3+ is partially substituted by Fe3+. The micro-strain is reduced to 

about 0.09(1)% at 860 K. The Rietveld refinement results in an occupancy of 69(2)% 

for Bi3+ at 740 K, the rest is occupied by Fe3+ according to the constrained 

occupancy parameter refinements assuming a fully occupied position. This value fits 

well to the Mössbauer spectroscopic results, which have suggested 1/3 of the 

occupancy probability. With increasing temperature the amount of Bi3+ on the position 

is increasing (Figure 9). 
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Figure 8: Temperature-dependent lattice parameter a (left), c (middle) and cell 

volume (right) of (Bi1-xFex)FeO3. 

 

Figure 9: Temperature-dependent strain (left) and occupancy of Bi3+ (right) of the 

(Bi1-xFex)FeO3 phase. 

 

After completion of the temperature-dependent XRD experiments the samples were 

investigated by scanning electron microscopy. Needle-like rods and plates were 

identified as shown in the SEM micrograph of Figure 2. It is assumed that the long 

chains of the stearic acid present in the precursor caused the pronounced 

unidirectional growth. The sample contains larger crystals as well as very thin needle-

like plates (Figure 2). The length of the thin needles ranges from 5 – 10 μm, the width 

takes values of about 250 nm. Due to their transparency in SEM micrographs these 

needles are assumed to be only a few nm thick. EDX analyses revealed a molar ratio 

of Bi : Fe of 1 : 2.1(2) as expected for Bi2Fe4O9. Nevertheless, a remaining content of 

3.3(3) mol% Na was found, but we assume, based on the substitution experience 

with this structure-type (e.g. [44]), that sodium is not incorporated in the mullite-type 

structure. 
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4. Conclusion  

 
Bi2Fe4O9 was synthesized by a polyol-mediated synthesis. It is assumed that the 

growth along the chains of stearic acid present in the precursor material leads to 

needle-like rods and plates during heating experiments. Because smaller dimensions 

of Bi2Fe4O9 crystals show higher photocatalytically activity [2], such few nm thick 

plates would be useful as photocatalytic active material. The comparative 

temperature-dependent 57Fe Mössbauer spectroscopic study demonstrated that the 

sample synthesized by the polyol method is of different nature than the sample 

synthesized by the hydrothermal route. During temperature-dependent studies, the 

polyol material gradually approached the features of the hydrothermal sample. In 

addition, the transformation of the as-synthesized amorphous polyol sample into 

rhombohedral (Bi1-xFex)FeO3 perovskite and subsequent transformation into the 

orthorhombic Bi2Fe4O9 mullite-type structure was confirmed by temperature-

dependent X-ray diffraction data analysis showing that the chemical composition of 

the educts with respect to the metal atoms is conserved during the double 

reconstructive phase transition process. Mössbauer spectroscopic results as well as 

Rietveld refinements of temperature-dependent powder X-ray diffraction data suggest 

that about one third of the octahedral Bi3+ sites in the (Bi1-xFex)FeO3 perovskite is 

substituted by Fe3+ leading to high strain in the system and a smaller lattice 

parameter c. Moreover, temperature-dependent Mössbauer spectroscopic and X-ray 

diffraction investigations have shown that nano-crystalline Bi2Fe4O9 (Bi2O3*2Fe2O3) 

transforms via the (Bi2Fe)Fe3O9 perovskite ((Bi1-xFex)FeO3) to micro-crystalline 

mullite-type Bi2Fe4O9, which clearly shows that a nano-crystalline product has to be 

proven for structural identity with its micro-crystalline appearance before stating the 

structural relation. 
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Chapter 4 

Temperature-dependent structural and spectroscopic studies of 

(Bi1-xFex)FeO3 
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Abstract 

We report on temperature-dependent structural and spectroscopic features of (Bi1-

xFex)FeO3 perovskite for x = 0.15 and 0.25. Samples were synthesized by heating 

quantum crystalline precursors obtained by polyol method. Crystal structures of each 

composition were obtained from in-house X-ray, synchrotron X-ray and time-of-flight 

neutron powder diffraction data Rietveld refinements. Partial replacement of the Bi-

site by Fe3+ cation significantly changes the crystal-physico-chemical properties such 

as thermal expansion, polyhedral distortion, Debye temperature, vibrational and 

magnetic properties. Whereas BiFeO3 is a multiferroic, both Bi0.85Fe0.15FeO3 and 

Bi0.75Fe0.25FeO3 are found to be superparamagnetic as observed by temperature-

dependent Mössbauer and SQUID measurements. Lattice thermal expansion was 

modeled using the Debye-Einstein-Anharmonicity approach. Debye temperatures 

obtained from mean-squared atomic displacement parameter and lattice thermal 

expansion are compared. Temperature dependency of selective Raman modes is 

also analyzed. 
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1. Introduction 

Perovskite-type bismuth ferrite BiFeO3 received much attention due to its unique 

multiferroic properties and promising applications.1,2 It is concomitantly 

antiferromagnetic and ferroelectric at room temperature2 with a Néel temperature of 

~640 K and Curie temperature of ~1100 K, respectively.3 The magnetic structure is of 

G-type and possesses a canted spiral spin arrangement with a propagation direction 

of <110> (hexagonal setting) with a periodic length of 62 nm.4 This cycloidal 

magnetic order does not show net magnetization in the bulk.5 However, as much as a 

net magnetization of ~1.5 A m2 kg-1 is observed in the nanoparticles when the spiral 

spin is suppressed.6 The centrosymmetric distortion of the Bi3+ and Fe3+ cations 

along the hexagonal c-axis, caused by the stereochemical activity of the Bi3+ 6s2 lone 

electron pair7 (LEP), produces a spontaneous polarization in this direction8, as shown 

in Figure 1.  

 

 

 

Figure 1. Crystal structure of perovskite-type BiFeO3 in the space group R3c with a 

polarization along the c-direction when using the hexagonal setting. 

 

The crystal structure is described in the rhombohedral R3c space group with 

hexagonal lattice parameter a = 558.76(3) pm and c = 1386.7(1) pm.9 The FeO6 

octahedra are tilted towards each other along the c-axis, and the Bi3+ cations are 

located eccentrically in their cavities. The multiferroic properties of BiFeO3 have been 

widely studied in the form of nanoparticles,10 single crystals,11 polycrystals12 and thin 

films13. Despite intense studies on BiFeO3, some of its physical properties are not 

fully understood, and debates are ongoing on some contradictory results.1,6,10 Catalan 

and Scott (2009) pointed out that further systematic studies on the phase diagram, 

crystal chemistry, structure and dynamics are of crucial importance for an in-depth 

exploration.1 Jia et al. (2014) evidently demonstrated substantial atomic- to nano-
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scale disordering even in single crystals.11 They supposed a sluggish phase 

evolutionary behavior of BiFeO3 that makes it notoriously difficult in producing fully 

equilibrated single crystals.11 Indeed, during transformation of an X-ray amorphous 

powder into a polycrystalline Bi2Fe4O9 an intermediate (Bi1-xFex)FeO3 phase was 

found supported by 57Fe Mössbauer and temperature-dependent X-ray diffraction.14 

In this intermediate structure, the Bi3+ site is partially shared by Fe3+, which 

transformed into the BiFeO3 perovskite phase upon increasing temperature.14 In the 

present study, a precursor was synthesized by a sol-gel route using sorbitol as a 

complexing agent. By subsequent heating, samples with different Fe-content on the 

Bi position were reproducibly produced. They were characterized by X-ray powder 

diffraction (XRD), temperature-dependent time-of-flight neutron powder diffraction 

(NPD), temperature-dependent Raman and 57Fe Mössbauer spectroscopy. The 

thermal expansion of the metric parameters as well as the atomic displacement 

parameters (ADP’s) were modelled using a microscopic approach.15-19 

 

2. Experimental 

2.1. Synthesis 

The stoichiometric BiFeO3 sample was synthesized using the glycerin method20 and 

a molar ratio of Bi : Fe = 1 : 1 with an excess of 5% of Bi. 5.25 mmol Bi(NO3)3·5H2O 

(Sigma-Aldrich, ≥ 98%), 5 mmol Fe(NO3)3·9H2O (Sigma-Aldrich, ≥ 98%) and 10% 

glycerin of the total amount of nitrates were heated in a beaker using a glycerin bath 

to 353 K until NOx was released and a dried gel was obtained. The mixture was then 

heated in a furnace at 523 K for 2 hours, ground in a mortar, afterwards heated at 

773 K for 6 hours. 

The precursor of the substituted ((Bi1-xFex)FeO3) samples was synthesized by a sol-

gel route using sorbitol as a complexing agent. As much as 11 mmol D-Sorbitol was 

dissolved in 38 mL deionized water under magnetic stirring. Then 5 mmol 

Bi(NO3)3·5H2O (Sigma-Aldrich, ≥ 98%), 2 mL 4 M NaOH (VWR Chemicals, 99.2%) 

and 10 mmol Fe(NO3)3·9H2O (Sigma-Aldrich, ≥ 98%) were added. The mixture was 

heated in a beaker using a glycerin bath at 353 K until a solid foam was obtained. It 

was then heated at 523 K for 2 hours, ground in a mortar and heated again at 873 K 

for different periods (10, 20, 30 and 40 minutes).  
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2.2. Diffraction 

X-ray 

X-ray powder diffraction data were collected on a X’Pert MPD PRO diffractometer 

(PANalytical GmbH, Almelo, The Netherlands) equipped with Ni-filtered CuKα1,2 

radiation (Kα1 = 154.05929(5) pm, Kα2 = 154.4414(2) pm) and a X’Celerator detector 

system in Bragg-Brentano geometry. Room-temperature scans were performed from 

5 to 85° 2θ with a step width of 0.0167° 2θ and a measurement time of 142 s per 

step. The measurements of samples (Bi0.75Fe0.25)FeO3 and (Bi0.85Fe0.15)FeO3 were 

divided into two parts. Dataset-1 was measured between 5° and 85° 2θ with a step 

width of 0.0167° 2θ and a measurement time of 142 s per step, and dataset-2 

between 80° and 130° 2θ with a step width of 0.0167° 2θ and a measurement time of 

284 s per step. 

At ambient condition, X-ray powder diffraction patterns were additionally collected on 

the high-resolution powder diffractometer at beamline 11-BM at the Advanced Photon 

Source (APS), Argonne National Laboratory, USA. The wavelength was calibrated to 

51.7041(1) pm and the diffraction patterns were recorded from 0.5° to 50° 2θ with a 

step width of 0.001° 2θ, and a measurement time of 0.1 s per step. The obtained 

data were refined using the Rietveld method (DIFFRAC PLUS TOPAS V4.2, Bruker 

AXS, Karlsruhe, Germany). For profile fitting the fundamental parameter approach 

was used. The fundamental parameters for the in-house data were fitted against a 

LaB6 standard material. The occupancy between Fe3+ and Bi3+ were refined on the 

6a position. The ADPs and the occupancy parameters were alternately refined until 

the satisfactory convergence appeared as suggested by Massa21.  

 

Neutron time-of-flight  

NPD data were collected on Powgen high-resolution powder diffractometer at the 

Spallation Neutron Source (SNS), Oak Ridge National Laboratory (ORNL), USA. 

Temperature-dependent data were measured using the Cryo-furnace Janis between 

10 K and 650 K at 10 K steps and a centre wavelength of about 133(1) pm for about 

half an hour at each temperature. Rietveld refinements were performed using the 

GSAS22 program with EXPGUI interface.23  
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2.3. Spectroscopy 

Raman 

Temperature-dependent Raman spectra were measured on pressed pellets 

produced from the powder samples. A Horiba LabRam Aramis spectrometer 

equipped with a 785 nm emission Laser, a slit of 100 μm, a hole of 1000 μm and an 

exposure time of 10 s with 30 accumulations was used. Data were collected between 

100 cm−1 and 1000 cm−1. For the low-temperature measurements a Linkam cooling 

stage (THMS600) attached to a pump (LNP95 Cooling Pump) providing a continuous 

flow of liquid nitrogen were used. The high-temperature spectra were collected using 

a Linkam heating stage (TS1500). Prior to the data collection the sample was 

equilibrated for 7 min at the desired temperature. The spectra were fitted with single 

peaks using the above-mentioned Rietveld software TOPAS V4.2. 

 

Mössbauer  

57Fe Mössbauer absorption spectra were collected using a standard spectrometer 

with sinusoidal velocity sweep. The 20 mCi 57Co in Rhodium γ-radiation source was 

kept at room temperature. Absorbers of the two powder specimens with thicknesses 

corresponding to about 15 mg·cm-2 of 57Fe were included in polyethylene containers. 

The absorber temperatures were varied using a He-flow cryostat (CRYOVAC®). For 

data analysis, we used MossWinn 4.0 software.24  

 

2.4 Magnetic measurements  

Temperature-dependent magnetic susceptibility measurements were carried out with 

a Quantum-Design MPMS-XL-5 SQUID magnetometer equipped with a 5 T magnet 

in the range from 2 to 300 K at a magnetic field of 0.1 T. The isothermal 

magnetization was measured at 300 K. The polycrystalline samples were put into a 

gel bucket covered with a few drops of low viscosity perfluoropolyether based inert oil 

(Fomblin YL VAC 25/6) and fixed to a nonmagnetic sample holder. Each raw data of 

magnetic moment was background corrected for the respective diamagnetic 

contribution of the gel bucket and the inert oil.  
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3. Results and discussion 

3.1. X-Ray powder diffraction 

The in-house X-ray powder diffraction patterns of the samples produced at 873 K 

using different crystallization times show only reflections of the perovskite-type phase 

as given in Figure 2. However, some very weakly intense but sharp reflections can be 

seen from the synchrotron data (Figure 2). The sources of these reflections were not 

identified so far, and the frequently occurring impurities in the Bi-Fe-O system such 

as Bi2Fe4O9
25, Bi25FeO40

25, Bi24Fe2O39
25, α- Bi2O3 or β-Bi2O3

26
, or α-Fe2O3

27 do not 

belong to these reflections. 

 

 

Figure 2. X-ray diffraction patterns of (Bi1-xFex)FeO3 samples produced at 873 K for 

0, 10, 20, 30 and 40 min, measured in-house (left panel) and at APS, Argonne, USA 

(right panel) facilities. Unindexed reflections appeared in the synchrotron X-ray 

patterns are marked by arrows. 

 

According to earlier studies14 Rietveld refinements on this data were performed by 

concomitantly refining the Bi3+ and Fe3+ content on the 6a (0,0,0) site. It was found 

that the Fe content on this site decreases with crystallization time, as shown in Figure 

3. 
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Figure 3. Structural parameters derived from the in-house X-ray data Rietveld 

refinements on the samples produced at 873 K for 0, 10, 20, 30 and 40 min, 

respectively. 

 

It is reasonable to assume that with increasing crystallization time an exchange 

occurs between Bi in the precursor-matrix (quantum crystalline/X-ray amorphous) 

and the Fe on the 6a (0,0,0) site, leading to successive decrease of the Fe-content 

on this site, followed by formation of stoichiometric BiFeO3. The background (broad 

hump centered at ~31° 2θ (CuKα)) decreases with increasing crystallization time 

(Figure 2). As a consequence, the lattice parameter a and the micro-strain decrease 

from 559.4(1) pm to 558.26(3) pm, and from 0.22(2)% to 0.14(1)%, respectively. 

Opposite, the average crystallite size increases from 13.8(5) nm to 35.3(7) nm 

(Figure 3). The samples (Bi0.75Fe0.25)FeO3 and (Bi0.85Fe0.15)FeO3 of this series were 

further investigated by other techniques (see below); their refined structural data are 

given in Table 1. 

 

  

a) b) c) 
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Table 1. Crystal structural parameters of BiFeO3
9, (Bi0.75Fe0.25)FeO3 and 

(Bi0.85Fe0.15)FeO3. 

Ideal model9 

Atom Wyckoff position x y z Occupancy B /pm2 x104 

Bi 6a 0 0 0 1  

Fe 6a 0 0 0.25 1  

O 18b 0.5 0 0 1  

BiFeO39 

Bi 6a 0 0 0a 1 0.5 

Fe 6a 0 0 0.2212(15) 1 0.8 

O 18b 0.443(2) 0.012(4) 0.9543(20) 1 - 

(Bi0.85Fe0.15)FeO3* 

Bi/Fe 6a 0 0 0 a 0.85(1)/0.15(1) 
0.143(6) 
1.3(2) 

Fe(2) 6a 
0 0 0.22049(7) 

0.2196(4) 
1 0.13(2) 

0.32(7) 

O 18b 
0.4602(9) 
0.453(1) 

0.0348(7) 
0.027(1) 

0.9470(3) 
0.9507(6) 

1 0.8(1) 
1.11(8) 

(Bi0.75Fe0.25)FeO3* 

Bi/Fe 6a 0 0 0 a 0.75(1)/0.25(1)  
0.183(9) 
1.7(2) 

Fe(2) 6a 
0 0 0.2194(1) 

0.2193(5) 
1 0.183(9) 

0.63(8) 

O 18b 
0.459(1) 
0.456(2) 

0.0390(9) 
0.033(2) 

0.9421(4) 
0.9503(8) 

1 0.4(1) 
1.6(2) 

*values in normal and italic are obtained by synchrotron X-ray and neutron time-of-
flight powder data Rietveld refinement, respectively. a Positional parameter were fixed 
during the refinements 

Since Bi and Fe share the 6a site (0,0,0; z fixed), even though their electronic 

configuration is significantly different (ZFe = 26; ZBi = 83), their displacement 

parameter was refined with constraint (Table 1). Theoretical X-ray patterns (using 

identical metric parameters) produced by POWDER CELL28 showed significant 

difference between, for instance, BiFeO3 and (Bi0.85Fe0.15)FeO3, as can be seen from 

the intensity of the (012) reflection. From a visual inspection one can draw a 

comparative agreement between the observed and the simulated patterns, as shown 

in Figure 1S (Supplementary Information). From synchrotron X-ray data Rietveld 

refinements of (Bi0.85Fe0.15)FeO3, of which the plot is shown in Figure 2S 

(Supplementary information), as much as ~5% mullite-type Bi2Fe4O9 was identified in 

the sample. Some (Bi0.85Fe0.15)FeO3 reflections show a strong anisotropy, especially 

the high intense (110) reflection. An even more pronounced anisotropic feature can 

be seen in the (202) reflection, as shown in the magnification in the interested region 

(Figure 2S). Consequently, the average crystallite size was estimated to be 

45.3(5) nm from the diffraction pattern excluding (110), (202), (012) and (030) and 
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almost doubled (75(1) nm) using only the (110) reflection. Due to such anisotropies, 

using separate reflection profiles for the (110), (202), (012) and (030) reflections 

provided better convergence during the structure refinements. Of particular notes, the 

magnetic spiral spin propagates in the <110> direction, and consequently the spins 

rotate in the [110] plane4.  

 

3.2. Neutron powder diffraction 

Structural features of the stoichiometric BiFeO3
9 and the ideal perovskite model9 are 

given in Table 1. The positional parameters of (Bi0.75Fe0.25)FeO3 and 

(Bi0.85Fe0.15)FeO3 together with the isotropic atomic displacement parameters were 

followed by temperature-dependent NPD as shown in Figure 4. 

 

 

Figure 4. Temperature-dependent changes of selective atomic coordinates obtained 

from neutron time-of-flight powder diffraction data Rietveld refinements. 

 
With increasing Fe on the Bi-site (6a: 0,0,0: z fixed), the Fe(2) (6a: 0,0,z) gradually 

shifts away from the hypothetical centroid. That is, Fe(2) shifts about 33 pm and 

38 pm from the centroid for (Bi0.85Fe0.15)FeO3 and (Bi0.75Fe0.25)FeO3, respectively. 

This could be explained by an increased distortion of the BiO6 coordination due to 

smaller ionic radius of Fe3+ (64.5 pm) than that of Bi3+ (103 pm).29 Palewicz et al. 
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(2009) studied the evolution of structural parameters of stoichiometric BiFeO3 by 

neutron powder diffraction below30 and above31 room temperature, which increase 

monotonically with respect to temperature, except a decrease of y-coordinate of the 

O-site.30 The atomic coordinates change with increasing temperature (Fig. 4). At 

about 240 K a deep minimum has been observed for the change of the z-coordinates 

of the Fe(2)- and O-site in (Bi0.75Fe0.25)FeO3. This minimum has been shifted to 260 K 

for (Bi0.85Fe0.15)FeO3. The x- and y-coordinates of the O-sites of both phases slowly 

increase up to ~ 450 K followed by a sharp slope (which is at a slightly higher 

temperature for (Bi0.75Fe0.25)FeO3, opposite to the behaviour of the deep minimum 

temperatures). At this temperature, a sudden frequency drop of the A1-1 mode was 

observed in the Raman spectra (see later). Moreover, a pronounced change in the 

slope for the ADP’s of the Bi/Fe- and Fe-sites was observed (see later). The changes 

of bond lengths and bond angles are given in Figure 5. The long Bi/Fe-Fe distance 

(Figure 5a) shows a maximum at about ~ 250 K (Figure 5a), which could be 

correlated to the deep minimum observed for the change of the z-coordinates of the 

Fe(2)- and O-sites. 

 

 

Figure 5. Coordination and connectivity in (Bi1-xFex)FeO3 (top) and the changes of 

selective structural parameters with temperature (bottom). 
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The short Bi/Fe-Fe distance (Figure 5b) also shows a point of inflection at 250 K. A 

maximum in the long Bi-Fe distance was also observed by Palewicz et al. (2007)31 

but only at 550 K. The Fe(2)-O bond length of the fully occupied Fe-position (Figure 

5e and 5f) remains nearly unchanged until ~ 400 K for (Bi0.85Fe0.15)FeO3 and ~ 450 K 

for (Bi0.75Fe0.25)FeO3. Afterward, the long Fe-O bond length decreases while the short 

Fe-O bond length increases simultaneously. In general, these bond lengths differ 

from reported values for BiFeO3 (211.41(17) pm, 194.70(17) pm at 298 K)30 in a way 

that the normally huge difference of 16.7(4) pm is decreased to 9(1) pm for 

(Bi0.85Fe0.15)FeO3 (207.87(78) pm, 198.43(67) pm at 300 K) and even more 

remarkable to 5(2) pm (206(1) pm, 201(09) pm at 300 K) for (Bi0.75Fe0.25)FeO3 (Figure 

5). 

While the difference in the two bond lengths of the Fe(2)O6 octahedra decreases with 

a higher Fe-content on the Bi-position it increases in the (Bi/Fe)O6 octahedra. The 

long and short Bi/Fe-O distances are determined to be 255.5(7) pm and 

220.5(10) pm for (Bi0.75Fe0.25)FeO3 and 254.84(79) pm and 222.68(71) for 

(Bi0.85Fe0.15)FeO3 (Figure 5), respectively. Compared to calculated values of the 

model structure of BiFeO3
9
 (252.42(171) pm, 231.42(231) pm) the difference between 

long and short Bi/Fe-O distance increases from 21(4) pm, 32(1) pm and 35(2) pm for 

samples with a Fe-content of 0%, 15% and 25% on the Bi-position, respectively. With 

increasing temperature, the long Bi/Fe-O bond length linearly increases with a 

steeper slope from 550 K on. On the contrary, the short Bi/Fe-O distance remains 

unchanged with a weak rise from ~250 K to ~550 K followed by a negative slope 

afterwards. The Fe-O-Fe angle, as depicted in Figure 5, slowly increases for both 

samples (154.0(6)° to 154.6(7)° for (Bi0.75Fe0.25)FeO3; 154.6(4)° to 155.7(5)° for 

(Bi0.85Fe0.15)FeO3) from 10 K to 640 K. Palewicz et al. (2007 and 2010) reported an 

increase of this angle from 154.75(8)30 to 156.0(1)31 from 5 K to 643 K for 

stoichiometric BiFeO3. The internal O-Fe-O angles slightly decrease with 

temperature. 

The Wang-Liebau eccentricity (WLE) parameter32 was calculated for the (Bi/Fe)O6 

octahedra for the samples as well as for the stoichiometric BiFeO3
31; their 

temperature dependency is shown in Figure 3S (Supplementary information). The 

WLE of the (Bi/Fe)O6 octahedra increases with the Fe content on the Bi-position from 

2.34•10-5 over 2.96•10-5 to 3.37•10-5 for a Fe occupancy of 0%, 15% and 25%, 

respectively. Nevertheless, it is unlikely that the stereochemical activity of lone 
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electron pair (LEP) of the Bi3+ cation increases while the Fe content at this site 

increases. In this case, the octahedral distortion mainly increases due to two different 

sized ions at a given crystallographic site as shown in Figure 6, where octahedral 

mean quadratic elongation (λ)33 was compared between the (Bi/Fe)O6 and Fe(2)O6 

octahedra. As such, a pronounced distortion of the Bi/FeO6 octahedra can be seen 

for the Bi/Fe sites, and the points of inflection with respect to temperature are 

comparable to those of interatomic bond distances and angles (Figure 5). 

 

 

Figure 6. Temperature-dependent octahedral mean quadratic elongation (λ) of the 

(Bi/Fe)O6 and Fe(2)O6 octahedra of (Bi1-xFex)FeO3. 

 

The temperature-dependent ADPs of both phases are shown in Figure 7 along with 

the fitting model based on the Debye approach suggested by Lonsdale34, and the 

fitting parameters are given in Table 2. 
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Figure 7. Temperature-dependent isotropic mean-squared atomic displacement 

parameters (ADPs) of the atoms along with the respective Debye model fit. The 

circle, square and diamond refer to BiFeO3, (Bi0.85Fe0.15)FeO3 and (Bi0.75Fe0.25)FeO3, 

respectively. 

 

Table 2. Fitting parameters of the mean-squared isotropic displacement parameters 

(ADPs). 

 Bi0.85Fe0.15FeO3 Bi0.75Fe0.25FeO3 

Atom θDi /K Bsta /pm2 θDi /K Bsta /pm2 

Bi/Fe 161(3) 71(7) 184(5) 139(1) 

Fe 426(10) 4.5(1) 455(9) 40(2) 

O 647(11) 63(7) 854(23) 160(6) 

Mass weighted 293(10) - 356(13) - 

Bsta refers to static disorder of the respective atom. The 
estimated uncertainty is given in the parentheses.  

The ADPs at any given temperature follow the order O > Fe > Bi, which agree well 

with most of common findings.30,31 However, the ADPs as well as the static disorder 

increase with increasing Fe-content in the perovskite. Static disorder calculated from 

the 0 K intercept of the linear extrapolation of the ADP data down to the Debye 

temperature agrees well to the values calculated from the direct Debye-fit of the 

temperature-dependent ADPs which monotonically increases over the whole 

temperature range. Since the characteristic Debye temperature represents the 

binding forces between the lattice sites, the consequent change of the atomic Debye 
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temperature (θDi) upon partial replacement of bismuth by iron is clearly observed 

(Table 2). Whereas the Debye temperatures of Bi/Fe and Fe, for both phases, lie 

close to each other, the Debye temperature of oxygen atom significantly differs. That 

is, for instance, the oxygen in (Bi0.75Fe0.25)FeO3 locates in a stiffer coordination. Due 

to this dominant role of oxygen the mass-weighted Debye temperature of 

(Bi0.75Fe0.25)FeO3 (356 K) is higher than that of (Bi0.85Fe0.15)FeO3 (293 K). This result 

differs from that of (Bi1–xRex)FeO3 (Re = La, Eu, Ho) multiferroics, where the Debye 

temperature is inversely proportional to the compositional x-value.35 

 

3.2. Spectroscopy 

Raman spectroscopy 

The Brillouin zone-centre optical phonon modes of space group R3c can be classified 

as 4A1 + 5A2 + 9E. The A1- and E-modes are polarized along the z-axis and the xy-

plane, respectively, and both are Raman and IR active. Some of the A2 modes 

calculated at 109, 261, 308, 446, and 579 cm-1 are optically silent, however can be 

observed by inelastic neutron scattering.36 Raman spectra of the samples are shown 

in Figure 8. Of better resolved intense modes, the frequencies at 146.5 cm-1 and 

174.6 cm-1 are observed for BiFeO3, which are assigned to E(TO2) and A1(TO1), 

respectively.37 Both of them slightly shift to corresponding higher frequency for 

(Bi0.85Fe0.15)FeO3 (147.3(1) and 174.6(1) cm-1) and (Bi0.75Fe0.25)FeO3 (148.8(1) and 

175.0(1) cm-1). 
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Figure 8. Left panel: Low-temperature (78 K) Raman spectra along with the 

compound as well as component fit models. Right panel: Temperature-dependent 

Raman spectra of (Bi0.75Fe0.15)FeO3; temperature increases from 78 K (bottom) to 

610 K (top) at 10 K step and from 350 K on at 20 K step. 

 

First principal studies37 demonstrated that frequencies up to 167 cm-1 belongs purely 

to Bi-atoms, and Fe-atoms mainly contribute between 152 and 261 cm-1, and also to 

higher-frequencies. Consequently, the intensity ratio of I147/I175 decreases upon 

successive replacement of Fe in the Bi-site since both the frequencies are indicative 

for one of the sites.10 The temperature-dependence of E(TO2) and A1(TO1) modes 

for BiFeO3, (Bi0.75Fe0.25)FeO3 and (Bi0.85Fe0.15)FeO3 are shown in Figure 4S 

(Supplementary information). The frequency of the modes at 0 K has been obtained 

from the linear extrapolation of the low temperature data and listed in Table 3. The 

mode-Grüneisen parameter was calculated from the volume derivative and listed in 

Table 1S. The corresponding cell volumes were taken from the respective thermal-

expansion model fitting (see later).  
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Mössbauer spectroscopy 

Temperature-dependent 57Fe Mössbauer spectra are depicted in Figure 9. Hyperfine 

parameters are collected in Table 4. The experimentally determined values of isomer 

shift (IS) are typical for high spin Fe3+ ions.38 No signals from high spin Fe2+ could be 

resolved; their isomer shifts would lie above about 0.6-0.7 mm·s-1.38,39 Consequently, 

magnetite (Fe3O4) as an impurity must be excluded. Comparing the determined 

hyperfine parameters (Table 3) one can safely assume that any of our samples does 

not contain impurities such as γ-Fe2O3
40,41,42 or α-Fe2O3.40,43,44 Spectra at 300 K 

show a superposition of magnetically split patterns (i.e. from sites with static 

hyperfine fields) and doublet patterns from superparamagnetic sites. Magnetic 

hyperfine fields in the superparamagnetic fraction are averaged to zero due to 

fluctuations faster than the nuclear Larmor precession, that is, they must be on the 

order of GHz. Even at 300 K one can trace a slowing down of superparamagnetic 

relaxations for parts of the sample (Bi0.85Fe0.15)FeO3, resulting in a broad unresolved 

background covering about half of the total spectral area. Spectra of both samples at 

200 K and 100 K reveal strongly broadened patterns and line shapes that deviate 

from a Lorentzian profile, which is typical for relaxation effects due to slow 

superparamagnetic fluctuations (Figure 9). These spectra are shown to demonstrate 

the general temperature-dependent spectral development. A detailed analysis would 

need knowledge of crystallite size distributions and crystallite anisotropy energies 

correlated with the relaxation time, which lies out of the scope of the present study. 

We rather concentrate on the analysis of the spectra at 300 K and 20 K. The latter 

can be deconvoluted with static magnetic sextets though the strongly broadened 

lines of sextet-4 of both samples, indicating that superparamagnetic fluctuations 

persists even at 20 K. All Fe3+ coordination’s leading to doublets in the Mössbauer 

spectra exhibit a high quadrupolar splitting QS of 0.54(1) – 1.08(1) mm/s (Table 3). 

As such, a high distortion of the associated octahedra is expected since the 

quadrupolar splitting of octahedrally coordinated Fe3+ usually increases with a higher 

distortion.39 Interestingly, these high QS are strongly reduced (-0.02 mm/s –

 0.04 mm/s) when the samples are cooled down to 20 K, and static magnetic sextets 

of these sites have evolved. The apparent vanishing of QS can be related to a wide 

distribution of angles between magnetic hyperfine field and electric field gradient due 

to disorder. The IS of the doublets are smaller than those of the sextets, leading to 

higher charge density at the nucleus, thus smaller bond length. The sum of the 
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already static magnetic sextets (1+2, Table 3) in the room-temperature spectra 

represent a relative area of 36(4)% and 31(4)% for (Bi0.75Fe0.25)FeO3 and 

(Bi0.85Fe0.15)FeO3 of the spectra, respectively. However, the relative population of the 

magnitudes of sextet-1 and sextet-2 is different in both samples at any given 

temperature (Table 3). The relative areas of the doublets add up to 65(4)% in 

(Bi0.75Fe0.25)FeO3 and turn to sextet-3 and sextet-4 in the 20 K spectrum. Whereas in 

the room-temperature spectrum of (Bi0.85Fe0.15)FeO3 two doublets add up with a 

singlet to 69(6)%. Interestingly, sextet-3 and sextet-4 in the 20 K spectrum add up to 

only 55(4)% of the relative area. This corresponds to the area of the singlet in the 

room-temperature spectrum. Compared to the obtained hyperfine parameters of a 

BiFeO3 sample with 14 nm sized crystals of Park et al. (2007) the determined 

parameters are comparable to those of (Bi0.75Fe0.25)FeO3.
6 In general, the Mössbauer 

lines are quite broadened showing values from 0.30(1) mm/s to 0.88(1) mm/s (Table 

3), suggesting some sorts of disorder around the Fe-sites. Blaauw and van der 

Woude45 pointed out that even in stoichiometric BiFeO3 all Fe-sites are not 

completely equivalent and the crystallographic structure is of more complicated 

character.  
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Table 3. Hyperfine parameters of (Bi1-xFex)FeO3. The standard deviations given in the 
parentheses. 

Fit *IS /mm s-1  QS /mm s-1 Bhf /T Γ /mm s-1 Rel. area /% 

(Bi0.75Fe0.25)FeO3 
Sextets                                    300 K           

1 0.36(1) 0.16(1) 49.4(1) 0.40(1) 20(2) 

2 0.35(1) 0.02(1) 48.0(1) 0.50(1) 16(2) 

Doublets 

3 0.29(1) 0.54(1)  0.40(1) 37(2) 

4 0.27(1) 1.00(1)  0.40(1) 28(2) 

Sextets                                    20 K           

1 0.48(1) 0.16(1) 54.9(1) 0.36(1) 18(2) 

2 0.47(1) 0.08(1) 53.2(1) 0.40(1) 17(2) 

3 0.42(1) 0.02(1) 50.3(1) 0.54(1) 37(2) 

4 0.40(1) -0.02(1) 47.0(1) 0.84(1) 28(2) 

(Bi0.85Fe0.15)FeO3 
Sextets                                   300 K           

1 0.35 0.16(1) 49.4(1) 0.40(1) 25(2) 

2 0.35 0.00(1) 48.0(1) 0.40(1) 6(2) 

Doublets 

3 0.29 0.54(1)  0.40(1) 9(2) 

4 0.26 1.08(1)  0.40(1) 7(2) 

Singlet 0.35    53(2) 

Sextets                                    20 K           

1 0.48 0.34(1) 54.8(1) 0.32(1) 25(2) 

2 0.47 -0.08(1) 54.5(1) 0.30(1) 19(2) 

3 0.42 0.04(1) 51.0(1) 0.58(1) 35(2) 

4 0.39 -0.02(1) 47.1(1) 0.88(1) 20(2) 

*The isomer shift (IS) is relative to 57Fe, QS (quadrupole splitting) = 1/2 
e2qQ, and Bhf to the magnetic hyperfine field at 57Fe nuclei. Γ is the 
linewidth.  
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Figure 9. Temperature-dependent 57Fe Mössbauer absorption spectra of 

(Bi0.75Fe0.25)FeO3 (a) and (Bi0.85Fe0.15)FeO3 (b). 

a) b) 
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3.4. DEA Modelling 

Despite a large number of papers published on BiFeO3, a complete set of elastic 

moduli were not experimentally obtained. As such, discrepancies between the 

experimentally obtained bulk modulus could not be judged as given in Table 2S 

(Supplementary information). Herein, we consider the ab initio based six independent 

elastic moduli (Cij) of the rhombohedral symmetry and the corresponding bulk 

modulus for thermal expansion modeling. The change of the metric parameters with 

temperature obtained from neutron powder diffraction measurements are shown in 

Figure 10. The lattice thermal expansion was modelled using the DEA 

approach15,17,18 and the fitting parameters are listed in Table 4. For comparison, we 

also analysed the temperature-dependent neutron powder data of BiFeO3.3,29,30 For 

each case, the simulation of the metric parameters shows an excellent fit considering 

only a single Debye term for the calculation of temperature-dependent vibrational 

energy. The integral term of the Debye function was numerically evaluated leading to 

Debye temperatures of 357(89) K, 392(81) K and 375(5) K for (Bi0.75Fe0.25)FeO3, 

(Bi0.85Fe0.15)FeO3 and BiFeO3, respectively (Table 4). Notably, the neutron data of 

BiFeO3 were limited only to 300 K. Kallaev et al. reported a Debye temperature of 

500 K35 calculated from the heat capacity (CV). It is quite surprising that the Debye 

temperature evaluated from CV measurements is higher than those of thermal 

expansion calculations. However, the authors took the bulk modulus of Pb(Ti,Zr)O3; 

therefore, the reliability of such physical parameter is difficult to compare. 
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Table 4. Fitting parameters of the modelled temperature-dependent metric 

parameters. 

 (Bi0.75Fe0.25)FeO3 (Bi0.85Fe0.15)FeO3 BiFeO3* 

Unit cell volume 

M0 /106pm3 372.4(9) 371.9(8) 372.39(1) / 373.10(5) 

kD /10-12Pa-1 9.5(24) 8.91(2) 8.71(1) / 8.30(1) 

θD /K 357(89) 392(81) 361(30) / 328(42) 

Lattice parameter a 

M0 /pm 557.5(4) 557.3(4) 557.35(1) / 557.70(2) 

kD /10-12Pa-1 4.1(3) 3.7(3) 3.75(1) / 3.41(1) 

θD /K 321(22) 328(25) 423(5) / 345(10) 

Lattice parameter c 

M0 /pm 1383.4(6) 1382.1(2) 
1384.27(1) / 

1384.95(5) 

kD /10-12Pa-1 12.7(6) 12.7(2) 13.82(1) / 13.27(2) 

θD /K 268(12) 269(5) 306(7) / 234(23) 

* data from Palewicz et al.30,31 and Fischer et al.3 (Italic) 
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Figure 10. Temperature-dependent metric parameters and respective thermal 

expansion coefficient (TEC, inset) of (Bi0.75Fe0.25)FeO3 (left panel) and 

(Bi0.85Fe0.15)FeO3 (right panel). 

 

The thermoelastic fitting parameter leads the thermodynamic Grüneisen parameter of 

BiFeO3 to be γ = 0.87. Since the thermoelastic parameter (kD) does not significantly 

change upon substitution of Bi with Fe (Table 4), a reasonable assumption of the 

Grüneisen parameter of 0.87 would lead to bulk moduli of 91(1) GPa, and 98(1) GPa 

for (Bi0.85Fe0.15)FeO3 and (Bi0.75Fe0.25)FeO3, respectively. The axial thermal 

expansion coefficient follows as αc > αa (with αa and αc for a- and c-cell parameters). It 

shows an anomaly with a minimum at about 400 K for (Bi0.75Fe0.25)FeO3 and 420 K 

(Bi0.75Fe0.25)FeO3 (Bi0.85Fe0.15)FeO3 
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for (Bi0.85Fe0.15)FeO3 as seen in the insets of Figure 10. However, these anomalies 

have not been seen for stoichiometric BiFeO3
31 as within the temperature range 

(10 K - 300 K) the magnetic phase does not change (AFM for the whole range). 

Whether the TEC anomalies observed for both (Bi0.75Fe0.25)FeO3 and 

(Bi0.85Fe0.15)FeO3 are associated with magneto-volume effect due to corresponding 

magnetic phase transition is not clear at this stage.  

 

3.5. SQUID analysis 

To further evaluate the magnetic properties of the samples SQUID measurements on 

the samples (Bi0.85Fe0.15)FeO3, (Bi0.75Fe0.25)FeO3  and stoichiometric BiFeO3 were 

performed. The magnetic hysteresis curves, as shown in Figure 11, clearly reveal a 

superparamagnetic behavior for (Bi0.85Fe0.15)FeO3 and (Bi0.75Fe0.25)FeO3  as already 

seen in the Mössbauer spectra (Figure 9). An enlarged view of these curves clearly 

shows no hints of remanence. The values obtained for the magnetization of BiFeO3 

however well fit those earlier reported.6,10,46,47 The magnetization of (Bi0.85Fe0.15)FeO3 

and (Bi0.75Fe0.25)FeO3 on the contrary is found to be very high with a magnetic 

saturation (Ms) of 7.3 A m2 kg-1 and 7.8 A m2 kg-1 at 300 K and 5 T, respectively. In 

comparison, some reported values for BiFeO3 are 0.2 A m2 kg-1,48 ~0.35 A m2 kg-1,49 

1.4 A m2 kg-1,50 1.55 A m2 kg-1,6 and 3.4 A m2 kg-1.51 Mazumder et al. (2007)47 

observed saturation of as high as ~7 A m2 kg-1 for nano-sized BiFeO3, which is 

comparable to the present study. Recently, Guria et al. (2014)52 found 

superparamagnetic behaviour of paramagnetic Sm2O3 at room temperature. This 

finding is unusual as superparamagnetism is generally known to be associated with 

ferromagnetic or ferrimagnetic materials due to size effects. They synthesized 

variously shaped nanostructures and stated that these differences in the magnetism 

clearly can be lead back to the difference in the growth patterns of the materials.52 

Our materials also show a strong anisotropy in the (202) and (110) planes, where the 

latter one is the rotation plane of the magnetic moments that develop the spiral 

magnetic structure.4 Whether the modified magnetism is due to strong anisotropy or 

due to disappearing of the spiral spin ordering with higher spin concentration at the 

Bi-position requires further investigations. 
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Figure 11. Left panel: Temperature-dependent Fc (0.1 T; cooling and heating) 

magnetization of (Bi0.85Fe0.15)FeO3, (Bi0.75Fe0.25)FeO3 and BiFeO3. Right panel: 

Magnetic hysteresis curves of (Bi0.85Fe0.15)FeO3, (Bi0.75Fe0.25)FeO3 and BiFeO3 with 

magnification (inset). 

 

4. Conclusion  

The SQUID data and the Mössbauer analysis showed that (Bi0.85Fe0.15)FeO3 and 

(Bi0.75Fe0.25)FeO3 show superparamagnetic behaviour. Since both samples are 

superparamagnetic between 2 K and 300 K it is unlikely that spin ordering occurs 

above 300 K. As such, the drop of thermal expansion coefficients above 400 K may 

be associated with the diffusion (Fe) led disordering of the Bi/Fe sites. Moreover, 

since ferroelectricity and magnetism in these materials are driven by the Bi and Fe 

sites, respectively, any ferroelectric into paraelectric phase transition can involve 

significant changes of the Bi/Fe dynamics, leading to axial strong anharmonicity. The 

consequent compensation may develop volumetric thermal expansion minima as 

seen at about 400 K. However, this assumption cannot exclude the nano-sized 

surface effect for phonon anharmonicity. Nevertheless, a clear picture can be found 

when the magnetic susceptibility can be analyzed at high temperatures.  
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Figure 1S. Simulated (left panel) and measured (right panel) X-ray powder patterns 

of BiFeO3 and (Bi1-xFex)FeO3. The program POWDER CELL1 was used for 

simulations and the data was normalized to the (110) reflection. 

 

 

 

Figure 2S. Rietveld patterns of (Bi0.85Fe0.15)FeO3 for the synchrotron X-ray data 

(APS). The magnification (right) shows the huge anisotropy of two neighbouring 

reflections. 
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Figure 3S. Temperature-dependent Wang-Liebau eccentricity (WLE) parameter of 

the (Bi/Fe)O6 octahedra of (Bi1-xFex)FeO3 and room-temperature value of the BiO6 

octahedra of BiFeO3. 

 

 

 

Figure 4S. Temperature-dependent band positions of the E(TO2) and A1(TO1) 

modes of (Bi1-xFex)FeO3 for x = 0, 0.15 and 0.25. 
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Table 1S. Raman frequency of mode E(TO2) and A1(TO1) at 0 K (obtained from 

extrapolation of the low-temperature data) along with respective Grüneisen 

parameter (γi). 

Compound E(TO2) A1(TO1) 

 ωi,0 /cm-1 γi ωi,0 /cm-1 γi 

BiFeO3
2 135.7 1.94 168.9 1.74 

(Bi0.85Fe0.15)FeO3 141.7(1) 8.9(3) 171.3 4.6(3) 

(Bi0.75Fe0.25)FeO3 140.9(1) 6.8(2) 171.3 4.1(2) 

 

Table 2S. Elastic coefficients (Cij) and bulk moduli of BiFeO3. 

Method C11 C12 C13 C14 C33 C44 C66 BR BV BH B0 Ref. 

IXA 207(5) - - - 159(4) 30(1) 42(1) - - - - [3] 

LDA 249 - 75 9 160 44 49 - - - - [3] 

GGA 203 117 50 23 129 31 43 96 108 102 - [4] 

GGA + U 

(3 V) 
213 111 49 19 139 39 51 99 109 104 - [4] 

GGA + (U 

6 V) 
222 110 50 16 150 49 56 104 113 108 - [4] 

XRPD - - - - - - - - - - 97.3(7) [5] 

XRPD - - - - - - - - - - 75(15) [6] 

IXA = Inelastic X-ray, B0 = Bulk modulus (Reuss), BR = Bulk modulus (Reuss), BV = 
Bulk modulus (Voigt), BH = Bulk modulus (Hill average)  
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Chapter 5 
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Evolutionary Investigation of Structural, Morphological, Optical and 

Vibrational Properties 
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ABSTRACT: Mullite-type Bi2Fe4O9 was synthesized using a polyol-mediated method. 

X-ray powder diffraction (XRD) revealed that the as-synthesized sample is 

nanocrystalline. It transformed into a rhombohedral perovskite-type BiFeO3 followed 

by a second transformation into mullite-type Bi2Fe4O9 during heating. Each structural 

feature, from as-synthesized into crystalline phase, was monitored through 

temperature-dependent XRD in situ. The locally resolved high resolution transmission 

electron micrographs revealed that the surface of some heated samples is covered 

by 4 − 13 nm sized particles which were identified from the lattice fringes as 

crystalline Bi2Fe4O9. XRD and Raman spectra demonstrate that the nucleation of 

both BiFeO3 and Bi2Fe4O9 might simultaneously commence; however, their growth 

and ratios are dependent on temperature. The diffuse UV/Vis reflectance spectra 

showed fundamental absorption edges between 1.80(1) and 2.75(3) eV. A 

comparative study between the “derivation of absorption spectrum fitting method” 

(DASF) and the Tauc method suggests Bi2Fe4O9 to be a direct band gap 

semiconductor. 

 

1. INTRODUCTION 

Perovskite-type BiFeO3 and mullite-type Bi2Fe4O9 are known to show interesting 

optic,1 electronic,2 catalytic,3 and magnetic4 properties as well as crystal chemistry5−8 

and temperature-dependent behaviors.9 Both these compounds can be synthesized 

through a variety of synthesis methods including solid state reaction method,10 

chemical coprecipitation route,2 sol−gel method,11,12 EDTA route,13,14 combustion 

method,15 and hydrothermal process.16 The widely studied BiFeO3 has a Néel 

temperature of ∼640 K and a ferroelectric Curie temperature of ∼1100 K.17 A 

spontaneous polarization is caused by the centrosymmetric distortion of the Bi3+ and 

Fe3+ cations along the pseudocubic threefold [111] axis.18 Beside its well-known 

multiferroic properties at room temperature, it is also studied due to its photocatalytic 

activity in the visible range of light.12,19 The crystal structure of BiFeO3 can be 

described as a rhombohedrally distorted perovskite in space group R3c and Z = 6 as 

shown in Figure 1. Until now, there exists no common agreement in the literature 

whether the optical band gap of BiFeO3 possesses a direct or an indirect transition.15 

The direct band gap was reported to be within 2.1 − 2.8 eV15,20−22 and the indirect one 

to be within 2.1 − 2.2 eV.19,23 Bi2Fe4O9 is also known to exhibit photocatalytic 

properties in the visible range.13 Centrosymmetric multiferroic properties near room 
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temperature are reported,24,25 which triggers considerable debates. This compound 

crystallizes in the orthorhombic space group Pbam with Z = 2 and shows the 

characteristic mullite-type feature of edge-sharing FeO6 octahedra running parallel to 

the c-axis. These chains are cross-linked by corner-sharing FeO4 double-tetrahedra. 

Between the chains the Bi atoms are located, where the 6s2 lone electron pairs 

(LEPs) of Bi3+ point toward the vacant sites of the structure.9 Like BiFeO3, the nature 

of the optical transition of Bi2Fe4O9 is also not yet clear. The direct transitions were 

reported between 2.1 and 2.3 eV,2,26 and the indirect ones from 1.9 to 2.1 eV.16,27 Of 

particular note, the source of the observed second absorption edge is an ongoing 

topic of debate. Theoretical calculations suggested that Bi2Fe4O9 is a direct multiband 

semiconductor and the second absorption edge is caused by the d−d-transitions 

between the Fe atoms.3 In contrast, another theoretical study indicated that Bi2Fe4O9 

is an indirect semiconductor with a band gap of 1.23 eV,28 and the second absorption 

edge is caused by intervalence charge transfer between randomly arranged Fe2+ and 

Fe3+ induced by uneven distributed negative charges.28  

 

Figure 1. Crystal structures of mullite-type Bi2Fe4O9 in space group Pbam (left) and 

perovskite-type BiFeO3 in space group R3c (right). 
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Table 1. X-ray characterization of calcined samples prepared by polyol method. 

Sample 
Calcination 

temp. /K 

Degree of 
crystallinity 

/% 

Crystalline phase fraction /% Crystallite size /nm 

Bi2O3 Fe2O3 perovskite 
Mullite-

type 
perovskite 

Mullite-
type 

BFO – 0 – – – – – – 

BFO/573 573 1(3) 100 – – – – – 

BFO/623 623 2(3) 100 – – – – – 

BFO/673 673 2(3) 100 – – – – – 

BFO/723 723 3(3) – – 100 – – – 

BFO/773 773 14(3) 6.6(9) – 93.4(8) – 13.2(4) – 

BFO/823 823 80(3) – – 77.6(7) 22.4(7) 25.1(6) 11.5(6) 
BFO/873 873 84(3) – 1.9(4) 32.6(3) 65.5(3) 41(1) 35.4(6) 
BFO/923 923 100(3) – 1.9(3) 3.4(1( 94.7(3) 65(6) 59.5(9) 
BFO/973 973 100(3) – 2.0(3) 1.01(7) 97(3) – 73(1) 
BFO/1023 1023 100(3) – 2.6(3) – 97.4(3) – 129(2) 

 

Smaller crystallites of Bi2Fe4O9 1 and BiFeO3 23 exhibit higher photocatalytic activities. 

Moreover, an unexpected red shift of the band gap was observed in BiFeO3 with 

decreasing crystallite sizes.29 The polyol method30,31 is suitable to produce larger 

quantities of nanocrystalline samples. In the case of the photocatalytic active 

semiconductor TiO2, anatase is the active polymorph, but a mixture of rutile and 

anatase (e.g.,1:3.4) is more active than pure nanocrystalline anatase powder.32 

Hurum et al.33 concluded that the mixed samples consisted of nanoclusters with 

atypically small rutile crystallites interwoven with anatase crystallites. So a rapid 

electron transfer from rutile to anatase takes place at phase boundaries leading to an 

effective charge separation. Since BiFeO3 and Bi2Fe4O9 could be simultaneously 

crystallized,11,25,34 their suitable mixture could be more active than either pure BiFeO3 

or Bi2Fe4O9 sample. In this study, Bi2Fe4O9 samples were synthesized by the polyol 

method. By subsequent heating, samples with various BiFeO3 : Bi2Fe4O9 ratios and 

crystallite sizes were produced. They were characterized by SEM, TEM, FTIR, 

diffuse UV/Vis reflectance spectroscopy, Raman spectroscopy, and XRD. 

Furthermore, the precursor over perovskite-type to mullite-type transformation was 

studied via in situ temperature-dependent X-ray diffraction. A comparative study was 

performed between the “derivation of absorption spectrum fitting method” (DASF) 

and the commonly used Tauc method for the calculation of both direct and indirect 

band gaps.  
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2. EXPERIMENTAL SECTION 

2.1. Synthesis 

The precursor was synthesized by a polyol mediated synthesis.30 Both 5 mmol 

Bi(NO3)3·5H2O (Sigma-Aldrich, ≥ 98%) and 10 mmol Fe(NO3)3·9H2O (Sigma-Aldrich, 

≥ 98%) were dissolved into 42 mL of diethylene glycol (AppliChem, 99%). The 

mixture was put into a three-necked flask which was then heated in a metal bath at 

423 K under reflux. After 2 h the mixture was cooled down to room temperature and 

washed several times with acetone. The as-synthesized powder (BFO) was then 

heated for 2 h from 573 to 1023 K at every 50 K (BFO/#) to produce different 

crystallite sizes and phase ratios as given in Table 1.  

 

2.2. Electron Microscopy 

The scanning electron microscopy (SEM) measurements were carried out on a JSM-

6510 (JEOL GmbH, Munich, Germany) equipped with energy dispersive X-ray (EDX) 

analysis facilities and an XFlash Detector 410-M (Bruker AXS GmbH, Karlsruhe, 

Germany) at 20 kV. TEM measurements were carried out on a Titan 80/300 kV (FEI 

Europe, Eindhoven, The Netherlands) equipped with a Cs corrector for the spherical 

aberration of the objective lens. The microscope was operated at 300 kV during all 

investigations. Specimen were prepared by dissolving the material in ethanol, 

pestling, and subsequent dispersion on copper grids covered with a thin holey 

amorphous carbon film. 

 

2.3. X-ray Diffraction 

X-ray powder diffraction data were collected on an X’Pert MPD PRO diffractometer 

(PANalytical GmbH, Almelo, The Netherlands) equipped with Ni-filtered CuKα1,2 

radiation (λα1,2 = 0.154 06 nm, 0.154 44 nm) and a X’Celerator detector system in 

Bragg−Brentano geometry. Room-temperature scans were performed from 5 to 

85° 2θ with a step width of 0.0167° 2θ and a measurement time of 275 s per step. An 

HTK 1200N heating chamber (Anton Paar, Graz, Austria) was used for the 

temperature-dependent investigations. Data were collected from 5 to 100° 2θ with a 

step width of 0.0167° 2θ and a measurement time of 75 s per step. The temperature 

was increased stepwise from 300 to 1120 K at 20 K steps with an equilibration time 

of 5 min. The obtained data were refined using the Rietveld method (TOPAS V4.2, 
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Bruker AXS). For profile fitting the fundamental parameter approach was used. The 

fundamental parameters were fitted against a LaB6 standard material. The degree of 

crystallinity, crystalline phase ratios, as well as the crystallite sizes of the perovskite- 

and mullite-type structures of the synthesized samples are summarized in Table 1 

(with estimated standard deviations given in the parentheses).  

 

2.4. Spectroscopy 

UV/Vis diffuse reflectance spectra were collected on a Shimadzu UV/Vis 

spectrophotometer UV-2600 equipped with an ISR-2600 plus two-detector integrating 

sphere. Barium sulfate was used as a reference. The data were collected from 200 to 

1400 nm in 0.5 nm steps. Raman spectra were measured on a Horiba LabRam 

Aramis spectrometer equipped with a Laser of 785 nm, a slit of 100 μm, a hole of 

1000 μm, and an exposure time of 2 s with 10 accumulations. Data were collected 

between 80 and 1200 cm−1 with a spectral resolution of approximately 1.1 cm−1 using 

a grating of 1800 grooves/mm. FTIR measurements were carried out with 128 scans 

from 370 to 4000 cm−1 using the KBr method (0.5 mg sample in 200 mg KBr). The 

band positions were fitted with TOPAS V4.2, Bruker AXS. 

 

3. RESULTS AND DISCUSSION 

3.1. SEM and HRTEM 

The as-synthesized powder samples exhibit agglomerated particles showing more or 

less a uniform distribution of shapes and sizes. Analysis of 2D image allowed for 

calculation of the average particle size of around 286 ± 81 nm as shown in Figure 2.  
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Figure 2. SEM micrograph of as-synthesized powder BFO (see Table 1). 

 

HRTEM micrographs suggest that the as-synthesized powder is amorphous detected 

by selected area diffraction patterns, showing that at least some parts of the sample 

are crystalline as shown by the inset of Figure 3b. The symmetry appears to be the 

same as in the sample calcined at 823 K (inset Figure 3d). The surface of the 

samples is covered by very small particles of 4 − 13 nm. The fringe analysis of the 

sample BFO/873 confirms a mullite-type structure for those small particles as 

indicated by the d-spacing of 330(30) pm attributed to the (201) plane. This plane is 

particularly suitable to distinguish between the perovskite- and mullite-type structure 

since the former structure does not have d-spacings around this region. It is worth 

mentioning that during the measurements the shape and the facet of those small 

particles rearranged by the electron beam may due to electromagnetic interactions. 

Micrographs taken from the same particle clearly show this effect as given in Figure 

4. This phenomenon was also observed by Ortiz-Quiñonez et al.,15 which they 

attributed to a rearrangement through quasi-melt states. In our case, lattice fringes 

were visible over the full series of 10 images within the whole particle (Supporting 

Information, S1); the shape changes between the acquisition of the 10 images. 
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Figure 3. TEM micrographs of the as-synthesized sample BFO (a and b), calcined 

sample BFO/823 (c and d), and calcined sample BFO/873 (e and f). For detailed 

description of each sample, see Table 1. 
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Figure 4. HRTEM micrographs of a surface nanoparticle of the sample BFO/873 (see 

Table 1) at three different points in time (from left to right t = 0 s; t = 27 s; t = 72 s). 

 

3.2. X-ray Powder Diffraction 

The diffraction pattern of the as-synthesized powder exhibits no distinct Bragg 

reflections indicating an X-ray amorphous phase. By fitting the pattern with single 

reflections constrained for the average crystallite size, a corresponding value of 

0.9(1) nm could be estimated. The XRD patterns of the samples calcined at different 

temperatures (each for 2 h) are shown in Figure 5. With increasing calcination 

temperature the successive degree of crystallinity increases toward a saturation point 

(100% crystalline) started above 923 K as shown in Figure 6. Notably, 923 K is the 

observed temperature at which the mullite-type Bi2Fe4O9 phase comprises more than 

94% of the total crystalline composition.  
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Figure 5. Left panel: X-ray powder diffraction patterns of samples calcined at 

different temperatures (see table 1 for details). Right panel: Magnified feature of a 

part of the left panel, showing some distinctive reflections of BiFeO3 (diamond) and 

Bi2Fe4O9 (star) structures. 

 

 

Figure 6. Left panel: Degree of crystallinity of the samples heated at 573 – 1023 K at 

every 50 K for 2 h. Middle panel: Crystallite sizes of BiFeO3 and Bi2Fe4O9. Right 

panel: Crystalline phase fraction of BiFeO3 and Bi2Fe4O9. The solid lines are for eye 

guidelines. 

 

The XRD diffraction clearly shows that the perovskite structure first appeared at 

723 K. The Rietveld refinement analyses demonstrate that the perovskite phase 

gradually increases with increasing temperature until 823 K followed by a decrease in 

phase fraction due to the transformation into the mullite-type Bi2Fe4O9 structure. In 

the sample calcined at 1023 K, the perovskite-type structure was no longer detected. 

The average crystallite sizes of the BiFeO3 perovskite - as well as of the mullite-type 

Bi2Fe4O9 phase - increase with increasing temperature, showing sizes between 
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13.2(4) and 65(6) nm for perovskite, and 11.5(6) and 129(2) nm for mullite-type. 

Interestingly, the crystallite sizes of both phases increase very similarly. Throughout 

the ex situ XRD observation on the calcination process, two minor impurities were so 

far identified, namely, β-Bi2O3 and hematite (Fe2O3). The tetragonal β-Bi2O3 phase 

was only observed in samples calcined below 773 K, which disappeared at 823 K. 

However, the rhombohedral hematite exists as a minor phase (<3% phase fraction) 

in all samples calcined above 873 K. The in situ heating experiment (temperature 

increase by 20 K every 60 min) showed a transformation from the as-synthesized 

powder into the perovskite-type structure at 740 K followed by a second 

transformation into Bi2Fe4O9 starting from 780 K on, as seen in Figure 7. At 860 K the 

perovskite structure cannot be detected anymore (see Figure 7). Note that the 

reflections above 40° 2θ showing up from 460 K on can be attributed to the sample 

holder due to shrinking of the powder.  

 

Figure 7. Temperature-dependent diffraction patterns showing the transformation 

from as-synthesized amorphous powder to rhombohedral BiFeO3 and finally 

orthorhombic Bi2Fe4O9. 

 

Recent investigations35 indicated a transformation of an as-synthesized polyol 

powder through ((Bi1−xFex)FeO3) into polycrystalline Bi2Fe4O9. It was evidenced by a 

smaller lattice parameter c with values of ∼1379 pm at 780 K.35 This was attributed to 

the substitution of Fe3+ on the Bi position (6a 0,0,0). Refinements performed in this 

study showed neither a smaller lattice parameter c (1393.2(4) pm at 780 K) nor Fe3+ 

and Bi3+ on the same position (6a 0,0,0). The Fe-bearing sillenite Bi25FeO39 phase 



- 93 - 

observed between 860 and 920 K35 during the transformation of ((Bi1−xFex)FeO3) into 

Bi2Fe4O9 was also not identified in this study. 

 

3.3. Spectroscopy  

Diffuse Reflectance UV/Vis Spectroscopy 

Diffuse reflectance UV/Vis spectroscopy is frequently used to determine the optical 

band gap of semiconductors. Therefore, the Tauc relationship36 is most commonly 

used to estimate the band gap energy by finding the intercept of the abscissa from 

the following relation 

 𝛼(ℎ𝜈) ≈ 𝐵(ℎ𝜈 − 𝐸𝑔)𝑛 (with 𝛼 ~ 𝐹(𝑅))  (1) 

where α is the extinction coefficient, h the Planck constant, ν the frequency of light, 

Eg the band gap energy in eV and n the nature of transition, that is, n = 2 for an 

indirect transition (plotted as 𝛼(ℎ𝜈)1/2 versus E) and 𝑛 = 1/2  for a direct transition 

(plotted as 𝛼(ℎ𝜈)2 versus E), respectively. The Kubelka-Munk function is used to 

approximate the optical absorption from the reflectance: 

 𝐹(𝑅) =
(1−𝑅)2

2𝑅
  (2) 

Using the Tauc method it is necessary to have information about the nature of 

transition, so that the data can be properly treated. However, often this information is 

not available. Recently, the derivation of absorption spectrum fitting method (DASF) 

was demonstrated by Souri and Tahan37 providing the opportunity to overcome this 

problem. They used the method to determine the optical band gap of thin films 

measured in transmission mode, which may fit to the powder samples measured in 

the reflectance mode. The DASF method is developed from the absorption spectrum 

fitting method (ASF method) as: 

 𝐴(𝜆) = 𝐷𝜆 (
1

𝜆
−

1

𝜆𝑔
)

𝑛

  (3)  

where 𝐷 = 𝐵(ℎ𝑐)𝑛−1(2.303/𝑧)𝐴, z is the film thickness, A is the film absorbance, c is 

the velocity of light and λg is the wavelength corresponding to the optical band gap. 

Equation (3) can be rewritten as: 

 ln
𝐴(𝜆)

(𝜆)
= 𝑙𝑛𝐷 + 𝑛𝑙𝑛 (

1

𝜆
−

1

𝜆𝑔
) (4)  

and its first derivative with respect to 1/λ is: 
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𝑑{ln [𝐴(𝜆)/𝜆]}

𝑑(1/𝜆)
=

𝑛

(
1

𝜆
−

1

𝜆𝑔
)
 (5)  

By plotting left-hand side of equation (5) vs 1/λ can provide peak-shaped data as 

shown in Figure 9. The peak maximum indicates a band gap37 [eV] as 𝐸 =

1239.83/𝜆𝑔. This value can be cross-checked fitting to either of the direct or the 

indirect one calculated directly by the Tauc method. Notably, the DASF method can 

also be expressed starting from equation (1) (Tauc method) as follows:  

 𝐹(𝑅) = 𝐵(ℎ𝜈 − 𝐸𝑔)𝑛 (6) 

 

 𝑙𝑛𝐹(𝑅) = 𝑙𝑛𝐵 + 𝑛𝑙𝑛(ℎ𝜈 − 𝐸𝑔) (7) 

 

 
𝑑𝑙𝑛𝐹(𝑅)

𝑑ℎ𝜈
=

𝑛

(ℎ𝜈−𝐸𝑔)
 (8) 

 

Thus band gaps calculated by the DASF method does not provide any new value 

rather validates if the materials possess a direct or an indirect band gap. The data 

obtained by the DASF method were fitted with the software TOPAS V4.2 (Bruker 

AXS, Karlsruhe, Germany) to determine the positions of the peak maximum. To 

judge the applicability of the method we used well studied Degussa’s TiO2 P25 with 

an indirect band gap of 3.14 eV.38 The band gaps were determined using both the 

Tauc’s method (assuming direct and indirect transitions) as well as the DASF method 

as shown in Figure 8 and Figure 9, respectively. The value obtained by the DASF 

method (3.057(1) eV) is in good agreement with the one using the Tauc’s method 

(3.04 eV) assuming indirect transitions. Since the results are consistent with those of 

literature ones the combination of the DASF method and the Tauc’s method can 

provide reliable results concerning the width together with its standard deviation as 

well as the nature of transition of semiconductor band gaps. 
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Figure 8. Tauc plot of sample TiO2 P25 assuming direct (left) and indirect (right) 

transitions. The dotted lines show the respective intercepts for band gaps. 

 

Figure 9. DASF plots of TiO2 P25 (left) and mullite-type Bi2Fe4O9 sample (right) 

BFO/973 K (see Table 1). The dotted lines show the fitted peak positions.  

 

The evolution of the F(R) spectra with the calcination temperature of the synthesized 

BFO samples is shown in Figure 10. The as-synthesized powder clearly shows 

absorption at smaller wavelengths which is in accordance with its greatly smaller 

crystallite sizes. The variation of calcination temperature not only shifts the 

absorption edge but also changes the spectral feature. A second absorption edge, 

typical for the Bi2Fe4O9 structure,1,3,28 appears for samples calcined above 773 K, 

which gets more pronounced at higher temperatures (see inset in Figure 10). The 

origin of a second edge in the absorption spectra is an ongoing topic of debates. It is 

suggested that the second absorption edge is caused by the d-d-transitions of Fe3+.3 
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In contrast, a theoretical study indicated that the second absorption edge is caused 

by inter-valence charge transfer between randomly arranged Fe2+ and Fe3+ induced 

by uneven distributed negative charges.28 The latter authors also concluded that the 

previously reported d-d transitions are both spin and Laporte forbidden28 and 

therefore the molar absorption coefficient of the ligand field transition is about three 

order of magnitude lower than that of the charge transfer transitions.28 In another 

report Sherman and Waite39 pointed out that ligand field transitions of Fe3+ can be 

intensified by magnetic coupling of adjacent Fe3+ cations and that these transitions 

become allowed through a strong magnetic coupling of Fe3+ - Fe3+ pairs. Ab initio 

investigations of Pchelkina and Streltsov40 revealed that the exchange interactions 

between the two tetrahedral Fet ions are the largest in Bi2Fe4O9. In this study the 

second absorption edge is appearing as soon as the vibrational mode typical for the 

tetrahedral unit in Bi2Fe4O9 (812 cm-1) can be identified in the FTIR and gets more 

pronounced with higher relative intensity in the spectra (see Figure 13, Table 4). This 

observation supports the assumption that the second absorption edge is caused by 

the d-d transitions that may be intensified by strong magnetically coupled Fe3+ - Fe3+ 

tetrahedral pairs. We also do not decline the possibility of phonon-driven indirect 

band gap because a pronounced second-absorption edge was also seen in Bi2Al4O9 

with no d-d transitions and no magnetic interactions. The fundamental absorption 

edge gradually shifts to higher wavelengths till 723 K and then shifts back to smaller 

wavelengths at about 1023 K, resulting in a shift from 2.75(3) eV to 1.80(3) eV and 

back to 2.13(1) eV, respectively. Due to different treatment of the Tauc method 

(direct or indirect) disagreements appeared in literature concerning the nature of 

transition for both BiFeO3 and Bi2Fe4O9.12,15,16,19,20,23,26 We compared the values for 

the direct as well as indirect transitions determined by the Tauc’s method with those 

obtained by DASF method (see Table 2, Figure 11). The values obtained by DASF 

method are in very good agreement with the values obtained by the Tauc’s method 

considering direct transitions for samples calcined above 873 K. However, the values 

obtained for samples calcined between 573 K and 823 K can be attributed neither to 

direct transitions nor to indirect transitions determined by the Tauc’s method (Table 

2). The calculated values remain between them. This could be attributed to the 

difficulties in the determination of band gap of the amorphous materials, because the 

edges of the tail states complicate determining the true optical band gap.41 Using the 

Tauc relationship a quadratic absorption edge is considered but amorphous 
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semiconductors often show an exponential behavior.42 In addition, certain selection 

rules (particularly that of momentum conservation) which apply to optical transitions 

in crystalline materials are relaxed in amorphous semiconductors.42 So the values 

determined by the DASF method seem to be more reliable than the Tauc ones. 

Interestingly, in the case of as-synthesized sample BFO the DASF method shows 

two absorption edges at 2.1(1) eV and 2.75(3) eV. The band gap of 2.75(3) eV fits 

well to the direct transition value of 2.7 eV determined by the Tauc’s method; 

however, the value 2.1 eV fits to the indirect transition value of 2.1(1) eV. An 

additional indirect band gap at lower energies next to a direct band gap in nano-sized 

BiFeO3 particles15 and thin films43 are reported. Theoretical calculations of Dong et 

al.44 predicted an indirect transition in a highly strained BiFeO3 sample. 

 
 
Figure 10. Left panel: UV/Vis F(R) spectra calculated out of reflectance spectra by 

the Kubelka-Munk function. Right panel: DASF plots of the as-synthesized powder 

and samples heated at 573 – 1023 K at every 50 K for 2 h. 
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Table 2. Absorption edges obtained by Tauc's and DASF methods. 

Sample DASF method 
Tauc’s method 

direct (αhν)2 
indirect 
(αhν)1/2 

BFO 2.1(1) 2.75(3) – 2.70 – 2.08 
BFO/573 – 1.82(9) – 2.04 – 1.62 
BFO/623 – 1.82(7) – 2.03 – 1.61 
BFO/673 – 1.80(7) – 2.00 – 1.57 
BFO/723 – 1.80(3) – 1.90 – 1.46 

BFO/773 1.75(7) 2.11(25) – 1.97 – 1.54 
BFO/823 1.69(4) 1.98(25) – 1.98 – 1.51 

BFO/873 1.65(1) 2.08(9) 1.63 2.02 1.40 1.58 
BFO/923 1.64(1) 2.13(3) 1.62 2.13 1.45 1.74 
BFO/973 1.64(1) 2.13(3) 1.61 2.12 1.44 1.74 
BFO/1023 1.63(1) 2.13(1) 1.63 2.19 1.50 1.87 

DASF = Derivation of absorption spectrum fitting method 
See table 1 for the details of the samples (BFO/#) 

 

 

Figure 11. Band gaps of the as-synthesized powder and samples (heated at 573 – 

1023 K at every 50 K for 2 h) obtained by Tauc's and DASF methods. The dotted line 

indicates the smallest found band gap. 

 

Raman Spectroscopy 

The Raman spectra of the as-synthesized as well as the samples calcined below 

823 K do not show any distinct vibrational feature as seen in Figure 12. The sample 

calcined at 823 K clearly shows two main bands of the perovskite-type structure at 

139.4(9) cm-1 and 168.3(1) cm-1 assigned to A1 modes45 as given in Table 3. From 

873 K on the bands of the perovskite-type as well as the mullite-type phases can be 
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observed. Although XRD results show that the sample BFO/823 contains a significant 

amount of Bi2Fe4O9 (22.4(7)%, Table 1) the respective bands could not be resolved 

from the Raman spectra maybe due to band merging. For instance, at ambient 

condition Bi2Fe4O9 exhibit Raman bands at 87, 110, 182, 207, 222, 283, 331, 365, 

430, 552 and 647 cm-1.46 Above 873 K the bands of Fe2O3
47 at 225, 292, 299, 410 

and 611 cm-1 can also be identified although the Fe2O3 content in the samples is very 

low (< 3%, Table 1). Starting from 873 K all spectra show the typical mullite-type 

Bi2Fe4O9 modes. 

 

Figure 12. Raman spectra of Bi2Fe4O9 as-synthesized powder and samples heated 

ex situ between 573 and 1023 K at 50 K step for 2 h. 
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Table 3. Raman frequencies [cm-1] of polyol samples calcined between 823 K and 

1023 K, bulk BiFeO3 and Bi2Fe4O9. 

Raman shifts /cm-1 

BFO/823 BFO/873 BFO/923 BFO/973 BFO/1023 BiFeO3
48 Bi2Fe4O9

46 

– 90.6(1) 90.0(2) 90.2(6) 90.3(3) – 87 

108(2) 110.9(11) 111.8(1) 112.0(3) 112.4(1) – 110 

139.4(9) 139.1(12) – – – 136 – 

168.3(1) 167.8(10) – – – 170 – 

– 184.9(3) 183.2(2) 183.5(3) 183.4(1) – 182 

– 207.2(2) 209.0(4) 209.3(1) 209.3(1) – 207 

223(10) – – – – 217 – 

– 225.2(2) 225.4(2) 225.7(4) 224.6(7) – 222 

260.6(2) – – – – 260 – 

275(1) – – – – 278 – 

– 280.5(9) 279.8(3) 280.3(3) 280.7(2) – 283 

– 330.1(2) 329.4(2) 330.1(3) 332(1) – 331 

340 (17) – – – – 345 – 

366(2) 366.6(8) 366.1(2) 366.6(4) 366.5(2) 365 365 

– – – – – 425 – 

– 430.8(3) 430.5(2) 430.8(2) 431.3(1) – 430 

464(8) – – – – 469 – 

526(4) – – – – 520 – 

– 553.1(2) 553.5(1) 554.5(1) 554.2(1) – 552 

640(9) 643.6(7) 643.2(2) 643.9(2) 644.5(2) – 647 

See table 1 for the details of the samples (BFO/#) 
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Infrared Spectroscopy 

The evolutions of FTIR spectra of the calcined samples are shown in Figure 13. The 

band positions and assignments are summarized and compared to respective 

literature values as given in Table 4. Typical bands for the perovskite-type BiFeO3
20 

around ∼445 and ∼548 cm−1 can be identified in samples until 823 K. From 873 K 

on, the bands assigned to the stretching and bending of Fe−O of the tetrahedral unit 

of the mullite-type Bi2Fe4O9 structure can clearly be identified.49 However, the sample 

calcined at 823 K already contains a significant amount of Bi2Fe4O9 (22.4(7)%, Table 

1), and the typical modes of the structure cannot be detected (e.g., 812 cm−1) as in 

the Raman spectra. This behavior might be a hint for a stronger disorder in the 

double-tetrahedral units compared to the octahedral chains during the formation of 

the mullite-type phase5 caused by initial tricluster50 formation. Starting from 923 K on, 

no other bands than the expected bands for Bi2Fe4O9 can be identified. The modes 

between 1200 and 1700 cm−1 are assumed to be related to the vibrations of some 

starting/modified organic species which disappeared when the samples were 

calcined above 873 K. 

 

Table 4. FTIR band positions [cm-1] of polyol samples calcined between 573 K and 

1023 K, bulk BiFeO3 and Bi2Fe4O9. 

Band positions /cm-1 

BiFeO3
20 

BFO 
/573 

BFO 
/623 

BFO 
/673 

BFO 
/723 

BFO 
/773 

BFO 
/823 

BFO 
/873 

BFO 
/923 

BFO 
/973 

BFO 
/1023 

Bi2Fe4O9
49 

445 – – – – 444(5) 445(1) 441(3) 437(1) 439(2) 440(4) 437 
– 478(3) 472(2) 469(1) 472(4) – – 467(4) 473(9) 473(12) 478(10) 471 
– – – – – – – 493(4) 497(3) 498(2) 499(4) 497 
– – – – – – 529(5) 533(15) 530(14) 530(11) 529(10) 527 

548 568(4) 564(3) 566(4) 569(3) 562(9) 556(3) – – – – – 
– – – – – – 589(9) – 587(41) 584(8) 584(10) 570 
– – – – – – – 601(9) 609(5) 608(3) 609(6) 600 
– – – – – – 633(9) 643(2) 639(5) 640(7) 639(6) 648 
– – – – – – 697(3) 667(31) 653(62) 661(53) 662(40) – 
– – – – – – – 812(1) 812(1) 812(1) 813(1) 812 

See table 1 for the details of the samples (BFO/#) 
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Figure 13. FTIR spectra of Bi2Fe4O9 polyol samples heated ex situ at 573 – 1023 K 

at 50 K step for 2 h. 

 

4. CONCLUSION 

The mullite-type Bi2Fe4O9 was synthesized via the polyol method followed by 

subsequent calcination. Mixtures of perovskite-type and mullite-type structures with 

small crystallite sizes were successfully produced showing different optical features 

with band gaps between 1.80(1) and 2.75(3) eV. The results suggest that Bi2Fe4O9 is 

a direct semiconductor with a band gap of 2.13(3) eV. The observed second 

absorption edge of Bi2Fe4O9 may be related either to thermal phonon driven effect or 

the d−d transitions of the Fe3+−Fe3+ tetrahedral pairs, whereas the latter could not 

explain the observation of a second absorption edge in isotypic Bi2Al4O9. The 

samples exhibit a well-functionalized surface covered by nanoparticles of 4 – 13 nm 

in size, which rearranged by the electron beam during TEM investigations. The 

present study suggests that the derivative absorption spectrum fitting (DASF) 

method, is found to be a suitable tool to concomitantly determine the band gap and 

the nature of transition (direct and indirect) by comparing the values to those 

obtained by the Tauc’s method. Whether a mixture of BiFeO3 and Bi2Fe4O9 provides 

a higher photocatalytic activity compared to either BiFeO3 or Bi2Fe4O9 (analogous to 

rutile: anatase) would be interesting. 

  



- 103 - 

ASSOCIATED CONTENT 

*S Supporting Information 

The Supporting Information is available free of charge on the ACS Publications 

website at DOI: 10.1021/acs.jpcc.6b04773. Change of shape and facet of a 

nanoparticle during the acquisition of the 10 images using HRTEM (Video S1) (AVI) 

 
AUTHOR INFORMATION 

Corresponding Author 

*E-mail address: murshed@uni-bremen.de; phone: +49 (0)421 218 63144; fax: +49 

(0)421 218 63144. Notes The authors declare no competing financial interest. 

 
ACKNOWLEDGMENTS 

We gratefully thank the University of Bremen for the financial support. 

 
Reference 

(1)  Zhang, Q.; Gong, W.; Wang, J.; Ning, X.; Wang, Z.; Zhao, X.; Ren, W.; Zhang, 

Z. Size-Dependent Magnetic, Photoabsorbing, and Photocatalytic Properties of 

Single-Crystalline Bi2Fe4O9 Semiconductor Nanocrystals. J. Phys. Chem. C 

2011, 115, 25241–25246. 

(2)  Li, Y.; Zhang, Y.; Ye, W.; Yu, J.; Lu, C.; Xia, L. Photo-to-Current Response of 

Bi2Fe4O9 Nanocrystals Synthesized through a Chemical Co-Precipitation 

Process. New J. Chem. 2012, 36 (6), 1297–1300. 

(3)  Sun, S.; Wang, W.; Zhang, L.; Shang, M. Visible Light-Induced Photocatalytic 

Oxidation of Phenol and Aqueous Ammonia in Flowerlike Bi2Fe4O9 

Suspensions. J. Phys. Chem. C 2009, 113, 12826–12831. 

(4)  Park, T.; Papaefthymiou, G. C.; Viescas, A. J.; Moodenbaugh, A. R.; Wong, S. 

S. Size-Dependent Magnetic Properties of Single-Crystalline Multiferroic BiFeO 

3 Nanoparticles. Nano Lett. 2007, 7 (3), 766–772. 

(5)  Gesing, T. M.; Fischer, R. X.; Burianek, M.; Mühlberg, M.; Debnath, T.; 

Rüscher, C. H.; Ottinger, J.; Buhl, J.-C.; Schneider, H. Synthesis and 

Properties of Mullite-Type (Bi1−xSrx)2(M11−yM2y)4O9−x (M=Al, Ga, Fe). J. Eur. 

Ceram. Soc. 2011, 31 (16), 3055–3062. 

(6)  Schneider, H.; Fischer, R. X.; Gesing, T. M.; Schreuer, J.; Mühlberg, M. Crystal 

Chemistry and Properties of Mullite-Type Bi2M4O9 : An Overview. Int. J. Mater. 

Res. 2012, 103 (4), 422–429. 

(7)  Weber, S.-U.; Gesing, T. M.; Röder, J.; Litterst, J.; Fischer, R. X.; Becker, K. D. 

Temperature-Dependent 57Fe Mössbauer Spectroscopy and Local Structure of 

Mullite-Type Bi2(FexAl1-x)4O9 (0.1<x<1) Solid Solutions. Int. J. Mater. Res. 

2012, 103, 430–437. 

(8)  Weber, S.; Gesing, T. M.; Eckold, G.; Fischer, R. X.; Litterst, F.; Becker, K. 

Temperature-Dependent 57Fe Mössbauer Spectroscopy and Local Structure of 



- 104 - 

the Mullite Type Bi2(FexGa1-x)4O9 (0.1<x1) Solid Solution. J. Phys. Chem. 

Solids 2014, 75, 416–426. 

(9)  Murshed, M. M.; Nénert, G.; Burianek, M.; Robben, L.; Mühlberg, M.; 

Schneider, H.; Fischer, R. X.; Gesing, T. M. Temperature-Dependent Structural 

Studies of Mullite-Type Bi2Fe4O9. J. Solid State Chem. 2013, 197, 370–378. 

(10)  Koizumi, H.; Niizeki, N.; Ikeda, T. An X-Ray Study on Bi2O3-Fe2O3 System. 

Jpn. J. Appl. Phys. 1964, 3, 495–496. 

(11)  Wang, X.; Zhang, M.; Tian, P.; Chin, W. S.; Zhang, C. M. A Facile Approach to 

Pure-Phase Bi2Fe4O9 Nanoparticles Sensitive to Visible Light. Appl. Surf. Sci. 

2014, 321, 144–149. 

(12)  Wang, X.; Lin, Y.; Zhang, Z. C.; Bian, J. Y. Photocatalytic Activities of 

Multiferroic Bismuth Ferrite Nanoparticles Prepared by Glycol-Based Sol–gel 

Process. J. Sol-Gel Sci. Technol. 2011, 60 (1), 1–5. 

(13)  Zhao, J.; Liu, T.; Xu, Y.; He, Y.; Chen, W. Synthesis and Characterization of 

Bi2Fe4O9 Powders. Mater. Chem. Phys. 2011, 128 (3), 388–391. 

(14)  Xian, T.; Yang, H.; Shen, X.; Jiang, J. L.; Wei, Z. Q.; Feng, W. J. Preparation of 

High-Quality BiFeO3 Nanopowders via a Polyacrylamide Gel Route. J. Alloys 

Compd. 2009, 480 (2), 889–892. 

(15)  Ortiz-Quiñonez, J. L.; Díaz, D.; Zumeta-Dubé, I.; Arriola-Santamaría, H.; 

Betancourt, I.; Santiago-Jacinto, P.; Nava-Etzana, N. Easy Synthesis of High-

Purity BiFeO3 Nanoparticles: New Insights Derived from the Structural, Optical, 

and Magnetic Characterization. Inorg. Chem. 2013, 52 (18), 10306–10317. 

(16)  Ruan, Q.-J.; Zhang, W.-D. Tunable Morphology of Bi2Fe4O9 Crystals for 

Photocatalytic Oxidation. J. Phys. Chem. C 2009, 113 (10), 4168–4173. 

(17)  Fischer, P.; Polomska, M.; Sosnowska, I.; Szymanski, M. Temperature 

Dependence of the Crystal and Magnetic Structures of BiFeO3. J. Phys. C 

1980, 13, 1931–1940. 

(18)  Ruette, B.; Zvyagin, S.; Pyatakov, A. P.; Bush, A.; Li, J. F.; Belotelov, V. I.; 

Zvezdin, A. K.; Viehland, D. Magnetic-Field-Induced Phase Transition in 

BiFeO3 Observed by High-Field Electron Spin Resonance: Cycloidal to 

Homogeneous. Phys. Rev. B 2004, 69 (6), 064114. 

(19)  Gao, F.; Chen, X. Y.; Yin, K. B.; Dong, S.; Ren, Z. F.; Yuan, F.; Yu, T.; Zou, Z. 

G.; Liu, J.-M. Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3 

Nanoparticles. Adv. Mater. 2007, 19 (19), 2889–2892. 

(20)  Srivastav, S. K.; S. Gajbhiye, N. Low Temperature Synthesis, Structural, 

Optical and Magnetic Properties of Bismuth Ferrite Nanoparticles. J. Am. 

Ceram. Soc. 2012, 95 (11), 3678–3682. 

(21)  Ihlefeld, J. F.; Podraza, N. J.; Liu, Z. K.; Rai, R. C.; Xu, X.; Heeg, T.; Chen, Y. 

B.; Li, J.; Collins, R. W.; Musfeldt, J. L.; et al. Optical Band Gap of BiFeO3 

Grown by Molecular-Beam Epitaxy. Appl. Phys. Lett. 2008, 92 (14), 142908. 

(22)  Zhao, Y.; Miao, J.; Zhang, X.; Chen, Y.; Xu, X. G.; Jiang, Y. Ultra-Thin BiFeO3 

Nanowires Prepared by a Sol–gel Combustion Method: An Investigation of Its 

Multiferroic and Optical Properties. J. Mater. Sci. Mater. Electron. 2012, 23 (1), 

180–184. 

(23)  Xian, T.; Yang, H.; Dai, J. F.; Wei, Z. Q.; Ma, J. Y.; Feng, W. J. Photocatalytic 



- 105 - 

Properties of BiFeO3 Nanoparticles with Different Sizes. Mater. Lett. 2011, 65 

(11), 1573–1575. 

(24)  Singh, A. K.; Kaushik, S. D.; Kumar, B.; Mishra, P. K.; Venimadhav, A.; 

Siruguri, V.; Patnaik, S. Substantial Magnetoelectric Coupling near Room 

Temperature in Bi2Fe4O9. Appl. Phys. Lett. 2008, 92 (13), 132910. 

(25)  Wu, X. H.; Miao, J.; Zhao, Y.; Meng, X. B.; Xu, X. G.; Wang, S. G.; Jiang, Y. 

Novel Multiferroic Bi2Fe4O9 Nanoparticles: The Interesting Optical, 

Photocatalytic, and Multiferroic Properties. Optoelectron. Adv. Mater. Rapid 

Commun. 2013, 7 (1-2), 116–120. 

(26)  Hu, Z.-T.; Chen, B.; Lim, T.-T. Single-Crystalline Bi2Fe4O9 Synthesized by Low-

Temperature Co-Precipitation: Performance as Photo- and Fenton Catalysts. 

RSC Adv. 2014, 4 (53), 27820. 

(27)  Cai, D.; Du, D.; Yu, S.; Cheng, J. Oriented Growth of Bi2Fe4O9 Crystal and Its 

Photocatalytic Activity. Procedia Eng. 2012, 27, 577–582. 

(28)  Zhang, Y.; Guo, Y.; Duan, H.; Li, H.; Yang, L.; Wang, P.; Sun, C.; Xu, B.; Liu, 

H. Photoelectrochemical Response and Electronic Structure Analysis of Mono-

Dispersed Cuboid-Shaped Bi2Fe4O9 Crystals with near-Infrared Absorption. 

RSC Adv. 2014, 4 (54), 28209–28218. 

(29)  Chen, P.; Xu, X.; Koenigsmann, C.; Santulli, A. C.; Wong, S. S.; Musfeldt, J. L. 

Size-Dependent Infrared Phonon Modes and Ferroelectric Phase Transition in 

BiFeO3 Nanoparticles. Nano Lett. 2010, 10 (11), 4526–4532. 

(30)  Fievet, F.; Lagier, J. P.; Figlarz, M. Preparing Monodisperse Metal Powders in 

Micrometer and Submicrometer Sizes by the Polyol Process. MRS Bull. 1989, 

14 (12), 29–34. 

(31)  Feldmann, C. Polyol-Mediated Synthesis of Nanoscale Functional Materials. 

Solid State Sci. 2005, 7 (7), 868–873. 

(32)  Bakardjieva, S.; Šubrt, J.; Štengl, V.; Dianez, M. J.; Sayagues, M. J. 

Photoactivity of Anatase–rutile TiO2 Nanocrystalline Mixtures Obtained by Heat 

Treatment of Homogeneously Precipitated Anatase. Appl. Catal. B Environ. 

2005, 58 (3-4), 193–202. 

(33)  Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Explaining 

the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using 

EPR. J. Phys. Chem. B 2003, 107 (19), 4545–4549. 

(34)  Zhao, J.; Liu, T.; Xu, Y.; He, Y.; Chen, W. Synthesis and Characterization of 

Bi2Fe4O9 Powders. Mater. Chem. Phys. 2011, 128 (3), 388–391. 

(35)  Kirsch, A.; Murshed, M. M.; Gaczynski, P.; Becker, K.-D.; Gesing, T. M. 

Bi2Fe4O9: Structural Changes from Nano- to Micro-Crystalline State. Zeitschrift 

für Naturforsch. B 2016, 0 (0). 

(36)  Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure 

of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627–637. 

(37)  Souri, D.; Tahan, Z. E. A New Method for the Determination of Optical Band 

Gap and the Nature of Optical Transitions in Semiconductors. Appl. Phys. B 

2015, 119 (2), 273–279. 

(38)  Zielińska, B.; Grzechulska, J.; Grzmil, B.; Morawski, A. W. Photocatalytic 

Degradation of Reactive Black 5 A Comparison between TiO2-Tytanpol A11 



- 106 - 

and TiO2-Degussa P25 Photocatalysts. Appl. Catal. B Environ. 2001, 35 (1), 

L1–L7. 

(39)  Sherman, D. M.; Waite, T. D. Electronic Spectra of Fe3+ Oxides and Oxide 

Hydroxides in the near IR to near UV. Am. Mineral. 1985, 70 (11-12), 1262–

1269. 

(40)  Pchelkina, Z. V.; Streltsov, S. V. Ab Initio Investigation of the Exchange 

Interactions in Bi2Fe4O9 : The Cairo Pentagonal Lattice Compound. Phys. Rev. 

B 2013, 88 (5), 054424. 

(41)  Souri, D.; Shomalian, K. Band Gap Determination by Absorption Spectrum 

Fitting Method (ASF) and Structural Properties of Different Compositions of 

(60−x) V2O5–40 TeO2–xSb2O3 Glasses. J. Non. Cryst. Solids 2009, 355 (31-33), 

1597–1601. 

(42)  Mott, N. F.; Davis, E. A. Electronic Processes In Non-Crystalline Materials, 

Second edi.; Oxford University Press, 1979. 

(43)  Gujar, T. P.; Shinde, V. R.; Lokhande, C. D. Nanocrystalline and Highly 

Resistive Bismuth Ferric Oxide Thin Films by a Simple Chemical Method. 

Mater. Chem. Phys. 2007, 103 (1), 142–146. 

(44)  Dong, H.; Wu, Z.; Wang, S.; Duan, W.; Li, J. Improving the Optical Absorption 

of BiFeO3 for Photovoltaic Applications via Uniaxial Compression or Biaxial 

Tension. Appl. Phys. Lett. 2013, 102 (7), 072905–1 – 5. 

(45)  Yang, Y.; Sun, J. Y.; Zhu, K.; Liu, Y. L.; Chen, J.; Xing, X. R. Raman Study of 

BiFeO3 with Different Excitation Wavelengths. Phys. B Condens. Matter 2009, 

404 (1), 171–174. 

(46)  Iliev, M. N.; Litvinchuk, A. P.; Hadjiev, V. G.; Gospodinov, M. M.; Skumryev, V.; 

Ressouche, E. Phonon and Magnon Scattering of Antiferromagnetic Bi2Fe4O9. 

Phys. Rev. B 2010, 81 (2), 024302. 

(47)  Shim, S.-H.; Duffy, T. S. Raman Spectroscopy of Fe2O3 to 62 GPa. Am. 

Mineral. 2001, 87, 318–326. 

(48)  Arora, M.; Sati, P. C.; Chauhan, S.; Chhoker, S.; Panwar, A. K.; Kumar, M. 

Structural, Optical and Multiferroic Properties of BiFeO3 Nanoparticles 

Synthesized by Soft Chemical Route. J. Supercond. Nov. Magn. 2013, 26 (2), 

443–448. 

(49)  Voll, D.; Beran, A.; Schneider, H. Variation of Infrared Absorption Spectra in the 

System Bi2Al4−xFeXO9 (X = 0–4), Structurally Related to Mullite. Phys. Chem. 

Miner. 2006, 33 (8-9), 623–628. 

(50)  Gesing, T. M.; Schowalter, M.; Weidenthaler, C.; Murshed, M. M.; Nénert, G.; 

Mendive, C. B.; Curti, M.; Rosenauer, A.; Buhl, J.-C.; Schneider, H.; et al. 

Strontium Doping in Mullite-Type Bismuth Aluminate: A Vacancy Investigation 

Using Neutrons, Photons and Electrons. J. Mater. Chem. 2012, 22 (36), 18814. 

 
  



- 107 - 

Chapter 6  
 

Structural, spectroscopic and thermoanalytic studies on Bi2Fe4O9: 

tunable properties driven by nano- and poly-crystalline states. 
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Abstract 

We report on average crystallite size dependent structural, spectroscopic and 

thermoanalytic studies of Bi2Fe4O9 synthesized by a sol-gel method. In-situ heating 

X-ray diffraction revealed the transformation of an X-ray amorphous precursor into a 

rhombohedral perovskite-type BiFeO3 followed by a second transformation into 

orthorhombic mullite-type Bi2Fe4O9 phase. Twelve samples with average crystallite 

sizes between 35.3(4) nm and 401(17) nm were produced by calcination of the 

precursor for two hours at temperatures between 900 K and 1073 K. Average 

crystallite sizes calculated from X-ray diffraction and transmission electron 

microscopy are in excellent agreement. X-ray powder diffraction data Rietveld 

refinements demonstrate each structural feature as function of the average crystallite 

size. Both in the in-situ and ex-situ experiments the metric parameters evolve through 

expansion of a- and, contractions of b- and c-cell parameters, leading to a parabolic 

expansion of the cell volume. The associated nano-properties significantly differ 

across a critical average crystallite size of 122(2) nm, such as metric parameters, 

polyhedral distortions, vibrational mode frequencies, bandgaps and hyperfine 

parameters. The antiferromagnetic transition temperature was found to be 249(1) K 

for an average crystallite size of 86(1) nm, and its transition enthalpy significantly 

decreases below the critical size as observed by differential scanning calorimetry. 

The second absorption feature in the UV/Vis, which is typical for bulk Bi2Fe4O9, was 

found to be mainly caused by the d-d transition of the Fe3+ cations in the FeO4 

tetrahedra. Temperature-dependent Raman spectra helped to understand the 

average crystallite size-dependent characteristic vibrational features of some 

selective nanomaterials of Bi2Fe4O9. 
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1. Introduction 

The study of structure-property relationships is unambiguously important for the 

development of new key technologies such as water splitting1, spintronics2, energy 

storage3 and energy conversion4. Piezoelectric5, magnetic6 or optical properties7 of a 

given structure are highly dependent on the dimensionality or crystallite size. Some 

systems drastically change its magnetic properties8,9 or even develop magnetism in 

conventional non-magnetic oxides10,11 when the crystallites shrink down to a critical 

nano-size. Therefore, detailed systematic structural studies on nanomaterials and the 

associated crystallite size-dependent properties are of crucial importance to better 

understand the rich functionalities of the transition metal oxides. Beside the 

interesting magnetic12, electronic13, optic14 and catalytic15 properties of Bi2Fe4O9, its 

crystal-chemistry draws much attention for possible applications as spintronics14, gas 

sensors16 and photocatalysts17,18. Although the crystal structure is centrosymmetric 

the reported multiferroic properties19,20 harbour considerable ongoing debates. 

Bi2Fe4O9 crystallizes in the orthorhombic space group Pbam as shown in Figure 1.21 

Bi2Fe4O9 belongs to the mullite-type structure22 characterized by the edge-sharing 

FeO6 octahedra running parallel to the crystallographic c-axis. These chains are 

interconnected by Fe2O7 dimers formed by two FeO4 tetrahedra (Fig. 1). The Bi3+ 

cations reside in the channels formed by the framework, where the stereochemically 

active 6s2 lone electron pairs (LEPs) point toward the vacant sites of the channels.23 

At around TN = 240 – 263 K19,24-26 the structure undergoes a transition from a 

paramagnetic into an antiferromagnetic state. The magnetic lattice formed by two 

non-equivalent iron sites is quite complex and found to be the first analogue of a 

Cairo pentagonal magnetic lattice.27 The peculiar non-collinearity of the magnetic 

lattice was attributed to geometric frustration, and as much as five main magnetic 

superexchange interactions were identified.27 There are two equally populated 

magnetic domains that are phase shifted about 155° alternating along the c-axis.27 
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Figure 1. Crystal structure of Bi2Fe4O9, showing some polyhedral coordination and 

their connectivity. 

 

All magnetic moments are found to be perpendicular to the c-axis with ferromagnetic 

coupling between the FeO6 octahedral units along the chain and antiferromagnetic 

coupling between the cross-linking Fe2O7 tetrahedral units.27 The latter 

superexchange interaction was found to be substantially higher (J = 73 K) than the 

other four (J = 10 – 36 K).28 Some interesting size-dependent effects in this 

compound were reported.12,14 Whereas Tian et al.12 focused on the magnetic and the 

ferroelectric properties in the microcrystalline regime, Zhang et al.14 studied the 
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magnetic, optic and photocatalytic properties in the nanocrystalline regime (14 –

 78 nm). In either case as well as in many relevant publications, it is not clear whether 

the ‘size’ means particle/agglomeration dimension or average crystallite size.29-31 In 

this regard, more details on the definition of ‘size’ is available elsewhere in the 

review.32 It is conceivable that a physical parameter such as band gap, Curie/Néel 

temperature, ferroelectric phase-transition temperature bears significance if the 

crystallite description includes structural information along with its morphological and 

distributive descriptions.33 In the present work, we intend to give a full-fledged 

structural and spectroscopic analysis of twelve Bi2Fe4O9 samples with well-defined 

crystallite sizes from 35.3(4) nm to 401(17) nm. Each sample was characterized by 

X-ray powder diffraction (XRD) followed by Rietveld refinement. Raman, Fourier 

transform infrared (FTIR), diffuse UV/Vis reflectance, 57Fe Mössbauer spectroscopy, 

transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) 

were conducted for an in-depth understanding of the size-dependent crystal-physical 

properties of Bi2Fe4O9.  

 

2. Methods 

2.1. Synthesis 

The synthesis of the sample used for the in-situ heating XRD experiment was 

described elsewhere.34 The precursors studied for the ex-situ XRD were synthesized 

using the method described by Zhang et al.14 That is, 5 mmol Bi(NO3)3·5H2O (Sigma-

Aldrich, ≥ 98%), 10 mmol Fe(NO3)3·9H2O (Sigma-Aldrich, ≥ 98%) and 1.98 g PVA 

(Sigma-Aldrich, Mowiol 10-98, MW =  ~61000 g mol-1) were dissolved into 38 mL 

deionized water. To prevent the precipitation of Bi(OH)3 3 mL of conc. HNO3 were 

added. The mixture was heated in a glycerine bath to 353 K and stirred, releasing 

NOx gases, until a dry foam was obtained after 2.5 h. Afterward, the mixture was 

dried in an oven at 523 K for about 1.5 h with subsequent grinding. The obtained 

precursors were separated into two equal portions and calcined in a porcelain 

crucible for 2 h at temperatures ranging from 900 to 1073 K. In total, 12 samples of 

mullite-type Bi2Fe4O9 structure with ACSs from 35.3(4) nm to 401(17) nm were 

produced. 
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2.2. X-ray diffraction 

XRD data were collected on an X’Pert MPD PRO diffractometer (PANalytical GmbH, 

Almelo, The Netherlands). It is equipped with a X’Celerator detector system and uses 

Ni-filtered CuKα1,2 radiation (λKα1 = 154.05929(5) pm, λKα2 = 154.4414(2) pm) in 

Bragg-Brentano geometry. For the temperature-dependent investigations an 

HTK1200N heating chamber (Anton Paar, Graz, Austria) was used. Data were 

collected from 5 to 100° 2θ with a step width of 0.0167° 2θ and a measurement time 

of 75 s per step. The in-situ measurements were performed from 300 to 1120 K at 

20 K step. For each dataset a temperature equilibration time of 5 minute was used. 

The ex-situ measurements were carried out at room temperature from 5 to 85° 2θ 

with a step width of 0.0167° 2θ and a measurement time of 30 s per step. The 

obtained data were refined using the Rietveld method (TOPAS V4.2, Bruker AXS) 

and the fundamental parameter approach was used for profile fitting, where the 

fundamental parameters were fitted against a standard material (LaB6). The 

parameters were refined in a batch; that is, the refined values were used as starting 

values for the consecutive dataset. During Rietveld refinements the background, 

metric parameters, profile parameters, atomic coordinates were optimized. In some 

cases, the isotropic displacement parameters were constrained between atoms of the 

same element. The average crystallite size (ACS) was calculated from all observed 

X-ray reflections using the fundamental approach, which is described as LVol(IB) by 

the TOPAS suite. LVol(IB) refers to the volume-weighted mean of the coherently 

diffracted domain size using the integral breadth for the description of the reflection 

profile. Since the reflection profile is intrinsically associated with the size, shape, 

distribution and defects (strain) of the domains29,30,31 the LVol(IB) values throughout 

this study should be considered as ‘apparent’ ACS for spherical crystallites with a 

unimodal distribution. Within the TOPAS facilities, the pseudo-Voigt profile function 

was deconvoluted into Gaussian and Lorentzian components, describing the ACS 

and micro-strain (ε0).  

 

2.3. Spectroscopy 

Diffuse UV/Vis reflectance spectra were collected on a Shimadzu 2700 UV/Vis 

spectrophotometer equipped with a UV/Vis DiffuseIR cell (Pike Technologies). 

Barium sulphate was used for baseline correction. Data were collected in a slow 
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scanning mode from 190 nm to 850 nm wavelength using 0.5 nm steps. An averaged 

spectrum was calculated from eight scans for each sample. 

Raman spectra were measured on a Horiba LabRam Aramis spectrometer equipped 

with a Laser of 785 nm, a slit of 100 μm, a hole of 1 mm and an exposure time of 

300 s with 2 accumulations. Data were collected between 90 cm−1 and 1100 cm−1 

with a spectral resolution of approx. 2.2 cm−1 using a grating of 1200 grooves/mm. 

Temperature-dependent Raman measurements were performed from 200 – 350 K in 

10 K steps using a Linkam cooling stage (THMS600) attached to a pump (LNP95 

Cooling Pump) providing a continuous flow of liquid nitrogen. The measurements 

were carried out on a pressed pellet of the corresponding powder sample with a 

temperature equilibration time of 7 min. The spectra were fitted with single peaks 

using the Lamp software35. 

FTIR-measurements were performed from 370 cm−1 to 4000 cm−1 with 128 scans 

using the KBr method (0.5 mg sample in 200 mg KBr). The band positions were fitted 

with the TOPAS V4.2, Bruker AXS software using single peaks of Split-PearsonVII 

type. 

57Fe Mössbauer absorption spectra were collected using a standard spectrometer 

with sinusoidal velocity sweep. The about 10 mCi 57Co in Rhodium γ-radiation source 

was kept at room temperature. Absorbers of powder specimens with thicknesses 

corresponding to about 0.25 mg·cm-2 of 57Fe were included in polyethylene 

containers. The absorber temperatures were varied using a He-flow cryostat 

(CRYOVAC®). For data analysis, we used the full hyperfine Hamiltonian provided by 

MossWinn 4.0 software.36 Due to the relatively high absorber thickness transmission 

integral analysis was applied. 

 

2.4. Transmission electron microscopy 

TEM measurements were carried out on a Titan 80/ 300 kV (FEI Europe, Eindhoven, 

The Netherlands) equipped with a Cs corrector for the spherical aberration of the 

objective lens. The microscope was operated at 300 kV during all investigations. The 

samples were prepared by dissolving the material in ethanol, pestling, and 

subsequent dispersion on copper grids covered with a thin holey amorphous carbon 

film. 
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2.5. Thermal analysis 

DSC measurements were performed on a DSC 3+ STARe System of Mettler Toledo. 

For the measurements, aluminum crucibles were used with an average sample mass 

of 54 ± 12 mg. After recording the spectra were normalized to their individual mass. 

The samples were measured with a heating rate of 10 K min-1 and a continuous N2 

flow of 20 mL min-1 from 200 K to 350 K in 3 full cycles each with a cooling and 

heating segment, respectively. 

 

3. Results and discussion 

3.1. X-ray analysis 

In-situ XRD 

X-ray powder diffraction revealed that the as-synthesized precursor powder is X-ray 

amorphous. Upon in-situ heating, the precursor first transformed into BiFeO3 

perovskite at 740 K followed by a second transformation into mullite-type Bi2Fe4O9 

from 780 K on.34 We conducted Rietveld refinements on the XRD data from 780 K to 

1120 K to follow the ACS, ε0 and metric parameters (a, b, c and V) of Bi2Fe4O9. The 

structural features were followed starting from the first observation of Bi2Fe4O9 

reflections. Its crystal structure along with the changes of metric parameters and 

selected XRD patterns are shown in Figure 2. BiFeO3 cannot be detected above 860 

K, and Bi2Fe4O9 was observed to be stable up to 1120 K. That is, the ACS-

dependent properties of Bi2Fe4O9 between 740 K and 860 K belong to the mixed 

phase. On the other hand, above 860 K the successive increase of ACS of Bi2Fe4O9 

at a given temperature is purely due to Ostwald ripening. Figure 3 shows the ACSs 

obtained from the in-situ XRD data Rietveld analyses along with the changes of the 

metric parameters and the micro-strain while heating the sample. 
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Figure 2. Left panel: In-situ XRD patterns, where the arrow shows the increase of 

temperature from 780 K to 980 K at 20 K step. Characteristic intense reflections of 

Bi2Fe4O9 (121, 211) and BiFeO3 (104, 110) are shown by stars and diamonds, 

respectively. Middle and right panel: Total changes of metric parameters between 

780 K and 980 K. 

 

The pseudo-sigmoid behavior shows that the ACS slightly increases to 46(1) nm until 

920 K when the system comprises of the highest micro-strain. Afterward, the steep 

decrease of the micro-strain follows the steep increase of the ACS till 1120 K. The b- 

and c-cell parameters contract, whereas the a-cell parameter expands up to 920 K 

followed by an asymptotic saturation. On the other hand, the c-cell parameter steeply 

contracts to a lowest value at about 850 K and expands afterward. The anisotropic 

changes of the cell parameters lead to a parabolic change of the cell volume with a 

trough at 920 K. The lattice thermal expansion of the bulk Bi2Fe4O9 material is known 

to be anisotropic along with positive thermal expansion coefficients (TECs).37 

However, the observed in-situ phenomenon cannot be directly compared since below 

920 K both formation kinetics and grain coarsening occur influenced by the 

temperature-dependent changes of the interfacial energy and mass transport. 

Afterward, the ACS successively increases, indicating that the structural features 

change during the formation and coarsening of Bi2Fe4O9, which may strongly differ 

from those of the bulk material.  
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Figure 3. Average crystallite size (ACS) and micro-strain (ε0) (upper panel), and 

metric parameters (middle and lower panel) of Bi2Fe4O9 obtained from in situ XRD 

data while heating the sample between 780 K and 1120 K. 

 

Ex-situ XRD 

The XRD powder patterns of twelve Bi2Fe4O9 samples, obtained by ex-situ heating of 

the precursors at different temperatures between 900 K and 1073 K for 2 h, are 

shown in Figure S1. Plotting the structural features against the calcination 

temperature at ambient conditions shows almost similar behaviors as seen in the in-

situ condition (Figure 3). The ACS increases with higher calcination temperature. 

This method is limited to produce pure sample below 35.3(4) nm by using a 

calcination temperature of 900 K. 
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Figure 4. Changes of the average crystallite size (ACS) and microstrain (ε0) (upper 

panel), and metric parameters as function of calcination temperature (middle and 

lower panel). Each sample was calcined at different temperatures from 900 K to 1073 

K for 2 h. 

 

Below this critical temperature the perovskite BiFeO3 phase34 is not fully converted 

into Bi2Fe4O9. The micro-strain first increases and then decreases with increasing the 

calcination temperature. Within a difference of 120 K, the a-, b- and c-cell parameters 

change +0.2%, -0.3% and -0.2%, respectively, leading to a cell volume contraction of 

0.2%. It is noteworthy to mention that although each sample was found to be X-ray 

pure Raman as well as 57Fe Mössbauer spectra identified slight X-ray amorphous 

impurities. Figure 5 shows a comparative view between the in-situ and ex-situ 
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parameters regarding the ACS. The deviating between the corresponding parameters 

can be explained by size-dependent thermal expansion, and the effect is more 

significant for samples with ACS below ~ 100 nm. Moreover, since samples are 

synthesized under different conditions (see below), a straightforward comparison 

may not work.  

 

 
 

Figure 5. Comparison between selected in-situ and ex-situ parameters of Bi2Fe4O9 

obtained from X-ray powder diffraction data Rietveld refinements.  
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Figure 6. Visualization of polyhedral distortions of Bi2Fe4O9 with different average 

crystallite sizes (ACS). Left panel: Development of the octahedral rotation angle. 

Middle panel: Quadratic elongation (λ) of the octahedral (FeO6) and tetrahedral unit 

(FeO4). Right panel: Bond angle variance (σ2) of the FeO6 and FeO4 polyhedra.  

 

To get an in-depth picture how the structural features evolve for samples with ACS 

below ~100 nm Figure 6 gives a visual guideline. Both the FeO4 and FeO6 polyhedra 

possess strong distortion indices such as quadratic elongation (λ) and angle variance 

(σ2).38 The rotation angle of the edge built by O(11) and O(12) (Figure 1) and the 

(002) crystallographic plane is found to be ~105 ° for the sample with the smallest 

ACS of 35.3(4) nm, which is 14 ° higher than that of the ACS of 122(2) nm, which lies 

close to the bulk structure value of ~91 °. At a given ACS < 100 nm both the λ and σ2 

in the FeO4 tetrahedral units are more pronounced than those in the FeO6 octahedra. 

With increasing ACS (due to increased calcination temperature) the strong distortions 

observed for the smaller ACS samples (Figure 6) steeply decrease till the sample 

comprises of an ACS of ~100 nm. The strong distortions and their diminution at 

122(2) nm (prepared at 973 K) can be correlated to changes of the a- and b-cell 

parameters during the formation of the Bi2Fe4O9 crystallites (Figure 5). Such ACS-

dependent expansion behaviors are also observed for other oxide lattices such as in 

CeO2-x
39, BaTiO3

40, PbTiO3
41 and TiO2

42 at smaller (< 10 nm for CeO2-x
39, TiO2

42) and 

larger (< 100 nm for BaTiO3
40, PbTiO3

41) ACSs. 
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3.2. Transmission electron microscopy 

To crosscheck the ACSs determined by XRD and to get an idea on the shape and 

distribution of the crystallite domains we characterized three selected samples 

(35.3(4) nm, 88(1) nm, 401(17) nm) using TEM. From the collected 2D images the 

corresponding mean diameters are estimated to be 36(8) nm, 85(14) nm and 

407(86) nm, respectively, which are surprisingly similar to the corresponding ACSs 

obtained from the XRD results.31 The higher uncertainty for larger ACSs can be 

attributed to statistical samplings (e.g., neglecting the possible tail of the lognormal 

distribution). The micrographs show the typical appearance of the powder samples 

as depicted in Figure 7. The morphologies of the powders significantly change with 

calcination temperature. While the samples with the smaller ACSs (35.3(4) nm and 

88(1) nm) consist of large agglomerates with smaller sintered spherical nano-

crystallites, the sample with 401(17) nm exhibits distinct crystal habits. The 

histograms of the crystallite size distributions of the samples are also presented 

(Figure 7). In each case, the maximum size difference does not exceed 35% from 

either side of the mediaen, indicating rather a narrow normal size distribution 

(Gaussian) of the observed samples.  
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Figure 7. TEM micrographs and corresponding histograms of Bi2Fe4O9 samples with 

average crystallite sizes (ACSs) of 35.3(4) nm (top), 88(1) nm (middle) and 

401(17) nm (bottom). 

 

3.3. Spectroscopy 

Raman spectroscopy 

The Raman spectra recorded at ambient conditions exhibit well-resolved modes for 

the Bi2Fe4O9 phase24 as shown in Figure S2 (Supplementary Information). In some 

samples a weak mode at 292 cm-1 was assigned to Fe2O3
43. The amount (domain 

size) is beyond the coherent length of the X-ray radiation, however, enough to be 

traced by the microfocus vibrational spectroscopy.34  
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Phenomena such as phonon confinement/relaxation, microstrain, ACS size 

distribution, phonon and oxygen vacancies can contribute to the change of peak 

positions and full-width at half-maxima (FWHM) of the Raman modes.44 The 

frequency and FWHM of all the well-resolved modes show a clear dependence on 

the ACS. There is as much as 44(1)% changes of the FWHM of the mode at 

~552 cm-1 for an ACS difference between 35 nm and 400 nm as depicted in Figure 8. 

The ACS-dependent softening of selected phonon modes can also be seen (Figure 

S2, Table S1). Notably, the trends observed in the Raman spectra (Figure 8) are in 

direct accordance with the changes of the metric parameters (Figure 5) as well as the 

polyhedral distortions (Figure 6) determined by XRD. 

 

Figure 8. Raman mode of Bi2Fe4O9 at 552 cm-1 (inset) with the corresponding 

changes of frequency and FWHM as function of average crystallite size (ACS). 

 

Spanier et al.44 also observed a concomitant Raman peak shift and change in FWHM 

for CeO2-y. They attributed the decrease of frequency and concomitant increase of 

linewidth to the combined effects of strain and phonon confinement based on 

performed simulations.  
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Of interesting notes, the mode softening is found to particularly increase when the 

frequency is increased (see Table S1) in spite the mode at ~110 cm-1. In the high 

frequency region mainly oxygen motions are involved.24 In addition, temperature-

dependent Raman spectra of three samples with significantly different ACS of 

35.3(4) nm, 88(1) nm and 401(17) nm were recorded from 200 to 350 K in 10 K 

steps. Representative modes of the low, middle and high frequency regime at 110, 

283 and 552 cm-1 were followed as a function of temperature as can be seen in 

Figure S3. The three modes followed soften when the sample is heated from 200 K 

to 350 K of about 1.12% / 1.13% at ~110 cm-1, 0.70% / 0.58% at ~283 cm-1 and 

0.95% / 0.96% at ~552 cm-1 for the sample with an ACS of 35.3(4) nm / 401(17) nm, 

respectively. In general, the temperature dependences of the modes are quite similar 

for both samples except of an offset. As in the room-temperature spectra it is evident 

that the band positions differ substantially showing an increase in energy as the ACS 

increases. The opposite effect is seen in the FWHM of the modes which sharpen 

strongly when the ACS is increasing. Of particular notes, the temperature has a much 

smaller effect on the FWHM’s than the ACS. The peaks of the sample with ACS of 

401(17) nm at 350 K are not even as broad as the ones at 200 K of the 35.3(4) nm 

sample. 
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Mössbauer spectroscopy 

Temperature-dependent 57Fe Mössbauer spectra of the samples with ACSs of 

35.3(4) and 401(17) nm are shown in Figure 9. 

  

 

Figure 9. Representative Mössbauer spectra of Bi2Fe4O9 with average crystallite 

sizes (ACS) of 35 nm (upper panels) and 401 nm (lower panels) at 300 K and 20 K, 

respectively. 

 

In some samples a small amount (% range) of impurities, as also identified by 

Raman, can be attributed to γ-Fe2O3 from its magnetic hyperfine pattern. The low-

temperature spectra were collected below TN to get a comparative view between the 

antiferromagnetic and the paramagnetic phases of the size-dependent compounds. 

The spectra at 300 K show typical equally distributed doublets for the FeO4 

tetrahedral and FeO6 octahedral units of the paramagnetic Bi2Fe4O9. The low-

temperature spectra can be deconvoluted with two static magnetic sextets for all the 

samples. The hyperfine parameters obtained from the fittings of the spectra are given 

in Table S2 and visualized in Figure 10. The room temperature isomer shifts of 
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0.231(2) mm/s and 0.352(2) mm/s, respectively, for the tetrahedral (IST) and the 

octahedral (ISO) units of the 401(17) nm sample agree well with those of the bulk 

Bi2Fe4O9.45-47 The quadrupolar splitting (QS) values for both the FeO4 tetrahedra and 

FeO6 octahedra steeply increase for samples with ACS < 122(2) nm. Since a QS 

value of coordinated Fe3+ is directly proportional to the degree of distortion48, this 

observed trend is supported by the XRD (Figure 5) and the Raman (Figure 8) results. 

In general, the Mössbauer spectral linewidths (for tetrahedra ΓT and octahedra ΓO) 

increase with the decrease of the ACS. The values of the hyperfine magnetic fields 

(Bhf) obtained from the spectra agree well with those reported by Papaefthymiou et 

al. (2015)47. Again, a significant decrease is observed for ACS < 122(2) nm followed 

by an asymptotic saturation (Figure 10). For trivalent iron the variations of QS with 

temperature are weak. However, the QST,O at 20 K are substantially smaller than 

those at 300 K. This can be explained by an angle (θ) between Bhf and the main 

component of the electric field gradient (Vzz). For determining this angle, we assumed 

axial symmetry and fixed the values of QS to those determined at 300 K (both 

assumptions have only minor influence on the qualitative result). The angle 

significantly changes for both the tetrahedral (~ 6%) and the octahedral (~ 13%) 

coordinations when the ACS drops below 122(2) nm (Figure 10). In agreement with 

our other findings, some previous studies reported on an enhanced ferromagnetic 

nature of Bi2Fe4O9
14,49,50, which could be related to the significantly changed local 

spin orientation in comparison with the bulk counterpart. In our study, such behaviour 

could be induced by strong polyhedral distortions below this critical size (Figure 6), 

leading to change the direct- or super-exchange interactions in the Bi2Fe4O9 

structure.27 In contrast to the other hyperfine parameters the isomer shifts are 

apparently insensitive to changes of ACS. Reason is probably the relatively small 

change in cell volume from which one can expect changes in isomer shift on the 

order of only 0.01 mm/s that is within the range of error bars. 
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Figure 10. Hyperfine parameters of 57Fe Mössbauer spectra of Bi2Fe4O9 powders as 

function of average crystallite size (ACS). Upper panel: Quadrupolar splitting (QS) of 

the tetrahedral and octahedral units measured at 300 K. Middle panel: Bhf measured 

at 20 K. Right panel: Angle (θ) between hyperfine magnetic field (Bhf) and the main 

component of the electric field gradient (Vzz) measured at 20 K (QS fixed to its value 

at 300 K). 

 

Diffuse UV/Vis reflectance spectroscopy 

The diffuse reflectance UV/Vis spectra of the bulk Bi2Fe4O9 samples show two 

distinct absorption edges –a typical feature of this compound.14,17,34 Kubelka - Munk 

transformation and the Tauc relationship51 (assuming direct transitions)34 are used to 

calculate the band gaps of the samples with ACSs from 35.3(4) nm to 401(17) nm. 
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The determined values between 2.1 eV and 2.3 eV are in close agreement with the 

reported ones.13,18,34,49,52 The trend of the band gap as function of ACS as seen in 

Figure 11 clearly contradicts with the observed14 one where the ACSs of the 

nanomaterials are limited to 14 - 78 nm.  

 

Figure 11. Average crystallite size (ACS)-dependent band gap of Bi2Fe4O9 with 

estimated standard deviations. 

 

While the main absorption edge of the samples differs with ACSs, the 2nd absorption 

edge remains almost constant at 1.61(1) eV. Taking the normalized intensity of the 

reflectance spectra, the maximum of this absorption feature follows a red-shift along 

with increased intensity with increasing ACS as shown in Figure S4 (Supporting 

Information). The color of the powder samples changes as the calcination 

temperature changes as seen in Figure 12. Wu et al.50 observed a darker color with a 

greater ACS (with no explicit ACS value), suggesting a smaller band gap. We 

observed a similar trend, however with dark brown - lighter brown back - darker 

brown (Figure 12).  
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Figure 12. Optical appearance of the samples with different average crystallite sizes 

(ACS). 

 

Yang et al.18 who modified the optical properties through the etching time also 

observed the color changes. In a recent study on mullite-type Bi2(Al1-xFe)4O9
53 the 

intensity of the 2nd absorption maximum was found to be a function of Al/Fe ratio, 

which completely disappeared in Bi2Al4O9. It is therefore clear that the observed 2nd 

absorption edge is caused by the d-d-transitions of the Fe3+ cations.53 

 

Infrared 

The ACS-dependent FTIR spectra are shown in Figure S5. The observed band 

frequencies at ambient conditions are in excellent agreement with those of the earlier 

observations.34,46,54 In the present study, we particularly follow the Fe-O-Fe 

stretching54 features of the Fe2O7 double-tetrahedra55,56 observed at ~ 813(1) cm−1 

with respect to the ACSs. It was already observed that the 2nd absorption edge of the 

UV/Vis reflectance spectra depends on this mode (see above).34 Using the 

normalized spectra (Figure S5) the band frequency at 813(1) cm−1 is independent of 

the ACS. The intensity, however, increases with increasing ACS. A correlation 

between the intensity of the 2nd absorption edge of the UV/Vis reflectance spectra 

and the intensity of the FTIR band at 813(1) cm−1 is shown in Figure S6. 

 

3.4. DSC 

To determine phase-transitions each sample was cooled down to 200 K and heated 

up to 350 K in three consecutive cycles using difference scanning calorimetry. The 

temperature dependence of the heat flow for a representative sample with ACS of 

284(9) nm is shown in Figure 13.  
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Figure 13. Left panel: Differential scanning calorimetry (DSC) curves of the powder 

sample Bi2Fe4O9 with average crystallite size (ACS) of 284(9) nm. Right panel: The 

exothermic peak for samples with ACS from 35.3(4) – 401(17) nm. 

 

 

Figure 14. Transition enthalpy as a function of average crystallite size (ACS). 
 

Exothermic and endothermic peaks were observed, respectively, during cooling and 

heating the samples due to corresponding paramagnetic into antiferromagnetic 

transition. The Néel-temperature TN was obtained to be 249.5(2) K for ACS > 43 nm 

and 247.5(2) K for ACS < 43 nm. A small thermal hysteresis of about 3.5 K – 5 K 

could be observed for this transition. The TN is determined using the intersection of 

the baseline and the tangent line with the largest slope of the DSC peak (Figure 13); 

the values are in good agreement with reported ones.19,24-26 The transition enthalpy 

of the magnetic transition significantly changes as a function of ACS (Figure 14). In 

other words, the energy released by the system due to antiferromagnetic ordering 

increases with increasing ACS. Again, significant changes occur for samples with 
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ACS below 122(2) nm, which is a critical ACS, already established by XRD, Raman 

and Mössbauer spectra. This leads us to argue that the spin ordering/interactions 

involved in the system are different for ACS below and above the critical size of 

122(2) nm. Indeed, earlier studies of the Bi2Fe4O9 structure showed weak 

ferromagnetic behavior for samples with small ACSs.12,14,47,49,50,57 Han et al.57 

attributed these findings to be caused by the spin canting of Fe3+, which was 

supported by temperature-dependent zero-field-cooled (ZFC) and field-cooled (FC) 

susceptibility measurements showing a remarkable thermomagnetic irreversibility.57 

The steep decrease in intensity below 122(2) nm could be related to some (partial) 

ferromagnetic domains with no intense feature in DSC. Because the characteristic 

ferromagnetic peaks in DSC are not as intense as that of antiferromagnetic or 

ferrimagnetic materials due to the fact that ferromagnetic and antiferromagnetic 

ordering are of second-order and first-order types Landau phase transitions.58 In the 

magnetic structure of the bulk Bi2Fe4O9 both ferromagnetic and antiferromagnetic 

superexchange interactions are already present. Therefore, the strong polyhedral 

distortions (Figure 6, Figure 10) could cause Fe3+ spin canting, leading to increased 

ferromagnetic domains below the critical size. Moreover, the a- and b-cell parameters 

are significantly influenced by the ACS whereas the rigid FeO6 octahedral chains in 

the c-direction are not so far influenced. In fact, the strongest antiferromagnetic 

superexchange interaction is restricted to the FeO4 tetrahedral unit in the ab-plane, 

whereas the ferromagnetic coupling takes place in the c-direction.28 

 

4. Conclusion 

The nano-properties of mullite-type Bi2Fe4O9 significantly differ below and above the 

critical average crystallite size (ACS) of 110(10) nm evidenced by X-ray diffraction, 

Raman, infrared, UV/Vis, Mössbauer spectroscopy and differential scanning 

calorimetry (DSC). Strong distortions of the polyhedral units lead to a substantial 

changed local spin orientation in the samples below 122(2) nm in comparison with 

bulk Bi2Fe4O9. The intensity of the second absorption edge of the UV/Vis spectrum 

depends on the size-dependent distortion of the FeO4 tetrahedral units.  
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Figure S1. XRD patterns of the Bi2Fe4O9 samples with varying average crystallite 

sizes (ACS) obtained at ambient conditions. Each sample was calcined at the 

temperatures from 900 – 1073 K for 2 h. 

 

 

Figure S2. Normalized Raman spectra, recorded at ambient conditions, of Bi2Fe4O9 

samples with different average crystallite sizes. 
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Table S1. Raman frequencies (cm-1) and assignment of the phonon modes of 

Bi2Fe4O9 for a single crystal (SC)21, 400 nm and 35 nm ACSs using the notation of 

Iliev et al.21  

 

Mode Atomic motions21 Calc21 Exp21(SC)  400 nm 35 nm ∆ω/ω* /% 

B1g Bi (y) 121 110 111.2(1) 110.8(1) 0.37 

B3g O4 (z) + Fe2 (xy) 122 182  182.3(1) 182.2(1) 0.09 

B1g Fe1 (xy) + O2 (xy) 237 202 203.0(1) 203.2(1) -0.07 

Ag Fe1 (xy plane) 252 207 208.3(1) 208.1(1) 0.09 

Ag O2 (xy) + O3 (y) 297 222 223.9(2) 224.0(1) 0.01 

B1g O3 (y) 326 283 279.6(2) 279.0(1) 0.23 

Ag O3 (xy) 395 331 329.66(4) 329.00(5) 0.20 

Ag O4 (z) + O3 (xy) 430 365 366.40(2) 365.64(5) 0.21 

Ag O3 (xy) + Fe2 (xy) 497 430 430.90(5) 429.53(7) 0.32 

Ag - 517 552 554.99(3) 552.88(7) 0.34 

Ag O4 (xy) 595 647 645.81(2) 643.89(7) 0.30 

*The mode softening is quantified in the nanosized sample (35 nm) compared to the bulk 

material (400 nm) as ∆ω /ω = (ω400nm – ω35nm) /ω400nm as described by Chen et al.36 

Calculated and experimental data from Iliev et al.21 are also shown for comparison. 

Standard deviations are given in the parentheses. 

 

 

 

Figure S3. Temperature-dependent band positions and corresponding FWHM of a 

lower (110 cm-1), middle (280 cm-1) and high frequency (552 cm-1) of the samples 

with average crystallite sizes of 35.3(4) nm, 88(1) nm and 401(17) nm.  
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Table S2. Hyperfine fitting parameters of the 57Fe Mössbauer spectra of Bi2Fe4O9 

with average crystallite sizes (ACS) between 35.3(4) nm and 401(17) nm. IS: isomer 

shifts vs. α-Fe at 300 K. QS: quadrupole splitting. A: relative spectral area. Γ: 

absorber linewidth. Bhf: magnetic hyperfine field. Indices Tet and Oct stand for 

tetrahedral and octahedral. 

300 K 
ACS 
/nm 

IST  
/mm s-

1 

QST  
/mm s-

1 

AT 

/% 
ΓT 

/mm s-

1 

Bhf 

(Tet) 
/T 

ISO  

/mm s-

1 

QSO 
#
 

/mm s-

1 

AO 

/% 
ΓO 

/mm s-

1 

Bhf 

(Oct) 
/T 35.3(4) 0.231(2) 0.957(2) 50(1) 0.168(2) - 0.353(2) 0.408(2) 50(1) 0.170(2) - 

42.1(4) 0.233(2) 0.956(2) 50(1) 0.170(2) - 0.354(2) 0.401(2) 50(1) 0.170(2) - 

43.1(5) 0.235(2) 0.964(2) 51(1) 0.178(2) - 0.355(2) 0.405(2) 49(1) 0.159(2) - 

64.4(8) 0.235(2) 0.959(2) 45(1) 0.170(2) - 0.354(2) 0.390(2) 46(1) 0.172(2) - 

77(1) 0.231(2) 0.958(2) 51(1) 0.173(2) - 0.352(2) 0.388(2) 49(1) 0.171(2) - 

86(1) 0.233(2) 0.955(2) 50(1) 0.161(2) - 0.355(2) 0.386(2) 50(1) 0.162(2) - 

88(1) 0.233(2) 0.958(2) 49(1) 0.159(2) - 0.356(2) 0.381(2) 51(1) 0.164(2) - 

122(2) 0.230(2) 0.949(2) 50(1) 0.154(2) - 0.355(2) 0.380(2) 50(1) 0.155(2) - 

171(3) 0.232(2) 0.942(2) 51(1) 0.142(2) - 0.352(2) 0.369(2) 49(1) 0.139(2) - 

186(4) 0.232(2) 0.950(2) 50(1) 0.150(2) - 0.355(2) 0.378(2) 50(1) 0.150(2) - 

284(9) 0.231(2) 0.948(2) 50(1) 0.134(2) - 0.356(2) 0.378(2) 50(1) 0.136(2) - 

401(17) 0.231(2) 0.953(2) 50(1) 0.140(2) - 0.352(2) 0.375(2) 50(1) 0.143(2) - 

20 K 
ACS 
/nm 

IST  
/mm s-

1 

θT
# 

/° 
AT 

/% 
ΓT 

/mm s-

1 

Bhf 

(Tet) 
/T 

ISO  

/mm s-

1 

θO
# 

/° 
AO 

/% 
ΓO 

/mm s-

1 

Bhf 

(Oct) 
/T 35.3(4) 0.340(2) 55(1) 51(1) 0.299(2) 46.52(4) 0.456(2) 39(1) 49(1) 0.358(2) 50.55(4) 

77(1) 0.325(2) 54(1) 50(1) 0.254(2) 46.47(4) 0.453(2) 37(1) 50(1) 0.293(2) 50.45(4) 

88(1) 0.320(2) 53(1) 50(1) 0.252(2) 46.72(4) 0.461(2) 37(1) 50(1) 0.270(2) 50.79(4) 

122(2) 0.320(2) 52(1) 49(1) 0.230(2) 46.68(4) 0.446(2) 35(1) 51(1) 0.214 50.71(4) 

171(3) 0.322(2) 52(1) 50(1) 0.197(2) 46.77(4) 0.453(2) 34(1) 50(1) 0.185(2) 50.81(4) 

284(9) 0.310(2) 52(1) 49(1) 0.228(2) 46.74(4) 0.448(2) 35(1) 51(1) 0.224(2) 50.78(4) 

401(17) 0.323(2) 52(1) 50(1) 0.188(2) 46.72(4) 0.452(2) 35(1) 50(1) 0.189(2) 50.75(4) 

#Angle between hyperfine magnetic field (Bhf) and the main component of the electric field 
gradient (Vzz) with fixed QS at 300 K. Estimated standard deviations are given in the 

parentheses. 
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Figure S4. Left panel: Kubelka - Munk transformed diffuse UV/vis spectra of 

Bi2Fe4O9 with average crystallite sizes (ACSs) from 35.3(4) - 401(17) nm. Middle 

panel: ACS-dependent maxima of the 2nd absorption feature. Right panel: ACS-

dependent intensity of the 2nd absorption feature. 

 

 

Figure S5. Fourier transform infrared spectra of the Bi2Fe4O9 samples with average 

crystallite sizes (ACSs) from 35.3(4) – 401(17) nm. 

 

 

Figure S6. Correlation between the intensity of the 2nd absorption hump in the UV-

Vis spectra and the intensity of the Fe-O stretching vibration of the FeO4 tetrahedra 

at ~812 cm-1 in the FTIR spectra of Bi2Fe4O9. 
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Concluding discussion 
 
Within the scope of this dissertation the Bi2O3 – Fe2O3 phase system has been 

extensively studied. Two very promising compounds, the perovskite-type (Bi1-

xFex)FeO3 and the mullite-type Bi2Fe4O9, are crystallizing in this system with 

prominent physical properties such as multiferroic1, superparamagnetic2, magnetic3 

and electrical properties4. In this thesis, a special focus was placed on the structural 

transformation of a precursor material into the Bi2Fe4O9 structure and the synthesis 

parameters that influence this complex and in this regard sensitive system. An 

overview of the tunability of the synthesis conditions and the resulting materials is 

given in chapter 2.5 It could be shown that both methods, the polyol process and sol-

gel procedure using PVAs, provide a huge opportunity to control the resulting phase 

composition and their kinetics, structures and corresponding properties of the 

samples produced. The Bi2Fe4O9 precursor’s particle size, morphology, structural 

composition and crystallinity could be varied in many ways by conducting small 

changes during the synthesis procedure. The type of complexing agent, for instance, 

has a huge influence on the structural composition of the precursors and therefore on 

the crystallization kinetics and pathways during their transformation into the Bi2Fe4O9 

structure. Using sorbitol as a complexing agent the pH value of the synthesis solution 

has a huge influence even on the phase ratio of perovskite-type BiFeO3 to mullite-

type Bi2Fe4O9 in calcined samples. Furthermore, it was found that Bi2Fe4O9 

preferentially crystallizes in an acidic medium, whereas the perovskite-type clearly 

prefers an alkaline medium. 

During the studies of the synthesis and calcination conditions it was found that the 

perovskite-type and mullite-type structure always crystallize side by side in a given 

temperature range of about ~680 - 920 K (chapter 2, 3 ,5 and 6).6-8 In order to get a 

deeper insight into the involved phase transformations a precursor material of 

Bi2Fe4O9 composition was synthesized by a polyol method (chapter 3).6 It was 

studied by SEM, XRD, 57Fe Mössbauer and FTIR spectroscopy. In addition, the 

precursor material was heated and fully converted into the mullite-type Bi2Fe4O9 

structure. During the heating experiments, the structural changes and phase 

transformations were monitored by in-situ heating XRD and 57Fe Mössbauer 

spectroscopy, respectively. The results lead to the conclusion that the precursor 

material possessed a disordered (Bi1−xFex)FeO3 perovskite structure that gradually 

approached the features of the Bi2Fe4O9 mullite-type.6 Furthermore, the Fe3+ content 
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on the A-site of the perovskite-type structure was found to depend on the heating 

temperature.6 This study unambiguously showed that the structure of nano-materials 

is not necessarily identical to the respective micro-crystalline ones although exhibiting 

the same chemical composition.6 Since the Fe3+ content on the A-site of the 

perovskite-type structure (ABO3) was found to change during the gradual 

transformation into the Bi2Fe4O9 structure, it was possible to synthesize two new 

compounds - namely (Bi0.75Fe0.25)FeO3 and (Bi0.85Fe0.15)FeO3 (chapter 4).2 They were 

produced by calcination of a precursor material at 873 K for 10 and 30 minutes, 

respectively, and characterized by several techniques such as in-house and 

synchrotron XRD, temperature-dependent time-of-flight neutron powder diffraction, 

SQUID measurements, 57Fe Mössbauer and Raman spectroscopy.2 The SQUID 

analysis as well as the 57Fe Mössbauer spectra revealed that both, (Bi0.75Fe0.25)FeO3 

and (Bi0.85Fe0.15)FeO3, possess superparamagnetic behaviour in contrast to 

unsubstituted BiFeO3 showing antiferromagnetic behaviour.2 By considering all the 

results it can be stated that the partial replacement of the Bi-site by Fe3+ significantly 

changes the crystal-physico-chemical properties such as the thermal expansion, 

polyhedral distortion, Debye temperature, vibrational and magnetic properties.2 

Besides the chemical modification of crystal structures it can also be interesting to 

conduct composition development of bulk multi-phase materials since such a 

materials performance can show enhanced physical properties9,10 compared to the 

individual single phases. Thus, by heating a precursor material for two hours at 

different temperatures from 573 K to 1023 K it was possible to produce 

nanocomposites of the BiFeO3 ─ Bi2Fe4O9 binary system (chapter 5).7 The 

composition-structure-property relationships were studied and correlations between 

structural parameters, such as the degree of crystallinity and phase ratio of 

BiFeO3 : Bi2Fe4O9 and physical properties, such as the materials morphology, band 

gap and vibrational properties were observed and discussed.7 The nature of optical 

transitions in the Bi2Fe4O9 phase were found to be of direct nature, what was an on-

going topic of debates in prior studies.7 Furthermore, the study suggested that the 

combination of the recently proposed derivative absorption spectrum fitting (DASF) 

method11 and the frequently used Tauc’s method is a suitable tool to concomitantly 

determine the band gap and the nature of transition (direct and indirect) of a 

semiconducting material.7 A further approach to tune a materials performance is to 

decrease the system into the nano-size regime as nanostructures can be 
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fundamentally different from their corresponding microstructures. This phenomenon 

is attributed to a greater surface-to-volume ratio and confinement effects caused by 

the finite size of the given system. Within this dissertation, it was demonstrated that it 

is possible to prepare mullite-type Bi2Fe4O9 structures with discrete average 

crystallite sizes (LVol(IB)) from 35.3(4) nm to 401(17) nm by heating a precursor 

material for two hours at different temperatures (chapter 6).8 Systematic 

investigations were performed in order to map the correlation of the size and other 

structural features such as the metric parameters of the unit cell and the distortion of 

local coordinations and physical properties such as the color, band gaps, 

morphology, vibrational and magnetic properties.8 Nanoscale materials often show a 

critical size from what on they change their physical properties showing a clear size-

dependence. For mullite-type Bi2Fe4O9 this critical size was found to be ~122(2) nm.8  

In conclusion, nano-materials can not merely be regarded as miniaturized versions of 

their corresponding bulk materials since they can possess unusual forms of structural 

disorder12 and even show different structures6 and size-dependent properties8 

although they have a similar chemical composition. It is clear that multiferroic 

materials -such as (Bi1-xFex)FeO3 and Bi2Fe4O9- and their composites are of 

fundamental interest and possess auspicious crystal, chemical and physical 

properties. Due to their multifunctionality in external electric and magnetic fields 

magnetic semiconductors are promising for the development of a broad range of a 

completely new generation of advanced materials such as spin-based electronics 

and spin valves.13 There is a clear opportunity to tune a systems performance by 

changing its chemical and/or phase composition and/or dimensionality. However, the 

concomitant control of a materials crystal structure, surface chemistry, degree of 

crystallinity, monodispersity, size, shape as well as chemical and phase composition 

is not trivial and seems to remain a challenging issue of nanostructure synthesis. 
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Recommendations for future study 
 

It is empirically known that many factors play an important role in the synthesis of 

nanostructured materials, however systematic studies on the correlations of 

individual synthesis variables influencing the overall crystallization behaviour are 

rare. Especially such systems like BiFeO3 - Bi2Fe4O9, in which complex magnetic 

spin arrangements (spiral ordering and geometric frustration) compete with several 

other order parameters, provide an excellent opportunity to finetune the materials 

properties to a high degree by small changes in the synthesis procedure. In this 

regard, especially thermodynamically metastable materials and nanocomposites can 

be of huge interest for the design of a new generation of technological devices as 

highlighted recently by Sun et al. (2016).1 A further degree of freedom to control the 

properties of the materials is the introducing of new elements, such as Al, Mn or rare 

earth elements. The huge divergence of physical properties, for instance the phase 

composition, optical properties and photocatalytic activity, in the system Bi2(Al1-

xFex)4O9 using similar synthesis and calcination conditions could be shown in a 

recent study.2 Furthermore, it would be very interesting to conduct studies on the 

multiferroic properties of the solid solution (Bi1-xFex)FeO3 and the (1-

x) BiFeO3 (x) Bi2Fe4O9 nanocomposites. On the one hand, (Bi1-xFex)FeO3 could show 

an interesting coupling between the superparamagnetic and ferroelectric properties. 

On the other hand, earlier studies already showed that a nanocomposite of 

94% BiFeO3 – 6% Bi2Fe4O9 composition possessed an enormous spontaneous 

exchange bias between the ferromagnetic core of Bi2Fe4O9 and the canted 

antiferromagnetic structure of BiFeO3.3 In this regard, also the incorporation of other 

ions could be interesting. 

In conclusion, the study of metastable materials and nanocomposites is very 

attractive and could pave the way for new advanced applications and new areas in 

nanoscience research.1 Future works in this direction should be carried out on an 

interdisciplinary basis by teams of physicists, chemists, material scientists and 

engineers in order to develop new perspectives and approaches dealing with such a 

complex field of research. 
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