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Abstract
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Competence Center for Clinical Trials Bremen
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Bias and precision in early phase adaptive oncology studies and its

consequences for confirmatory trials

by Arsénio Quingue Nhacolo

The need for a more efficient drug development process led to migration from the tradi-

tional fixed-sample clinical trial designs to group-sequential and adaptive designs, espe-

cially in early phases of clinical drug development. This, however, came with challenges

in inference, since many of these newly proposed designs come without respective meth-

ods for statistical inference. In this dissertation, we study the estimation methods for

oncology phase II group-sequential and adaptive designs in terms of bias and precision,

and we propose new estimation methods for a new class of adaptive designs. We then

evaluate the consequences, in terms of power, of using estimates from these designs to

plan phase III trial. We also study and propose new approaches to adjust these es-

timates, based on the observed data, before employing them in planning of phase III

sample size, in order to reach the desired power. Literature review showed that many

estimation methods have been proposed for the classical single-arm two-stage group-

sequential designs with a binary endpoint, which are the most commonly used designs

in oncology trials of phase II. Simulation studies showed that the uniformly minimum

variance unbiased estimator is the best amongst them in terms of bias and mean square

error. However, for the adaptive group-sequential designs, these estimation methods

have poor performance. Our proposed estimation methods in oncology phase II adap-

tive designs showed better performance as compared to the näıve maximum likelihood

estimator. A direct use of estimates from phase II adaptive designs to plan phase III

results in underpowered phase III trials. Therefore, adjusting (discounting) these esti-

mates beforehand is necessary. The amount of discounting, however, depends on the

estimator, with our proposed estimators requiring less discounting as compared to the

näıve maximum likelihood estimator. Our proposed adjustment approaches show power

improvements, which are similar across different estimators and design scenarios.
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Bias and precision in early phase adaptive oncology studies and its

consequences for confirmatory trials

von Arsénio Quingue Nhacolo

Die Notwendigkeit eines effizienteren Medikamentenentwicklungsprozesses führte, ins-

besondere in frühen Phasen der klinischen Arzneimittelentwicklung, zu einer Abkehr

von traditionellen Studiendesigns mit fester Fallzahl hin zu adaptiven gruppensequen-

tiellen Designs. Jedoch gibt es für viele dieser neu vorgeschlagenen Studiendesigns noch

keine geeigneten Methoden der statistischen Inferenz. In der vorliegenden Dissertation

werden die Schätzmethoden für klassische gruppensequentielle Phase II Studien in der

Onkologie in Bezug auf Verzerrung (Bias) und Präzision untersucht. Darüber hinaus

wird die Eignung dieser Methodik, sowie die einer in der Dissertation neu hergeleiteten

Schätzmethodik, für die Auswertung der adaptiven Versionen dieser Designs geprüft.

Anschließend wird der Einfluss der Verwendung der aus diesen Studien erhaltenen Schätzern

auf die Planung von Phase III Studien in Bezug auf die tatsächlich erzielte Power un-

tersucht. Es existieren bereits Ansätze die Schätzer aus den Phase II Studien anzu-

passen um bei deren Verwendung in der Planung von Phase III Studien die gewünschte

Power zu erreichen. Diese bereits bestehende und in dieser Dissertation neu hergeleitete

Ansätze untersucht. Eine Literaturrecherche hat gezeigt, dass viele Schätzmethoden für

die klassischen einarmigen zweistufigen Gruppensequentiellen Designs mit binären End-

punkten, welche die am häufigsten genutzten Designs in onkologischen Phase II Studien

sind, vorgeschlagen werden. In der vorliegenden Dissertation werden Simulationsstudien

durchgeführt die zeigen, dass der “uniformly minimum variance unbiased estimator” in

Bezug auf Verzerrung und mittleren quadratischen Fehler der beste betrachtete Schätzer

ist. Die Simulationsergebnisse zeigen jedoch, dass diese Schätzverfahren angewendet

auf adaptive gruppensequentielle Designs zu schlechteren Ergebnissen führen. Die in

dieser Dissertation vorgeschlagenen Schätzmethoden für adaptiven Phase II Studien in

der Onkologie zeigten im Vergleich zum naiven Maximum-Likelihood-Schätzer bessere

Ergebnisse. Eine direkte Verwendung der Schätzer aus Phase II Studien zur Planung

von Phase III Studien führte zu einer geringeren als der geplanten Power. Daher

ist eine Anpassung (Verkleinerung) dieser Schätzungen erforderlich. Die notwendige
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Höhe der Anpassung hängt dabei von der Schätzmethodik ab, wobei der in dieser

Dissertation vorgeschlagene Schätzer eine geringere Anpassung benötigt, als der naive

Maximum-Likelihood-Schätzer. Unsere vorgeschlagenen Anpassungsansätze zeigen Leis-

tungsverbesserungen, die sich über verschiedene Schätzer und Designszenarien hinweg

ähneln.
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Chapter 1

Introduction

This chapter gives a brief motivational background and outlines the main scientific con-

tributions of this dissertation. It gives, in addition, the details of how the rest of the

dissertation is structured.

1.1 Motivation

Clinical drug development is a lengthy and costly process done in different phases (I,

II, III and IV). Traditionally clinical trials were conducted using fixed-sample designs,

in which all aspects of the trial are pre-specified and data analysis is only done at the

end. The need to increase efficiency led to new design paradigms. For instance, in

oncology phase II, the desire to expose less patients to futile treatments and accelerate

the development of efficacious ones led to group-sequential designs. Group-sequential

designs introduce interim analyses offering the possibility of early stopping for futility

and/or efficacy (e.g., Shuster, 2002; Simon, 1989). Later, adaptive elements were added

to these designs, allowing for modification of certain design aspects in the light of interim

results (e.g., Englert and Kieser, 2013). However, the gains in efficiency comes at the

cost of complicated inference. The traditional fixed-sample inference methods are not

suitable for adaptive designs, and often yield treatment effect estimates that are biased

and imprecise. Unfortunately most of the adaptive designs that are being proposed in

the literature are mainly concerned with hypothesis testing and don’t offer correspond-

ing methods for estimating the efficacy parameter, leaving the implementers with no

choice other than using the traditional fixed-sample methods. Bias and imprecision of

estimates from phase II trials may result in poor planning of subsequent phase III trials,

contributing to high failure rate in phase III, which is acknowledged to be as high as

50% in general (Pretorius, 2016) and 60% in oncology (Gan et al., 2012). Therefore,

1



Introduction 2

adequate estimation methods for phase II adaptive designs are important, the lack of

which requires that caution and corrective measures be exercised when planning the

corresponding phase III trials.

1.2 Contributions

The goals of this dissertation are to study phase II adaptive designs and methods for

efficacy estimation in such designs, and to investigate the consequences of bias and

imprecision of phase II efficacy estimates on the planning of phase III trials. New

estimation methods for a class of adaptive phase II designs are proposed, and approaches

for adjusting phase III sample size estimates are discussed. The main contribution of

this dissertation are the following:

1. We studied the performance of different estimation methods proposed in the liter-

ature for oncology phase II group-sequential and adaptive designs. This was done

via simulation studies, and included the commonly used single-arm designs with

binary endpoint.

2. We proposed new estimation methods for oncology phase II adaptive designs. This

was for two-stage adaptive designs with binary endpoint in which the second stage

sample size and decision rules are functions of the number of successes in the first

stage.

3. We analysed the consequences of using effect estimates from phase II adaptive

design, which are often biased and imprecise, on planning phase III sample size and

we discussed and proposed adjustment approaches in order to obtain adequately

powered phase III trials.

1.3 Structure

The remainder of this dissertation is composed by four chapters, appendix and bibliog-

raphy section. Chapter 2 contains a summarized literature review on phase II clinical

trials designs, with an emphasis on oncology. In Chapter 3 we summarize efficacy esti-

mation methods proposed in the literature for oncology phase II designs and we compare

their performance via simulation studies. Then we propose new methods for interval

and point estimation in adaptive designs, and compare them with the näıve maximum

likelihood estimator (MLE). In Chapter 4 we turn into the issue of using effect estimates

from phase II trials to plan later phase III trials. We first give a brief summary of
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what have been done in literature to deal with bias and imprecision of these estimates.

Then we investigate the consequences, in terms of power, of using the estimates from

adaptive phase II trials to plan phase III. This is done via simulations and include the

estimates from the new methods we proposed in Chapter 3. Afterwards we propose a

new approach to estimate the sample size adjustment factor to get a properly powered

phase III trial accounting for the random results of phase II. Chapter 5 gives general

summary and conclusion. Supplementary material is provided in the appendices.

Two papers and one R package were written as part of this dissertation. The R pack-

age documentation is in Appendix C and its corresponding package available on-line

(GitHub). The first paper, which was published in the Statistical Methods in Medical

Research journal, is in the Appendix D. The second paper is in the Appendix E, and it

was still under submission for publication at the time of writing of this dissertation.



Chapter 2

Oncology phase II clinical trials

designs

This chapter gives a literature review on oncology phase II clinical trials designs. First

an overview of clinical trials phases is given along with summary of types of phase II

designs. Then more details on designs commonly or likely to be used in oncology trials

are given.

2.1 Overview

Drug development in humans comprises mainly three phases, phases I, II and III. Phase

I clinical trials are the first in human studies, following preclinical development of a

new therapeutic agent. The main goals in this phase is to assess tolerability and safety,

and to find suitable dose(s) for the subsequent phases. Trials in this phase are usually

conducted using healthy volunteers, except areas in which treatments are associated

with severe side effects like oncology. Typically sample sizes are small. Phase II

clinical trials have larger sample sizes, and are usually conducted using patients. This

phase focus on the assessment of efficacy and safety, and it allows to make a decision of

whether a therapy is worth further evaluation in later large scale phase III trials. Phase

III clinical trials are also conducted using patients. They assess efficacy and safety,

and aim at providing definitive evidence of treatment efficacy. This phase is primarily

intended to support a licence submission to regulatory authorities. After a drug has

received approval to be marketed, a phase IV trial may be conducted, which is usually a

post-marketing surveillance trial primarily intended to detect rare or long-term adverse

effects.

4
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Apart from the development phases, clinical trials can also be grouped/classified using

other characteristics. These include the number of treatment arms, statistical methods,

number of interim analyses, adaptiveness, type and number of endpoints, etc.

Regarding the number of arms, trials can be of single-arm or one-sample designs, in

which all patients receive the same treatment, with no control group and no variation in

dose, formulation, or treatment regimen. These designs are common in oncology, where

for ethical reasons a placebo control cannot be used, and patients may already have

received unsuccessful treatments with standard therapies (Biswas et al., 2008). Com-

parative or two-arm designs are generally randomized trials, adding a concurrent

control group to a single experimental group. Another category is screening or selec-

tion or multi-arm designs, in which several experimental treatments are compared,

and possibly also compared with a concurrent control treatment.

Methodologically, clinical trials designs can be frequentist (classical), Bayesian or decision-

theoretic. Frequentist designs focus on hypothesis testing and control of false positive

and false negative error rates. The efficacy of the experimental treatment is summarized

using a parameter θ. This parameter is then fixed, e.g., θ0 under the null hypothesis

(H0), and inference focuses on comparing the observed random data with the distribu-

tion that would be expected if H0 were true. In contrast, Bayesian designs consider θ

as a random variable, and inference focuses on what can be said about its distribution.

Being a random variable, θ has some distribution even before any data are observed,

the prior distribution P (θ), which is updated by observing data X to get the posterior

distribution P (θ|X). We can then obtain the posterior expected value of θ, or the pos-

terior probability that it exceeds some specific value such as θ0. Decision-theoretic

designs model the decision-making process with the goal of getting an optimal deci-

sion that maximizes the value of some specified utility function. The utility function

expresses the preferences of the decision-maker and is also a function of θ. P (θ|X) is

used to calculate a posterior expected utility associated with each possible action that

can be taken, then the action with the largest posterior expected utility is chosen.

With respect to presence or absence of interim analyses, we have single-stage or fixed-

sample designs, in which the analysis is performed after a pre-planned number of

patients has been accrued (Mariani and Marubini, 1996). Sequential designs are

designs in which analysis is performed after the outcome of each new patient becomes

available. At each step, a test statistic derived from the accumulated data is compared

with an upper and lower test boundaries, allowing for early stopping (Mariani and

Marubini, 1996). These designs are more efficient than the single-stage ones, however,

difficult to implement since they require continuous monitoring of study results. As a

compromise between the simplicity of single-stage designs and the efficiency of sequential
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designs, multi-stage or group-sequential designs accrue patients in batches (Mariani

and Marubini, 1996). After each batch, the accumulated data is analysed and a decision

is made to terminate the trial and draw a conclusion in favour of or against H0, or to

continue to the next stage1.

It has been a tradition in clinical research to pre-specify all aspects of the trial before-

hand and keep them unchanged during the trial conduct. This was in part due to the

regulatory pressure to safeguard the validity and the integrity of clinical trials. How-

ever, designs that allow for modifications of trial as it progresses are becoming more

commonly used, especially in early phase trials. Adaptive design is defined as a de-

sign that allows adaptations to trial and/or statistical procedures of the trial after its

initiation without undermining the validity and integrity of the trial (Chow et al., 2005).

The term flexible design is interchangeably used.

Another defining characteristic of clinical trial designs is the type and the number of

endpoints. In phase II, the most popular types of endpoints are binary, ordinal, contin-

uous and time-to-event. Most designs are with a single endpoint. In oncology this is

often the treatment response. There are designs that consider a composite endpoint (i.e.,

endpoint that is made of more than one variable), and in oncology it can be a bivariate

endpoint combining response and toxicity (e.g., Bryant and Day, 1995; Conaway and

Petroni, 1995, 1996), or response and early progression (e.g., Sun et al., 2009; Zee et al.,

1999).

Recently a new class of designs, termed master protocol, has emerged. A master pro-

tocol trial design have one overarching protocol with an objective of evaluating multi-

ple treatments for one disease or one treatment for multiple diseases in multiple sub-

studies (Sridhara et al., 2015). Master protocols can further be subdivided in basket (or

bucket), umbrella and platform (or standing) trials. Basket trials aim at studying a sin-

gle targeted therapy in the context of multiple diseases or disease subtypes (Woodcock

and LaVange, 2017). In oncology, this trial tests one treatment simultaneously in differ-

ent cancer types (baskets) possessing the same target genetic mutation (e.g., Cunanan

et al., 2017; Leblanc et al., 2009). In an umbrella trial, multiple targeted therapies are

studied in the context of a single disease (Woodcock and LaVange, 2017). In cancer re-

search, an umbrella trial focus on a single tumour type, within which various molecular

profiles are targeted (e.g., Barroilhet and Matulonis, 2018; Kim et al., 2011). Platform

trial studies multiple targeted therapies in the context of a single disease in a perpetual

manner, with therapies allowed to enter or leave the platform on the basis of a decision

algorithm (Woodcock and LaVange, 2017). Platform trial follows a randomized design

1Some group-sequential designs only allow early termination for futility, i.e., when the conclusion is
in favour of H0
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with a common control arm and many different experimental arms that enter and exit

the trial as futility or efficacy are demonstrated (e.g., Hobbs et al., 2018; Lin and Bunn,

2017).

The classification of clinical trial designs is vast, here we have only listed the categories

that we judged to be important to understand the subsequent contents of this disserta-

tion. Furthermore, as it might have been obvious, these classification schemes do not

lead to mutually exclusive groups of designs, many categories often overlap.

The number of oncology phase II designs that have been and are being proposed is

overwhelmingly high. We found over 100 scientific papers proposing new designs or

modifications of existing ones (see Appendix A for the complete list), with the majority

being single-arm designs. Single-arm two-stage designs with binary endpoints are the

most commonly used in practice (Englert and Kieser, 2012b), especially the optimal

design by Simon (1989). Apart from being one of the most popular designs, Simon

(1989)’s optimal design has inspired other designs including recent adaptive designs (e.g.,

Englert and Kieser, 2013; Shan et al., 2016a) that offer some efficiency improvements

and have potential to be adopted in practice. Therefore, we study in detail these designs.

2.2 Single-arm group-sequential designs

Being a compromise between the simplicity of single-stage designs and the efficiency

of sequential designs, group sequential designs are probably the most commonly used

in phase II trials. The performance, in terms of sample size gains, of these designs in-

creases with increasing number of stages. However, high number of stages results in high

logistical complexity and administrative burden. In addition, the largest performance

improvement is observed when moving from single-stage to two-stage designs (Rao et al.,

2007), and this might be one of the reasons for the popularity of two-stage designs.

In general, oncology phase II single-arm group-sequential designs with binary endpoints

test, at specific type I error rate α and type II error rate β, the null hypothesis (H0)

against the alternative (H1),

H0 : π ≤ π0 versus H1 : π ≥ π1 (2.1)

where π1 > π0 and π is the response probability. π0 is the maximum response rate

considered clinically uninteresting and π1 the minimum response rate considered to be

of clinical interest. These designs are specified by the maximum number of stages, K,

the number of subjects examined at each stage, (n1, n2, . . . , nK), the set of acceptance

points, (l1, l2, . . . , lK), and the corresponding set of rejection points, (u1, u2, . . . , uK),
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with uk > lk and lK = uK−1, k = 1, . . . ,K. At stage k, the test statistic is sk =
∑k

i=1 xi,

where xi be the number of responses at stage i, then the procedure is to stop the trial

and accept H0 if sk ≤ lk, or reject H0 if sk ≥ uk; otherwise continue to stage k + 1.

At the final stage H0 is rejected if sK ≥ uK or, equivalently, if sK > lK (Schultz et al.,

1973).

Some authors (e.g., Chow and Chang, 2008; Mahajan and Gupta, 2010) label all group-

sequential designs as adaptive designs. However, here we follow the approach by Bauer

and Brannath (2004) and make distinction between the classical (non-adaptive) and

adaptive group-sequential designs. The distinction lies essentially on the fact that, in

classical group-sequential designs, interim analyses serve only the purpose of deciding

whether to stop or continue the trial, while adaptive designs in addition offer the possi-

bility of modifying trial characteristics based on interim results.

2.2.1 Classical two-stage designs with binary endpoints

As mentioned above, one of the most popular designs in oncology phase II are the

designs by Simon (1989). They are single-arm designs testing the same hypotheses as

in (2.1). Because of practical considerations in the management of multi-institution or

multi-centre clinical trials, Simon (1989) restricted his attention to two-stage designs. He

considered early stopping only for futility, arguing that when the drug has substantial

activity (π ≥ π1) there is often interest in studying additional patients in order to

estimate the proportion, extent, and durability of response. He proposed optimal two-

stage design, which is a design that, given the parameters π0 and π1, satisfies the error

probability constraints α and β, and minimizes the expected sample size (average sample

number, ASN) when the response probability is π0. Let n be the total sample size, n1

the first stage sample size and n2 the second stage sample size (n2 = n − n2). The

expected sample size is calculated as

ASN = n1 + (1− PET)n2,

where PET is the probability of early termination after the first stage, calculated as

PET = B(l1|π, n1), where B denotes the cumulative binomial distribution, and π the

true probability of response. The trial is terminated at the end of the first stage and

the drug is rejected (H0 is accepted) if l1 or fewer patients out of n1 respond to the

treatment. The drug is rejected at the end of second stage if l or fewer responses out of

total patients (n) are observed. Hence the probability of rejecting a drug with success
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probability π is

B(l1|π, n1) +

min[n1,l]∑

x=l1+1

b(x|π, n1)B(l − x|π, n2),

where b denotes the binomial probability mass function. The optimal designs are de-

termined by enumeration using exact binomial probabilities. In addition, Simon (1989)

determined also the minimax two-stage design, which minimizes the maximum sample

size n = n1 + n2. For the same constraints (π0, π1, α, and β), the minimax design

may be more preferable than the optimal design when the difference (between the two

designs) in expected sample sizes is small and the patient accrual rate is low. Some

examples of the designs are shown in Table 2.1.

Table 2.1: Simon (1989)’s designs for (α, β) = (0.05, 0.1)

Optimal Design Minimax Design

π0 π1 n1 l1 n l n1 l1 n l

0.2 0.4 19 4 54 15 24 5 45 13
0.4 0.6 25 11 66 32 29 12 54 27

There are other group-sequential designs that preceded Simon (1989)’s designs. These

include, among others, the pioneering work of Gehan (1961). In Gehan (1961)’s design,

n1 patients are accrued and treated in stage 1. If no response is observed, the trial is

stopped and the treatment is discarded. Otherwise, the trial proceeds to stage 2, in

which additional n2 patients are accrued with the aim of estimating the response rate π

with a desired precision.

Many other designs followed, some of which were inspired by Simon (1989)’s designs

(see Table A.1 for more references).

2.2.2 Adaptive two-stage designs with binary endpoints

The classical phase II group-sequential designs as described above have fixed sample size

and decision boundaries at each stage. Allowing the sample size and the corresponding

decision boundaries of subsequent stages to depend on the results of previous stages may

result in designs with improved efficiency. Such adaptive designs have been proposed by

various authors (see Table A.1). Among them are the optimal adaptive two-stage designs

proposed by Englert and Kieser (2013), testing the same hypotheses (2.1) and using the

same optimality criteria (minimum expected sample size under the null hypothesis)

as the Simon (1989)’s optimal design. These designs are defined by the first stage

sample size, n1, futility and efficacy boundaries, l1 and u1 (u1 > l1), which are fixed,

and the second stage sample size, n2(x1), which depends on the number of responses
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observed in the first stage, x1. We further have the conditional error function, D(x1),

and the corresponding decision boundary, l(x1), which are also functions of x1. The final

(second) stage efficacy boundary u(x1) is set to u(x1) = l(x1) + 1, with l(x1) being the

futility boundary. D(x1) defines for each possible number of responses in the first stage,

x1 ∈ {0, ..., n1}, the conditional type I error rate to be used in the second stage (Englert

and Kieser, 2012b). At the interim analysis, the trial is stopped with failure to reject H0

if x1 ≤ l1 or with rejection of H0 if x1 ≥ u1. Otherwise the trial proceeds to the second

(final) stage, after which H0 is rejected if p2 ≤ D(x1) or, equivalently, x > l(x1), where

p2 is the second stage p-value, calculated with the n2(x1) patients recruited after the first

stage, and x is the total number of responses (i.e., x is the sum of x1 and the number

of responses observed in the second stage, x2). Note that x > l(x1) is equivalent to

x ≥ u(x1). The discrete conditional error function D(x1) in Table 2.2 is non-decreasing

in x1, and takes values within [0, 1].

The designs are found by exhaustive numerical search, fixing the response probability

under the null and alternative hypotheses (π0 and π1), and the type I and type II error

rates (α and β). An example of such designs is given in Table 2.2.

Table 2.2: Englert and Kieser (2013)’s optimal adaptive design for (π0, π1, α, β) =
(0.2, 0.4, 0.05, 0.1)

n1 = 20, n2,max = 39

x1 n2(x1) D(x1) l(x1)

≤ 4 0 0 0
5 16 0.082 10
6 30 0.129 14
7 33 0.200 15
8 39 0.241 17
9 39 0.376 17
≥ 10 0 1 0

It is clear that in these designs the first stage decision boundaries are l1 = max{x1|D(x1) =

0} = min{x1|D(x1) > 0} − 1 and u1 = min{x1|D(x1) = 1} = max{x1|D(x1) < 1} + 1,

and the first and second stage p-values are respectively p1 = 1 − B(x1 − 1, n1, π0) and

p2 = 1−B(x2 − 1, n2(x1), π0), where B(x, n, π) is the binomial cumulative distribution

function (CDF) with x successes, n trials and success probability π .

Compared to the classical designs like Simon (1989)’s optimal design, these designs show

improvements in terms of conservatism, being less conservative by better exhaustion of

type I error and, therefore, showing savings on average sample size, which are attributed

to the use of the discrete conditional error function and an improved search strategy.

Another recent proposal was by Shan et al. (2016a), who also proposed optimal adaptive

two-stage designs similar to those of Englert and Kieser (2013). The differentiating
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characteristic of these designs is that the second stage’s sample size is always a non-

increasing function of the first stage’s number of responses.

In these designs (Englert and Kieser, 2013; Shan et al., 2016a), represented by {n1, n2(x1), l(x1)},
the corresponding discrete conditional error function can be defined as D(x1) = 1 −
B {l(x1)− x1, π0, n2(x1)}, x1 ∈ {0, . . . , n1}. The overall type I error rate is given by

n1∑

x1=0

D(x1)PrH0(X1 = x1),

the type II error rate given by

1−
n1∑

x1=0

PrH1 {p2,x1 ≤ D(x1)}PrH1(X1 = x1)

and the average sample size under the null hypothesis by

ASN(π0) =

n1∑

x1=0

{n1 + n2(x1)}PrH0(X1 = x1).

The decision making based on the discrete conditional error function is identical to

the one based on boundaries formulated in terms of the observed number of responses,

therefore, the discrete conditional error function representation is sufficient to construct

these designs. For any specified n2, the set of the possible values of D(x1) is given by

P2,n2 := {1−B(x2 − 1, π0, n2)|x2 ∈ {0, . . . , n2}}

and, for a given range of second-stage sample sizes N2, the possible values of the discrete

conditional error function are P2 = ∪n2∈N2P2,n2 ∪ {0, 1}, where 0 and 1 represent the

early stopping for futility or efficacy, respectively.

In general, designs are found by, for a suitable grid of n1 and n2, constructing a non-

decreasing sequence D(x1) ∈ P2, x1 ∈ {0, . . . , n1}, and checking D(x1) for control of

type I and type II error rates. The design minimizing the average sample size under H0

among all designs satisfying the type I and II error constraints is selected.



Chapter 3

Estimation methods in oncology

phase II designs

In this chapter we give an overview of methods for estimating efficacy parameter pro-

posed in the literature for phase II oncology designs. We then compare, via simulations,

the performance of some of these methods. Further we propose new estimation methods

for a class of adaptive group-sequential designs, and study their performance using sim-

ulations. We have published part of this chapter as a research article in a peer-reviewed

scientific journal.

3.1 Overview

The gains in efficiency and flexibility obtained by departing from the traditional fixed-

sample clinical trials designs to group-sequential and adaptive designs come at a cost of

complexity in inference methods. Many new proposals of such designs often come with-

out the respective methods for estimation of the efficacy parameter. After implementing

a trial following these designs, investigators are often left with no choice but performing

inferential analysis using the traditional methods. By doing so, investigators risk jeop-

ardizing the trial results, given that traditional methods may have poor performance

when applied in a design context which they were not primarily intended for.

In phase II clinical trials, although the main goal is the hypothesis testing regarding the

decision of whether a treatment is worth further investigation in a late large scale phase

III trial, the estimation of efficacy remains important. This is especially so in cases where

the treatment was deemed successfully since the efficacy estimate is needed for planning

future trials. Most of the phase II trial designs in oncology are group-sequential, with

12
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some having in addition adaptive features (see Chapter 2). Due to the group-sequential

nature (possibility of early stopping) and/or the adaptiveness of these designs, the näıve

(fixed-sample) maximum likelihood estimate is no longer unbiased. This problem has

been acknowledged by many authors, who proposed alternative estimates. Most of

these alternative estimation methods are, however, design dependent. In the classical

single-arm two-stage group-sequential designs with binary endpoint (discussed in detail

in Chapter 2), different estimators have been proposed. These estimators include the

bias-adjusted estimator (Chang et al., 1989) and its simplified version (Guo and Liu,

2005), the bias-corrected maximum likelihood estimator and the uniformly minimum

variance unbiased estimator (Jung and Kim, 2004), the median unbiased estimator (Jovic

and Whitehead, 2010; Koyama and Chen, 2008), the conditional maximum likelihood

estimator (Tsai et al., 2008), the uniformly minimum variance conditionally unbiased

estimator (Pepe et al., 2009), and the mean square error reduced estimator (Li, 2011).

The conditional estimators of Tsai et al. (2008) and Pepe et al. (2009) are restricted

to cases where trials proceeded to the second (final) stage. However, for the adaptive

versions of these designs, little has been done regarding estimation. To our knowledge,

it is only recently that some estimation approaches where discussed by Kunzmann and

Kieser (2017).

Literature on estimation for group-sequential and adaptive designs common in areas

other than oncology phase II is, however, vast. We give a brief summary of estimation

methods proposed for various designs in Appendix B.

3.2 Simulation study

3.2.1 Introduction

It is clear from the overview above that there are constant research efforts aiming at

providing inference methods that are adequate to group-sequential and adaptive design

approaches. These methods are helpful tools for the investigators who want to benefit

from the flexibility of such designs. However, as seen above, some of these designs

end-up having quite a lot of alternative methods. With this multiplicity of methods,

investigators are also faced with the problem of which method to use. This problem

can be solved by doing extensive comparisons of the performance of the methods. Some

authors (e.g., Bowden and Wason, 2012; Porcher and Desseaux, 2012) have taken step

forward in this direction by conducting simulation studies.

Simon (1989)’s designs are very popular and widely used for oncology single-arm phase

II clinical trials (Koyama and Chen, 2008). Owing to this popularity, various methods to
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estimate the efficacy parameter (response rate) after such designs have been proposed.

In fact, the majority of the estimation methods for classical group-sequential designs

listed in Section 3.1 are applicable to Simon (1989)’s designs. We conduct a simulation

study to evaluate these methods. The main objectives are to compare the performance

of estimation methods for Simon (1989)’s designs, and to study their behaviour when

used for adaptive designs. For comparability of the results, we used adaptive designs

that are similar to Simon (1989)’s, but with second stage sample size updated based on

interim results using discrete conditional error function (Englert and Kieser, 2012b).

3.2.2 Methodology

3.2.2.1 Designs

A Simon (1989)’s design (described in detail in Section 2.2.1) testing the hypothesis

about the response rate π, H0 : π ≤ π0 versus H1 : π ≥ π1, with specified type I and

type II error rates, α and β, consists of first stage and overall sample sizes , n1 and n,

and their respective decision boundaries, l1 and l. At the interim analysis, the trial is

stopped with failure to reject H0 if the number of responses x1 is at most l1, otherwise

the trial continues to the last (second) stage. At the end, efficacy is concluded if the

cumulative number of responses x is greater than l. The sample sizes and decisions

boundaries are all pre-defined and fixed.

The adaptive design is obtained from the Simon (1989)’s design using the approach

by Englert and Kieser (2012b). Let p1 and p2 be the first and second stage p-values,

respectively. In analogy to the method proposed by Müller and Schäfer (2001, 2004),

Englert and Kieser (2012b) defined for two-stage designs with discrete outcomes the

discrete conditional error function D as a non-increasing function D(p) : [0, 1] → [0, 1]

with support P1 and ∑

p∈P1

D(p)PrH0(P1 = p) ≤ α

where P1 denotes the finite set of possible outcomes p1 of the corresponding random

variable P1. For designs with binary endpoint, the p-values of the two stages with x1

and x2 observed responses in the first and second stage, respectively, are given by

p1(x1) = PrH0(X1 ≥ x1) = 1−B(x1 − 1, π0, n1),

and

p2(x2) = PrH0(X2 ≥ x2) = 1−B(x2 − 1, π0, n2),

where Xi denotes the random variable of the number of responses in stage i, i = 1, 2,

and B the cumulative binomial distribution. The actual α level, α′, of such a design is
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given by

α′ =

n1∑

x1=0

CE(x1).PrH0{P1 = p1(x1)},

where

CE(x1) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x1 ≤ l1

1− {B(l − x1, π0, n2)} if l1 < x1 < u1

1 if x1 ≥ u1

defines the conditional type I error rate when x1 responses are observed in the first stage.

In Simon (1989)’s designs, since there is no early stopping for efficacy, u1 is set to any

number greater than n1, e.g., u1 = n1 + 1.

For any two-stage design with α′ ≤ α a discrete conditional error function can be

defined by D(p1(x1)) = CE(x1). By using this conditional error function, arbitrary

design modifications after the first stage can be performed while still controlling the

type I error rate. Therefore, to get adaptive versions of Simon (1989)’s designs, we

apply the conditional error function approach to the original designs, and after the first

stage we recalculate the sample size so that the conditional power, given the number of

responses at the first stage, is equal to the target power (1− β).

3.2.2.2 Estimation methods

One of the reasons the fixed-sample maximum likelihood inference is not adequate to

Simon (1989)’s designs and other similar designs is that apart from the number of

responses, the stopping stage also plays a role in the outcome of the trial. This also

defines the sample space configuration of the outcome, impacting the way probabilities

are calculated. Let M and S be the random variables of the stopping stage m and

the total number of successes (responses) s, respectively, where s = x1 if m = 1 and

s = x = x1 + x2 if m = 2. Let n be the total sample size (n = n1 if m = 1), and

n2 = n−n1 the second stage sample size. Jung and Kim (2004) have demonstrated that

(M,S) is a complete and sufficient statistic for π, and that for Simon (1989)’s designs

the probability mass function of (M,S) is

fπ(m, s) =

⎧
⎨
⎩
πs(1− π)n1−s

(
n1

s

)
if m = 1

πs(1− π)n−s
∑min(s,n1)

x1=max(l1+1,s−n2)

(
n1

x1

)(
n2

s−x1

)
if m = 2

The näıve (fixed-sample) maximum likelihood estimator (MLE), which ignores the group-

sequential nature of the designs, is the sample proportion which is given by π̂ml = s/n.

As mentioned earlier, this estimator is biased. Using multiple summation Jennison and

Turnbull (1983) as well as Chang et al. (1989) determined the bias of this estimator for
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K-stage group-sequential designs to be

bias(π) = E(π̂ml|π)− π =

⎡
⎣

K∑

m=1

⎛
⎝

lm∑

x=lm−1+1

+

um−1+nm∑

x=um

⎞
⎠xfπ(m,x)/Nm

⎤
⎦− π,

where Nm is the cumulative sample size at stage m, lm and um are the futility and

efficacy boundaries at stage m, with l0 = −1 and u0 = 0. In Simon (1989)’s designs

where the number of stages is K = 2 and there is no early stopping for efficacy (i.e.,

u1 > n1), with l2 = l and u2 = u = l + 1, the bias expression becomes

bias(π) =
1

n1

l1∑

x=0

xfπ(1, x) +
1

n

n∑

x=l1+1

xfπ(2, x)− π.

Making use of this bias expression, two estimators with reduced bias were proposed.

The first estimator, π̂ba, was proposed by Chang et al. (1989) and is defined as

π̂ba = π̂ml − bias(π̂ba).

This estimator is difficult to compute since the bias is evaluated at the same quantity

that is being estimated. For this reason, Guo and Liu (2005) proposed another estimator,

π̂br, that can be easily computed by evaluating the bias at the fixed-sample MLE:

π̂br = π̂ml − b(π̂ml).

Because of this computational simplicity, we consider only the estimator π̂br for simula-

tions.

Using RaoBlackwell theorem, Jung and Kim (2004) proposed the uniformly minimum

variance unbiased estimator (UMVUE). Since the first stage sample proportion π̂ml1 =

x1/n1 is an unbiased estimator of π, the UMVUE (π̂umvu) of π is obtained as the condi-

tional expectation of π̂ml1 given the sufficient statistic (M,S), i.e., π̂umvu = E {π̂ml1|(m, s)}.
For Simon (1989)’s designs this estimator is explicitly defined as

π̂umvu =

⎧
⎪⎨
⎪⎩

s
n1

if m = 1∑min(s,n1)

x1=max(l1+1,s−n2)
(n1−1
x1−1)(

n2
s−x1

)∑min(s,n1)

x1=max(l1+1,s−n2)
(n1
x1
)( n2

s−x1
)

if m = 2

Noting that the sample proportion based only on second stage data π̂ml2 = x2/n2 is

unbiased and that, conditional on m = 2, the overall sample proportion π̂ml = s/n

is a complete and sufficient statistic for the distribution of π̂ml2, Pepe et al. (2009)

proposed the uniformly minimum variance conditionally unbiased estimator (UMVCUE)
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also using RaoBlackwell theorem. UMVCUE is meant for estimation conditional on

continuing to the second stage. It is defined as π̂umvcu = E {π̂ml2|(2, s)}. For Simon

(1989)’s designs its explicit expression is

π̂umvcu =

∑min(s,n1)
x1=max(l1+1,s−n2)

(
n1

x1

)(
n2−1

s−x1−1

)

∑min(s,n1)
x1=max(l1+1,s−n2)

(
n1

x1

)(
n2

s−x1

) .

In simulations scenarios for unconditional estimation (i.e., estimation done irrespective of

whether the trial stopped at first stage or continued to second stage), we set π̂umvcu = s
n1

if m = 1 to allow comparison with other estimators.

Koyama and Chen (2008) proposed to get the point estimate of π for Simon (1989)’s

designs using the overall p-value (based on the data from both stages). First they noted

that it is a common practice to incorrectly compute a p-value at the end of second

stage assuming the data were collected in a single stage. They call this the conventional

p-value, and it is expressed as

pc =

n1∑

x1=0

Prπ0 [X1 = x1] Prπ0 [X2 ≥ s− x1] .

It is clear that this p-value is incorrect. This is seen by the fact that the summand

includes impossible sample paths in which X1 < l1 and X2 = s−X1. They proposed a

preferred p-value which does not include these impossible sample paths, expressed as

pp =

⎧
⎨
⎩
Prπ0(X1 ≥ s) if m = 1
∑n1

x1=l1+1 Prπ0(X1 = x1)Prπ0(X1 ≥ s− x1) if m = 2

This p-value is consistent with stage-wise ordering (we elaborate more on stage-wise

ordering later in Section 3.3.2).

Then they proposed a median unbiased estimator, denoted π̂mu, which is the value of

the response rate under H0 (π̃0) that, given the observed data, would give a p-value of

0.5, i.e.,

π̂mu = {π̃0 : pp(π̃0) = 0.5} ,

where pp(π̃0) means that π0 is replaced by π̃0 in the expression of pp.

3.2.2.3 Simulation set-up

The performance of the estimator was in terms of bias and root mean square error

(RMSE). To cover some spectrum of Simon (1989)’s designs, both optimal and min-

imax (see Section 2.2.1), 9 scenarios were considered per design: the response rate
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under the null hypothesis π0 = 0.1, 0.2, 0.3, with the difference under the alternative

π1 − π0 = 0.1, 0.2, 0.3 for each π0. The assumed type I and type II error rates were

α = 0.05 and β = 0.1. To check the effect of departures from the assumed π1, trials

assuming lower and higher (than π1) true response rate π where also simulated for each

design scenario.

The adaptive versions of the designs (see Section 3.2.2.1) where obtained based on the

classical ones (as defined above) by, at the interim analysis, updating the second stage

sample size so as to achieve a conditional power of 90%. The final decision rule was

based on conditional type I error, defined using the original design parameters (Englert

and Kieser, 2012b).

Unconditional and conditional estimation was performed with all estimators. By uncon-

ditional estimation we mean that the efficacy parameter π is estimated irrespective of

whether the trial stopped at first stage or continued to the second stage, and conditional

estimation means that estimation is done only if the trial proceeded to the second stage.

To serve as benchmark for comparison, the sample proportion based on first stage data

only, π̂ml1 , and based on second stage data only, π̂ml2 , were also computed, respectively,

for unconditional and conditional estimation. For each scenario, 10000 replicate trials

were generated.

3.2.3 Results

Table 3.1 shows the performance of estimators for a Simon (1989)’s optimal design, with

true response rate (π) equal to that under H1 (π1). The results of the corresponding

adaptive version of the design (obtained as explained in Section 3.2.2.3) are shown in

Table 3.2. Figures 3.1 and 3.2 show, respectively, the unconditional and conditional

performance for the same optimal design for different values of π.

Table 3.1: Performance of estimators for Simon (1989)’s optimal design with parame-
ters π0 = 0.3, π1 = 0.5, π = 0.5, α = 0.05, β = 0.1. The “Unconditional” column holds
the performance of estimators for estimation done irrespective of the stopping stage,
while “Conditional” is for estimation done only for the trials that stopped at second

(final) stage.

Unconditional Conditional
Estimator Bias RMSE Bias RMSE

π̂mli∗ -0.00114 0.10260 -0.00002 0.08036
π̂ml -0.00968 0.07977 0.00568 0.06048
π̂br -0.00089 0.07683 0.01521 0.05620
π̂umvu -0.00058 0.07457 0.01555 0.05279
π̂umvcu -0.01529 0.08410 -0.00039 0.06652
π̂mu -0.01583 0.08050 0.00052 0.05643

*i = 1 for unconditional and i = 2 for conditional estimation
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For unconditional estimation in classical Simon’s designs, the UMVUE (π̂umvu) out-

performed all other estimators in terms of bias. It was followed by the bias-reduced

estimator (π̂br), which had negligible bias. Regarding the RMSE, π̂umvu was again the

best performer, closely followed by π̂br. Conditional on moving to the second stage,

the UMVCUE (π̂umvcu) was the winner in terms of bias, but worse in terms of RMSE

(although still better than π̂ml2). Here the π̂umvu and π̂br were the worse in terms of

bias, but better than π̂umvcu in terms of RMSE.

In general, bias is negative for unconditional estimation and positive for conditional.

The bias moves and stabilizes towards zero as π moves from π0 to values greater than

π1. The exception is for π̂mu, having bias crossing the zero line.

(a) Bias (b) RMSE

Figure 3.1: Performance of estimators (unconditional) for different values of true
response rate π. Trials were simulated under Simon (1989)’s optimal design with pa-
rameters π0 = 0.3, π1 = 0.5, α = 0.05, β = 0.1. Estimation was done in all the

simulated trials

For the adaptive versions of the designs there was no clear winner. For π closer to π1,

π̂umvcu tended to have lower bias, but in most cases it was worse than π̂ml1 . Regarding

the RMSE, the median unbiased estimator (π̂mu), π̂umvu and π̂br were better than others

but no clear winner amongst them. In conditional estimation the bias was even higher,

with π̂mu tending to have lower bias for π near π1, followed by π̂umvcu. π̂mu had also

the lowest RMSE, followed by π̂umvu, π̂br and π̂ml.

3.2.4 Conclusion

For the classical Simon’s designs, the UMVUE is recommended for unconditional es-

timation and, the UMVCUE for conditional estimation, as they outperform the other

estimators.
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Table 3.2: Performance of estimators for adaptive version of Simon (1989)’s optimal
design with parameters p0 = 0.3, p1 = 0.5, p = 0.5, α = 0.05, β = 0.1. The “Uncondi-
tional” column holds the performance of estimators for estimation done irrespective of
the stopping stage, while “Conditional” is for estimation done only for the trials that

stopped at second (final) stage.

Unconditional Conditional
Estimator Bias RMSE Bias RMSE

π̂mli∗ 0.00051 0.10215 -0.00110 0.15142
π̂ml 0.00644 0.09491 0.02327 0.08074
π̂br 0.01256 0.09258 0.02990 0.07776
π̂umvu 0.01266 0.09094 0.03001 0.07562
π̂umvcu 0.00094 0.09940 0.01731 0.08640
π̂mu -0.00474 0.09156 0.01265 0.07237

*i = 1 for unconditional and i = 2 for conditional estimation

(a) Bias (b) RMSE

Figure 3.2: Performance of estimators (conditional on proceeding to second stage)
for different values of true response rate π. Trials were simulated under Simon (1989)’s

optimal design with parameters π0 = 0.3, π1 = 0.5, α = 0.05, β = 0.1

For the adaptive versions of Simon’s designs, there is no clearly best estimator to rec-

ommend. This is due to the fact that none of the estimators was developed for this type

of designs. In fact, these estimators are not theoretically valid for such designs since

they were derived with the assumption that both the first and second stage sample sizes

are pre-defied and fixed. However in the adaptive designs considered, the second stage

sample size is recalculated given the results of the first stage. Even if simulations had

shown good performance of some of them, we would not recommend them since there

is no sound theoretical reasoning to support their validity. Therefore, more research to

find adequate estimation methods is needed.
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3.3 New estimation methods for adaptive designs

As seen in the previous sections, the estimation methods proposed for oncology phase II

group-sequential designs (GSD) are not applicable to their adaptive counterparts. Many

estimation methods for adaptive GSD have been proposed in the literature (e.g., Bebu

et al., 2013, 2010; Bowden et al., 2014; Bowden and Glimm, 2008, 2014; Bowden and

Trippa, 2015; Brannath et al., 2006; Broberg and Miller, 2017; Carreras and Brannath,

2013; Cheng and Shen, 2004; Coburger and Wassmer, 2003; Gao et al., 2013; Kimani

et al., 2015; Luo et al., 2012; Posch et al., 2005; Stallard and Todd, 2005). However,

most of these methods are intended for phase III clinical trials designs, and little has

been done in phase II. To the best of our knowledge, the discussion on estimation for the

Simon-like phase II adaptive designs was only done recently by Kunzmann and Kieser

(2017). They investigated different strategies and proposed a method for estimating the

response rate. Their proposed point estimator uses the Bayesian framework and it can

be interpreted as a constrained posterior mean estimate based on the non-informative

Jeffreys prior.

As an alternative to the Bayesian procedure by Kunzmann and Kieser (2017), we propose

a frequentist procedure for interval and point estimation. This procedure is for single-

arm adaptive GSD with binary endpoint, in which the sample size of the second stage

is a pre-defined function of the number of responses in the first stage. Some of the

approaches we propose, however, can be extended to designs with flexible adaptation

rules. We use the concept of stage-wise ordering to defined our procedure. Therefore,

first we propose and discuss different sample space orderings approaches, from which

we derive methods for calculating an overall p-value and then the interval and point

estimates. In the following subsections, we provide a brief summary of the targeted

designs, then we elaborate on our proposed methods. This is followed by the results of

a simulation study, and we close the section with conclusions and a discussion.

We have published the methods discussed here in the Statistical Methods in Medical

Research journal (see Nhacolo and Brannath, 2018, and the Appendix D)

3.3.1 Design characteristics

We construct and discuss our methods for adaptive designs similar to those proposed

by Englert and Kieser (2013) and Shan et al. (2016a). These designs are described

in Section 2.2.2, for convenience we summarize them here. They are single-arm two-

stage designs with a binary endpoint, and are intended to be used for oncology phase II

trials. Unlike the classical GSD, they allow the second stage sample size to vary with

the number of the observed responses in the first stage. The hypotheses tested in these
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designs are

H0 : π ≤ π0 versus H1 : π ≥ π1,

where H0 and H1 are the null and the alternative hypothesis, respectively, π0 is the

maximum response rate considered to be uninteresting and π1 is the minimum desirable

response rate (π1 > π0).

The designs are built to satisfy specific type I and type II error rates constraints (α

and β), and are defined by fixed and varying elements. The fixed elements are the first

stage sample size, n1, futility and efficacy boundaries, l1 and u1 (u1 > l1). The second

stage contains the varying elements, namely the second stage sample size, n2(x1), the

conditional error function, D(x1) and the corresponding decision boundary, l(x1), which

are pre-specified functions of the number of responses observed in the first stage, x1.

D(x1) defines for each possible number of responses in the first stage, x1 ∈ {0, ..., n1},
the conditional type I error rate to be used in the second stage (Englert and Kieser,

2012b).

The trial is stopped at the first stage if x1 ≤ l1 (H0 not rejected) or if x1 ≥ u1 (H0

rejected); otherwise the trial proceeds to the second stage, after which H0 is rejected

if p2 ≤ D(x1) or, equivalently, x > l(x1), where p2 is the second stage p-value and

x = x1 + x2, with x2 being the number of responses observed in the second stage. Note

that the second stage rejection boundary is set to u(x1) = l(x1) + 1, therefore x > l(x1)

is equivalent to x ≥ u(x1). An example of such designs is given in Table 3.3.

Table 3.3: Englert and Kieser (2013)’s optimal adaptive design for (π0, π1, α, β) =
(0.2, 0.4, 0.05, 0.1)

n1 = 20, n2,max = 39

x1 n2(x1) D(x1) l(x1)

≤ 4 0 0 0
5 16 0.082 10
6 30 0.129 14
7 33 0.200 15
8 39 0.241 17
9 39 0.376 17
≥ 10 0 1 0

The discrete conditional error function D(x1) is non-decreasing in x1, and takes val-

ues within [0, 1]. We assume these two properties in our methodology. As it can

be seen from the design example in Table 3.3, the first stage decision boundaries are

l1 = max{x1|D(x1) = 0} and u1 = min{x1|D(x1) = 1}, and the first and second stage

p-values are p1 = 1−B(x1−1, n1, π0) and p2 = 1−B(x2−1, n2(x1), π0), where B(x, n, π)

is the binomial cumulative distribution function with x successes, n trials and success

probability π.
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3.3.2 Classical sample space orderings

A sample space ordering is necessary for the calculation of the probability of obtaining an

outcome that is at least as extreme as the observed one, which is in turn fundamental for

the construction of confidence intervals and p-values. For the traditional single-variable

outcomes from fixed-sample designs, the sample space ordering is simply the ordering of

the real numbers. However, in GSD the sample space ordering is not straightforward.

This is because, apart from the test statistic, the stopping stage also plays a role when

ordering the outcomes. Various sample space orderings have been proposed by different

authors for GSD. These include the stage-wise ordering, first proposed by Armitage

(1957) and later discussed by other authors (Fairbanks and Madsen, 1982; Jennison and

Turnbull, 2000; Siegmund, 1978; Tsiatis et al., 1984; Wassmer and Brannath, 2016), the

likelihood ratio ordering (Chang, 1989; Chang and O’Brien, 1986; Rosner and Tsiatis,

1988), the sample mean ordering (Emerson and Fleming, 1990), and the score test

ordering (Rosner and Tsiatis, 1988).

The stage-wise ordering is a widely used ordering in GSD. For classical GSD counterparts

of the adaptive designs above, i.e., designs in which n2 and l are also fixed, this ordering

can be defined as follows. Let m be the stopping stage and x the total number of

responses. A trial outcome (m′, x′) is at least as extreme (against H0) as the observed

trial outcome (m,x), written as (m′, x′) ≽ (m,x), if one of the following conditions is

met:

(A) m′ = m and x′ ≥ x

(B) m′ = 1, m = 2 and x′ ≥ u1

(C) m′ = 2, m = 1 and x ≤ l1

For the adaptive designs, due to the nature of the conditional error function, the stage-

wise ordering discussed here can be inconsistent with the design’s decision rule when

m′ = m = 2. For example, for the design in Table 3.3, the minimum total number

of responses necessary to reject H0 is 11 if x1 = 5 and 18 if x1 = 8. If we have two

outcomes, say an outcome Y = (2, 13) with x1 = 5 and another outcome Y ′ = (2, 16)

with x1 = 8, according to the stage-wise ordering Y ′ ≽ Y , although Y leads to the

rejection of H0 and Y ′ doesn’t.

3.3.3 Alternative sample space orderings

Alternative sample space orderings that solve the inconstancies discussed above are

needed for the adaptive GSD. Here we propose a new sample space orderings that take

into account the conditional error function and adaptation rule of the design. We define
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the orderings as follows. If both outcomes are from trials that stopped at the final

(second) stage (i.e., m′ = m = 2), we order them taking into account their respective

rejection boundaries. To achieve this we define a function of the trial outcome, denoted

δ(x1, x2), that in some way incorporates its respective rejection boundary. In all other

cases we order the outcomes as in the classical stage-wise ordering discussed above

(Section 3.3.2). Then it follows that (m′, x′1, x
′) ≽ (m,x1, x) if one of the following

conditions is satisfied:

(A1) m′ = m = 1 and x′ ≥ x

(A2) m′ = m = 2 and δ(x′1, x
′
2) ≥ δ(x1, x2)

(B) m′ = 1, m = 2 and x′ ≥ u1

(C) m′ = 2, m = 1 and x ≤ l1

Three different methods for defining δ(x1, x2) are proposed. The first two methods

quantify the deviation between x and l(x1). In the first one δ(x1, x2) is defined using x

directly as

δ(x1, x2) = x1 + x2 − l(x1) = x− l(x1) (3.1)

and in the second one δ(x1, x2) is defined using the second stage p-value as

δ(x1, x2) = δ̃ [x1, p2(x2)] = D(x1)− p2(x2) (3.2)

Both methods define δ such that it equals to a constant when the outcome is at the deci-

sion boundary (i.e., when x2 = l(x1)−x1 and p2 = D(x1)). That is, δ [x1, l(x1)− x1] = c1

and δ [x1, D(x1)] = c2. Here c1 = c2 = 0, meaning that the null hypothesis is rejected

if δ(x1, x2) > 0. The inequality δ(x′1, x
′
2) ≥ δ(x1, x2) in the case (A2) of our proposed

sample space ordering can be stated as x′2 ≥ x− l(x1) + l(x′1)− x′1 for the first method

and p′2 ≤ p2 −D(x1) +D(x′1) for the second one.

The function δ as defined in (3.1) and (3.2) is strictly linked to the design’s decision

rules and, therefore, requires that the trial design be strictly followed.

Next we define δ using combination functions from adaptive tests to allow for flexi-

bility. Combination functions combine the first and the second stage p-values, with

the assumption that the data from the two stages are from independent cohorts of

patients. An extensive discussion on adaptive combination tests can be found in Wass-

mer and Brannath (2016). We define a combination function C(p1, p2), which is non-

decreasing in both arguments and continuous in p2, setting the early stopping boundaries

α0 = 1− B(l1 − 1, n1, π0) and α1 = 1− B(u1 − 1, n1, π0), and finding a critical value c
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such that the type I error is controlled, i.e.,

α1 +

∫ α0

α1

∫ 1

0
I[C(p1,p2)≤c]dp2dp1 = α

where I[S] equals to 1 if S is true and 0 otherwise.

Given the combination test, the most natural ordering on the second stage is accord-

ing to C(p1, p2), i.e., if we have performed a second stage we consider a second trial

outcome with stage-wise p-values (p′1, p
′
2) as more extreme than our observed outcome

if C(p′1, p
′
2) < C(p1, p2). Even though the phase II designs we are dealing with might

not be based on a combination function C we can build an ordering based on C that

is consistent with the rejection region given by the function D (or equivalently given

by the function l). We accomplish this by defining the corresponding conditional error

function of C

A(p1) = max{y ∈ [0, 1] : C(p1, y) ≤ c}

and calculate the backward image p1b such that A(p1b) = D(x1), where D(x1) is the

conditional error of the original design. Then we use p1b instead of p1 in the combination

function.

A natural and common choice for C(p1, p2) is the weighted inverse normal combination

function (Lehmacher and Wassmer, 1999), which can be represented as (Wassmer and

Brannath, 2016)

C(p1, p2) = 1− Φ
[
w1Φ

−1(1− p1) + w2Φ
−1(1− p2)

]
,

where Φ is standard normal CDF, and w1 and w2 are predefined weights chosen such

that w2
1 +w2

2 = 1. Here we propose to use weights that give more emphasis to the stage

with higher sample size, i.e.,

w1 = w1(x1) =

√
n1

n1 + n2(x1)
and w2 = w2(x1) =

√
n2(x1)

n1 + n2(x1)
.

The conditional error function of the inverse normal combination function is

A(p1) = 1− Φ

[
Φ−1(1− c)− w1Φ

−1(1− p1)

w2

]
.
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We solve the equation A(p1b) = D(x1) for p1b:

A(p1b(x1)) = D(x1)

⇔1− Φ

{
Φ−1(1− c)− w1(x1)Φ

−1 [1− p1b(x1)]

w2(x1)

}
= D(x1)

⇔Φ−1(1− c)− w1(x1)Φ
−1 [1− p1b(x1)]

w2(x1)
= Φ−1 [1−D(x1)]

⇔Φ−1 [1− p1b(x1)] =
Φ−1(1− c)− w2(x1)Φ

−1 [1−D(x1)]

w1(x1)

⇔1− p1b(x1) = Φ

{
Φ−1(1− c)− w2(x1)Φ

−1 [1−D(x1)]

w1(x1)

}

⇔p1b(x1) = 1− Φ

{
Φ−1(1− c)− w2(x1)Φ

−1 [1−D(x1)]

w1(x1)

}

We, finally, define δ as

δ(x1, x2) = δ̄ [p1b(x1), p2(x2)] = 1− C(p1b, p2). (3.3)

With δ defined in this way, the condition δ(x′1, x
′
2) ≥ δ(x1, x2) in the case (A2) of

the proposed sample space ordering becomes C(p′1b, p
′
2) ≤ C(p1b, p2), meaning that the

outcome with lower C(p1b, p2) is considered to be more extreme. As it is the case with

the other ordering discussed so far, this ordering is monotone in x2, i.e., for two outcomes

(x1, x2) and (x1, x
′
2), x

′
2 > x2 implies that δ(x1, x

′
2) > δ(x1, x2). We have checked this

property empirically for all the Englert and Kieser (2013)’s designs.

Ordering the trial outcomes by the proportion of responses, (x1+x2)/[n1+n2(x1)], might

seem a plausible sample space ordering, however it would not guarantee consistency with

the design’s decision rule. This is because in some designs the ratio of the final decision

boundary and the total sample size, l(x1)/[n1 + n2(x1)], is not constant. For instance,

in the Englert and Kieser (2013)’s design for (π0, π1, α, β) = (0.5, 0.7, 0.05, 0.2) this ratio

is 0.6 if x1 = 14 and 0.8 if x1 = 15.

3.3.4 Overall p-value

Now that we have proposed new sample space orderings (Section 3.3.3), we use them

to derive an overall p-value, denoted by Q, meant to be calculated when the trial has

been terminated. First we introduce a modification of the outcome notation to explicitly

include x1, i.e., we change the notation from (m,x) to (m,x1, x). This is because, as

seen above, we need to explicitly know both x1 and x2 = x−x1 to define δ, on which Q is

based. We also introduce X1 and X2, the random variables for x1 and x2, respectively.

Q is defined as the probability of observing under H0 an outcome (m′, x′1, x
′) that is
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similar or more extreme than the outcome (m,x1, x) actually observed in the trial. If

the observed outcome is from a trial that stopped at the first stage outcomes with

x′1 ≥ x1 are more extreme, irrespective of their stopping stage, implying the overall

p-value

Q = Q(x1) = Prπ0(X1 ≥ x1).

If the observed outcome is from a trial that continued to the second stage, more extreme

are outcomes from trials that stopped at the first stage with x′1 ≥ u1 or continued to

the second stage with δ(x′1, x
′
2) ≥ δ(x1, x2), then

Q =Q(x1, x2) =

Prπ0(X1 ≥ u1) +

u1−1∑

x′
1=l1+1

Prπ0(X1 = x′1)Prπ0

[
δ(X1, X2) ≥ δ(x1, x2)|X1 = x′1

]
.

Since X1 and X2 follow binomial distribution, we can write the overall p-value as

Q =

⎧
⎪⎪⎨
⎪⎪⎩

1−B(x1 − 1, n1, π0) if m = 1

1−B(u1 − 1, n1, π0) +
u1−1∑

x′
1=l1+1

b(x′1, n1, π0)Prπ0 (∆ ≥ δ|x′1) if m = 2

where b(x, n, π) is the binomial probability mass function with x successes, n trials and

success probability π, ∆ = δ(X1, X2) and δ = δ(x1, x2).

We discuss in the following lines approaches to calculate the probability of δ(X1, X2) ≥
δ(x1, x2) under H0, i.e., Prπ0 [δ(X1, X2) ≥ δ(x1, x2)].

Method 1:

For the δ(x1, x2) defined in (3.1), since we are working directly with the number of events

(responses), this probability can easily be calculated as

Prπ0

(
∆ ≥ δ|x′1

)

=Prπ0

[
δ(X1, X2) ≥ δ(x1, x2)|x′1

]

=Prπ0

[
X − l(X1) ≥ x− l(x1)|x′1

]

=Prπ0

[
X1 +X2 − l(X1) ≥ x− l(x1)|x′1

]

=Prπ0

[
X2 ≥ x− l(x1) + l(X1)−X1|x′1

]

=1−B
[
x− l(x1) + l(x′1)− x′1 − 1, n2(x

′
1), π0

]
.

For the other two methods we use approximations. We make use of the fact that a

p-value P is in general stochastically not smaller than a standard uniform variate, i.e.,

Prπ0(P ≤ γ) ≤ γ, γ ∈ [0, 1].
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Assuming that the first stage design is pre-fixed and is strictly followed, and that the

first and the second stage data are from independent cohorts of patients, using the

second stage p-value p2 as the test statistic guarantees the conditional invariance prin-

ciple (Wassmer and Brannath, 2016). This implies that conditional on the first stage

data and second stage design, the distribution of p2 under H0 is not smaller than the

uniform distribution. This, in turn, implies that the type I error rate is controlled

irrespective of the adaptation rule.

Method 2:

When using the δ(x1, x2) in (3.2), we approximate Prπ0 (∆ ≥ δ) as

Prπ0

(
∆ ≥ δ|x′1

)
=Prπ0

[
δ(X1, X2) ≥ δ(x1, x2)|x′1

]

=Prπ0

[
D(X1)− P2 ≥ D(x1)− p2|x′1

]

=Prπ0

[
P2 ≤ p2 −D(x1) +D(X1)|x′1

]

≈
⟨
p2 −D(x1) +D(x′1)

⟩
[0,1]

where

⟨ω⟩[0,1] =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if ω < 0

ω if 0 ≤ ω ≤ 1

1 if ω > 1

Method 2v2:

Another way of calculating Prπ0 (∆ ≥ δ|x′1) in Method 2 is to use the fact that p2 =

1−B [x2 − 1, n2(x1), π0] and the corresponding binomial quantile function, denoted by

Bq [p, n2(x1), π0] (where p is a cumulative probability), as follows:

Prπ0

(
∆ ≥ δ|x′1

)
=Prπ0

[
δ(X1, X2) ≥ δ(x1, x2)|x′1

]

=Prπ0

[
P2 ≤ p2 −D(x1) +D(X1)|x′1

]

=Prπ0 {1−B [X2 − 1, n2(X1), π0] ≤ p2 −D(x1) +D(X1)|x′1}
=Prπ0 {B [X2 − 1, n2(X1), π0] ≥ 1− p2 +D(x1)−D(X1)|x′1}
=Prπ0 {X2 − 1 ≥ Bq [1− p2 +D(x1)−D(X1), n2(X1), π0]|x′1}
=Prπ0 {X2 ≥ 1 +Bq [1− p2 +D(x1)−D(X1), n2(X1), π0]|x′1}
=1−B

{
Bq

[
1− p2 +D(x1)−D(x′1), n2(x

′
1), π0

]
, n2(x

′
1), π0

}
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Method 3:

Finally, using the δ(x1, x2) in (3.3) we have that

Prπ0

(
∆ ≥ δ|x′1

)
=Prπ0

[
δ(X1, X2) ≥ δ(x1, x2)|x′1

]

=Prπ0

[
C(P1b, P2) ≤ C(p1b, p2)|x′1

]

=Prπ0 [P2 ≤ 1− Φ(zb)]

≈1− Φ(zb)

where

zb =
w1Φ

−1(1− p1b) + w2Φ
−1(1− p2)− w′

1Φ
−1(1− p′1b)

w′
2

,

with w1 = w1(x1), w
′
1 = w1(x

′
1), w2 = w2(x1) and w′

2 = w2(x
′
1). The expression of zb is

obtained by solving the inequation δ(x′1, x
′
2) ≥ δ(x1, x2):

δ(x′1, x
′
2) ≥ δ(x1, x2)

⇔ δ
[
p1b(x

′
1), p2(x

′
2)
]
≥ δ [p1b(x1), p2(x2)]

⇔ 1− C(p′1b, p
′
2) ≥ 1− C(p1b, p2)

⇔ C(p′1b, p
′
2) ≤ C(p1b, p2)

⇔ 1− Φ
[
w′
1Φ

−1
(
1− p′1b

)
+ w′

2Φ
−1
(
1− p′2

)]
≤ 1− Φ

[
w1Φ

−1 (1− p1b) + w2Φ
−1 (1− p2)

]

⇔ Φ
[
w′
1Φ

−1
(
1− p′1b

)
+ w′

2Φ
−1
(
1− p′2

)]
≥ Φ

[
w1Φ

−1 (1− p1b) + w2Φ
−1 (1− p2)

]

⇔ w′
1Φ

−1
(
1− p′1b

)
+ w′

2Φ
−1
(
1− p′2

)
≥ w1Φ

−1 (1− p1b) + w2Φ
−1 (1− p2)

⇔ Φ−1
(
1− p′2

)
≥ w1Φ

−1 (1− p1b) + w2Φ
−1 (1− p2)− w′

1Φ
−1
(
1− p′1b

)

w′
2

⇔ 1− p′2 ≥ Φ

[
w1Φ

−1 (1− p1b) + w2Φ
−1 (1− p2)− w′

1Φ
−1
(
1− p′1b

)

w′
2

]

⇔ p′2 ≤ 1− Φ

[
w1Φ

−1 (1− p1b) + w2Φ
−1 (1− p2)− w′

1Φ
−1
(
1− p′1b

)

w′
2

]

⇔ p′2 ≤ 1− Φ(zb)

Note that some of steps above are only valid because Φ is a continuous and monotone

increasing function.

3.3.5 Point and interval estimation

Here we used the overall p-value defined above to derive interval and point estimates.

Following the the approach discussed in Wassmer and Brannath (2016, Chapter 8), we
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construct the confidence interval (CI) by considering all the null hypotheses

H π̃0
0 : π ≤ π̃0, with 0 ≤ π̃0 ≤ 1.

The region {π̃0 : Q(π̃0) = Prπ̃0 [(M,X1, X) ≽ (m,x1, x)] > α} is a one-sided (1−α)100%

CI defined as ]πα
L; 1], where the lower bound πα

L is the solution, in π̃0, of the equation

Q(π̃0) = α. That is, the CI is a set of π̃0 for which H0 is not rejected.

As the point estimate we take the lower bound of the 50% one-sided CI, i.e., π̂ = π0.5
L ,

which is an approximate median unbiased estimator. Similar estimators have been

proposed for classical oncology two-stage GSDs by Koyama and Chen (2008) and Jovic

and Whitehead (2010), which are applicable only if n2 is a constant for all x1.

In order to this estimation technique to work it is necessary that the overall p-value Q(π)

as function of response probability π be monotone increasing for π ∈ [0, 1]. We checked

the monotonicity of Q(π) numerically for all 34 designs listed in Englert and Kieser

(2013), for all possible outcomes and π ranging from 0 to 1 by increments of 0.01. We

found that Methods 2 and 3 are monotone in all designs. Method 1 is monotone, except

for four designs when π ≥ 0.8. In the case of non-monotonicity, a conservative solution

may be found using the cumulative maximum of Q(π), i.e., Qcm(π) = max{Q(π′) : π′ ≤
π}.

3.3.6 Simulation study

We conducted an extensive simulation study to evaluate different aspects of our proposed

methods. We checked the behaviour of the overall p-value (Q) for all possible outcomes

in all designs listed in Englert and Kieser (2013), with varying value of the response rate

under the null (from 0 to 1 by increments of 0.01). Then we evaluated the performance

of the point estimates in terms of bias and root mean square error (RMSE), and the

performance of the confidence intervals in terms of coverage probability and mean of the

lower bound. We also estimated the type I error and power using the original decision

rule and using the overall p-value from the proposed methods.

The bias was calculated as 1
T

∑T
t=1 (π̂t − π) and RMSE as

√
1
T

∑T
t=1 (π̂t − π)2, where T

is the total number of simulated trials, π̂ the estimated response probability and π the

true response probability (under which trials were simulated). The coverage probability

was computed as the proportion of trials in which the (1−α)100% CI contained the true

response rate π. The type I error was calculated as the proportion of trials simulated

under π = π0 in which H0 was rejected, and the power calculated similarly but for trials

simulated under π = π1.
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We have included, for comparison purposes, the näıve maximum likelihood estimator

(MLE), which ignores the adaptiveness of the design (i.e., it assumes the data is from a

fixed-sample design). This estimator is likely to be employed when analysing data from

adaptive designs for which no specific estimation methods are available. We used two

versions of the näıve MLE, one that uses all trial data, π̂p = [x1 + x2]/[n1 + n2(x1)],

and the other that uses the first stage data only, π̂p1 = x1/n1. The reason for including

π̂p1 is that since it is unbiased, it will serve as benchmark for comparison with respect

to RMSE, i.e., a new estimator would not be desirable if it would be outperformed

by π̂p1 in terms of RMSE. We denote the estimated response probability by π̂m1 for

Method 1, π̂m2 for Method 2, π̂m2v2 for Method 2v2, and π̂m3 for Method 3. The

simulation were done for two designs of Englert and Kieser (2013), one with a moderate

π1, (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20), we call this design 1, and the other (design

2) with relatively high π1, (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22). For both designs we

varied, in the simulated trials, the true response probability π from 0 to 1 by increments

of 0.01. For each scenario 50 000 trials were simulated.

We have implemented all the methods described above in the statistical programming

language R (R Core Team, 2017), and included in a package described in Appendix C.

3.3.6.1 Results

Results on overall p-value showed that p-values from all the proposed methods are con-

sistent with design’s decision rule. However, due to approximations used for calculation

of these p-values in some methods, there will be some borderline cases in which the

overall p-value may lead to a different conclusion. Part of the p-value results, for all

possible values of x when x1 = 8 and x1 = 11 in two designs, are shown in Figure 3.3.

Results in Table 3.4 show that type I error rate and power of Methods 1 and 2v2 are

equal to those of design’s original decision rule, which are in turn close to the nominal

levels. Methods 2 and 3 are conservative, as their type I error rate is lower compared to

other methods.

The Figures 3.4 and 3.5 show, respectively, the results on bias and RMSE of the estima-

tors for values of π ranging from 0 to 1. The Table 3.5 shows the results of simulations

under H1 (π = π1), and, in addition to bias and RMSE, it shows the mean and the first,

second and third quartiles of the estimates, and the coverage probability and the mean

lower bound of the one-sided (1 − α)100% CI. The Table 3.6 presents the same results

for simulations under π = π1 + 0.1. The point estimators behave differently depending

on how close or far the true response rate (π) is from the value under the alternative

hypothesis (π1). For values of π close to π0, all the estimators are negatively mean
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(a) Design 1 (b) Design 2

Figure 3.3: Plot of overall p-value (Q) as function of the total number of responses
(x). Figure (a) is of the design (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20) with x1 = 5,
and (b) of (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22) with x1 = 10. Both are cases where
the trial continues to second stage. The vertical line represents the minimum total

number of responses necessary to reject H0 using design’s decision rule.

Table 3.4: Type I error rate and power based on design’s original decision rule (Orig.)
and on the overall p-value from the proposed methods (Met.), from 50000 simulation
runs. The two first rows are for design 1, (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20), and

the last two for the design 2, (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22).

Decision rule

Orig. Met. 1 Met. 2 Met.2v2 Met. 3

Type I error 0.0503 0.0503 0.0430 0.0503 0.0430
Power 0.9002 0.9002 0.8877 0.9002 0.8877

Type I error 0.0492 0.0492 0.0421 0.0492 0.0428
Power 0.8990 0.8990 0.8884 0.8990 0.8892

biased (Figure 3.4). The exception is the the first stage sample proportion (π̂p1), which

is unbiased as expected. For π close to π1, the proposed estimators (π̂m1, π̂m2, π̂m2v2

and π̂m3) are almost unbiased, while the fixed sample MLE (π̂p) shows positive bias. As

π approaches 1, our proposed estimators become more negatively biased, while the bias

of π̂p approaches 0. With respect to RMSE (Figure 3.5), the proposed estimators also

outperform π̂p for values of π around π1. They have also lower RMSE as compared to

π̂p1.

Under H1 the simulation mean and median are similar, and they are relatively lower in

the proposed estimator as compared to π̂p (Table 3.5). For all the proposed methods,

the one-sided confidence intervals have coverage probabilities that are not less than the

nominal level (95%). Their mean lower bound is similar across the proposed methods.

Similar results were observed in the simulations done assuming π = π1+0.1 (Table 3.6).
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(a) Design 1 (b) Design 2

Figure 3.4: Mean bias of estimators. Design 1 is defined by (π0, π1, α, β, n1) =
(0.2, 0.4, 0.05, 0.1, 20), and 2 by (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22). For each value

of π 50000 trials were simulated. The vertical line represents π = π1.

(a) Design 1 (b) Design 2

Figure 3.5: RMSE of estimators. Design 1 is defined by (π0, π1, α, β, n1) =
(0.2, 0.4, 0.05, 0.1, 20), and 2 by (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22). For each value

of π 50000 trials were simulated. The vertical line represents π = π1.

3.3.7 Conclusion

The proposed sample space orderings are consistent with the decision rules of the de-

signs, and so should be the corresponding overall p-values. However, some p-values are

calculated using approximations and may, therefore, show conservatism.

For some values of true response probability our methods don’t show improvement over

the näıve MLE, nevertheless they consistently outperform the näıve MLE when the true

response probability is in the neighbourhood of values that are equal to or greater than

the response probability under the alternative hypothesis. It is in this region where the
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Table 3.5: Performance measures of estimator under H1 (i.e., π = π1). The measures
are the mean, median, mean bias, RMSE, first and third quartiles, and the coverage
probability and mean of lower bound of the one-sided (1−α)100% confidence interval.
The first group of rows are for the design 1, (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20),
and the other for 2 (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22). A total of 50000 trials

were simulated for each design.

True response rate: π = π1

π̂p π̂m1 π̂m2 π̂m2v2 π̂m3

Mean 0.4126 0.3974 0.3966 0.4008 0.3968
Median 0.4068 0.3978 0.3897 0.3975 0.3887
Mean bias 0.0126 -0.0026 -0.0034 0.0008 -0.0032
RMSE 0.1052 0.0962 0.0965 0.0956 0.0964
1st quartile 0.3559 0.3385 0.3414 0.3486 0.3408
3rd quartile 0.5000 0.4648 0.4677 0.4682 0.4677
Coverage probability 0.9785 0.9785 0.9785 0.9785
Lower bound 0.2685 0.2678 0.2660 0.2681

Mean 0.6057 0.5941 0.5933 0.5991 0.5935
Median 0.6027 0.5983 0.5915 0.5976 0.5904
Mean bias 0.0057 -0.0059 -0.0067 -0.0009 -0.0065
RMSE 0.0976 0.0911 0.0912 0.0920 0.0911
1st quartile 0.5556 0.5502 0.5471 0.5524 0.5483
3rd quartile 0.6575 0.6422 0.6383 0.6599 0.6400
Coverage probability 0.9742 0.9742 0.9742 0.9742
Lower bound 0.4723 0.4716 0.4677 0.4718

estimation becomes particularly important since the null hypothesis would likely have

been rejected and the treatment effect estimate needed to plan later phase III trials. In

this region the näıve MLE shows high positive bias and higher RMSE while our methods

are either unbiased or negatively biased with smaller RMSE.

In general, as opposed to the näıve MLE, our proposed methods do not overestimate

the response probability, they are either unbiased or negatively biased. Overestimation

of treatment effect in phase II trials has been acknowledged in the literature as one of

the reasons for high failure rate of drugs in phase III (see Gan et al., 2012; Kirby et al.,

2012; Wang et al., 2006)

The conditional invariance principle, on which the Method 3 is based, guarantees that

the type I error rate is controlled irrespective of the adaptations. Thus this method can

easily be extended to other designs, including those in which adaptation rules are not

pre-specified.
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Table 3.6: Performance measures of estimator under π = π1 + 0.1. The measures
are the mean, median, mean bias, RMSE, first and third quartiles, and the coverage
probability and mean of lower bound of the one-sided (1−α)100% confidence interval.
The first group of rows are for the design 1, (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20),
and the other for 2 (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22). A total of 50000 trials

were simulated for each design.

True response rate: π = π1 + 0.1

π̂p π̂m1 π̂m2 π̂m2v2 π̂m3

Mean 0.5265 0.4971 0.4970 0.4931 0.4971
Median 0.5085 0.4754 0.4754 0.4754 0.4754
Mean bias 0.0265 -0.0029 -0.0030 -0.0069 -0.0029
RMSE 0.0950 0.0885 0.0884 0.0926 0.0883
1st quartile 0.4746 0.4434 0.4410 0.4283 0.4425
3rd quartile 0.6000 0.5737 0.5737 0.5737 0.5737
Coverage probability 0.9785 0.9785 0.9785 0.9785
Lower bound 0.3369 0.3353 0.3319 0.3369

Mean 0.7248 0.6978 0.6980 0.6925 0.6980
Median 0.7273 0.6980 0.6994 0.6994 0.6982
Mean bias 0.0248 -0.0022 -0.0020 -0.0075 -0.0020
RMSE 0.0808 0.0726 0.0722 0.0786 0.0721
1st quartile 0.6761 0.6522 0.6502 0.6436 0.6509
3rd quartile 0.7727 0.7462 0.7462 0.7462 0.7462
Coverage probability 0.9792 0.9792 0.9792 0.9792
Lower bound 0.5513 0.5488 0.5416 0.5515



Chapter 4

Using phase II estimates to plan

phase III trials

In this chapter we discuss issues rising from the use of phase II efficacy estimates to

plan phase III trials, and approaches to tackle these issues proposed it the literature. We

also study, through simulations, the consequences of using estimates from adaptive phase

II designs to plan phase III sample size, and we propose new approaches for adjusting

these estimates. We have written and submitted for publication a paper based on this

chapter.

4.1 Introduction

As discussed in Section 2.1, the clinical drug development is mainly done in three phases,

phase I, phase II and phase III. The knowledge gained in clinical trials of a particular

phase is often used to plan trials of subsequent phases. That is the case with successful

phase II clinical trials in which, among others aspects, the effect size estimates are used to

plan the sample size of the related phase III trials. Due to small sample sizes, selections

bias and other factors, phase II estimates are often biased and imprecise, resulting in

inadequately powered phase III trials.

A high failure rate of phase III trials has been reported in the literature. In general,

approximately 40% of phase III trials fail (De Martini, 2013). In oncology the situation

is even worse, for instance, Gan et al. (2012) found that of 253 phase III randomized

clinical trials (RCTs) evaluating systemic therapy in adult cancer patients published

in 10 journals from January 2005 to December 2009, 62% did not achieve statistically

significant results. They noted that the actual magnitude of benefit achieved in a clinical

trial is nearly always less than what was predicted at the time the trial was designed, and

36
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that investigators consistently make overly optimistic assumptions regarding treatment

benefits when designing RCTs. One of the reasons for this optimism might be the over-

estimation of the treatment effect in phase II trials, acknowledged by Wang et al. (2006)

and Kirby et al. (2012), who proposed methods for adjusting (discounting) the phase II

treatment effect estimate when employing it to plan the sample size of a phase III trial.

We have written a paper based on this chapter. The paper was still under submission to

a scientific journal by the time of the writing of this dissertation. The submitted version

is in Appendix E.

4.2 Dealing with bias and imprecision

The problem of biased and imprecise efficacy estimates from phase II trials has been

acknowledged in the literature, and some authors (e.g., Burke et al., 2014; Chuang-Stein

and Kirby, 2017; De Martini, 2011a,b, 2013; Kirby et al., 2012; Wang et al., 2006) have

discussed ways to account for it when planning the subsequent phase trials. The common

approach of directly using these efficacy estimates to calculate sample size often results,

as noted above, in inadequately powered studies. To take into account the bias and

variability of phase II data for planing phase III trials, Wang et al. (2006), Kirby et al.

(2012) and De Martini (2013) discussed different conservative sample size estimation

(CSSE) strategies, which aim at controlling the success probability (SP; i.e., power). To

define these strategies, concepts of launch criteria for phase III, variability of sample

size estimates, and averaged SP of phase III (average power) are used. Launch criteria

define requirements under which a phase III study is initiated. The most common is the

statistical significance criterion, under which phase III is launched if phase II results are

statistically significant. Other criteria include the clinical relevance, under which phase

III is launched if the phase II effect estimate is larger than a specified effect size deemed

to be of a clinical relevance, and the maximum sample size criterion, where phase III is

launched if the estimated sample size does not exceed a certain threshold. This sample

size threshold might be defined on the basis of budget constraints or patient availability.

The CSSE strategies can be grouped into frequentist and Bayesian frameworks. In

general, the frequentist approach to CSSE consists in using a conservative value (θ̂f ) of

the phase II effect size estimate (θ̂) used to determine the phase III sample size. This

can be achieved by either subtracting a certain amount from θ̂, e.g., one standard error

(i.e., θ̂f = θ̂ − SE(θ̂)), or by applying a discounting factor f ∈]0, 1] (i.e., θ̂f = θ̂ × f).

The Bayesian CSSE considers the posterior distribution of the effect θ instead of its

point estimate θ̂. This strategy puts a probability mass around the observed phase II

effect and computes the averaged SP at a given sample size, giving the Bayesian estimate
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of the SP. Then the phase III sample size estimate is the minimum sample size whose

Bayesian SP exceeds a certain desired power.

Where many similar phase II trials on the same therapy exist, meta-analytic approaches

can also be used to better plan subsequent phase III trials. For instance, in the context

of randomized phase II trials with binary endpoints, Burke et al. (2014) deemed the

meta-analysis using a Bayesian random effects logistic regression model to be the most

appropriate. With the model, predictions that inform phase III decision can be made,

namely the probability that the therapy will be truly effective in a new trial, and the

probability that, in a new trial with a given sample size, the 95% credible interval for

the odds ratio will be entirely in favour of the therapy. They also argue in favour of

using sceptical prior distributions to reduce optimism of phase II trials in order to make

more realistic predictions.

4.3 Using estimates from oncology phase II adaptive trials

Despite the multitude of approaches proposed in the literature, as discussed above, the

question of how to appropriately employ phase II effect estimates to plan phase III trials

still remains a challenge. The frequentist CSSE strategies that encourage discounting

the effect estimate beforehand do not offer “one size fits all” guidelines on the amount of

effect that ought to be discounted. The amount of effect to be discounted is more likely

to depend on the circumstances and characteristics of a specific trials. In fact, authors

that provide some guidelines they do so based on empirical studies under restrictive

assumptions and, therefore, these guidelines may not be applicable in other scenarios.

The Bayesian CSSE strategies also suffer from similar problems. The prior distribution

is the “Achilles’ heel” in these strategies. The choice of an adequate conservative prior

distribution can be a daunting task for which universally valid guidelines are hard to

establish.

These difficulties are even more pronounced in oncology phase II adaptive trials where

there are no well established estimation methods in first place. Having estimators that

account for adaptiveness of these designs and that suffer less from upwards bias can

alleviate the problem. Some of such estimators are the ones we proposed in Section 3.3.

4.3.1 Simulation study

Here we evaluate through simulation studies the consequences, in terms of power, of

using the effect estimate from oncology phase II adaptive design trials to plan sample

size of a related phase III trial. We consider the recently proposed oncology phase II
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two-stage single-arm adaptive designs with binary endpoint, in which the second stage

sample size is a pre-defined function of the first stage’s number of responses (successes).

An example of such designs is given in Table 3.3 of Chapter 3, and more examples and

details can be found in Englert and Kieser (2013) and Shan et al. (2016a,b). Different

estimators are used. The näıve (fixed-sample) maximum likelihood estimator, which

is more likely to be employed for adaptive design for which no specific estimator has

been proposed, and our proposed estimates (see Chapter 3, Section 3.3). For simplicity,

we consider two-arm phase III RCTs also with binary endpoint. Although a survival

endpoint is commonly used in oncology phase III trials, there are some types of cancer

for which the response rate is a suitable endpoint. The objective response rate (ORR),

as defined by RECIST guidelines (Eisenhauer et al., 2009), is the most commonly used

binary endpoint in oncology trials. ORR has been used as the primary endpoint in

40% of advanced breast cancer phase III trials published between January 1998 and

December 2007 (Saad et al., 2010).

4.3.1.1 Trial designs and estimation methods

The phase II designs and estimation methods we are considering here are given in more

details in Section 3.3. Here we give only a short summary.

We consider oncology phase II adaptive designs similar to those proposed by Englert and

Kieser (2013) and Shan et al. (2016a,b). These are binary endpoint single-arm two-stage

designs, testing at type I error rate α and type II error rate β the null (H0) versus the

alternative (H1) hypothesis, H0 : π ≤ π0 vs H1 : π ≥ π1, where π0 is the maximum

response rate considered to be uninteresting and π1 is the minimum desirable response

rate, with π1 > π0. In the first stage, these designs are characterized by the sample size,

n1, and the futility and efficacy boundaries, l1 and u1 (u1 > l1), which are fixed, and

in the second stage by the sample size, n2(x1), the conditional error function, D(x1),

and the corresponding decision boundary, l(x1), which are pre-specified functions of the

number of responses, x1, observed in the first stage. At the interim analysis, the trial is

stopped with no rejection of H0 if x1 ≤ l1 or with rejection of H0 if x1 ≥ u1. Otherwise

the trial proceeds to the second (final) stage, at which H0 is rejected if p2 ≤ D(x1) or,

equivalently, x > l(x1), where p2 is the second stage p-value and x is the total number

of responses (i.e., x = x1 + x2).

We assume that a successful phase II trial will be followed by a single-stage random-

ized parallel-group phase III clinical trial with binary endpoint, similar to the design

described by Halabi (2008). The trial tests the null hypothesis that the proportion

of response (success) in the control and treatment groups, πc and πt, are equal, i.e.,

H0 : πc = πt, versus H1 : πc ̸= πt.
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The effect estimate from the phase II trial that is to be used for calculating the re-

quired sample size of the subsequent phase III trial will be obtained using the following

estimation methods. The näıve MLE is calculated as

π̂nml = x/n.

As it can be seen, this estimate ignores the adaptive nature of the design, treating the

data as if they were from a single-stage non-adaptive trial. Let (m,x1, x) be the outcome

of atrial that stopped at stage m with first stage’s and total number of responses, x1

and x. Our estimate (see more details in Section 3.3), that takes into account the

adaptiveness of the design, is defined as

π̂m = {π̃0 : Q(π̃0) = Pr
π̃0

((M,X1, X) ≽ (m,x1, x)) = 0.5},

where Q is the overall p-value based on sample space orderings we proposed, and which

can be calculated as

Q =

⎧
⎪⎨
⎪⎩

1−B(x1 − 1, n1, π̃0) if m = 1

1−B(u1 − 1, n1, π̃0) +
u1−1∑

X1=l1+1

b(X1, n1, π̃0) Prπ̃0 [δ(X1, X2) ≥ δ(x1, x2)] if m = 2

where B(x, n, π) and b(x, n, π) are the binomial cumulative distribution function and

probability mass function with x successes, n trials and success probability π. As dis-

cussed in Section 3.3, we modify the classical stage-wise sample space ordering to take

into account the design’s adaptation rule by defining the function δ(x1, x2) that some-

how incorporates the rejection boundary of the trial outcome. We use three different

methods to define δ(x1, x2). In the first method δ is defined using x as δ(x1, x2) =

x − l(x1), in the second method defined using the second stage p-value as δ(x1, x2) =

D(x1) − p2(x2) and, finally, in the third method defined as δ(x1, x2) = 1 − C(p1b, p2),

where C is the weighted inverse normal combination function represented as C(p1, p2) =

1− Φ
[
w1Φ

−1(1− p1) + w2Φ
−1(1− p2)

]
, with

w1 =

√
n1

n1 + n2(x1)
, w2 =

√
n2(x1)

n1 + n2(x1)

and

p1b(x1) = 1− Φ

{
Φ−1 (1− c)− w2Φ

−1 [1−D(x1)]

w1

}
.

Following the same notation used in Section 3.3, we denote the estimated response

probability by π̂m1 for δ defined in terms of number of responses and rejection boundary,

π̂m2 and π̂m2v2 for for δ defined in terms of second stage p-value and conditional error

function (here two different approaches are used to calculate Prπ̃0 [δ(X1, X2) ≥ δ(x1, x2)],
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hence the two notations), and π̂m3 for δ defined by the inverse normal combination

function.

4.3.1.2 Simulation set-up

Acknowledging the over-estimation of phase II treatment effect and its negative conse-

quences on planing phase III trials discussed in the literature, we conducted a simulation

study to assess the extent of this problem in oncology trials. The simulation set-up was

as follows. Pick a particular phase II adaptive design testing H0 : π ≤ π0 vs H1 : π ≥ π1

at a specific type I and type II error rates α and β as described above. Simulate K trials

assuming a specific true response probability π. For the simulated trials in which the

null hypothesis was rejected, get the estimate of π, denoted π̂. Assume that the subse-

quent phase III trial has a similar endpoint and, as described in the previous section, it

tests H0 : πc = πt versus H1 : πc ̸= πt. Assume further that the desired type I and type

II error rates α′ and β′, respectively, and that πc = π0. Calculate the required sample

size, N , to detect the effect size of magnitude π̂ − πc with power of 1 − β′. Using N ,

calculate what would be the attained power to detect the true effect size, π − πc (recall

that π is the response probability under which the trials were simulated, and π̂ is its

estimate). The different estimators mentioned were used to obtain π̂. Different values of

retention factor f was applied before computing N . The factor f was proposed by Kirby

et al. (2012) in their multiplicative adjustment approach, under which f ∈ [0, 1] is ap-

plied to the estimate of phase II treatment effect π̂ to obtain a multiplicatively adjusted

treatment effect estimate π̂f = π̂ × f . The adjusted effect estimate π̂f can be viewed

as the result of discounting π̂ by 100(1 − f)% and it is meant to be used for planing

phase III trials. Unlike Kirby et al. (2012), we do not define a launch criterion based

on a threshold of π̂f , instead we assume that a phase III trial is launched whenever the

null hypothesis is rejected in the phase II trial. Therefore, we discard the simulated

phase II trials in which H0 is not rejected. This means that the phase III power we are

aiming at is conditional on rejection of H0 in phase II. This might be the most important

scenario since in practice only successful phase II trials are likely to be used in planning

subsequent phase III trials.

For power and sample size calculation of the phase III trial described above, we use the

two-sample test for proportion described by Ahn et al. (2014). The power is approxi-

mated by

Φ

(
πt − πc√

πt(1− πt)/Nt + πc(1− πc)/Nc

− z1−α/2

)
,
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and the sample size N = Nc+Nt needed to achieve a power of 1−β obtained by solving

the equation
πt − πc√

πt(1− πt)/Nt + πc(1− πc)/Nc

− z1−α/2 = z1−β,

where Φ and zu are the standard normal cumulative distribution function and u-quantile,

and Nt and Nc are the sample sizes for the treatment and control groups, respectively.

In the simulations, we assume equal size groups, hence

Nt = Nc =

(
z1−α/2 + z1−β

)2

(πt − πc)
2 [πt(1− πt) + πc(1− πc)] .

The simulation scenarios are as follow. Two phase II adaptive designs of Englert and

Kieser (2013) were used. One design, let’s call it design 1, is defined by (π0, π1, α, β, n1) =

(0.2, 0.4, 0.05, 0.1, 20), and the other, design 2, (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22).

The true response rate π varied from π0 + 0.1 to π1 + 0.3 by increments of 0.01. When

estimating the phase III sample size, we assumed a type I error rate of 5% and a power

of 90%, and the retention factor f varied from 0.5 to 1 by increments of 0.01. Note that

f = 1 means no effect is retained, i.e., the original estimate is used. For each scenario

50000 simulation runs were done.

All the simulations and computation were done using the statistical programming lan-

guage R (R Core Team, 2017).

4.3.1.3 Results

Simulations results for π = π1 and π = π1 + 0.1, and f = 1, f = 0.9 and f = 0.85

are shown in Tables 4.1 and 4.2 for designs 1 and 2, respectively. The results for all

the values of π ranging from π0 + 0.1 to π1 + 0.3 by increments of 0.01 are plotted

in Figures 4.1 and 4.2. The results show the power attained in phase III trial whose

sample size was planned using effect estimate from phase II adaptive design. The effect

estimates were calculated using estimation methods described in Section 4.3.1.1, namely

the estimates that take into account the adaptiveness of the design, π̂m1, π̂m2, π̂m2v2 and

π̂m3, and the näıve estimate, π̂nml (fixed-sample maximum likelihood estimate). These

results show that, in general, when using phase II effect size estimates to plan the phase

III sample size, estimates from the adaptive estimation methods (i.e., π̂m1, π̂m2, π̂m2v2

and π̂m3) yield better power as compared to the näıve estimate (π̂nml). For instance,

when the true response rate is equal to the value under H1, π̂m1 in design 1 (Table 4.1)

yielded a mean power of 82.1% and median power of 90.6%. The median power is very

close to the target value of 90%, and the average power is below by about 8%. The

mean and median power for the näıve MLE π̂nml are even smaller, namely 77.8% and

84.1%. For the näıve MLE, the retention factor of 0.9 (i.e., discounting 10% of the effect
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estimate) seems to be suitable to bring the power closer to the target value, resulting in

the mean power of 86.7% and median power of 95.2%. This retention factor also seems

to guarantee that the mean and the median power of the adaptive estimates are both

not less than the target value. Regarding the behaviour for different values of the true

response rate (see Figures 4.1 and 4.2), all the estimates yield under-powered phase III

trials when π is less than π1. But as π increases, the adaptive estimates yield higher

power than the näıve one. The power among the adaptive estimates also becomes more

homogeneous as π gets bigger than π1.

Table 4.1: Mean and median power of phase III trials planned using phase II design
defined by (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20). The target power of the phase III

trial is of 90%.

f = 1 f = 0.9 f = 0.85

π π̂ Mean Median Mean Median Mean Median

π1

π̂nml 0.7779 0.8414 0.8660 0.9515 0.9035 0.9828
π̂m1 0.8207 0.9060 0.9009 0.9818 0.9321 0.9958
π̂m2 0.8221 0.8986 0.9013 0.9789 0.9322 0.9949
π̂m2v2 0.8131 0.8755 0.8969 0.9690 0.9300 0.9910
π̂m3 0.8219 0.8936 0.9013 0.9769 0.9322 0.9941

π1 + 0.1

π̂nml 0.8131 0.8834 0.9004 0.9646 0.9340 0.9863
π̂m1 0.8648 0.9416 0.9315 0.9887 0.9556 0.9970
π̂m2 0.8648 0.9416 0.9316 0.9887 0.9556 0.9970
π̂m2v2 0.8660 0.9416 0.9317 0.9887 0.9556 0.9970
π̂m3 0.8648 0.9416 0.9316 0.9887 0.9556 0.9970

Table 4.2: Mean and median power of phase III trials planned using phase II design
defined by (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 20). The target power of the phase III

trial is of 90%.

f = 1 f = 0.9 f = 0.85

π π̂ Mean Median Mean Median Mean Median

π1

π̂nml 0.7884 0.8623 0.9105 0.9912 0.9495 0.9998
π̂m1 0.8232 0.9050 0.9354 0.9971 0.9670 1.0000
π̂m2 0.8250 0.9003 0.9356 0.9967 0.9670 1.0000
π̂m2v2 0.8063 0.8752 0.9283 0.9934 0.9649 0.9999
π̂m3 0.8248 0.8982 0.9356 0.9965 0.9670 1.0000

π1 + 0.1

π̂nml 0.8075 0.8346 0.9341 0.9731 0.9699 0.9957
π̂m1 0.8655 0.9005 0.9599 0.9913 0.9827 0.9993
π̂m2 0.8656 0.9013 0.9599 0.9915 0.9827 0.9993
π̂m2v2 0.8676 0.9013 0.9599 0.9915 0.9827 0.9993
π̂m3 0.8656 0.9002 0.9599 0.9913 0.9827 0.9993
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(a) f = 0.9 (b) f = 0.85

(c) f = 0.9 (d) f = 0.85

Figure 4.1: Mean and median power of phase III trials planned using phase II de-
sign defined by (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20). The solid lines are for the
unadjusted effect estimates, and the dashed lines for the adjusted ones (i.e., estimates
multiplied by the retention factor f). For each value of π 50000 trials were simulated.
The vertical line represents π = π1 and the horizontal one represents the target power

(90%).

4.3.1.4 Conclusion

We have studied via simulations the impact on power when using effect estimates from

phase II adaptive oncology trials to plan phase III trials. Results showed that using

the estimators that accounts for the adaptiveness of the design yield better results than

the näıve estimates, as the power of the resulting phase III trials is higher than that of

trials planned using näıve estimates. However, as far as the mean power is concerned,

none of the estimators yields the target (nominal) phase III power. That means that

effect retention is necessary irrespective of which estimator is employed, even when the
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(a) f = 0.9 (b) f = 0.85

(c) f = 0.9 (d) f = 0.85

Figure 4.2: Mean and median power of phase III trials planned using phase II de-
sign defined by (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 20). The solid lines are for the
unadjusted effect estimates, and the dashed lines for the adjusted ones (i.e., estimates
multiplied by the retention factor f). For each value of π 50000 trials were simulated.
The vertical line represents π = π1 and the horizontal one represents the target power

(90%).

estimator is unbiased. This is due the fact that the power of the phase III trial is a highly

non-linear function of the phase II effect estimate and we consider the power conditional

to rejection in phase II. The extent of retention will vary from one estimator to another,

with better performing estimators requiring less reduction of the effect estimate. On the

other hand, if the median power is taken as the metric, the median unbiased estimator

accounting for adaptiveness yields the target power and, then the effect adjustment

approach proposed by Wang et al. (2006) and Kirby et al. (2012) becomes unnecessary.

We noticed that the empirical distribution of the power is skewed, and this might be

the reason for these differences between the mean and the median. It also raises the
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question of which of the two is the best measure of central tendency.

The simulation results in section 3.3.6.1 showed that for values of the true response rate

lower than the hypothesized one (i.e., π < π1) all the estimators (the näıve and their

proposed ones) underestimate π. For higher true response rates, the näıve estimator

overestimates π while the others are either unbiased or underestimate. Therefore we

would expect that in our simulations all the estimators result in overpowered phase III

trials for π < π1, which is not the case. This counter-intuitiveness is due to the fact

that here we only consider for the power calculations estimates from trials that led to

the rejection of the null hypothesis, and these are more likely to be few outlying trials.

When π < π1 the majority of trials fail to reject H0 and, hence are excluded. This

results in a overestimated π, which in turn leads to underpowered phase III trials.

In this simulation study, we assumed that the true treatment effect in phase III is the

same as in phase II, and that the phase III sample size is estimated based on the phase

II treatment effect estimate. We think this is likely to be the case if the phase II trial

is the only source of information (regarding treatment effect) for planning a subsequent

phase III trial. Then the focus of the investigators will be on how to adjust this single

phase II effect estimate in order to properly power the phase III trial. However, there

will be cases where multiple sources of information are available to aid the planning of

phase III. In such situations, other approaches would be more appropriate than the one

we took here. One example is the case where data from multiple similar phase II trials

are available. In this case, meta-analytic approaches (e.g., Burke et al., 2014) are more

useful.

4.4 New approaches for adjusting phase II estimates

The results from the simulation study above suggest that it is almost always necessary

to adjust phase II estimates before using them to plan phase III trials. However, as

mentioned before, despite the existence of many approaches to do so (see Section 4.2),

in practice the adjustment of these estimates still remains a challenge. The frequentist

conservative sample size estimation strategies lack clear guidelines on the amount of

effect to discount. And the Bayesian strategies rely on the choice of conservative prior

distribution, for which universally valid guidelines are difficult to establish.

Here we present new approaches on how to estimate the Kirby et al. (2012)’s multi-

plicative adjustment factor to be applied to Phase II treatment effect estimates before

employing them to plan the sample size of the related Phase III clinical trials, based

on the observed data. Alternatively, the approaches can also be used to estimate the

adjustment factor to be applied to the phase III sample size planned using unadjusted

phase II efficacy estimates. These approaches are based on parametric bootstrapping.
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4.4.1 Method 1

Suppose that a phase II trial is conducted with the intent of testing the hypothesis

H0 : θ ≤ θ0 versus H0 : θ ≥ θ1, where θ is the efficacy parameter, and θ0 and θ1 its

values considered to be of no clinical interest and of clinical interest, respectively. Let

Y be the observed data, which is drawn from a parametric distribution F(θ). Assume

that Y led to the rejection of H0 and, therefore, it is decided that the treatment under

study is worthy of further investigations in phase III. The estimate of θ, θ̂, is obtained

from Y and, assuming specific type II error rate (α) and power (1 − β) constraints,

the minimum required sample size, n̂ = n̂(θ̂, α, β), for the related subsequent phase III

trial is calculated. Then phase II trials τi, i = 1, . . . ,m, are simulated, with data points

drawn from the distribution F(θ̂). The simulated trials are similar in design to the

actual (conducted) phase II trial. Let J be the index set of all the simulated trials in

which the null hypothesis was rejected, and |J | its cardinality (|J | ≤ m) . For each

simulated trial τj , j ∈ J , the estimate of θ̂, denoted by θ∗j , is obtained and, assuming

the same type I error and power constraints, the minimum required phase III sample

size, n∗
j = n∗

j (θ
∗
j , α, β), is calculated. Then the individual estimates of the multiplicative

adjustment factors for the effect size and sample size, fj and ρj , are calculated as

fj = θ̂/θ∗j and ρj = n̂/n∗
j . The average values of these factors are taken to be their final

estimates, i.e., f = 1
|J |
∑

j∈J fj and ρ = 1
|J |
∑

j∈J ρj . Therefore, the adjusted efficacy

to be used in planing phase III trials is θf = θ̂ × f . Alternatively, the adjusted sample

size nρ = n̂ × ρ could be used. Since the sample size is a non-linear function of the

effect estimate, the two adjustment approaches will, in general, lead to different final

(adjusted) sample sizes and, consequently, to differences in power. We will see this in

the simulation study presented below.

4.4.2 Method 2

Here we present an alternative, more direct method to estimate the sample size adjust-

ment factor ρ. We use the same notation as in the previous method (Section 4.4.1).

Let pwr∗j = pwr(n∗
j , θ̂, α) be the power a phase III trial would attain, with sample size

n∗
j if the true and the observed efficacy estimate (θ and θ̂) would coincide (see previous

sections for details). The sample size multiplicative adjustment factor is calculated such

that the expected value of pwr∗ is equal to the target (desired) power assuming (as an

approximation) that θ̂ and θ coincide, i.e.,

ρ =
{
ρ̃|Eθ̂

[
pwr(ρ̃n∗

j , θ̂, α)
]
= 1− β

}
.

The adequate value of ρ can be found using numerical root finding.
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4.4.3 Simulation study

We study, using simulations, the behaviour of our new approaches. We are interested in

knowing to which extent the adjustment using our proposed methods results in properly

powered phase III trials. We also study, in addition, the variability of the resulting

adjustment factors.

The simulations are as follows. Assuming a specific true treatment effect, we simulate

phase II trials. For each simulated trial in which the null hypothesis was rejected, we

calculate the effect estimate and we apply our approaches (see Section 4.4) to obtain the

adjustment factors which we then use to estimate the phase III sample size. Then, given

the true treatment effect (under which trials were simulated), we calculate the power

that would be attained with the adjusted sample size estimate. The phase II and phase

III designs, the hypotheses, the type I and type II error rates, and the sample size and

power calculation are the same as those used in the simulation study of Section 4.3.1. The

phase II design has a binary endpoint, therefore, the distribution function F described

in Section 4.4 is binomial with parameter π (response probability). The phase II designs

are simulated under the alternative hypothesis, i.e., π = π1. We use the two designs of

Section 4.3.1.2, i.e., the design 1 defined by (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20) and

the design 2 defined by (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22). We assumed a type I

error rate of 5% and a power of 90% when estimating the phase III sample size. The

phase II effect estimate is obtained using also the same estimators as in Section 4.3.1.

For each scenario, 5000 trials were simulated, and for each simulated trial in which

the null hypothesis was rejected, 5000 bootstrap samples (trials) were obtained (for

calculating the adjustment factors).

4.4.3.1 Results

Table 4.3 shows the results of the simulations. As it can be seen, the näıve MLE requires

that a higher amount of effect is discounted as compared to the others estimators that

take into account the adaptiveness of the designs. This is seen by the fact that, for this

estimator (MLE), the effect adjustment factor (f) is lower and, equivalently, the sample

size adjustment factor (ρ) is higher. Method 2 yields higher ρ as compared to Method 1.

Both methods improve the power of the phase III trial. For instance, for the näıve MLE

the average power without adjustment is 78.8%, which is increased to 80.7% and 85.2%

by the Method 1 using f and ρ respectively, and to 86.6% using the Method 2. Method

2 is the best performer as it yields average power that is closer to the target (90%). The

median power is higher than the average in all cases (including when no adjustment is

applied), and values that a closest to the target power are attained by using f in Method

1. We found out that empirical distributions of the adjustment factors and the power
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in this simulation (results not shown) are skewed, resulting in differences of the average

and median values. In general the results from both methods are similar across different

estimators and designs, especially the results from Method 2.

4.4.3.2 Conclusion

The results in this simulation showed that, when planning phase III sample size based

of phase II effect estimates, adjustments are almost always necessary. However, the ex-

tent of adjustment will differ depending on the estimator that is employed to get phase

II effect estimate. In our specific case, the estimators that account for the adaptive

nature of the designs require less correction. Our proposed adjustment methods show

improvements in power, and the results are consistently similar for different estimators

and design scenarios. This suggests that our approach may perform well in other de-

sign scenarios and with different estimators. When the metric of interest is the mean

power, Method 2 is more preferable over Method 1, especially in cases where the power

distribution is known to be skewed.
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Chapter 5

Summary and conclusions

The main achievements of this dissertation are the new inference methods for oncology

phase II adaptive designs and the new methods for adjusting the phase II estimates

when using them to plan the sample size of phase III clinical trials.

In the new inference methods for the adaptive designs, we started by proposing new

sample space orderings, from which we derived methods for calculating p-value and then

methods for interval and point estimation. Simulation studies showed good performance

of our methods, with p-values being in concordance with the designs’ decision rules,

confidence intervals attaining the nominal coverage probability, and point estimates

having lower bias and mean square error as compared to the fixed-sample maximum

likelihood estimator. These inference methods can serve as useful tools for researchers

who may decide to run trials following adaptive designs which are improved versions of

the popular Simon-like classical group-sequential designs, or even encourage the use of

such designs in first place.

Our proposed adjustment methods are based on bootstrapping, and provide estimates

of adjustment factors, given the observed phase II data, for the phase II effect estimate

or for the phase III sample estimate in order to get an appropriately powered phase

III trial. Simulation studies showed that these methods perform well and consistently

under different efficacy estimators and design configurations. These methods may also

help investigators to efficiently plan phase III sample size based on phase II data, since

the existing approaches lack clear guidelines. They can in principle be applied to any

type of endpoint and estimate (frequentist or Bayesian).
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Table A.1: Single-arm designs

Single-arm single-stage designs:
Jung (2013); Fleming (1982); Storer (1992); Conaway and Petroni (1995); Conaway
and Petroni (1996); Sargent et al. (2001); A’Hern (2004); London and Chang (2005);
Jin (2007); Stallard and Cockey (2008); Zhong and Zhong (2013); Zhong (2012);
Sylvester (1988); Hilden (1990); Brunier and Whitehead (1994).

Single-arm sequential designs:
Thall and Simon (1994); Lee and Liu (2008); Johnson and Cook (2009).

Single-arm classical group-sequential designs:
Gehan (1961); Schultz et al. (1973); Lee et al. (1979); Fleming (1982); Chang et al.
(1987); Simon (1989); Therneau et al. (1990); Storer (1992); Ensign et al. (1994);
Chen et al. (1994); Bryant and Day (1995); Conaway and Petroni (1995); Conaway
and Petroni (1996); Chen (1997); Herndon (1998); Hanfelt et al. (1999); Zee et al.
(1999); Lin and Chen (2000); Jung et al. (2001); Sargent et al. (2001); Panageas et al.
(2002); Case and Morgan (2003); A’Hern (2004); Lu et al. (2005); London and Chang
(2005); Jin (2007); Ye and Shyr (2007); Ayanlowo and Redden (2007); Chi and
Chen (2008); Chen and Shan (2008); Lin et al. (2008); Stallard and Cockey (2008);
Kocherginsky et al. (2009); Mander and Thompson (2010); Kunz and Kieser (2011);
Tan and Xiong (2011); Ray and Rai (2011, 2012); Chen and Chi (2012); Zhong and
Zhong (2013); Zhong (2012); Ray and Rai (2013); Chen and Lee (2013); Whitehead
(2014); Kwak and Jung (2014); Poulopoulou et al. (2014); Song (2015); Lai and Zee
(2015); Herson (1979); Heitjan (1997); Tan and Machin (2002, 2006); Sambucini
(2008); Brutti et al. (2011); Dong et al. (2012); Cai et al. (2014); Stallard (1998);
Stallard et al. (1999); Stallard (2003); Jung et al. (2004); Zhao and Woodworth
(2009); Zhao et al. (2012); Mander et al. (2012).

Single-arm adaptive group-sequential designs:
Green and Dahlberg (1992); Chen and Ng (1998); Lin and Shih (2004); Banerjee
and Tsiatis (2006); Wu and Liu (2007); Jones and Holmgren (2007); Masaki et al.
(2009); Tournoux-Facon et al. (2011); Roberts and Ramakrishnan (2011); Jin and
Wei (2012); Wunder et al. (2012); Englert and Kieser (2012a); (Englert and Kieser,
2012b); Englert and Kieser (2013); Sambucini (2010); Banerjee and Tsiatis (2006);
Chen and Smith (2009).
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Table A.2: Comparative designs

Comparative single-stage designs:
Herson and Carter (1986); Thall and Simon (1990); Chang et al. (1999); Hong and
Wang (2007); Mayo et al. (2010); Hou et al. (2013); Jung and Sargent (2014).

Comparative classical group-sequential designs:
Chang et al. (1999); Hong and Wang (2007); Jung and Sargent (2014); Jung (2008);
Sun et al. (2009); Whitehead et al. (2009); Zhang et al. (2011); Wilding et al. (2012);
An et al. (2012); Wason and Mander (2012); Shan et al. (2013); Carsten and Chen
(2015); Cronin et al. (1999); Huang et al. (2009); Cellamare and Sambucini (2015).

Comparative adaptive group-sequential designs:
Song (2014); Bersimis et al. (2015); Zhong et al. (2013).

Table A.3: Screening designs

Screening single-stage designs:
Whitehead (1985).

Screening classical group-sequential designs:
Thall et al. (1988, 1989); Cheung (2009); Wason and Jaki (2012); Estey and Thall
(2003); Ding et al. (2008); Hee and Stallard (2012).

Screening adaptive group-sequential designs:
Logan (2005); Su (2010); Fan et al. (2011).

Table A.4: Master protocol designs

Basket trials:
Leblanc et al. (2009); Cunanan et al. (2017); Liu et al. (2017); Neuenschwander
et al. (2016); Thall et al. (2003); Magnusson and Turnbull (2013); Simon et al.
(2016); Yuan et al. (2016); Heinrich et al. (2008); Hyman et al. (2015).

Umrella trials:
Renfro and Sargent (2017); Barroilhet and Matulonis (2018); Kim et al. (2011);
Ferrarotto et al. (2015); Barker et al. (2009).

Platform trials:
Berry (2015); Hobbs et al. (2018); Kaplan (2015); Lin and Bunn (2017); Saville and
Berry (2016).
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Estimation methods in

non-oncology phase II designs – a

brief literature review

In areas other than oncology phase II, various estimation methods have been proposed

for different group-sequential and adaptive designs. In group-sequential parallel designs,

common in psychiatry, in which the initial parallel trial with placebo versus experimen-

tal drug is augmented by a second parallel trial of placebo versus drug in the placebo

non-responders from the initial trial, Tamura et al. (2011) proposed the constrained max-

imum likelihood estimator (MLE), linear combination estimator and allocation weighted

estimator for binary endpoint. For a two-stage continuous endpoint diagnostic biomarker

design allowing stopping for futility, Koopmeiners et al. (2012) proposed the unadjusted

conditional estimator (sample mean conditional on study completion), bias-corrected

conditional estimator, and conditional estimation of receiver operating characteristic

(ROC) and positive and negative predictive value curves. Various authors discussed

estimators for continuous endpoint multi-stage designs having random sample sizes and

deterministic and random stopping rules. These include the conditional MLE (Milanzi

et al., 2015, 2014; Molenberghs et al., 2014), mean unbiased and bias-adjusted estima-

tors (Milanzi et al., 2015; Todd et al., 1996), and Rao’s bias-adjusted estimator (Emerson

and Fleming, 1990; Milanzi et al., 2015). Liu et al. (2006) proposed Rao-Blackwell unbi-

ased and truncation-adaptable unbiased estimator for multi-stage designs in which the

endpoint follows a distribution in a one-parameter exponential family. Marginal, overall

and unconditional bias-corrected estimators (Emerson and Fleming, 1990; Pinheiro and

DeMets, 1997; Whitehead, 1986), and conditional bias-corrected estimators (Fan et al.,

2004) have been proposed for multi-stage designs in which the sequential test statistics

can be approximated by a Brownian motion with a drift parameter. Shen (2001) and
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Stallard and Todd (2005) proposed bias-corrected estimators and Stallard et al. (2008)

proposed the approximately conditionally unbiased estimator for continuous endpoint

single-stage trials comparing two experimental treatments to select the one with largest

mean. Luo et al. (2010) proposed an estimator based on conditional moments for binary

endpoint two-stage designs with adaptive treatment selection (drop-the-losers designs).

For drop-the-losers designs with continuous endpoint, several estimation approaches have

also been proposed, including the shrinkage estimation (Bowden et al., 2014; Carreras

and Brannath, 2013; Carter and Rolph, 1974), overall mean (Posch et al., 2005), condi-

tional conditional MLE (Bebu et al., 2010), uniformly minimum variance conditionally

unbiased estimator (Cohen and Sackrowitz, 1989), extended uniformly minimum vari-

ance conditionally unbiased estimator (Bowden and Glimm, 2008), and estimation based

on marked point process and stochastic calculus (Luo et al., 2012). For drop-the-losers

designs with more than two-stages, Stallard and Todd (2005) proposed the bias-adjusted

estimator, and Bowden and Glimm (2014) proposed conditionally unbiased and near

unbiased estimators. Brannath et al. (2006) discussed point and interval estimation in

flexible two-stage designs with continuous endpoint. In binary endpoint multi-stage de-

signs with response adaptive randomization, Bowden and Trippa (2015) proposed simple

bias-corrected and Rao-Blackwellization estimators. Coburger and Wassmer (2003) and

Cheng and Shen (2004) discussed estimation following a continuous endpoint multi-stage

parallel design trial comparing treatment and control, with sample size re-estimation.

Median unbiased estimator was proposed by Gao et al. (2013) on similar designs allowing

for other endpoints and adaptations.
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pvaluek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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Index 54

adjustMet1 Phase II efficacy estimates/Phase III sample size adjustment factors
(Method 1).

Description

adjustMet1 calculates the multiplicative adjustment factor f to be applied to Phase II efficacy
estimate, and the factor ρ to be applied to Phase III sample size estimate using Method 1 proposed
by Nhacolo and Brannath (submitted, 2018).

Usage

adjustMet1(p2d, p2r, p2e, p2p0 = NULL, p2p1 = NULL, p2a = NULL,
p2b = NULL, p3p0 = NULL, p3p1 = NULL, p3a = NULL, p3b = NULL,
nsimul = 5000, seed = NULL)
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adjustMet1 3

Arguments

p2d Dataframe with Phase II design, with similar as in EKOptAdaptDesigns.

p2r Dataframe containing results of Phase II trials following the design p2d. It is the
output of the function AnalyzeEKOAD.

p2e Phase II estimate to consider among the estimates used by codeAnalyzeEKOAD.
It can be "pip" (naive MLE) or one of the four estimates from methods proposed
by Nhacolo and Brannath (2018): "pim1", "pim2", "pim2v2" or "pim3".

p2p0 Phase II response rate under H0. If NULL (default), the value is taken p2d.

p2p1 Phase II response rate under H1. If NULL (default), the value is taken p2d.

p2a Phase II type I error rate. If NULL (default), the value is taken p2d.

p2b Phase II type II error rate. If NULL (default), the value is taken p2d.

p3p0 Phase III response rate of the control group. If NULL (default), the value is set to
p2p0.

p3p1 Phase III response rate of the treatment group. If NULL (default), the value is set
to p2p1.

p3a Phase III type I error rate. If NULL (default), the value is set p2a.

p3b hase III type II error rate. If NULL (default), the value is set p2b.

nsimul Number of (parametric) bootstrap samples (default 5000).

seed Seed for random number generator. If NULL (default), no seed is set.

Details

The aim of the adjustment is to get an adequately powered Phase III trial based on Phase II data.
See the documentation of the function AnIItoIIIRe for more details about the designs.

Value

A list containing two dataframes final and intermed. final contains the final measures for the
adjustment factors (f and ρ) and power. intermed holds the intermediate results (of each bootstrap
sample).

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Using Estimates from Adaptive Phase II Oncology Trials to Plan
Phase III Trials. Manuscript submitted for publication, 2018.

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

Ahn, C., Heo, M. and Zhang, S. Sample Size Calculations for Clustered and Longitudinal Outcomes
in Clinical Research. CRC Press, 2014.

See Also

adjustMet1, SimulateEKOAD, AnalyzeEKOAD.
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4 adjustMet2

Examples

## Not run:
vdid <- c(6,10) # design ids
vp2est <- c("pip","pim1","pim2","pim2v2","pim3")
nse <- 1000#number of simulations for each phase
cur <- 1; tot <- length(vdid)*length(vp2est)
for (did in vdid){
for (p2est in vp2est){
cat('Processing ',cur,' of ',tot,' (',100*round(cur/tot,1),'%)\n',sep = '')
load(paste0("p2r",did,".rdata")) # output of the function AnalyzeEKOAD

out <- adjustMet1(p2d = EKOADwn[EKOADwn$id==did,], p2r = rslt[1:nse,], p2e = p2est, nsimul = nse, seed = 3343)
write.csv(out$final,file = paste0("final",did,p2est,".csv"),row.names = FALSE)
write.csv(out$intermed,file = paste0("intermed",did,p2est,".csv"),row.names = FALSE)
cur <- cur+1

}
}

vdid <- c(6,10)
vp2est <- c("pip","pim1","pim2","pim2v2","pim3")
fa <- data.frame()
for (did in vdid)
{
for (p2est in vp2est){

f <- read.csv(paste0("final",did,p2est,".csv"))
fn <- names(f)
f$dsgn <- did
f <- f[,c('dsgn',fn)]
fa <- rbind(fa,f)

}
}
write.csv(fa,file = "final_all.csv",row.names = FALSE)

## End(Not run)

adjustMet2 Phase III sample size adjustment factor (Method 2).

Description

adjustMet2 calculates the multiplicative adjustment factor ρ to be applied to Phase III sample size
estimate using Method 2 proposed by Nhacolo and Brannath (submitted, 2018).

Usage

adjustMet2(p2d, p2r, p2e, p2p0 = NULL, p2p1 = NULL, p2a = NULL,
p2b = NULL, p3p0 = NULL, p3p1 = NULL, p3a = NULL, p3b = NULL,
nsimul = 5000, seed = NULL, rhorange = c(0.5, 5), p3mpt = 0.001,
rhot = 1e-04)

Arguments

p2d Dataframe with Phase II design, with similar as in EKOptAdaptDesigns.
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p2r Dataframe containing results of Phase II trials following the design p2d. It is the
output of the function AnalyzeEKOAD.

p2e Phase II estimate to consider among the estimates used by codeAnalyzeEKOAD.
It can be "pip" (naive MLE) or one of the four estimates from methods proposed
by Nhacolo and Brannath (2018): "pim1", "pim2", "pim2v2" or "pim3".

p2p0 Phase II response rate under H0. If NULL (default), the value is taken p2d.

p2p1 Phase II response rate under H1. If NULL (default), the value is taken p2d.

p2a Phase II type I error rate. If NULL (default), the value is taken p2d.

p2b Phase II type II error rate. If NULL (default), the value is taken p2d.

p3p0 Phase III response rate of the control group. If NULL (default), the value is set to
p2p0.

p3p1 Phase III response rate of the treatment group. If NULL (default), the value is set
to p2p1.

p3a Phase III type I error rate. If NULL (default), the value is set p2a.

p3b hase III type II error rate. If NULL (default), the value is set p2b.

nsimul Number of (parametric) bootstrap samples (default 5000).

seed Seed for random number generator. If NULL (default), no seed is set.

rhorange A vector specifying a range to search for ρ. The default is c(0.5,5).

p3mpt Tolerated error margin for the power, i.e., maximum allowed absolute difference
between the estimated expected power and the target. The default is 0.001.

rhot Search for ρ is interrupted and deem unsuccessful if the absolute difference be-
tween current and the previous is less than or equal to rhot.

Details

The aim of the adjustment is to get an adequately powered Phase III trial based on Phase II data.
ρ is found using numerical search. See the documentation of the function AnIItoIIIRe for more
details about the designs.

Value

A list containing two dataframes final and intermed. final contains the final measures for the
adjustment factor (ρ), and for the unadjusted and adjusted power. intermed holds the intermediate
results (of each bootstrap sample).

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Using Estimates from Adaptive Phase II Oncology Trials to Plan
Phase III Trials. Manuscript submitted for publication, 2018.

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

Ahn, C., Heo, M. and Zhang, S. Sample Size Calculations for Clustered and Longitudinal Outcomes
in Clinical Research. CRC Press, 2014.
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See Also

adjustMet2, SimulateEKOAD, AnalyzeEKOAD.

Examples

## Not run:
vdid <- c(6,10) # design ids
vp2est <- c("pip","pim1","pim2","pim2v2","pim3")
nse <- 1000#number of simulations for each phase
cur <- 1; tot <- length(vdid)*length(vp2est)
for (did in vdid){
for (p2est in vp2est){
cat('Processing ',cur,' of ',tot,' (',100*round(cur/tot,1),'%)\n',sep = '')
load(paste0("p2r",did,".rdata")) # output of the function AnalyzeEKOAD

out <- adjustMet2(p2d = EKOADwn[EKOADwn$id==did,], p2r = rslt[1:nse,], p2e = p2est, nsimul = nse, seed = 3343)
write.csv(out$final,file = paste0("final",did,p2est,".csv"),row.names = FALSE)
write.csv(out$intermed,file = paste0("intermed",did,p2est,".csv"),row.names = FALSE)
cur <- cur+1

}
}

vdid <- c(6,10)
vp2est <- c("pip","pim1","pim2","pim2v2","pim3")
fa <- data.frame()
for (did in vdid)
{
for (p2est in vp2est){

f <- read.csv(paste0("final",did,p2est,".csv"))
fn <- names(f)
f$dsgn <- did
f <- f[,c('dsgn',fn)]
fa <- rbind(fa,f)

}
}
write.csv(fa,file = "final_all.csv",row.names = FALSE)

## End(Not run)

AnalyzeEKOAD Analyse simulated adaptive trials.

Description

AnalyzeEKOAD performs inference on trials simulated by the function SimulateEKOAD using the
methods proposed by Nhacolo and Brannath (2018) and naive maximum likelihood.

Usage

AnalyzeEKOAD(replicates = NULL, basedir = NULL)
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Arguments

replicates Number of simulated trials to be analysed. If NULL (default), all trials found in
./basedir/SimulatedTrials are analysed.

basedir The base directory containing the sub-directory SimulatedTrials with the sim-
ulated trials. If NULL (default), the current working directory is uded.

Details

Overall p-values, point estimates and confidence intervals are calculated.

Value

A dataframe with the results. A copy is saved in the file Results.csv in the basedir.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

SimulateEKOAD, mue1, mue2, mue2v2, mue3.

AnalyzePerformanceSimon

Performance of estimation methods

Description

It takes the results produced by AnalyzeSimonDsgn and AnalyzeSimonDsgnAdaptN and produces
a dataframe containing bias, mean square error and variance of the estimators. It also calculates the
power and the expected sample size (EN) where applicable.

Usage

AnalyzePerformanceSimon(designs = "all", basedir = NA)

Arguments

designs Taking values "fixed", "adaptive" or "all", indicating whether only classi-
cal, adaptive or all designs should be included. The default is "all".

basedir The root directory in which simulations were performed. The current working
directory is assumed by default. It must contain all the files and folders created
by SimulateSimonDsgn and/or SimulateSimonDsgnAdaptN.
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Details

Computations are done for different combinations of values of stop, (0,1), and success, (0,1). See
AnalyzeSimonDsgn or AnalyzeSimonDsgnAdaptN. For instance, computations done on all simu-
lated trials are marked with "both" in the columns stop and success, while the ones done only on
trials that continued to the final stage have stop = "no" and success = "both".

Value

Dataframe containing bias, mean square error and variance of the estimators, power, expected sam-
ple size, and design information.

Author(s)

Arsenio Nhacolo

See Also

AnalyzeSimonDsgn, AnalyzeSimonDsgnAdaptN, pdata and AnalyzePerformanceSimon2.

Examples

## Not run:
AnalyzePerformanceSimon()

## End(Not run)

AnalyzePerformanceSimon2

Performance of estimation methods

Description

It takes the results produced by AnalyzeSimonDsgn and AnalyzeSimonDsgnAdaptN and produces
a dataframe containing bias, mean square error and variance of the estimators. It also calculates the
power and the expected sample size (EN) where applicable.

Usage

AnalyzePerformanceSimon2(designs = "all", basedir = NA)

Arguments

designs Taking values "fixed", "adaptive" or "all", indicating whether only classi-
cal, adaptive or all designs should be included. The default is "all".

basedir The root directory in which simulations were performed. The current working
directory is assumed by default. It must contain all the files and folders created
by SimulateSimonDsgn and/or SimulateSimonDsgnAdaptN.

Details

It is the same as AnalyzePerformanceSimon, but here the estimation is done only for two sets: all
trials (unconditional), and only trials that continued to final stage (conditional).
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Value

Dataframe containing bias, mean square error and variance of the estimators, power, expected sam-
ple size, and design information.

Author(s)

Arsenio Nhacolo

See Also

AnalyzeSimonDsgn, AnalyzeSimonDsgnAdaptN, pdata and AnalyzePerformanceSimon.

Examples

## Not run:
AnalyzePerformanceSimon2()

# Simulation example
seed = 1986
p0 <- 0.1
alpha <- 0.05
beta <- 0.1
repl <- 100 # number of replicated trials for each p
if (file.exists("PerforAll.csv")) unlink("PerforAll.csv")
coln <- TRUE
while (p0 < 0.5){

pv <- seq(p0+0.2,p0+0.4,0.1) # p to simulate data
p1v <- seq(p0+0.2,p0+0.3,0.1) # p to get design
for (p1 in p1v){
designParam <- CalculateSimonDsgn(p0, p1, alpha, beta)
pstart <- p0+0.1
SimulateSimonDsgn(repl, designParam, pstart, seed = seed)
SimulateSimonDsgnAdaptN(repl, designParam, pstart, seed = seed)
AnalyzeSimonDsgn()
AnalyzeSimonDsgnAdaptN()
perf <- AnalyzePerformanceSimon2()
for (p in pv){
SimulateSimonDsgn(repl, designParam, p, seed = seed)
SimulateSimonDsgnAdaptN(repl, designParam, p, seed = seed)
AnalyzeSimonDsgn()
AnalyzeSimonDsgnAdaptN()
perf <- rbind(perf, AnalyzePerformanceSimon2())

}
write.csv(perf, file = paste("PerforAll_a",alpha,"b",beta,"p0",p0,"p1",

p1,".csv", sep = ""), row.names = F)
write.table(perf, file ="PerforAll.csv", append = T, sep = ",", row.names = F, col.names = coln)
coln <- FALSE

}
p0 <- p0+0.1

}

## End(Not run)
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AnalyzeSimonDsgn Analysis of simulated Simon’s design trials

Description

Analyses the trials simulated by SimulateSimonDsgn.

Usage

AnalyzeSimonDsgn(replicates = NA, basedir = NA)

Arguments

replicates Number of trials to be analysed. By default all simulated trials are analysed.

basedir The root directory in which simulations were performed. The current working
directory is assumed by default. It must contain all the files and folders created
by SimulateSimonDsgn.

Details

In addition to hypothesis testing, the response rate is estimated using different estimators: pm, pg,
pu, pp and pk.

Value

Creates two data files in basedir containing results for optimal (ResultsOptimalDesign.csv) and
minimax (ResultsMinimaxDesign.csv). The files contain a trial ID, stage 1, stage 2 and overall
number of successful responses, s1, s2 and s, sample sizes (equal to those pre-specified by design),
n1, n2 and n, and critical values, r1 and r. p0 the response rate assumed under H0 and dsgnp1
underH1. p1 is the true response rate (used for generating trial data). pm1 and pm2 are, respectively,
pm based only of stage 1 and stage 2 data. stop indicates whether the trial stopped at first stage
(stop = 1), and success indicates whether H0 was rejected (success = 1).

Author(s)

Arsenio Nhacolo

See Also

CalculateSimonDsgn, SimulateSimonDsgn, AnalyzePerformanceSimon and AnalyzeSimonDsgnAdaptN.

Examples

AnalyzeSimonDsgn()
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AnalyzeSimonDsgnAdaptN

Analysis of simulated adaptive Simon’s design trials

Description

Analyses the trials simulated by SimulateSimonDsgnAdaptN.

Usage

AnalyzeSimonDsgnAdaptN(replicates = NA, basedir = NA)

Arguments

replicates Number of trials to be analysed. By default all simulated trials are analysed.

basedir The root directory in which simulations were performed. The current working
directory is assumed by default. It must contain all the files and folders created
by SimulateSimonDsgnAdaptN.

Details

In addition to hypothesis testing, the response rate is estimated using different estimators: pm, pg,
pu, pp and pk. The overall critical value, r, is recalculated using conditional type I error (Englert
and Kieser, 2012).

Value

Creates two data files in basedir containing results for optimal (ResultsOptimalDesignAdapt.csv)
and minimax (ResultsMinimaxDesignAdapt.csv). The files contain a trial ID, stage 1, stage 2 and
overall number of successful responses, s1, s2 and s, sample sizes (equal to those pre-specified by
design), n1, n2 and n, and critical values, r1 and r. p0 the response rate assumed under H0 and
dsgnp1 under H1. p1 is the true response rate (used for generating trial data). pm1 and pm2 are,
respectively, pm based only of stage 1 and stage 2 data. stop indicates whether the trial stopped at
first stage (stop = 1), and success indicates whether H0 was rejected (success = 1).

Author(s)

Arsenio Nhacolo

See Also

CalculateSimonDsgn, SimulateSimonDsgnAdaptN, AnalyzePerformanceSimon and AnalyzeSimonDsgn.

Examples

AnalyzeSimonDsgnAdaptN()
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AnIItoIIIRe Use of Phase II estimates to plan Phase III sample size.

Description

AnIItoIIIRe calculates the power in a Phase III equal-size group two-arm randomized clinical trial
with a binary response planned using estimates from Phase II adaptive two-stage trial.

Usage

AnIItoIIIRe(rslt, f = c(0.95, 0.96, 0.97, 0.98, 0.99))

Arguments

rslt Dataframe containing the output from the function AnalyzeEKOAD, but with only
successful trials (rslt$suco==1), i.e., trials in which H0 was rejected.

f Vector of length 5 containing multiplicative adjustment factors to be applied to
Phase II estimates. The default is f = c(.95,.96,.97,.98,.99).

Details

The sample size (N) of the Phase III trial is based on the estimates naive MLE and estimators
proposed by Nhacolo and Brannath (2018). Different values of retention factor f proposed by Kirby
et al. (2012) are applied. The control group response rate is considered to be equal to that under
the null hypothesis of the Phase II design, and the hypothesized treatment group response rate
considered to be equal to that estimated from the Phase II trial. The target type I error and power
are the same as of the Phase II design. Two-sided hypothesis test is assumed is a sample size per
group, and equal size groups are assume. Hence, N total is 2*N. When calculating the power, the
true response rate (in treatment group) is considered to be the one under which the Phase II trial
was simulated (spi1).

Value

The input dataframe with corresponding Phase III sample size and power.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Using Estimates from Adaptive Phase II Oncology Trials to Plan
Phase III Trials. Manuscript submitted for publication, 2018.

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

Ahn, C., Heo, M. and Zhang, S. Sample Size Calculations for Clustered and Longitudinal Outcomes
in Clinical Research. CRC Press, 2014.

See Also

AnalyzeEKOAD, SimulateEKOAD, PerforIItoIIIRe.
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aop1 Overall p-value (Method 1 of Nhacolo and Brannath, 2018).

Description

aop1 calculates the overall p-value for adaptive two-stage designs with binary endpoint using the
Method 1 (see Nhacolo and Brannath, 2018).

Usage

aop1(dsgn, x1o, xo, verbose = TRUE)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

verbose If TRUE (default) messages will be printed.

Details

This is one of the four methods proposed by Nhacolo and Brannath (2018) primarily for single-arm
adaptive two-stage group sequential designs with a binary endpoint.

Value

p-value.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

aop2, aop2v2, aop3e.
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aop1e Overall p-value for CI (Method 1 of Nhacolo and Brannath, 2018).

Description

aop1e is a modified version of aop1 used for getting the confidence interval.

Usage

aop1e(dsgn, x1o, xo, newpi0)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

newpi0 New response probability that replaces the one under the null hypothesis.

Details

This is one of the four methods proposed by Nhacolo and Brannath (2018) primarily for single-arm
adaptive two-stage group sequential designs with a binary endpoint.

Value

p-value.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

aop2e, aop2ev2, aop3e, aop1.
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aop2 Overall p-value (Method 2 of Nhacolo and Brannath, 2018).

Description

aop2 calculates the overall p-value for adaptive two-stage designs with binary endpoint using the
Method 2 (see Nhacolo and Brannath, 2018).

Usage

aop2(dsgn, x1o, xo, verbose = TRUE)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

verbose If TRUE (default) messages will be printed.

Details

This is one of the four methods proposed by Nhacolo and Brannath (2018) primarily for single-arm
adaptive two-stage group sequential designs with a binary endpoint.

Value

p-value.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

aop1, aop2v2, aop3e
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aop2e Overall p-value for CI (Method 2 of Nhacolo and Brannath, 2018).

Description

aop2e is a modified version of aop2 used for getting the confidence interval.

Usage

aop2e(dsgn, x1o, xo, newpi0)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

newpi0 New response probability that replaces the one under the null hypothesis.

Details

This is one of the four methods proposed by Nhacolo and Brannath (2018) primarily for single-arm
adaptive two-stage group sequential designs with a binary endpoint.

Value

p-value.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

aop1e, aop2ev2, aop3e, aop2.
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aop2ev2 Overall p-value for CI (Method 2v2 of Nhacolo and Brannath, 2018).

Description

aop2ev2 is a modified version of aop2v2 used for getting the confidence interval.

Usage

aop2ev2(dsgn, x1o, xo, newpi0)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

newpi0 New response probability that replaces the one under the null hypothesis.

Details

This is one of the four methods proposed by Nhacolo and Brannath (2018) primarily for single-arm
adaptive two-stage group sequential designs with a binary endpoint.

Value

p-value.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

aop1e, aop2e, aop3e, aop2v2.
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aop2v2 Overall p-value (Method 2v2 of Nhacolo and Brannath, 2018).

Description

aop2v2 calculates the overall p-value for adaptive two-stage designs with binary endpoint using the
Method 2v2 (see Nhacolo and Brannath, 2018).

Usage

aop2v2(dsgn, x1o, xo, verbose = TRUE)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

verbose If TRUE (default) messages will be printed.

Details

This is one of the four methods proposed by Nhacolo and Brannath (2018) primarily for single-arm
adaptive two-stage group sequential designs with a binary endpoint.

Value

p-value.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

aop1, aop2
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aop3e Overall p-value (Method 3 of Nhacolo and Brannath, 2018).

Description

aop3e calculates the overall p-value for adaptive two-stage designs with binary endpoint using the
Method 3 (see Nhacolo and Brannath, 2018).

Usage

aop3e(dsgn, x1o, xo, newpi0 = NULL)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

newpi0 New response probability that replaces the one under the null hypothesis. Omit
it if the intention is only to calculate the overall p-value.

Details

This is one of the four methods proposed by Nhacolo and Brannath (2018) primarily for single-arm
adaptive two-stage group sequential designs with a binary endpoint.

Value

p-value.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

aop1, aop1e, aop2, aop2e, aop2v2, aop2ev2
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CalculateSimonDsgn Simon’s designs

Description

CalculateSimonDsgn finds Simon’s optimal and minimax designs.

Usage

CalculateSimonDsgn(p0, p1, alpha, beta, verbose = TRUE)

Arguments

p0 The response rate under the null hypothesis.

p1 The response rate under the alternative hypothesis.

alpha Type I error rate.

beta Type II error rate.

verbose If TRUE (default) the designs are printed (gives messy printout when the func-
tion is run without assignment).

Details

Simon’s designs are two-stage single-arm for phase II clinical trials. They consist in first stage and
overall sample sizes and critical values, n1 and n, and r1 and r, respectively.

Value

A two-row dataframe containing the optimal and the minimax designs.

Author(s)

Arsenio Nhacolo

References

Simon, R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials, 1989, 10, 1-10.

See Also

SimulateSimonDsgn and SimulateSimonDsgnAdaptN.

Examples

d <- CalculateSimonDsgn(0.2, 0.4, 0.05, 0.1)
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checkMonoDCF Check the monotonicity of the sample space ordering.

Description

checkMonoDCF checks the monotonicity of the sample space ordering defined based on inverse
normal combination function (see Nhacolo and Brannath, 2018).

Usage

checkMonoDCF(d, verbose = TRUE)

Arguments

d Dataframe containing one of the designs in EKOADwn.

verbose If TRUE (default) messages about monotonicity will be printed.

Details

The monotonicity is with respect to the stage 2 number of successes.

Value

A list containing a dataframe (mono) with detailed info, and a logical variable notmono indicating
whether non-monotonicity was concluded.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

Examples

## Not run:
#Check for all Englert and Kieser designs
notmov <- c()
for (i in 1:max(EKOADwn$id)){

notmov <- c(notmov,checkMonoDCF(EKOADwn[EKOADwn$id==1,],verbose=FALSE)[[2]])
}
isMonotone <- !any(notmov);isMonotone

## End(Not run)
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ci1 Confidence interval (using Method 1 of Nhacolo and Brannath, 2018).

Description

ci1 computes confidence interval.

Usage

ci1(dsgn, x1o, xo, alpha = 0.05, twosided = FALSE)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

alpha The significance level.

twosided If FALSE (default) a one-sided CI is produced.

Details

This CI is obtained using the Method 1, one of the four methods proposed by Nhacolo and Brannath
(2018) primarily for single-arm adaptive two-stage group sequential designs with a binary endpoint.

Value

CI is a list with lower and upper bounds.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

ci2, ci2v2, ci3, aop1, aop1e, pipv1, , mue1.
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ci2 Confidence interval (using Method 2 of Nhacolo and Brannath, 2018).

Description

ci2 computes confidence interval.

Usage

ci2(dsgn, x1o, xo, alpha = 0.05, twosided = FALSE)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

alpha The significance level.

twosided If FALSE (default) a one-sided CI is produced.

Details

This CI is obtained using the Method 2, one of the four methods proposed by Nhacolo and Brannath
(2018) primarily for single-arm adaptive two-stage group sequential designs with a binary endpoint.

Value

CI is a list with lower and upper bounds.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

ci1, ci2v2, ci3, aop2, aop2e, pipv2, mue2.
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ci2v2 Confidence interval (using Method 2v2 of Nhacolo and Brannath,
2018).

Description

ci2v2 computes confidence interval.

Usage

ci2v2(dsgn, x1o, xo, alpha = 0.05, twosided = FALSE)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

alpha The significance level.

twosided If FALSE (default) a one-sided CI is produced.

Details

This CI is obtained using the Method 2v2, one of the four methods proposed by Nhacolo and
Brannath (2018) primarily for single-arm adaptive two-stage group sequential designs with a binary
endpoint.

Value

CI is a list with lower and upper bounds.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

ci1, ci2, ci3, aop2v2, aop2ev2, pipv2v2, , mue2v2.
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ci3 Confidence interval (using Method 3 of Nhacolo and Brannath, 2018).

Description

ci3 computes confidence interval.

Usage

ci3(dsgn, x1o, xo, alpha = 0.05, twosided = FALSE)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

alpha The significance level.

twosided If FALSE (default) a one-sided CI is produced.

Details

This CI is obtained using the Method 3, one of the four methods proposed by Nhacolo and Brannath
(2018) primarily for single-arm adaptive two-stage group sequential designs with a binary endpoint.

Value

CI is a list with lower and upper bounds.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

ci1, ci2, ci2v2, aop3e, pipv3, mue3.
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dsgnPrep Pre-process the Englert and Kieser (2013) optimal adaptive designs.

Description

dsgnPrep takes Englert and Kieser’s optimal adaptive design and adds information that is needed
by other functions.

Usage

dsgnPrep(dsgn = NULL, w1 = "n", w2 = NULL)

Arguments

dsgn Dataframe containing one of the designs in EKOptAdaptDesigns.

w1, w2 Stage 1 and 2 weights. If w1="n" (default), weights a calculated based on stage-
wise sample sizes as described in Nhacolo and Brannath (2018). If w1="sr2",
then w1=w2=1/sqrt(2).

Details

The function adds, to each x1 leading to 2nd stage, the corresponding p-value (p1) and its back-
wards image (p1B), the stage-wise weights w1 and w2 and other information used in inference
methods proposed by Nhacolo and Brannath (2018).

Value

Dataframe containing the input dataframe with added information.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

Examples

## Not run:
#Designs with w1a and w2 calculated based on sample sizes
EKOADwn <- data.frame()
for (j in 1:max(EKOptAdaptDesigns$id)){
EKOADwn <- rbind(EKOADwn, dsgnPrep(dsgn = EKOptAdaptDesigns[EKOptAdaptDesigns$id==j,],w1 = "n"))

}
save(EKOADwn,file = "EKOADwn.RData")

## End(Not run)
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EKOADwn Pre-processed Englert and Kieser (2013)’s optimal adaptive designs.

Description

A dataframe containing all the designs in EKOptAdaptDesigns pre-processed by the function dsgnPrep,
the argument w1 set to "n".

Usage

EKOADwn

Format

A dataframe with 709 rows and 20 variables.

EKOptAdaptDesigns Englert and Kieser (2013)’s optimal adaptive designs.

Description

A dataframe containing all optimal adaptive two-stage designs for phase II cancer clinical trials
present in Englert and Kieser (2013).

Usage

EKOptAdaptDesigns

Format

A dataframe with 709 rows and 11 variables:

id Identifier of the designs

x1 Number of successes (responses) at stage 1

n2 Stage 2 sample size

D Discrete conditional error function

l Stage 2 decision boundary

pi0 Response probability under the null hypothesis

pi1 Response probability under the alternative hypothesis

alpha Type I error rate

beta Type II error rate

n1 Stage 1 sample size

n2max Maximum stage 2 sample size

Source

https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201200220
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getN2v2 Number of patients to be enrolled in the second stage

Description

Calculates the number of patients which should be enrolled in the second stage if the conditional
power should be altert to "cp". It’s a version of getN2.

Usage

getN2v2(cp, p1, design, k, mode = 0, alpha = 0.05)

Arguments

cp conditional power to which the number of patients for the second stage should
be adjusted.

p1 response probability under the alternative hypothesis.

design a dataframe containing all critical values for a Simon’s two-stage design defined
by the colums r1, n1, r, n and p0.

• r1 = critical value for the first stage (more than r1 responses needed to
proceed to the second stage).

• n1 = number of patients enrolled in the first stage.
• r = critical value for the whole trial (more than r responses needed at the

end of the study to reject the null hypothesis).
• n = number of patients enrolled in the whole trial.
• p0 = response probability under the null hypothesis.

k number of responses observed at the interim analysis.

mode a value out of 0,1,2,3 dedicating the methode spending the "rest alpha" (differ-
ence between nominal alpha level and actual alpha level for the given design).

• 0 = "rest alpha" is not used.
• 1 = "rest alpha" is spent proportionally.
• 2 = "rest alpha" is spent equally.
• 3 = "rest alpha" is spent only to the worst case scenario (minimal number of

responses at the interim analysis so that the study can proceed to the second
stage).

alpha overall significance level the trial was planned for.

Details

This functon is the same as getN2 (OneArmPhaseTwoStudy package), with some changes in argu-
ments’ validation. It’s is a helper to SimulateSimonDsgnAdaptN.

References

Englert S., Kieser M. Adaptive designs for single-arm phase II trials in oncology. Pharm Stat, 2012,
11, 241-249.
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See Also

getN2, SimulateSimonDsgnAdaptN.

Examples

designParam <- CalculateSimonDsgn(0.2, 0.4, 0.05, 0.1)
dsgn <- designParam[designParam$Type == "Optimal",]
getN2v2(0.9, dsgn$p1, dsgn, 7)

mue1 Median estimate (using Method 1 of Nhacolo and Brannath, 2018).

Description

mue1 calculates the median estimate of the response rate.

Usage

mue1(dsgn, x1o, xo)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

Details

This estimate is obtained using the Method 1, one of the four methods proposed by Nhacolo and
Brannath (2018) primarily for single-arm adaptive two-stage group sequential designs with a binary
endpoint.

Value

Median estimate of response probability.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

mue2, mue2v2, mue3, aop1, aop1e, pipv1.
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mue2 Median estimate (using Method 2 of Nhacolo and Brannath, 2018).

Description

mue2 calculates the median estimate of the response rate.

Usage

mue2(dsgn, x1o, xo)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

Details

This estimate is obtained using the Method 2, one of the four methods proposed by Nhacolo and
Brannath (2018) primarily for single-arm adaptive two-stage group sequential designs with a binary
endpoint.

Value

Median estimate of response probability.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

mue1, mue2v2, mue3, aop2, aop2e, pipv2.
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mue2v2 Median estimate (using Method 2v2 of Nhacolo and Brannath, 2018).

Description

mue2v2 calculates the median estimate of the response rate.

Usage

mue2v2(dsgn, x1o, xo)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

Details

This estimate is obtained using the Method 2v2, one of the four methods proposed by Nhacolo and
Brannath (2018) primarily for single-arm adaptive two-stage group sequential designs with a binary
endpoint.

Value

Median estimate of response probability.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

mue1, mue2, mue3, aop2v2, aop2ev2, pipv2v2.
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mue3 Median estimate (using Method 3 of Nhacolo and Brannath, 2018).

Description

mue3 calculates the median estimate of the response rate.

Usage

mue3(dsgn, x1o, xo)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

Details

This estimate is obtained using the Method 3, one of the four methods proposed by Nhacolo and
Brannath (2018) primarily for single-arm adaptive two-stage group sequential designs with a binary
endpoint.

Value

Median estimate of response probability.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

mue1, mue2, mue2v2, aop3e, pipv3.
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Nct Sample size per group for single-stage parallel-group RCT.

Description

Nct calculates sample size for one group in an equal-size group two-arm randomized clinical trial
with a binary response.

Usage

Nct(pc, pt, alp = 0.05, pow = 0.8)

Arguments

pc Response probability in control group.

pt Response probability in treatment group.

alp Significance level (default: 0.05).

pow Power (default: 0.8)

Details

The sample size is for one group (arm), double the number to get the total.

Value

Sample size for one group.

Author(s)

Arsenio Nhacolo

References

Ahn, C., Heo, M. and Zhang, S. Sample Size Calculations for Clustered and Longitudinal Outcomes
in Clinical Research. CRC Press, 2014.

See Also

Pwr.

Examples

Nct(0.2,0.3,0.05,0.9)
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pdata Helper function for analysing the performance of estimators

Description

It takes the results produced by AnalyzeSimonDsgn or AnalyzeSimonDsgnAdaptN and produces a
dataframe containing bias, mean square error and variance of the estimators.

Usage

pdata(t, design, stop, success, replicates)

Arguments

t Dataframe containing results produced by AnalyzeSimonDsgn or AnalyzeSimonDsgnAdaptN.

stop Taking value "yes", "no" or "both", indicating that only trials that stopped,
continued or both were analysed.

success Taking value "yes", "no" or "both", indicating that only trials that were suc-
cessful, unsuccessful or both were analyzed.

replicates Number of trials analysed. It is equal to the number of rows in t.

Details

It is a helper function for AnalyzePerformanceSimon. It also calculates the power and the expected
sample size (EN) where applicable.

Value

Dataframe containing bias, mean square error and variance of the estimators.

Author(s)

Arsenio Nhacolo

See Also

AnalyzeSimonDsgn, AnalyzeSimonDsgnAdaptN and AnalyzePerformanceSimon.

Examples

## Not run:
rslt <- read.csv("ResultsOptimalDesign.csv")
nrep <- nrow(rslt)
t <- rslt
presult <- pdata(t, "Optimal", "both", "both", nrep)
t <- rslt[rslt$stop == 0,]
presult <- rbind(presult, pdata(t, "Optimal", "no", "both", nrep))

## End(Not run)
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pdata2 Helper function for analysing the performance of estimators

Description

pdata2 is a helper function used by function PerformanceEKOAD.

Usage

pdata2(t, stop, success, replicates)

Details

Not to be used directly.

Value

Dataframe

Author(s)

Arsenio Nhacolo

PerforIItoIIIRe Performance, with respect to Phase III power, of phase II estimates.

Description

PerforIItoIIIRe calculates the mean and median power in a Phase III trials from the output of
AnIItoIIIRe.

Usage

PerforIItoIIIRe(t)

Arguments

t Dataframe containing the output from the function AnIItoIIIRe.

Value

Dataframe.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Using Estimates from Adaptive Phase II Oncology Trials to Plan
Phase III Trials. Manuscript submitted for publication, 2018.
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See Also

AnIItoIIIRe.

Examples

## Not run:
rslt <- read.csv("ResultsAll.csv")
rsltfull <- rslt
rslt <- rslt[rslt$suco==1,]
rslt <- rslt[,c("pi0", "pi1", "spi1", "alpha", "beta", "suco", "pip",

"pim1", "pim2", "pim2v2", "pim3")]
rslt <- rslt[rslt$spi1>=rslt$pi0+0.1 & rslt$spi1<=rslt$pi1+0.3,]
rslt$spi1f <- factor(rslt$spi1)
cats <- levels(rslt$spi1f)
ncats <- length(cats)
setwd(paste0("C:/Users/arsenio/Documents/PhD/Simulations/Paper2/Reuse/pi01by0.01/50000/",did))
save(ncats,file = "ncats.rdata")
for (i in 1:ncats){

sr <- rslt[rslt$spi1f==cats[i],]#Single result (result of a specific spi1)
save(sr,file = paste0("sr",i,".rdata"))

}
load("ncats.rdata")
PerfAll <- data.frame()
for (k in 1:ncats){
load(paste0("sr",k,".rdata"))
sre <- AnIItoIIIRe(rslt = sr,f = c(.95,.96,.97,.98,.99))
PerfAll <- rbind(PerfAll,PerforIItoIIIRe(sre))
rm(sr)

}
write.csv(PerfAll, file = "PerfAllIItoIII.csv", row.names = F)

## End(Not run)

PerformanceEKOAD Performance of estimation methods

Description

PerformanceEKOAD calculates performance measures (bias, mean square error, coverage probabil-
ity) of the estimation methods based on the results produced by AnalyzeEKOAD.

Usage

PerformanceEKOAD(basedir = NULL)

Arguments

basedir The base directory containing the file with the results (Results.csv). If NULL
(default), the current working directory is uded.

Value

A dataframe with the performance results. A copy is saved in the file the PerformanceResults.csv
in the basedir.

Appendix C. R code – R package documentation 93



pg 37

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

SimulateEKOAD, AnalyzeEKOAD.

Examples

## Not run:
#SIMULATIONS
for (did in c(6,10)){#Design ID
cat("============================ Design ",did," ============================\n")
repl <- 50000 # number of replicated trials for each p
dir.create(as.character(did))
setwd(as.character(did))
design <- EKOADwn[EKOADwn$id==did,]
seed = 3343
if (file.exists("PerforAll.csv")) unlink("PerforAll.csv")
piv <- seq(0,1,0.025) # p to simulate data
resul <- data.frame()
perf <- data.frame()
k <- 0
pl <- length(piv)
for (pi in piv){

k <- k+1
cat("_________________________ pi = ",pi, " (",k," of ",pl,") _________________________\n",sep = "")
SimulateEKOAD(replicates = repl, dsgn = design, newpi1 = pi, seed = seed)
resul <- rbind(resul, AnalyzeEKOAD())
perf <- rbind(perf, PerformanceEKOAD())

}
write.table(resul, file ="ResultsAll.csv", sep = ",", row.names = F, col.names = TRUE)
write.table(perf, file ="PerforAll.csv", sep = ",", row.names = F, col.names = TRUE)
cat("Design ID: ", design$id[1], "\nReplicates: ", repl, "\nSeed: ", seed,

"\nDate last run: ", date(),file = "info.txt", sep = "", append = FALSE)
}

## End(Not run)

pg Bias-reduced estimator

Description

Calculates the bias-reduced estimator of the true response rate as proposed by Guo and Liu (2005).

Usage

pg(s, n1, r1, n)
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Arguments

s Total number of successes.

n1 Stage 1 sample size.

r1 Stage 1 critical value (trial is stopped at stage 1 if the number of successes is at
most r1).

n Total sample size.

Details

It uses bias subtraction, with bias calculated by sbias and response rate estimated by pm.

Value

Estimate of the response rate.

Author(s)

Arsenio Nhacolo

References

Guo, H. Y. and Liu, A. A simple and efficient bias-reduced estimator of response probability fol-
lowing a group sequential phase II trial. J Biopharm Stat, 2005, 15, 773-781.

See Also

sbias, pm, pu, pp and pk.

Examples

pg(21, 19, 4, 54)

pipv1 Response rate to attain a specified p-value (using Method 1 of Nhacolo
and Brannath, 2018).

Description

pipv1 finds the response probability under the null hypotheisis that, given the observed data, would
yield a desired overall p-value.

Usage

pipv1(dsgn, x1o, xo, pv)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

pv The desired p-value.
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Details

The p-value is obtained using the Method 1, one of the four methods proposed by Nhacolo and
Brannath (2018) primarily for single-arm adaptive two-stage group sequential designs with a binary
endpoint.

Value

Response probability.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

pipv2, pipv2v2, pipv3, aop1, aop1e.

pipv2 Response rate to attain a specified p-value (using Method 2 of Nhacolo
and Brannath, 2018).

Description

pipv2 finds the response probability under the null hypothesis that, given the observed data, would
yield a desired overall p-value.

Usage

pipv2(dsgn, x1o, xo, pv)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

pv The desired p-value.

Details

The p-value is obtained using the Method 2, one of the four methods proposed by Nhacolo and
Brannath (2018) primarily for single-arm adaptive two-stage group sequential designs with a binary
endpoint.

Value

Response probability.
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Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

pipv1, pipv2v2, pipv3, aop2, aop2e.

pipv2v2 Response rate to attain a specified p-value (using Method 2v2 of Nha-
colo and Brannath, 2018).

Description

pipv2v2 finds the response probability under the null hypotheisis that, given the observed data,
would yield a desired overall p-value.

Usage

pipv2v2(dsgn, x1o, xo, pv)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

pv The desired p-value.

Details

The p-value is obtained using the Method 2v2, one of the four methods proposed by Nhacolo and
Brannath (2018) primarily for single-arm adaptive two-stage group sequential designs with a binary
endpoint.

Value

Response probability.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.
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See Also

pipv1, pipv2, pipv3, aop2v2, aop2ev2.

pipv3 Response rate to attain a specified p-value (using Method 3 of Nhacolo
and Brannath, 2018).

Description

pipv3 finds the response probability under the null hypotheisis that, given the observed data, would
yield a desired overall p-value.

Usage

pipv3(dsgn, x1o, xo, pv)

Arguments

dsgn Dataframe containing one of the designs in EKOADwn.

x1o The observed stage 1 number of responses.

xo The total observed number of responses.

pv The desired p-value.

Details

The p-value is obtained using the Method 3, one of the four methods proposed by Nhacolo and
Brannath (2018) primarily for single-arm adaptive two-stage group sequential designs with a binary
endpoint.

Value

Response probability.

Author(s)

Arsenio Nhacolo

References

Nhacolo, A. and Brannath, W. Interval and point estimation in adaptive Phase II trials with binary
endpoint. Stat Methods Med Res, 2018.

See Also

pipv1, pipv2, pipv2v2, aop3e.
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pk Median unbiased estimator

Description

Calculates the median unbiased estimator of true response rate for Simon-like designs.

Usage

pk(s, n1, r1, n, p0)

Arguments

s Total number of successes.

n1 Stage 1 sample size.

r1 Stage 1 critical value (trial is stopped at stage 1 if the number of successes is at
most r1).

n Total sample size.

p0 Response rate under the null hypothesis.

Details

Median unbiased estimator is the value of response rate such that the p-value is 0.5 (Koyama and
Chen, 2008). The solution is found using numerical search, with a precision of 0.000001.

Value

Estimate of the response rate.

Author(s)

Arsenio Nhacolo

References

Koyama, T. and Chen, H. Proper inference from Simon’s two-stage designs. Stat Med, 2008, 27,
3145-3154.

See Also

pvaluek, pquantile, pm, pg, pu and pp.

Examples

pk(21, 19, 4, 54, 0.2)
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pm Sample proportion

Description

Calculates the sample proportion.

Usage

pm(s, n)

Arguments

s Total number of successes.

n Total sample size.

Details

For fixed designs the sample proportion is an unbiased (maximum likelihood) estimator of the
response rate, but in group sequential designs (e.g., Simon’s) it is biased.

Value

Estimate of the response rate.

Author(s)

Arsenio Nhacolo

See Also

pg, pu, pp and pk.

Examples

pm(21, 54)

pp UMVCUE

Description

Calculates the uniformly minimum variance conditionally unbiased estimator (UMVCUE) of the
true response probability.

Usage

pp(s, n1, r1, n)
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Arguments

s Total number of successes.

n1 Stage 1 sample size.

r1 Stage 1 critical value (trial is stopped at stage 1 if the number of successes is at
most r1).

n Total sample size.

Details

The UMVCUE (Pepe et al., 2009) is conditional on on proceeding to the second stage. he sample
proportion is used when the trial stopped at first stage.

Value

Estimate of the response rate.

Author(s)

Arsenio Nhacolo

References

Pepe, M. S.; Feng, Z.; Longton, G. and Koopmeiners, J. Conditional estimation of sensitivity and
specificity from a phase 2 biomarker study allowing early termination for futility. Stat Med, 2009,
28, 762-779.

See Also

pm, pg, pu and pk.

Examples

pp(21, 19, 4, 54)

pquantile Value of response rate to attain a given p-value

Description

Finds, for Simon-like designs, the value of response probability that would yield a given p-value.

Usage

pquantile(s, n1, r1, n, p0, pvalue)
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Arguments

s Total number of successes.

n1 Stage 1 sample size.

r1 Stage 1 critical value (trial is stopped at stage 1 if the number of successes is at
most r1).

n Total sample size.

p0 Response rate under the null hypothesis.

pvalue The desired p-value.

Details

The solution is found using numerical search, with a precision of 0.000001. The p-value is as
defined by Koyama and Chen (2008).

Value

Response probability.

Author(s)

Arsenio Nhacolo

References

Koyama, T. and Chen, H. Proper inference from Simon’s two-stage designs. Stat Med, 2008, 27,
3145-3154.

See Also

pvaluek and pk.

Examples

pquantile(21, 19, 4, 54, 0.2, 0.5)

pu UMVUE

Description

Calculates the uniformly minimum variance unbiased estimator (UMVUE) of the true response
probability.

Usage

pu(s, n1, r1, n)
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Arguments

s Total number of successes.
n1 Stage 1 sample size.
r1 Stage 1 critical value (trial is stopped at stage 1 if the number of successes is at

most r1).
n Total sample size.

Details

The UMVUE is based on approach by Grishick et al. (1946). It was first considered by Chang et
al. (1989) and further studied by Jung et al. (2004).

Value

Estimate of the response rate.

Author(s)

Arsenio Nhacolo

References

Jung, S.-H. and Kim, K. M. On the estimation of the binomial probability in multistage clinical
trials. Stat Med, 2004, 23, 881-896.

See Also

pm, pg, pp and pk.

Examples

pu(21, 19, 4, 54)

pvaluek P-value

Description

Calculates p-value for Simon-like designs.

Usage

pvaluek(s, n1, r1, n, p0)

Arguments

s Total number of successes.
n1 Stage 1 sample size.
r1 Stage 1 critical value (trial is stopped at stage 1 if the number of successes is at

most r1).
n Total sample size.
p0 Response rate under the null hypothesis.
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Details

It is based on the definition of p-value by Koyama and Chen (2008).

Value

P-value.

Author(s)

Arsenio Nhacolo

References

Koyama, T. and Chen, H. Proper inference from Simon’s two-stage designs. Stat Med, 2008, 27,
3145-3154.

See Also

pquantile and pk.

Examples

pvaluek(21, 19, 4, 54, 0.2)

Pwr Power for single-stage parallel-group RCT.

Description

Pwr calculates the power in an equal-size group two-arm randomized clinical trial with a binary
response.

Usage

Pwr(pc, pt, Nc, alp = 0.05)

Arguments

pc Response probability in control group.

pt Response probability in treatment group.

Nc Sample size per group.

alp Significance level (default: 0.05).

Value

Sample size for one group.

Author(s)

Arsenio Nhacolo
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References

Ahn, C., Heo, M. and Zhang, S. Sample Size Calculations for Clustered and Longitudinal Outcomes
in Clinical Research. CRC Press, 2014.

See Also

Nct.

Examples

Pwr(0.2,0.3,389,0.05)

sbias Bias of the sample proportion

Description

Calculates bias due to using sample proportion as estimator of the true response rate.

Usage

sbias(n1, r1, n, p)

Arguments

n1 Stage 1 sample size.

r1 Stage 1 critical value (trial is stopped at stage 1 if the number of successes is at
most r1).

n Total sample size.

p True success probability.

Details

For fixed designs the sample proportion is an unbiased (maximum likelihood) estimator of the
response rate, but in group sequential designs (e.g., Simon’s) it is biased.

Value

Bias.

Author(s)

Arsenio Nhacolo

References

Porcher, R. and Desseaux, K. What inference for two-stage phase II trials? BMC Med Res Methodol,
2012, 12, 117.

See Also

sfms and pg.
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Examples

sbias(19, 4, 54, 0.4)

sfms Probability mass function of (M, S)

Description

Probability mass function of M (stage) and S (number of successes).

Usage

sfms(s, n1, r1, n, p, m = NA)

Arguments

s Total number of successes.

n1 Stage 1 sample size.

r1 Stage 1 critical value (trial is stopped at stage 1 if the number of successes is at
most r1).

n Total sample size.

p True success probability.

m Stage number (1 or 2). It is automatically determined based on s and r1, there-
fore it shouldn’t be provided, unless there are reasons to do so.

Details

Probability mass function of the statistic (M, S) for Simon-like designs (allowing early stopping
for futility only).

Value

Density.

Author(s)

Arsenio Nhacolo

References

Jung, S.-H. and Kim, K. M. On the estimation of the binomial probability in multistage clinical
trials. Stat Med, 2004, 23, 881-896.

See Also

sbias and pg.

Examples

sfms(21, 19, 4, 54, 0.4)
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SimulateEKOAD Simulate single-arm binary endpoint two-stage adaptive designs.

Description

SimulateEKOAD Simulate trials following designs similar to that of Englert and Kieser(2013)’s.

Usage

SimulateEKOAD(replicates, dsgn, newpi1 = NULL, seed = NULL,
deleteOld = TRUE)

Arguments

replicates Number of trials to be simulated.

dsgn Dataframe containing one of the designs in EKOADwn.

newpi1 New response rate under the alternative hypothesis used to simulate trials. If
NULL (default), the one from the design is used.

seed The seed for random number generator. If NULL (default), no seed is set and ,
hence, results are not reproducible.

deleteOld If TRUE (default), the simulation sub-directory is cleared before simulations start.

Details

The original designs (like the ones in EKOptAdaptDesigns) must be pre-processed using the func-
tion dsgnPrep to get extra information like the designs in EKOADwn.

Value

Simulated trials are saved in the sub-directory ./SimulatedTrials.

Author(s)

Arsenio Nhacolo

References

Englert, S. and Kieser, M. Optimal adaptive two-stage designs for phase II cancer clinical trials.
Biometrical Journal, 2013.

See Also

EKOptAdaptDesigns, EKOADwn.
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SimulateSimonDsgn Simon’s designs data simulation

Description

SimulateSimonDsgn simulates data from Simon’s optimal and minimax designs.

Usage

SimulateSimonDsgn(replicates, designParam, newp1 = NA, seed = NA,
deleteOld = TRUE)

Arguments

replicates Number of trials to be generated.

designParam A dataframe containing Simon’s optimal and minimax designs, as returned by
the function CalculateSimonDsgn.

newp1 If NA (default) data are generated assuming the same response probability under
alternative hypothesis, p1, used to get the designs (see CalculateSimonDsgn).
One may provide different values of newp1 if there is interest in studying the
effect of departure from the design’s assumed p1.

seed Initial value (any integer) of random-number seed. It is useful for creating sim-
ulations that can be reproduced. The default is NA, meaning no reproducibility.

deleteOld If TRUE (default) the sub-directories /Optimal/SimulatedTrials and /Minimax/SimulatedTrials
are deleted, if they exist, before simulation starts. The old data files are still re-
placed by the new ones even if deleteOld is set to FALSE, but some old files
remain in cases where the previous replicates was greater that the current
one.

Details

The simulated trials are stored in the sub-directories /Optimal/SimulatedTrials and /Minimax/SimulatedTrials
for optimal and minimax designs, respectively, under the current working directory. The sub-
directories are automatically created. Individual trial data are stored in a CSV file named trial#,
where # is the replicate number.

Value

The function is not intended to return an R object, instead it creates files (in CSV format) containing
simulated trials data. See Details. It also saves in the current working directory the designParam
argument (DesignParameters.csv).

Author(s)

Arsenio Nhacolo

See Also

CalculateSimonDsgn, SimulateSimonDsgnAdaptN and AnalyzeSimonDsgn.
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Examples

d <- CalculateSimonDsgn(0.2, 0.4, 0.05, 0.1)
SimulateSimonDsgn(100, d, seed = 1986)

SimulateSimonDsgnAdaptN

Simon’s adaptive designs data simulation

Description

Simulates data from adaptive versions of Simon’s optimal and minimax designs, proposed by En-
glert and Kieser (2012). Adaptation consists in recalculating the second stage sample size n2 in
order to achieve a desired conditional power given the number of successes at first stage.

Usage

SimulateSimonDsgnAdaptN(replicates, designParam, newp1 = NA,
condPwr = NA, restAlphaMet = 0, seed = NA, deleteOld = TRUE)

Arguments

replicates Number of trials to be generated.

designParam A dataframe containing Simon’s optimal and minimax designs, as returned by
the function CalculateSimonDsgn.

newp1 If NA (default) data are generated assuming the same response probability under
alternative hypothesis, p1, used to get the designs (see CalculateSimonDsgn).
One may provide different values of newp1 if there is interest in studying the
effect of departure from the design’s assumed p1.

condPwr The desired conditional power. The default is 1-beta.

restAlphaMet The method for spending the "rest alpha" (difference between nominal alpha
level and actual alpha level for the given design).

• 0: "rest alpha" is not used (default);
• 1: "rest alpha" is spent proportionally;
• 2: "rest alpha" is spent equally;
• 3: "rest alpha" is spent only to the worst case scenario (minimal number of

responses at the interim analysis so that the study can proceed to the second
stage).

seed Initial value (any integer) of random-number seed. It is useful for creating sim-
ulations that can be reproduced. The default is NA, meaning no reproducibility.

deleteOld If TRUE (default) the sub-directories /OptimalAdapt/SimulatedTrials and
/MinimaxAdapt/SimulatedTrials are deleted, if they exist, before simulation
starts. The old data files are still replaced by the new ones even if deleteOld is
set to FALSE, but some old files remain in cases where the previous replicates
was greater that the current one.
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Details

The simulated trials are stored in the sub-directories /OptimalAdapt/SimulatedTrials and /MinimaxAdapt/SimulatedTrials
for optimal and minimax designs, respectively, under the current working directory. The sub-
directories are automatically created. Individual trial data are stored in a CSV file named trial#,
where # is the replicate number.

Value

The function is not intended to return an R object, instead it creates files (in CSV format) containing
simulated trials data. See Details. It also saves in the current working directory the designParam
argument (DesignParametersAdapt.csv).

Author(s)

Arsenio Nhacolo

References

Englert S., Kieser M. Adaptive designs for single-arm phase II trials in oncology. Pharm Stat, 2012,
11, 241-249.

See Also

CalculateSimonDsgn, getN2, SimulateSimonDsgn and AnalyzeSimonDsgnAdaptN.

Examples

d <- CalculateSimonDsgn(0.2, 0.4, 0.05, 0.1)
SimulateSimonDsgnAdaptN(100, d, seed = 1986)
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Article

Interval and point estimation in adaptive
Phase II trials with binary endpoint

Arsénio Nhacolo and Werner Brannath

Abstract

Phase II clinical trials are concerned with making decision of whether a treatment is sufficiently efficacious to be worth

further investigations in late large scale Phase III trials. In oncology Phase II trials, frequentist single-arm two-stage group-

sequential designs with a binary endpoint are commonly used. To allow for more flexibility, adaptive versions of these

designs have been proposed. In this paper, we propose point and interval estimation for adaptive designs in which

the second stage sample size is a pre-specified function of first stage’s number of responses. Our approach is based on

sample space orderings, from which we derive p-values, and point and interval estimates. Simulation studies show that

our proposed methods perform better, in terms of bias and root mean square error, than the fixed-sample maximum

likelihood estimator.

Keywords

Adaptive designs, bias, clinical trials, estimation, oncology Phase II, RMSE, p-value

1 Introduction

Phase II trials are concerned with making decision of whether a treatment is sufficiently efficacious to justify its
further investigations in late large scale Phase III trials. In oncology Phase II trials, frequentist single-arm two-
stage group-sequential designs with binary endpoints are commonly used. Based on ethical desirability to expose
less patients to an inefficient treatment and to speed-up the development process, these designs allow early
termination of the trial for futility and/or efficiency (e.g., designs by Schultz et al.1 and Simon2). In such
designs, the sample sizes and decision rules for each stage are predefined. To allow flexibility, adaptive versions
of these designs have been proposed.3–10 Adaptive designs allow for modification of the trial at interim analysis
using the trial’s accumulating data and/or external information without jeopardising trial’s integrity and validity.

Although the main goal of oncology Phase II trials is hypothesis testing, estimation of the efficacy parameter
after such trials remains important, especially in cases where the treatment was deemed successful since it will be
needed for planning Phase III trials. In group-sequential designs (GSD), due to the possibility of early stopping for
either futility or efficacy, the fixed-sample maximum likelihood estimator (MLE) of the treatment effect (response
probability) is no longer unbiased. This issue has been acknowledged by many authors, and alternative estimation
methods have been proposed in the literature.11–19 However, most of the estimation methods for GSD are not
applicable to adaptive designs. Unfortunately, the literature on estimation in adaptive GSD is mainly on Phase III
clinical trials.20–35 To the best of our knowledge, estimation in oncology Phase II adaptive single-arm GSD with a
binary endpoint has only been discussed recently by Kunzmann and Kieser,36 who proposed a point estimator that
can be interpreted as a constrained posterior mean estimate based on the non-informative Jeffreys prior.
Their method is computationally intensive, and they have implemented it in the Julia37 programming language
using the JuMP38 package and the Julia interface38 to the commercial solver Gurobi.39

In this paper, as an alternative to the Bayesian procedure by Kunzmann and Kieser,36 we propose a frequentist
interval and point estimation procedure for two-stage single-arm adaptive designs with pre-specified adaptation
rule. We consider designs in which the second stage’s sample size is a pre-specified function of first stage’s number
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of responses. However, some of the approaches that we propose can be extended to flexible designs. The procedure
uses the concept of stage-wise ordering, and it is less computationally intensive and can readily be implemented in
the statistical programming language R.40 We first propose and discuss different approaches for defining sample
space orderings, from which we derive p-values and then interval and point estimates. We also present the results
from a simulation study to evaluate the performance of the proposed methods. The paper is organised as follows.
We first give an overview of the adaptive designs for which we are developing the proposed methods. Afterwards
we give the methodological details of our proposals, an illustrative example, then the results of the simulation
study and we end with conclusions and a discussion.

2 Adaptive phase II oncology designs

We build our methodology for two-stage adaptive phase II oncology designs with binary endpoint and a pre-
specified adaptation rule, like those proposed by Englert and Kieser8 and Shan et al.9 These designs extend the
classical binary endpoint oncology Phase II GSD by allowing the sample size of second stage to depend on
the number of responses observed in the first stage. Like their classical GSD counterparts they test, at type I
error rate � and type II error rate �, the null (H0) versus the alternative (H1) hypothesis about the response rate (�)

H0 : � � �0 vs H1 : � � �1

where �0 is the maximum response rate considered to be uninteresting and �1 is the minimum desirable response
rate, with �1 4�0.

The designs we consider in this paper are defined by the first stage sample size, n1, futility and efficacy
boundaries, l1 and u1 (u1 4 l1), which are fixed, and the second stage sample size, n2ðx1Þ, which depends on the
number of responses observed in the first stage, x1. We further have the conditional error function, Dðx1Þ, and the
corresponding decision boundary, l ðx1Þ, which are also functions of x1. The final (second) stage efficacy boundary
uðx1Þ is set to uðx1Þ ¼ l ðx1Þ þ 1, with l ðx1Þ being the futility boundary. Dðx1Þ defines for each possible number of
responses in the first stage, x1 2 f0, . . . , n1g, the conditional type I error rate to be used in the second stage.6 At the
interim analysis, the trial is stopped with failure to reject H0 if x1 � l1 or with rejection of H0 if x1 � u1. Otherwise
the trial proceeds to the second (final) stage, after which H0 is rejected if p2 5Dðx1Þ or, equivalently, x4 l ðx1Þ,
where p2 is the second stage p-value and x is the total number of responses (i.e. x is the sum of x1 and the number
of responses observed in the second stage, x2). Note that x4 l ðx1Þ is equivalent to x � uðx1Þ. An example of such
designs is given in Table 1.

Note that the discrete conditional error function Dðx1Þ in Table 1 is non-decreasing in x1, and takes values
within ½0, 1�. We assume these two properties throughout the paper. It is clear that in these designs the first stage
decision boundaries are l1 ¼ maxfx1jDðx1Þ ¼ 0g ¼ minfx1jDðx1Þ4 0g � 1 and u1 ¼ minfx1jDðx1Þ ¼ 1g ¼
maxfx1jDðx1Þ5 1g þ 1, and the first and second stage p-values are, respectively, p1 ¼ 1� Bðx1 � 1, n1,�0Þ and
p2 ¼ 1� Bðx2 � 1, n2ðx1Þ,�0Þ, where Bðx, n,�Þ is the binomial cumulative distribution function (c.d.f) with x
successes, n trials and success probability �.

Table 1. Englert and Kieser’s8 optimal adaptive design for ð�0,�1, �, �Þ ¼
ð0:2, 0:4, 0:05, 0:1Þ.

n1 ¼ 20, n2,max ¼ 39

x1 n2ðx1Þ Dðx1Þ l ðx1Þ

�4 0 0 0

5 16 0.082 10

6 30 0.129 14

7 33 0.200 15

8 39 0.241 17

9 39 0.376 17

�10 0 1 0

2 Statistical Methods in Medical Research 0(0)
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3 Classical sample space orderings

The construction of confidence intervals and p-values entails determining the probability of obtaining an
outcome that is at least as extreme as the observed one and, for this, a sample space ordering is needed. For
the case of one outcome variable, in fixed-sample designs, the sample space ordering is simply the ordering of the
real numbers. However, in GSD the ordering is not clearly defined because, apart from the test statistic,
the number of stages also plays a role when ordering the outcomes. Different sample space orderings for GSD
have been suggested in the literature. The stage-wise ordering, first proposed by Armitage41 and later discussed by
several other authors,42–46 is a widely used sample space ordering in GSD. For classical GSD counterparts of the
adaptive designs above, i.e. designs in which n2 and l are also fixed, the stage-wise ordering can be defined as it
follows. Let m be the stopping stage and x the total number of responses. A trial outcome ðm0, x0Þ is at least as
extreme (against H0) as the observed trial outcome (m, x), written as ðm0, x0Þf ðm, xÞ, if one of the following
conditions is met

ðAÞ m0 ¼ m and x0 � x

ðBÞ m0 ¼ 1, m ¼ 2 and x0 � u1

ðCÞ m0 ¼ 2, m ¼ 1 and x � l1

Other suggested sample space orderings include the likelihood ratio ordering,47–49 sample mean ordering,50 and
score test ordering.49

For the adaptive designs, the stage-wise ordering discussed here can be inconsistent with the design’s decision
rule when m0 ¼ m ¼ 2. For example, for the design in Table 1, x¼ 11 with x1 ¼ 5 leads to rejection of H0 while
x¼ 16 with x1 ¼ 8 does not. This follows from the nature of the conditional error function.

4 Alternative sample space orderings

To overcome this inconsistency, we propose alternative sample space orderings that take into account the
conditional error function and adaptation rule. When both outcomes are from trials that continued to the
second stage (i.e. m0 ¼ m ¼ 2), we compare them taking into account their respective rejection boundaries.
We accomplish this by defining a function �ðx1, x2Þ that in some way incorporates the rejection boundary of
the trial outcome. In all other cases, the proposed sample space orderings are similar to the stage-wise ordering
discussed above. Then we have that ðm0, x01, x

0Þf ðm, x1,xÞ if one of the following conditions is met

ðA1Þ m0 ¼ m ¼ 1 and x0 � x

ðA2Þ m0 ¼ m ¼ 2 and �ðx01, x
0
2Þ � �ðx1, x2Þ

ðBÞ m0 ¼ 1, m ¼ 2 and x0 � u1

ðCÞ m0 ¼ 2, m ¼ 1 and x � l1

We propose three different methods to define �ðx1, x2Þ. The first two quantify the deviation between x and l ðx1Þ.
In the first method, we define �ðx1, x2Þ using directly x as

�ðx1, x2Þ ¼ x1 þ x2 � l ðx1Þ ¼ x� l ðx1Þ ð1Þ

and in the second we define �ðx1, x2Þ using the second stage p-value as

�ðx1, x2Þ ¼ ~� x1, p2ðx2Þ½ � ¼ Dðx1Þ � p2ðx2Þ ð2Þ

In both methods, � is defined such that it equals to a constant when the outcome is at the decision boundary (i.e.
when x2 ¼ l ðx1Þ � x1 and p2 ¼ Dðx1Þ). That is, � x1, l ðx1Þ � x1½ � ¼ c1 and � x1,Dðx1Þ½ � ¼ c2. Here c1 ¼ c2 ¼ 0,
meaning that the null hypothesis is rejected if �ðx1,x2Þ4 0. The inequality �ðx01, x

0
2Þ � �ðx1, x2Þ in the case (A2)

of our proposed sample space ordering can be stated as x02 � x� l ðx1Þ þ l ðx01Þ � x01 for the first method and
p02 � p2 �Dðx1Þ þDðx01Þ for the second one.

The two ways of defining the function � above are strictly linked to the design’s decision rules, and
therefore require trials to strictly follow the design. We will see later that Method 2 yields valid p-values even if

Nhacolo and Brannath 3
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the adaptation rule is not strictly adhered to. One way to allow for flexibility is to order the outcomes
using combination functions from adaptive tests. Combination functions combine the first and the second stage
p-values, with the assumption that the data from the two stages are from independent cohorts of patients. An
extensive discussion on adaptive combination tests can be found in Wassmer and Brannath.46 The idea is to define
a combination function Cð p1, p2Þ, setting �0 ¼ 1� Bðl1 � 1, n1,�0Þ, �1 ¼ 1� Bðu1 � 1, n1,�0Þ, and finding c such
that type I error is controlled, i.e.

�1 þ

Z �0

�1

Z 1

0

I½Cð p1,p2Þ�c�dp2dp1 ¼ �

where I½S� equals to 1 if S is true and 0 otherwise.
Given the combination test, the most natural ordering on the second stage is according to Cð p1, p2Þ, i.e. if we

have performed a second stage we consider a second trial outcome with stage-wise p-values ð p01, p
0
2Þ as more

extreme than our observed outcome if Cð p01, p
0
2Þ5Cð p1, p2Þ. Even though the Phase II designs we are dealing

with might not be based on a combination function C, we can build an ordering based on C that is consistent with
the rejection region given by the function D (or equivalently given by the function l). To this end, we define the C’s
corresponding conditional error function

Að p1Þ ¼ maxfy 2 ½0, 1� : Cð p1, p2Þ � cg

and then calculate the backwards image p1b such that Að p1bÞ ¼ Dðx1Þ, where Dðx1Þ is the conditional error of the
original design.

A natural and common choice for Cð p1, p2Þ is the weighted inverse normal combination function,51 which can
be represented as46

Cð p1, p2Þ ¼ 1�� w1�
�1ð1� p1Þ þ w2�

�1ð1� p2Þ
� �

where � is standard normal c.d.f., and w1 and w2 are predefined weights chosen such that w2
1 þ w2

2 ¼ 1. Here we
propose to use weights that give more emphasis to the stage with higher sample size, i.e.

w1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1

n1 þ n2ðx1Þ

r
and w2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðx1Þ

n1 þ n2ðx1Þ

s

The conditional error function of the inverse normal combination function is

Að p1Þ ¼ 1��
��1ð1� cÞ � w2�

�1ð1� p2Þ

w1

� �

Solving Að p1bÞ ¼ Dðx1Þ for p1b we get

p1bðx1Þ ¼ 1��
��1 1� cð Þ � w2�

�1 1�Dðx1Þ½ �

w1

� �

We finally define � as

�ðx1, x2Þ ¼ �� p1bðx1Þ, p2ðx2Þ½ � ¼ 1� Cð p1b, p2Þ ð3Þ

With � defined in this way, the condition �ðx01,x
0
2Þ � �ðx1, x2Þ in the case (A2) of the proposed sample space

ordering becomes Cð p01b, p
0
2Þ � Cð p1b, p2Þ, meaning that the outcome with lower Cð p1b, p2Þ is considered to be

more extreme.
Another possible sample space ordering could be to simply order the trial outcomes by the proportion of

responses, i.e. ðx1 þ x2Þ=½n1 þ n2ðx1Þ�. However, this ordering would not always be consistent with the design’s
decision rule because in some designs the ratio of the final decision boundary and the total sample size, i.e.
l ðx1Þ=½n1 þ n2ðx1Þ�, might not be constant. For instance, in the Englert and Kieser’s8 design for
ð�0,�1,�,�Þ ¼ ð0:5, 0:7, 0:05, 0:2Þ, this ratio is 0.6 if x1 ¼ 14 and 0.8 if x1 ¼ 15.
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5 Overall p-value

We use the sample space ordering proposed in the previous section to derive an overall p-value, denoted by Q,
meant to be calculated when the trial has been terminated. Q is defined as the probability of observing underH0 an
outcome ðm0, x01, x

0Þ that is similar or more extreme than the outcome ðm, x1,xÞ actually observed in the trial. If the
observed outcome is from a trial that stopped at the first stage, outcomes with x01 � x1 are more extreme,
irrespective of their stopping stage, implying the overall p-value

Q ¼ Pr
�0
ðX1 � x1Þ

If the observed outcome is from a trial that continued to the second stage, more extreme are outcomes from
trials that stopped at the first stage with x01 � u1 or continued to the second stage with �ðx01, x

0
2Þ � �ðx1, x2Þ, then

Q ¼ Pr
�0
ðX1 � u1Þ þ

Xu1�1
x0
1
¼l1þ1

Pr
�0
ðX1 ¼ x01ÞPr�0

�ðX1,X2Þ � �ðx1, x2ÞjX1 ¼ x01
� �

Since X1 and X2 follow binomial distribution, we can write the overall p-value as

Q ¼

1� Bðx1 � 1, n1,�0Þ if m ¼ 1

1� Bðu1 � 1, n1,�0Þ

þ
Pu1�1

x0
1
¼l1þ1

bðx01, n1,�0ÞPr�0 � � �jx01
	 


if m ¼ 2

8>>><
>>>:

where bðx, n,�Þ is the binomial probability mass function with x successes, n trials and success probability �,
� ¼ �ðX1,X2Þ and � ¼ �ðx1, x2Þ.

We discuss in the following lines approaches to calculate the probability of �ðX1,X2Þ � �ðx1, x2Þ under H0, i.e.
Pr�0 �ðX1,X2Þ � �ðx1, x2Þ½ �. For the �ðx1,x2Þ defined in equation (1), since we are working directly with the number
of events (responses), this probability can easily be calculated as (we call this Method 1)

Pr
�0

� � �jx01
	 


¼ Pr
�0
�ðX1,X2Þ � �ðx1, x2Þjx

0
1

� �
¼ Pr

�0
X� l ðX1Þ � x� l ðx1Þjx

0
1

� �
¼ Pr

�0
X1 þ X2 � l ðX1Þ � x� l ðx1Þjx

0
1

� �
¼ Pr

�0
X2 � x� l ðx1Þ þ l ðX1Þ � X1jx

0
1

� �
¼ 1� B x� l ðx1Þ þ l ðx01Þ � x01 � 1, n2ðx

0
1Þ,�0

� �

For the other two methods, we use approximations. We make use of the fact that a p-value P is in general
stochastically not smaller than a standard uniform variate, i.e.

Pr
�0
ðP � �Þ � �, � 2 ½0, 1�

Assuming that the first stage design is pre-fixed and is strictly followed, and that the first and the second stage
data are from independent cohorts of patients, using the second stage p-value p2 as the test statistic guarantees the
conditional invariance principle.46 Conditional on the first stage data and second stage design, the distribution of p2
under H0 is not smaller than the uniform distribution. This implies that the type I error rate is controlled
irrespective of the adaptation rule.

When using the �ðx1, x2Þ in (2) (Method 2), we approximate Pr�0 � � �ð Þ as

Pr�0 � � �jx01
	 


¼ Pr
�0
�ðX1,X2Þ � �ðx1, x2Þjx

0
1

� �
¼ Pr

�0
DðX1Þ � P2 � Dðx1Þ � p2jx

0
1

� �
¼ Pr

�0
P2 � p2 �Dðx1Þ þDðX1Þjx

0
1

� �
� p2 �Dðx1Þ þDðx01Þ
� �

½0,1�
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where

!h i½0,1�¼

0 if !5 0

! if 0 � ! � 1

1 if !4 1

8><
>:

Another way of calculating Pr�0 � � �jx01
	 


in Method 2, denoted Method 2v2, is to use the fact that
p2 ¼ 1� B x2 � 1, n2ðx1Þ,�0½ � and the binomial quantile function, denoted by Bq, as it follows

Pr
�0
�ðX1,X2Þ � �ðx1, x2Þjx

0
1

� �
¼ Pr

�0
P2 � p2 �Dðx1Þ þDðX1Þjx

0
1

� �
¼ Pr

�0
1� B X2 � 1, n2ðX1Þ,�0½ � � p2 �Dðx1Þ þDðX1Þ

 �

¼ Pr
�0

B X2 � 1, n2ðX1Þ,�0½ � � 1� p2 þDðx1Þ �DðX1Þ

 �

¼ Pr
�0

X2 � 1 � Bq 1� p2 þDðx1Þ �DðX1Þ, n2ðX1Þ,�0½ �

 �

¼ Pr
�0

X2 � 1þ Bq 1� p2 þDðx1Þ �DðX1Þ, n2ðX1Þ,�0½ �

 �

¼ 1� B Bq 1� p2 þDðx1Þ �Dðx01Þ, n2ðx
0
1Þ,�0

� �
, n2ðx

0
1Þ,�0


 �
Finally, using the �ðx1, x2Þ in (3), Method 3, we have that

Pr
�0

� � �jx01
	 


¼ Pr
�0
�ðX1,X2Þ � �ðx1, x2Þjx

0
1

� �
¼ Pr

�0
CðP1b,P2Þ � Cð p1b, p2Þjx

0
1

� �
¼ Pr

�0
P2 � 1��ðzbÞjx

0
1

� �
� 1��ðzbÞ

where

zb ¼
w1�

�1ð1� p1bÞ þ w2�
�1ð1� p2Þ � w01�

�1ð1� p01bÞ

w02

See more details in Appendix 1.

6 Point and interval estimation

We follow the approach discussed in Chapter 8 of Wassmer and Brannath.46 Exploiting the duality between
confidence intervals (CI) and hypothesis tests, we construct the CI by considering all the null hypotheses

H ~�0
0 : � � ~�0, with 0 � ~�0 � 1

The confidence set is a collection of ~�0 for which H0 is not rejected. Assuming that the overall p-value Q is
monotone increasing in ~�0 for all outcomes ðm, x1, xÞ, the region ~�0 : Qð ~�0Þ ¼ Pr ~�0 ðM,X1,XÞf ðm,x1, xÞ½ �4�


 �
is

a one-sided ð1� �Þ100% CI defined as ��L; 1
� �

, where the lower bound ��L is the solution, in ~�0, of the equation
Qð ~�0Þ ¼ �.

As the point estimate we take the lower bound of the 50% one-sided CI, i.e. �̂ ¼ �0:5L , which is an approximate
median unbiased estimator. Similar estimators have been proposed for classical oncology two-stage GSDs by
Koyama and Chen14 and Jovic and Whitehead,18 which are applicable only if n2 is a constant for all x1.

There are four different methods (Method 1, Method 2, Method 2v2 and Method 3) for calculating the overall
p-value Q (see the previous section) on which the estimation approach is based, resulting, therefore, in four
different estimates. We name these estimates after their respective p-value calculation methods, to make a
distinction amongst them throughout the rest of this paper. Table 2 lists the methods together with the
function � used in sample space ordering, the way Pr�0 � � �jx01

	 

(part of Q that differ across the methods) is

estimated, and the implications for estimation.
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As mentioned before, in order to this estimation technique to work, it is necessary that the overall p-value Q as
function of response probability � be monotone increasing for � 2 ½0, 1�. We checked the monotonicity of Qð�Þ
numerically for all 34 designs listed in Englert and Kieser,8 for all possible outcomes and � ranging from 0 to 1 by
increments of 0.01. We found that Methods 2 and 3 are monotone in all designs. Method 1 is monotone, except for
four designs when � � 0:8. In the case of non-monotonicity, a conservative solution may be found using the
cumulative maximum of Qð�Þ, i.e. Qcmð�Þ ¼ maxfQð�0Þ : �0 � �g.

We give more details on how the estimation is done for each of the three methods in Appendix 1.

7 Illustrative example

Suppose that a Phase II trial testing the activity of an anti-cancer agent was conducted using the design given in
Table 1. Suppose further that at the interim analysis it was found that 8 out of 20 patients responded to the
treatment, leading to the decision to proceed with the trial to the second (final) stage. Therefore, 39 additional
patients were recruited and treated, of which 18 were responsive. With a total of 26 responders out of 59 patients at
the end of trial, the decision according to the design’s decision rule was to reject the null. Calculating the overall
p-value using the proposed approach, methods 1, 2, 2v2 and 3, we get the values 0.00261, 0.00360, 0.00315 and
0.00261, respectively. As it can be seen, all the p-values are less than the significance level � ¼ 0:05, meaning that
with the proposed methods we also reject the null hypothesis. With the null hypothesis rejected, one would
be interested in getting the response rate estimate to possibly use it for planing further trials. If we would
ignore the adaptive nature of the design and employ the fixed-sample maximum likelihood estimator, the point
estimate would be 0.44068. The point estimates obtained using the proposed approach are 0.42264, 0.41367,
0.41337 and 0.41411, respectively, for the methods 1, 2, 2v2 and 3. The corresponding 95% one-sided CIs are
�0:29561; 1�, �0:29105; 1�, �0:27918; 1� and �0:29379; 1�.

8 Numerical study

We did an extensive numerical study to evaluate various aspects of the proposed methods. We computed, for all
designs in Englert and Kieser,8 the overall p-value to see how it behaves for the three methods, as well as to check
whether it is consistent with the original decision rule. The computation was for all possible outcomes, with values
of �0 varying from 0 to 1 by 0.01 for each. We then did a simulation study to assess the performance of the
proposed estimator using the three methods. The performance of the point estimate was quantified in terms of bias
and root mean square error (RMSE), and the performance of the interval estimate was quantified by the coverage
probability and mean of the lower bound. We calculated, in addition, the type I error and power using the original
decision rule and using the overall p-value from the proposed methods.

Bias was defined as 1
T

PT
t¼1 �̂t � �ð Þ and RMSE as the square root of 1

T

PT
t¼1 �̂t � �ð Þ

2, where T is the total
number of simulated trials, �̂ the estimated response probability and � the response probability under which trials
were simulated. The coverage probability was computed as the proportion of trials in which the ð1� �Þ100% CI
contained the true response rate �, i.e., proportion of trials in which the lower bound of the CI is less than �. The
type I error was calculated as the proportion of trials simulated under � ¼ �0 in which H0 was rejected, and the
power calculated similarly but for trials simulated under � ¼ �1.

For comparison purposes, we included the maximum likelihood estimator (MLE) for fixed-sample designs,
which we believe is more likely to be employed when analysing data from adaptive designs for which no specific

Table 2. Methods for calculating the overall p-value Q.

Method � Pr�0
� � �jx01ð Þ

Implications

for estimation

1 x � l ðx1Þ 1� B x � l ðx1Þ þ l ðx01Þ � x01 � 1, n2ðx01Þ,�0½ � Exact

2 Dðx1Þ � p2ðx2Þ p2 � Dðx1Þ þ Dðx01Þ
� �

½0,1�
Approximate

2v2 Dðx1Þ � p2ðx2Þ 1� B Bq 1� p2 þ Dðx1Þ � Dðx01Þ, n2ðx01Þ,�0½ �, n2ðx01Þ,�0


 �
Exact

3 1� Cð p1b, p2Þ 1��ðzbÞ Approximate

Note: � denotes the function used for sample space ordering and Pr�0
� � �jx01
	 


is the part of the Q formula that vary

across the methods. In the ‘‘Implications for estimation,’’ Exact means the resulting point and interval estimates are

obtained using exact probability calculations, while Approximate means approximations are used, i.e. the estimation is

based on continuous uniform distribution of second stage p-value.
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estimation methods are available. When applying this estimator, we ignored the adaptive nature of the design and
we did estimation as if the data were from a fixed-sample (single-stage) design. Therefore, the MLE is the sample
proportion of the pooled data. We didn’t include the estimators proposed for classical GSDs mentioned above.
Their formulae are based on the fact that the second stage sample size is pre-defined and constant, therefore,
they would not be applicable here without modification. We used two versions of MLE, one that uses all trial data,
�̂p ¼ ½x1 þ x2�=½n1 þ n2ðx1Þ�, and the other that uses the first stage data only, �̂p1 ¼ x1=n1. The reason for including
�̂p1 is that since it is unbiased, it will serve as benchmark for comparison with respect to RMSE, i.e. a new
estimator would not be desirable if it would be outperformed by �̂p1 in terms of RMSE. We denote the
estimated response probability by �̂m1 for Method 1, �̂m2 for Method 2, �̂m2v2 for Method 2v2, and �̂m3 for
Method 3. The simulation were done for two designs of Englert and Kieser,8 one with a moderate �1,
ð�0,�1,�,�, n1Þ ¼ ð0:2, 0:4, 0:05, 0:1, 20Þ, we call this design 1, and the other (design 2) with relatively high �1,
ð�0,�1,�,�, n1Þ ¼ ð0:4, 0:6, 0:05, 0:1, 22Þ. For both designs we varied, in the simulated trials, the true response
probability � from 0 to 1 by increments of 0.01. For each scenario, 50,000 simulations were run.

We implemented all the methodology described above in the statistical programming language R.40 The code
and datasets containing all designs listed in Englert and Kieser8 are available from the authors upon request.

9 Results

Figure 1 shows plots of overall p-value for all possible values of x when x1 ¼ 8 and x1 ¼ 11 in designs 1 and 2,
respectively. It can be seen that, as expected, all methods are consistent with design’s decision rule. Results from
simulation study in Table 3 reveal that type I error rate and power of Methods 1 and 2v2 are equal to those of
design’s original decision rule, which are in turn very close to the nominal levels. Methods 2 and 3 are conservative,
as their type I error rate is lower compared to other methods.

Simulation results on bias and RMSE of the estimators for values of � ranging from 0 to 1 are shown in
Figures 2 and 3, respectively. Table 4 shows the results of simulations under H1 (� ¼ �1), and, in addition to bias
and RMSE, it shows the mean and the first, second and third quartiles of the estimates, and the coverage
probability and the mean lower bound of the one-sided ð1� �Þ100% CI. The same results for simulations
under � ¼ �1 þ 0:1 are shown in Table 5. The behaviour of the estimators change depending on whether the
true response rate (�) is close to or far from the hypothesised one (�1). Taking a closer look at Figure 2 we can see
that, except the first stage sample proportion (�̂p1) which is unbiased as expected, all estimators are negatively
mean biased for values of � around �0. When the true response rate is close to �1, the estimators of the proposed
methods (�̂m1, �̂m2, �̂m2v2 and �̂m3) are almost unbiased, while the fixed sample MLE (�̂p) shows positive bias.
As � approaches 1, the proposed estimators become more and more negatively biased, while the bias of �̂p

Figure 1. Plot of overall p-value (Q) as function of the total number of responses (x). (a) is of the design

ð�0,�1,�,�, n1Þ ¼ ð0:2, 0:4, 0:05, 0:1, 20Þ with x1 ¼ 5, and (b) of ð�0,�1,�, �, n1Þ ¼ ð0:4, 0:6, 0:05, 0:1, 22Þ with x1 ¼ 10. Both are

cases where the trial continues to second stage. The vertical line represents the minimum total number of responses necessary to

reject H0 using design’s decision rule.
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Figure 2. Mean bias of estimators. Design 1 is defined by ð�0,�1,�,�, n1Þ ¼ ð0:2, 0:4, 0:05, 0:1, 20Þ, and 2 by

ð�0,�1,�,�, n1Þ ¼ ð0:4, 0:6, 0:05, 0:1, 22Þ. For each value of �, 50,000 trials were simulated. The vertical line represents � ¼ �1.

Figure 3. RMSE of estimators. Design 1 is defined by ð�0,�1, �,�, n1Þ ¼ ð0:2, 0:4, 0:05, 0:1, 20Þ, and 2 by

ð�0,�1,�,�, n1Þ ¼ ð0:4, 0:6, 0:05, 0:1, 22Þ. For each value of �, 50,000 trials were simulated. The vertical line represents � ¼ �1.

Table 3. Type I error and power based on design’s original decision rule (Orig.) and on the three

proposed methods (Met.), from 50,000 simulation runs.

Decision rule

Orig. Met. 1 Met. 2 Met.2v2 Met. 3

Type I 0.0503 0.0503 0.0430 0.0503 0.0430

Power 0.9002 0.9002 0.8877 0.9002 0.8877

Type I 0.0492 0.0492 0.0421 0.0492 0.0428

Power 0.8990 0.8990 0.8884 0.8990 0.8892

Note: The two first rows are for design 1, ð�0,�1,�, �, n1Þ ¼ ð0:2, 0:4, 0:05, 0:1, 20Þ, and the last two for the design 2,

ð�0,�1,�, �, n1Þ ¼ ð0:4, 0:6, 0:05, 0:1, 22Þ.
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approaches 0. Among the proposed estimators, �̂m2v2 behaves slightly different, as � moves from �0 to 1,
it is the first to attain mean bias that is closest to zero, which happens just after �1. Regarding RMSE
(see Figure 3), the proposed estimators also outperform �̂p for values of � around �1. Their RMSE is also
lower than that of �̂p1.

Table 4. Performance measures of estimator under H1 (i.e. � ¼ �1).

True response rate: � ¼ �1

�̂p �̂m1 �̂m2 �̂m2v2 �̂m3

Mean 0.4126 0.3974 0.3966 0.4008 0.3968

Med. 0.4068 0.3978 0.3897 0.3975 0.3887

M.Bias 0.0126 �0.0026 �0.0034 0.0008 �0.0032

RMSE 0.1052 0.0962 0.0965 0.0956 0.0964

1st Q. 0.3559 0.3385 0.3414 0.3486 0.3408

3rd Q. 0.5000 0.4648 0.4677 0.4682 0.4677

Cov.P 0.9785 0.9785 0.9785 0.9785

M.LB 0.2685 0.2678 0.2660 0.2681

Mean 0.6057 0.5941 0.5933 0.5991 0.5935

Med. 0.6027 0.5983 0.5915 0.5976 0.5904

M.Bias 0.0057 �0.0059 �0.0067 �0.0009 �0.0065

RMSE 0.0976 0.0911 0.0912 0.0920 0.0911

1st Q. 0.5556 0.5502 0.5471 0.5524 0.5483

3rd Q. 0.6575 0.6422 0.6383 0.6599 0.6400

Cov.P 0.9742 0.9742 0.9742 0.9742

M.LB 0.4723 0.4716 0.4677 0.4718

Note: The measures are the mean, median (Med.), mean bias (M.Bias), RMSE, first and third quartiles (Q.), and the

coverage probability (Cov.P) and mean of lower bound (M.LB) of the one-sided ð1� �Þ100% confidence interval. The

first group of rows are for the design 1, ð�0,�1,�, �, n1Þ ¼ ð0:2, 0:4, 0:05, 0:1, 20Þ, and the other for 2

ð�0,�1,�, �, n1Þ ¼ ð0:4, 0:6, 0:05, 0:1, 22Þ. A total of 50,000 trials were simulated for each design.

Table 5. Performance measures of estimator under � ¼ �1 þ 0:1.

True response rate: � ¼ �1 þ 0:1

�̂p �̂m1 �̂m2 �̂m2v2 �̂m3

Mean 0.5265 0.4971 0.4970 0.4931 0.4971

Med. 0.5085 0.4754 0.4754 0.4754 0.4754

M.Bias 0.0265 �0.0029 �0.0030 �0.0069 �0.0029

RMSE 0.0950 0.0885 0.0884 0.0926 0.0883

1st Q. 0.4746 0.4434 0.4410 0.4283 0.4425

3rd Q. 0.6000 0.5737 0.5737 0.5737 0.5737

Cov.P 0.9785 0.9785 0.9785 0.9785

M.LB 0.3369 0.3353 0.3319 0.3369

Mean 0.7248 0.6978 0.6980 0.6925 0.6980

Med. 0.7273 0.6980 0.6994 0.6994 0.6982

M.Bias 0.0248 �0.0022 �0.0020 �0.0075 �0.0020

RMSE 0.0808 0.0726 0.0722 0.0786 0.0721

1st Q. 0.6761 0.6522 0.6502 0.6436 0.6509

3rd Q. 0.7727 0.7462 0.7462 0.7462 0.7462

Cov.P 0.9792 0.9792 0.9792 0.9792

M.LB 0.5513 0.5488 0.5416 0.5515

Note: The measures are the mean, median (Med.), mean bias (M.Bias), RMSE, first and third quartiles (Q.), and the

coverage probability (Cov.P) and mean of lower bound (M.LB) of the one-sided ð1� �Þ100% confidence interval. The

first group of rows are for the design 1, ð�0,�1,�, �, n1Þ ¼ ð0:2, 0:4, 0:05, 0:1, 20Þ, and the other for 2

ð�0,�1,�, �, n1Þ ¼ ð0:4, 0:6, 0:05, 0:1, 22Þ. A total of 50,000 trials were simulated for each design.
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From Table 4 we see that under H1 the simulation mean and median are similar, and they are relatively lower in
the proposed estimator as compared to �̂p. The one-sided CIs have good coverage probabilities for all the proposed
methods, with values that are not less than the nominal level (95%). The mean of the lower bound of CIs are similar
across the proposed methods. The simulation done assuming � ¼ �1 þ 0:1 (Table 5) showed similar results.

10 Discussion

In this paper, we have discussed and proposed sample space orderings for oncology Phase II adaptive two-stage
designs with binary endpoint. Overall p-value and point and interval estimation were derived from these sample
space orderings. Although for some values of true response probability our methods do not show improvement
over the fixed sample MLE, they are preferable because they consistently outperform the MLE when the true
response probability is in the neighbourhood of values that are equal to or greater than the response probability
under the alternative hypothesis. It is in this region where the estimation becomes particularly important since the
null hypothesis would likely have been rejected and the treatment effect estimate needed to plan later Phase III
trials. In this region, the MLE shows high positive bias and higher RMSE while our methods are either unbiased
or negatively biased with smaller RMSE.

In general, as opposed to the fixed sample MLE, our proposed methods do not overestimate the response
probability. This is seen by the fact that for values of true response rate raging from 0 to 1, they are either unbiased
or negatively biased. Overestimation of treatment effect in Phase II trials has been acknowledged in the literature
as one of the reasons for high failure rate of drugs in Phase III. For example, Kirby et al.52 showed an evidence
that supports the need to, and proposed methods to, discount the Phase II estimate of treatment effect when it is
used to plan Phase III trial sample size.

Although our methods were built on top of Englert and Kieser8 design, they can easily be extended to other
similar designs with pre-specified adaptation rules. One example are the adaptive designs by Shan et al.9,10 Further,
some of our proposed approaches (methods 2 and 3) remain valid even if the adaptation rule is not pre-specified,
meaning that they can be applied for flexible designs. Methods 2 and 3 can be extended to handle non-binary
outcomes, while with the Method 1, that uses exact probability calculation, an extension would be difficult.
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Appendix 1. Details of Method 3

Let’s first show how p1bðx1Þ is obtained

Að p1bðx1ÞÞ ¼ Dðx1Þ

, 1��
��1ð1� cÞ � w1�
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Note that some of steps above are only valid because � is a continuous and monotone increasing function.

Details on point and interval estimation

Let �0 be the response probability under the design’s original null hypothesisH0, and we denote by ~�0 the response
probability under all null hypotheses we consider when searching for point and interval estimates, with 0 � ~�0 � 1.
Then the overall p-value to search for the estimates is defined as

Q ~�0ð Þ ¼

1� Bðx1 � 1, n1, ~�0Þ if m ¼ 1

1� Bðu1 � 1, n1, ~�0Þ

þ
Pu1�1

x0
1
¼l1þ1

bðx01, n1, ~�0ÞPr ~�0 � � �jx01
	 


if m ¼ 2

8>>><
>>>:

where Pr ~�0 � � �ð Þ ¼ Pr ~�0 �ðX1,X2Þ � �ðx1, x2Þ½ � is calculated for the different methods as follows. For the Method 1

Pr
~�0
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� �
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For the Method 2
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For the Method 2v2
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And for the Method 3
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Using Estimates from Adaptive Phase II Oncology Trials to Plan
Phase III Trials

Arsénio Nhacolo∗ ,1 and Werner Brannath 1

1 Competence Centre for Clinical Trials, Universität Bremen, Linzerstraße 4, 28359 Bremen, Germany

The clinical drug development is mainly done in three phases, Phase I, Phase II and Phase III. The knowl-
edge gained in clinical trials of a particular phase is often used to plan trials of subsequent phases. That is
the case with successful Phase II clinical trials in which, among others aspects, the effect size estimates are
used to plan the sample size of the related Phase III trials. Due to small sample sizes, selections bias and
other factors, Phase II estimates are often biased and imprecise, resulting in inadequately powered Phase
III trials. We evaluated through simulation studies the consequences, in terms of power, of using the effect
estimate from Phase II adaptive design trials to plan sample size of Phase III trials in oncology. In addition,
we propose new approaches for adjusting Phase II estimates. We considered the recently proposed oncol-
ogy Phase II two-stage single-arm adaptive designs with binary endpoint, in which the second stage sample
size is a pre-defined function of the first stage’s number of responses. We used the naı̈ve and the recently
proposed estimators for estimating the Phase II effect. Results showed that using naı̈ve estimates lead to
underpowered Phase III trials, while estimates that take into account the adaptiveness of the designs lead
to power close to the target value. Our new adjustment approach seems to perform well for all estimation
methods. It also showed that a relatively higher discount is necessary for naı̈ve estimates.

Key words: Adaptive Design, Bias, Clinical Trials, Estimation, Bootstrap, Phase II, Phase III,
Power, Sample Size

1 Introduction

Drug development is a lengthy and costly process that spans different phases, from pre-clinical studies
to post-marketing surveillance trials. The accumulating knowledge gained from studies of a particular
phase is often used to better inform decisions on conducting studies of subsequent phases. Confirmatory
clinical trials done in Phase III are of paramount importance as they are intended to provide firm evidence
to support drug approval for use. The decision to conduct these trials is mainly justified by positive results
from clinical trials of Phase II. The effect size estimates from successful Phase II trials are often used to
plan the sample size of the related Phase III trials. Due to various factors, including small sample sizes
and selections bias, Phase II estimates are often biased and imprecise, resulting in Phase III trials that
are not properly powered. Associated to this is the high failure rate of Phase III clinical trials, which
is approximately 40% in general (De Martini, 2013) and 60% in oncology (Gan et al., 2012). Another
issue that contribute to these high failure rates are the overly optimistic assumptions regarding treatment
benefits that investigators tend to make when designing Phase III trials (Gan et al., 2012). This excessive
optimism might in part result from the problem of over-estimation of the treatment effect in Phase II trials.
Acknowledging these shortcomings, many authors (e.g., Kirby et al., 2012; Wang et al., 2006; Burke et al.,
2014) have discussed and proposed approaches to make adjustments of estimates from Phase II trials when
using them to plan confirmatory studies.

In this paper we evaluate through simulation studies the consequences, in terms of power, of using the
effect estimate from oncology Phase II adaptive design trials to plan sample size of a related Phase III trial.
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In addition, we propose and discuss new approaches to obtain multiplicative adjustment factors for Phase
II estimates and/or Phase III sample sizes based on the Phase II data. We consider the recently proposed
oncology Phase II two-stage single-arm adaptive designs with binary endpoint, in which the second stage
sample size is a pre-defined function of the first stage’s number of responses (successes). Examples of such
designs are given in Englert & Kieser (2013) and Shan et al. (2016). Different estimators will be used.
The naı̈ve (fixed-sample) maximum likelihood estimator (MLE), which is more likely to be employed for
adaptive design for which no specific estimator has been proposed, and the estimates recently proposed
for such designs by Nhacolo & Brannath (2018). For simplicity, we consider two-arm Phase III RCTs
also with binary endpoint. Although a survival endpoint is commonly used in oncology Phase III trials,
there are some types of cancer for which the response rate is a suitable endpoint. The objective response
rate (ORR), as defined by the Response Criteria in Solid Tumours (RECIST) guidelines (Eisenhauer et al.,
2009), is the most commonly used binary endpoint in oncology trials. ORR has been used as the primary
endpoint in 40% of advanced breast cancer Phase III trials published between January 1998 and December
2007 (Saad et al., 2010).

This paper is organized as follows. We first present a brief literature review of approaches on how to
adjust Phase II effect estimates before employing them to plan Phase III sample size. We then propose new
adjustment approaches. Then a summary of the trial designs and estimation methods used in simulations
follows. Next we present the set-up of the simulation study and the results. The simulation study has two
parts. The first one evaluates different Phase II estimators with respect to Phase III power, and the second
part evaluates our proposed adjustment methods applied to different estimators also with respect to Phase
III power. The paper ends with a summary and final discussion.

2 Dealing with bias and imprecision of Phase II estimates

Different approaches to deal with bias and imprecision of Phase II treatment effect estimates when planning
Phase III sample sizes have been proposed in the literature (see Wang et al., 2006; De Martini, 2011a,b;
Kirby et al., 2012; De Martini, 2013; Burke et al., 2014; Chuang-Stein & Kirby, 2017). Most of these
approaches fall into the category of conservative sample size estimation (CSSE) strategies, with some
following frequentist methods and others Bayesian. The frequentist CSSE strategies consist in using a
conservative value, θ̂f , of Phase II effect estimate, θ̂, to determine Phase III sample size. This can be
achieved by subtracting a certain amount from θ̂ (Wang et al., 2006), e.g., one standard error, leading to
θ̂f = θ̂−SE(θ̂), or by applying a discounting factor f ∈]0, 1], resulting in θ̂f = θ̂× f (Kirby et al., 2012).
The Bayesian CSSE put a probability mass around the observed Phase II effect and computes the averaged
success probability (SP) at a given sample size. Then the Phase III sample size estimate is the minimum
sample size whose Bayesian SP exceeds a certain desired power. When many similar Phase II trials on the
same therapy exist, meta-analytic approaches can also be used to better plan subsequent Phase III trials.
For instance, in the context of randomized Phase II trials with binary endpoints, Burke et al. (2014) deemed
meta-analysis using a Bayesian random effects logistic regression model to be the most appropriate. The
model can predict the probability that the therapy will be truly effective in a new trial and that in a new
trial with a given sample size, the 95% credible interval for the odds ratio will be entirely in favour of the
therapy.

3 New approaches for adjusting Phase II estimates

As it will be seen in the simulations results below, although some estimates from Phase II designs suffer
less from bias and imprecision, it is nearly always necessary to adjust them when they are used to calculate
the Phase III sample size. Many approaches to make these adjustments exist, however their implementation
in practice is cumbersome. This is due to the difficulties in establishing clear guidelines, for instance, on
the adequate amount to discount from the estimates for the frequentist conservative sample size estimation
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strategies or on the adequate choice of the conservative prior distribution for Bayesian strategies.
We propose new approaches that, given the observed Phase II data, estimate the multiplicative adjustment
factor to be applied to Phase II treatment effect estimates before employing them to plan the sample size of
the related Phase III clinical trials. Alternatively, the approaches do also estimate the adjustment factor to
be applied to the Phase III sample size planned using unadjusted Phase II efficacy estimates. The proposed
approaches are based on parametric bootstrapping.

3.1 Notation

Let θ be the true efficacy parameter, θ0 its value under the null hypothesis (H0) of no treatment effect
and θ1 its value under the alternative (H1). Further let τ be an actual Phase II trial testing the hypothesis
H0 : θ ≤ θ0 versus H0 : θ ≥ θ1, and Y the corresponding observed data, drawn from a parametric
distribution F(θ). Denote the estimate of θ, given Y , by θ̂. Let τ? be a simulated trial following the same
design as τ but assuming θ̂ to be the true efficacy parameter, Y ? the resulting data, which is drawn from
the distribution F(θ̂), and θ? the corresponding estimate (of θ̂). Assume that the type I and II error rates
of interest for the subsequent Phase III trial are α and β, respectively. Denote the Phase III sample size
assuming θ̂ as the efficacy under H1 by n̂ = n̂(θ̂, α, β), and assuming θ? by n? = n?(θ?, α, β). Let f be
the multiplicative adjustment factor to be applied to the Phase II effect estimate, and ρ the multiplicative
factor to be applied to the Phase III sample size.

3.2 Method 1

This method estimates both f and ρ. Assume that a Phase II trial τ was conducted and thatH0 was rejected
at the end, leading to the decision to proceed for further testing of the treatment in a Phase III trial. We
calculate θ̂ from the observed data, and based on it we simulate Phase II trials τ?i , i = 1, . . . , k. Let J
be the index set of all the simulated trials in H0 was rejected, and |J | its cardinality (|J | ≤ k) . For
each τ?j , j ∈ J , we calculate θ?j and the respective Phase III sample size, n?j = n?(θ?j , α, β). Then the
individual estimates of the multiplicative adjustment factors for the effect size and sample size, fj and ρj ,
are calculated as fj = θ̂/θ?j and ρj = n̂/n?j , where n̂ = n̂(θ̂, α, β). We take the average values as the
final estimates, i.e., f = 1

|J|
∑
j∈J fj and ρ = 1

|J|
∑
j∈J ρj . Hence, the adjusted efficacy to be used in

planing Phase III trials is θf = θ̂ × f . Alternatively, the adjusted sample size nρ = n̂ × ρ could be used.
Adjustments using f and ρ lead, in general, to different sample sizes and, as consequence, to differences
in Phase III power. This is because the sample size is generally a non-linear function of the effect size.

3.3 Method 2

This is an alternative method to estimate the sample size adjustment factor ρ. Let pwr?j = pwr(n?j , θ̂, α)
be the power that a Phase III trial would attain, with sample size n?j assuming that the true efficacy (θ ) is
equal to the observed estimate (θ̂). The sample size multiplicative adjustment factor is calculated such that
the expected value of pwr∗ is equal to the desired power assuming (as an approximation) that θ̂ and θ are
equal, i.e.,

ρ =
{
ρ̃|Eθ̂

[
pwr(ρ̃n?j , θ̂, α)

]
= 1− β

}
.

We employ numerical root finding to get the adequate value of ρ.

4 Trial designs and estimation methods

We give a brief summary of designs and estimation methods that we use in the simulation study below.
For the Phase II, we consider the adaptive single-arm two-stage designs with a binary endpoint proposed
by Englert & Kieser (2013) for oncology trials. These designs test, at type I error rate α and type II error

c© 2018 http://www.uni-bremen.de

Appendix E. Second paper 130



4 Arsénio N. and Werner B.: Using Estimates from Adaptive Phase II Oncology Trials to Plan Phase III Trials

rate β, the null (H0) versus the alternative (H1) hypotheses about the response rate π, H0 : π ≤ π0 vs H1 :
π ≥ π1, where π0 is the maximum response rate considered to be uninteresting and π1 is the minimum
desirable response rate, with π1 > π0. The designs are defined by static elements in the first stage, namely
the sample size n1, and the futility and efficacy boundaries, l1 and u1 (u1 > l1), and in the second stage
by elements that vary depending on the number of responses observed in the first stage (x1), namely the
sample size, n2(x1), the conditional error function, D(x1), and the corresponding decision boundary,
l(x1). With these designs, trials are stopped at the first stage with no rejection of H0 if x1 ≤ l1 or with
rejection of H0 if x1 ≥ u1. Otherwise the trial proceeds to the second stage, at which H0 is rejected if
p2 < D(x1) or, equivalently, x > l(x1), where p2 is the second stage p-value and x is the total number of
responses.

For Phase III we consider a single-stage randomized parallel-group trial design with binary endpoint,
similar to that described by Halabi (2008). The design tests the null hypothesis that the response rate in the
control and treatment groups, πc and πt, are equal, i.e., H0 : πc = πt, against H1 : πc 6= πt.

We used different estimators to get the treatment efficacy estimates from Phase II trials, the naı̈ve max-
imum likelihood estimator (MLE), which ignores the adaptive nature of the designs, and the estimators
proposed by Nhacolo & Brannath (2018). The naı̈ve MLE is defined as

π̂nml = x/n.

Let (m,x1, x) be the outcome of atrial that stopped at stage m with first stage’s and total number of re-
sponses x1 an x. To propose their estimators, Nhacolo & Brannath (2018) modified the classical stage-wise
sample space ordering to take into account the design’s adaptation rule by defining a function δ(x1, x2) that
orders the outcome space in a way that is consistent with the rejection boundary of the trial design. They use
three different methods to define δ(x1, x2). In the first method δ is defined using x as δ(x1, x2) = x−l(x1),
in the second method defined using the second stage p-value as δ(x1, x2) = D(x1)− p2(x2) and, finally,
in the third method defined as δ(x1, x2) = 1 − C(p1b, p2), where C is the weighted inverse normal com-
bination function represented as C(p1, p2) = 1− Φ

[
w1Φ−1(1− p1) + w2Φ−1(1− p2)

]
, with

w1 =

√
n1

n1 + n2(x1)
, w2 =

√
n2(x1)

n1 + n2(x1)

and

p1b(x1) = 1− Φ

{
Φ−1 (1− c)− w2Φ−1 [1−D(x1)]

w1

}
.

Based on these sample space ordering, they derive the overall p-value Q, calculated as

Q =





1−B(x1 − 1, n1, π̃0) if m = 1

1−B(u1 − 1, n1, π̃0) +
u1−1∑

X1=l1+1

b(X1, n1, π̃0) Prπ̃0 [δ(X1, X2) ≥ δ(x1, x2)] if m = 2

where B(x, n, π) and b(x, n, π) are the binomial cumulative distribution function and probability mass
function with x successes, n trials and success probability π. Finally, they define the point estimate as

π̂m = {π̃0 : Q(π̃0) = Pr
π̃0

((M,X1, X) � (m,x1, x)) = 0.5}.

We follow the same notation used by Nhacolo & Brannath (2018) and denote the estimated response prob-
ability by π̂m1 for δ defined in terms of number of responses and rejection boundary, π̂m2 and π̂m2v2 for
for δ defined in terms of second stage p-value and conditional error function (here two different approaches
are used to calculate Prπ̃0

[δ(X1, X2) ≥ δ(x1, x2)], hence the two notations), and π̂m3 for δ defined by the
inverse normal combination function.
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5 Simulation study

The simulations study was done in two parts. The first part aimed at assessing the consequences of using
the estimates from oncology Phase II adaptive designs to plan the sample size of the subsequent Phase
III trials, with respect to the statistical power. The second part evaluates the performance of our proposed
adjustment methods, also with respect to the power of Phase III trials.

The simulation procedure for the first part is as follows. From the Phase II designs described above, we
select one to test H0 : π ≤ π0 versus H1 : π ≥ π1 at determined α and β, and simulate K trials assuming
a specific true response probability π. We discard simulated trials that failed to reject H0, and from the
J remaining trials (i.e., trials in which H0 was rejected) we get the individual estimates of π, denoted π̂j ,
j = 1, . . . , J . We pick a Phase III design described above, testing H0 : πc = πt versus H1 : πc 6= πt
at the desired type I and type II error rates α′ and β′, respectively, with πc = π0. Then we calculate the
required sample size, Nj , to detect the effect size of magnitude π̂j − πc with power of 1 − β′. Using Nj ,
we calculate what would be the attained power to detect the true effect size, π − πc. All the estimators
mentioned in the previous section were used to obtain π̂j . In addition to using the unadjusted estimates
to calculate Nj , different values of the multiplicative adjustment factor, f , (f ∈ [0, 1]) proposed by Kirby
et al. (2012) were used to obtain the adjusted estimates π̂fj = π̂j × f . Note that unlike Kirby et al. (2012),
we do not define a launch criterion based on a threshold of π̂f , instead we assume that a Phase III trial
is launched whenever the null hypothesis is rejected in the Phase II trial. Note also that since we exclude
the unsuccessful Phase II trials, the Phase III power we are calculating is conditional on rejection of H0 in
Phase II. We do so because we think that in practice, for the planning of Phase III studies, only positive
Phase II trials are likely to be used.

We use the two-sample test for proportion described by Ahn et al. (2014) for calculating the power and
sample size for the Phase III trials. The power is approximated by

Φ

(
πt − πc√

πt(1− πt)/Nt + πc(1− πc)/Nc
− z1−α/2

)
,

and the sample size N = Nc +Nt needed to achieve a power of 1− β obtained by solving the equation

πt − πc√
πt(1− πt)/Nt + πc(1− πc)/Nc

− z1−α/2 = z1−β ,

where Φ and zu are the standard normal cumulative distribution function and u-quantile, and Nt and Nc
are the sample sizes for the treatment and control groups, respectively. In the simulations, we assume equal
size groups, hence

Nt = Nc =

(
z1−α/2 + z1−β

)2

(πt − πc)2
[πt(1− πt) + πc(1− πc)] .

Two different Phase II designs were used, one design for (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20),
and the other for (π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 22). We varied the true response rate π from
π0 + 0.1 to π1 + 0.3 by increments of 0.01. The assumed Phase III type I error rate and power are 5%
and 90%, and the retention factor f varied from 0.5 to 1 by increments of 0.01. Note that f = 1 means no
effect is retained, i.e., the original estimate is used. For each scenario 50000 Phase II trials were simulated.

For the second part, which aimed at examining the extent to which the our proposed adjustment meth-
ods lead to adequate power of Phase III trials, we used the same designs (with the same type I error and
power), and the same methods for estimating the Phase II effect and Phase III sample size and power, as
in the first simulations above. The simulation procedure was as follows. Simulate Phase II trials assuming
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a specific θ. For each successful trial (i.e., with H0 rejected) apply our proposed adjustment methods to
get the Phase III sample size. Then, given this sample size and θ, calculate the power of the Phase III trial.
The Phase II design has a binary endpoint, therefore, the distribution F described in Section 3 is binomial
with parameter π. The Phase II designs are simulated under the alternative hypothesis, i.e., π = π1. For
each scenario, 5000 trials were simulated and for each successful trial our adjustment methods generated
another 5000 bootstrap samples. Note that due to the independence of the phase II and Phase III data, type
I error control is out of question and hence need not be investigated in the simulations.

All the simulations and computation were done using the statistical programming language R (R Core
Team, 2017).

6 Results

The results of the first part of the simulation study are shown in the Tables 1 and 2 and Figures 1 and 2.
These results are regarding the power attained by Phase III trials, the sample size of which was estimated
using unadjusted and adjusted effect estimates from adaptive Phase II trials. It can be seen that the effect
estimates from the methods that take into account the adaptive nature of the designs (π̂m1, π̂m2, π̂m2v2

and π̂m3) yield, in general, better power as compared to the naı̈ve estimate (π̂nml). For instance, for the
trials simulated under H1 in the Table 1, when no adjustment is applied (i.e., f = 1), π̂nml yielded a mean
power of 77.8% while the power from the other effect estimates was around 82%, although still lower than
the target power (90%). The median power is higher than the mean in all cases, with the naı̈ve estimate
yielding 84.1% and the others values between 87.6% and 90%. In order to attain a mean power that is
equal to the target, an adjustment factor of f = 0.85 is necessary for the naı̈ve estimate, while for the
other estimates f = 0.9 is sufficient. When the values of the true response rate (π) are varied (Figures 1
and 2), results show that all the estimates yield under-powered Phase III trials for π less than π1. But as π
increases, the attained power using the adaptive estimates becomes higher than that of the naı̈ve estimate.
As π gets higher than π1, the power among the adaptive estimates becomes more homogeneous.

Table 1 Mean and median power of Phase III trials planned using Phase II design defined by
(π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20). The target power of the Phase III trial is of 90%.

f = 1 f = 0.9 f = 0.85

π π̂ Mean Median Mean Median Mean Median

π1

π̂nml 0.7779 0.8414 0.8660 0.9515 0.9035 0.9828
π̂m1 0.8207 0.9060 0.9009 0.9818 0.9321 0.9958
π̂m2 0.8221 0.8986 0.9013 0.9789 0.9322 0.9949
π̂m2v2 0.8131 0.8755 0.8969 0.9690 0.9300 0.9910
π̂m3 0.8219 0.8936 0.9013 0.9769 0.9322 0.9941

π1 + 0.1

π̂nml 0.8131 0.8834 0.9004 0.9646 0.9340 0.9863
π̂m1 0.8648 0.9416 0.9315 0.9887 0.9556 0.9970
π̂m2 0.8648 0.9416 0.9316 0.9887 0.9556 0.9970
π̂m2v2 0.8660 0.9416 0.9317 0.9887 0.9556 0.9970
π̂m3 0.8648 0.9416 0.9316 0.9887 0.9556 0.9970

The results from the second part of the simulation study, regarding our proposed adjustment methods,
are shown in the Table 3. As expected from the pattern seen in the previous simulation results, the naı̈ve
MLE yields a lower value for the effect estimate adjustment factor f and, conversely, a higher value of
sample size adjustment factor ρ as compared to the estimates that take into account the adaptiveness of the
designs. This means that, to achieve the power goals, the naı̈ve MLE requires that a higher amount of effect
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(a) f = 0.9 (b) f = 0.85

(c) f = 0.9 (d) f = 0.85

Figure 1 Mean and median power of Phase III trials planned using Phase II design defined by
(π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20). The solid lines are for the unadjusted effect estimates, and
the dashed lines for the adjusted ones (i.e., estimates multiplied by the retention factor f ). For each value
of π 50000 trials were simulated. The vertical line represents π = π1 and the horizontal one represents the
target power (90%).

is discounted as compared to the others. Regarding the mean power, our methods show improvements, with
the Method 2 being the best. For instance, in one of the design scenarios, without adjustment the naı̈ve
MLE yielded a mean power of 78.8%, and by applying f from the Method 1 it increased to 82.5%, and to
86.2% and 87.5% by applying ρ from the Methods 1 and 2, respectively. Adjustment using ρ show results
that are better and more consistent across different estimators and design scenarios as compared to using
f . The ρ from the Method 2 attains mean power that is the closest to the target (90%). As in the previous
simulations, the median power was higher than the mean power in all the cases.
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Table 2 Mean and median power of Phase III trials planned using Phase II design defined by
(π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 20). The target power of the Phase III trial is of 90%.

f = 1 f = 0.9 f = 0.85

π π̂ Mean Median Mean Median Mean Median

π1

π̂nml 0.7884 0.8623 0.9105 0.9912 0.9495 0.9998
π̂m1 0.8232 0.9050 0.9354 0.9971 0.9670 1.0000
π̂m2 0.8250 0.9003 0.9356 0.9967 0.9670 1.0000
π̂m2v2 0.8063 0.8752 0.9283 0.9934 0.9649 0.9999
π̂m3 0.8248 0.8982 0.9356 0.9965 0.9670 1.0000

π1 + 0.1

π̂nml 0.8075 0.8346 0.9341 0.9731 0.9699 0.9957
π̂m1 0.8655 0.9005 0.9599 0.9913 0.9827 0.9993
π̂m2 0.8656 0.9013 0.9599 0.9915 0.9827 0.9993
π̂m2v2 0.8676 0.9013 0.9599 0.9915 0.9827 0.9993
π̂m3 0.8656 0.9002 0.9599 0.9913 0.9827 0.9993

7 Discussion

In this paper we have studied the consequences of planning the Phase III sample size using the estimates
from positive Phase II trials, taking oncology trials as a special case. In addition, we have proposed new
methods to estimate adjustment factors based on the observed data.
The use of Phase II efficacy estimators that are less biased lead to a better Phase III power. However, as
far as the average power is concerned, adjustments are necessary in order to reach the target value of the
power irrespective of the efficacy estimator. These adjustments translate into retention (discounting) of the
Phase II efficacy estimate. The extent of retention is dependant on the estimator, with better performing
estimators requiring less reduction.
Although not reaching the target (nominal) average power, our proposed adjustment methods show im-
proved results that are consistently similar for different estimators and design scenarios. Here we would
recommend making adjustments using the Method 2, since simulations showed that it yields the best result,
with the attained mean power being less than the target only by 3%. The consistence in results seen in this
method suggests that it may also perform well in design types and estimators other than those considered
in this paper.
We have assumed throughout this paper that Phase III sample size is estimated based solely on one Phase II
treatment effect estimate. This is likely to be the case if the Phase II trial is the only source of information
regarding treatment effect. In such a case, the focus of the investigators would be on how to adjust this sin-
gle estimate in order to properly power the Phase III trial. In cases where multiple sources of information
are available, other approaches might be more appropriate. One example is the meta-analytic approach
proposed by Burke et al. (2014) for cases where data from various similar Phase II trials are available.
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(a) f = 0.9 (b) f = 0.85

(c) f = 0.9 (d) f = 0.85

Figure 2 Mean and median power of Phase III trials planned using Phase II design defined by
(π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 20). The solid lines are for the unadjusted effect estimates, and
the dashed lines for the adjusted ones (i.e., estimates multiplied by the retention factor f ). For each value
of π 50000 trials were simulated. The vertical line represents π = π1 and the horizontal one represents the
target power (90%).
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Table 3 Multiplicative adjustment factors for effect size and sample size (f and ρ), and the corre-
sponding attained power in Phase III trial. The first group rows correspond to the Phase II design
defined by (π0, π1, α, β, n1) = (0.2, 0.4, 0.05, 0.1, 20) and the other group to the design defined by
(π0, π1, α, β, n1) = (0.4, 0.6, 0.05, 0.1, 20).

(a) Adjustment factors

Method 1 Method 2

f ρ ρ

Est. Mean SD Mean SD Mean SD

π̂nml 0.951 0.034 1.591 0.367 1.731 0.393
π̂m1 0.982 0.047 1.406 0.348 1.513 0.356
π̂m2 0.983 0.048 1.414 0.371 1.526 0.385
π̂m2v2 0.980 0.057 1.427 0.382 1.548 0.409
π̂m3 0.983 0.047 1.413 0.369 1.524 0.382

π̂nml 0.966 0.017 1.591 0.320 1.706 0.308
π̂m1 0.984 0.026 1.405 0.320 1.492 0.311
π̂m2 0.984 0.026 1.411 0.339 1.502 0.333
π̂m2v2 0.982 0.034 1.450 0.394 1.572 0.416
π̂m3 0.985 0.026 1.409 0.336 1.499 0.330

(b) Power (target : 90%)

No adjustment Method 1 Method 2

pwr[n(θ̂), θ, α] pwr[n(fθ̂), θ, α] pwr[ρn(θ̂), θ, α] pwr[ρn(θ̂), θ, α]

Est. Mean Median Mean Median Mean Median Mean Median

π̂nml 77.8% 84.1% 80.7% 88.7% 85.2% 95.0% 86.6% 96.6%
π̂m1 82.1% 90.6% 81.4% 91.6% 85.9% 96.3% 87.3% 97.4%
π̂m2 82.3% 89.9% 81.5% 90.7% 85.9% 95.9% 87.3% 97.2%
π̂m2v2 81.3% 87.5% 80.4% 89.0% 85.1% 94.5% 86.7% 96.0%
π̂m3 82.3% 89.4% 81.4% 90.2% 85.9% 95.6% 87.3% 97.0%

π̂nml 78.8% 86.2% 82.5% 91.2% 86.2% 96.2% 87.5% 97.6%
π̂m1 82.2% 90.5% 82.6% 92.3% 86.3% 96.4% 87.5% 97.4%
π̂m2 82.5% 90.0% 82.7% 91.7% 86.4% 96.1% 87.6% 97.3%
π̂m2v2 80.3% 86.6% 80.3% 89.2% 84.4% 94.3% 86.0% 96.0%
π̂m3 82.4% 89.8% 82.7% 91.6% 86.4% 96.0% 87.6% 97.2%
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