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Abstract

Certain systems of analyzing functions developed in the field of applied harmonic analysis are
specifically designed to yield efficient representations of structures which are characteristic
of common classes of two-dimensional signals, like images. In particular, functions in these
systems are typically sensitive to features that define the geometry of a signal, like edges
and curves in the case of images. These properties make them ideal candidates for a wide
variety of tasks in image processing and image analysis. This thesis discusses three recently
developed approaches to utilizing systems of wavelets, shearlets, and 𝛼-molecules in specific
image analysis tasks. First, a perceptual image similarity measure is introduced that is
solely based on the coefficients obtained from six discrete Haar wavelet filters but yields
state of the art correlations with human opinion scores on large benchmark databases. The
second application concerns visual servoing, which is a technique for controlling the motion
of a robot by using feedback from a visual sensor. In particular, it will be investigated
how the coefficients yielded by discrete wavelet and shearlet transforms can be used as the
visual features that control the motion of a robot with six degrees of freedom. Finally, a
novel framework for the detection and characterization of features such as edges, ridges,
and blobs in two-dimensional images is presented and evaluated in extensive numerical
experiments. Here, versatile and robust feature detectors are obtained by exploiting the
special symmetry properties of directionally sensitive analyzing functions in systems created
within the recently introduced 𝛼-molecule framework.
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Kurzfassung

Im Feld der angewandten harmonischen Analysis wurde eine Reihe spezieller Funktionensys-
teme entwickelt, die sich besonders gut zur Darstellung häufig auftretender Strukturen in
zweidimensionalen Bildern eignen. Elemente in diesen Funktionensystemem zeichnen sich
vor allem durch eine hohe Sensitivität gegenüber Merkmalen aus, die die Geometrie eines
Bildes definieren, wie etwa Kanten oder Kurven. In der vorliegenden Arbeit betrachten wir
drei neuartige Verfahren zur Anwendung derartiger Funktionensyteme im Bereich der digi-
talen Bildverarbeitung. Zunächst wird ein perzeptuelles Maß für Bildähnlichkeit entwickelt,
welches auf der Faltung der zu vergleichenden Bilder mit sechs diskreten Haar-Wavelet-
Filtern beruht. In der experimentellen Analyse zeigt sich, dass das neu definierte Maß, trotz
seiner Einfachheit, auf umfangreichen Testdatenbanken eine erstaunlich hohe Korrelation
mit menschlichen Urteilen aufweist. Die zweite Anwendung betrifft die Steuerung von
Robotern, die mit visuellen Sensoren ausgestattet sind. Konkret wird untersucht, wie die
Koeffizienten diskreter Wavelet- und Shearlet-basierter Transformationen der gelieferten
Bilder genutzt werden können, um die Bewegung eines Roboters mit sechs Freiheitsgraden
zu kontrollieren. Schließlich wird eine neuartige Methode zur Erkennung und Charakterisie-
rung von Kanten, Linien und Kreisflächen in zweidimensionalen Bildern vorgestellt und in
ausführlichen numerischen Experimenten evaluiert. Zur Erkennung von Strukturen werden
hierbei vor allem die speziellen Symmetrieeigenschaften von orientierungssensitiven zweidi-
mensionalen Funktionen verwendet, die unter Verwendung der erst kürzlich entwickelten
𝛼-Molekül-Theorie konstruiert wurden.
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CHAPTER 1
Introduction

Over the course of this thesis, we will develop and analyze novel approaches to three
diverse tasks from the fields of computer vision, robotics, and digital image processing.
The common denominator of these applications is that at their core, all of them boil down
to the processing and analysis of two-dimensional digital images. The unifying theme of
the present thesis is that in each of the three newly developed methods, the respective
image analysis will be carried out by applying certain tools and methods that originate
from the field of applied harmonic analysis.

Applied harmonic analysis is a thriving and innovative area in applied mathematics,
whose contributions have been highly influential in theoretical and applied areas of research
alike. In the past five years alone, methods from applied harmonic analysis have played
a significant role in groundbreaking works such as the first observation of gravitational
waves [1], Martin Hairer’s seminal theory of regularity structures [77], and in making first
steps towards a rigorous mathematical understanding of the intriguing success of modern
deep learning architectures [19].

Broadly speaking, the fundamental research goal of applied harmonic analysis is the
development and rigorous analysis of systems of functions that, not unlike sets of Lego
bricks, can be used to efficiently represent arbitrary elements from certain classes of
functions or signals. Its origins can be traced back to the famous French mathematician
Jean Baptiste Joseph Fourier, who claimed in his book Théorie analytique de la chaleur
(The Analytical Theory of Heat) [62], first published in 1822, that any 2𝜋-periodic function
that is integrable over [−𝜋, 𝜋] could be written as

𝑓(𝑥) =
∑︁
𝑛∈Z

⎛⎝ 1
2𝜋

𝜋∫︁
−𝜋

𝑓(𝑡)𝑒−𝑖𝑛𝑡 d𝑡

⎞⎠ 𝑒𝑖𝑛𝑥, for all 𝑥 ∈ [−𝜋, 𝜋). (1.1)

In particular, Fourier had a profound impact on 19th century physics by showing how
expansions of this form, which yield representations of arbitrary functions in terms of linear
combinations of the eigenfunctions 𝑒𝑖𝑛𝑥 of the Laplace operator, can be applied to solve
linear partial differential equations such as the heat equation.
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2 Chapter 1 Introduction

While Fourier’s original claim that the right hand side of (1.1) would yield pointwise
convergence for any 2𝜋-periodic function was eventually refuted1, it turns out that the set
of normalized complex exponentials (2𝜋)−1/2 {︀𝑒𝑖𝑛𝑥}︀

𝑛∈Z yields an orthonormal basis (ONB)
for 𝐿2(−𝜋, 𝜋).

A next important step was the construction of expansions similar to (1.1) that are
defined on the whole real line and could also be used to define ONBs for 𝐿2(R). One
can easily observe that, due to their lack of decay, the complex exponentials considered
by Fourier are not elements of 𝐿2(R) and thus cannot simply be used in this setting. In
particular, the lack of localization also means that the coefficients of the Fourier series
(1.1), that are defined as the 𝐿2-inner products of an analyzed function 𝑓 with differently
modulated complex exponentials, only yield information about which frequencies are
dominant in 𝑓 , but not where they occur. A simple but elegant solution to this issue
was introduced by Dennis Gábor in the late 1940’s in his seminal work on the theory of
communication [64]. There, he proposed to multiplicatively combine complex exponentials
pointwise with a Gaussian window function, which provided additional localization in
the time domain, thereby introducing a methodology which is nowadays known as time-
frequency analysis. Analogous to modulating the complex exponential, the thusly obtained
analyzing functions could also be shifted, such that the obtained set of functions would
cover both the complete frequency spectrum and the whole real line. Furthermore, by
considering different types of window functions, such as the indicator function of a closed
interval, this approach can indeed be used to obtain ONBs for 𝐿2(R) (see, e.g., [80]).

A significant drawback of considering window functions as a means of introducing
spatial localization is that this approach is not adaptive, that is, the degree of localization
remains fixed throughout the whole domain of analysis. In practice, however, signals are
often alternating between smooth regions, on which large windows would be preferable, and
regions that are governed by high frequencies and transient features, such as singularities,
which would require highly localized analyzing functions. A brilliant way of obtaining
systems of functions whose localization in the time domain is in a sense adaptive can
be found in the theory of wavelets, which has roots in the works of early pioneers like
Haar [76], Gábor [64], or Calderón [23], but rose to prominence in the late 1980’s through
the contributions of people like Ingrid Daubechies [43, 45], Stéphane Mallat [120], and
Yves Meyer [128]. Systems of wavelets are constructed by dilating and shifting so-called
mother wavelets, which can be imagined as functions with a localized oscillatory behavior.
The main advantage of considering dilation instead of simple frequency modulation is that
by squeezing or stretching a generator function, the dilation operator is simultaneously

1 A continuous counterexample was given by Paul du Bois-Reymond in 1873 (see, e.g., [98]).
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adjusting the frequency and the degree of spatial localization of a function. This approach
not only yields highly efficient representation systems for certain types of functions, such
as piecewise smooth functions, but can also be used to obtain a wide class of ONBs for
𝐿2(R) (see, e.g., the preludes to Chapters 2 and 3).

The present thesis mainly deals with methods for the analysis of two-dimensional images.
In the continuous realm, such images are often modeled as elements of the space 𝐿2(R2).
Accordingly, we will predominantly consider transforms of two-dimensional functions that
are defined on 𝐿2(R2). There are indeed straightforward approaches to generalize the theory
of wavelets to the two-dimensional setting, which yield practical and efficient multiscale
representations of two-dimensional images (see, e.g., the prelude to Chapter 3). However,
it can also be shown that wavelet-based transforms are in a sense not optimal for dealing
with curvilinear features, such as edges or lines, which typically govern the geometry of
two-dimensional images. The main reason for this is that such features are anisotropic,
that is, they are locally associated with a specific direction (e.g., the tangent direction
at an edge point), while the dilation operator used in the definition of two-dimensional
wavelet transforms is isotropic in the sense that it dilates equally along both dimensions.
This motivated the development of various types of multiscale representation systems
for two-dimensional signals that are based on anisotropic dilation in the sense that the
employed dilation operator affects one dimension more than the other. Examples of
such systems include curvelets [25], contourlets [49], ridgelets [26, 27], and shearlets [104,
110]. Anisotropic dilation yields high-frequency analyzing functions that have a strong
directional bias. Analogous to the cases of time-frequency analysis, and one-dimensional
wavelet analysis, where the use of localized generators required the application of a shift
operator to cover the whole real line, directionally sensitive analyzing functions require the
application of an additional operator which is capable of changing the preferred orientation
of a function. For instance, this can be achieved by applying rotation matrices, in the case
of curvelets, or shear matrices, in the case of shearlets, to the argument of a generating
function. It turns out that for specific model classes of two-dimensional images, systems
that are based on anisotropic dilation are in fact capable of providing in a sense optimal
approximation rates (see, e.g., the preludes to Chapters 3 and 4). Furthermore, wavelet- and
shearlet-based transforms in particular can be associated with faithful transitions between
the continuous and the discrete realm, in the sense that the continous-time coefficients
that are based on 𝐿2-inner products can directly be linked to discrete convolutions of a
given digital image with certain two-dimensional filters (see, e.g., [107, 120]).

The provable efficiency in representing piecewise smooth one- and two-dimensional
signals as well as the availability of fast discrete-time transforms make the aforementioned
multiscale representation systems great candidates for a wide range of tasks in image
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signal

decomposition & processing

output

Figure 1.1: The methods presented in this thesis all follow the basic pipeline depicted above.
In a first step, a transform is applied to a given input image, which was specifically designed to
yield analysis coefficients that carry the significant information with respect to the considered
task. Then, a processing step is performed on the coefficients, which yields the desired output.
In the example presented above, the output highlights the edges of the input image along with
their local tangent directions. The output was obtained by utilizing systems of anisotropically
scaled and rotated generator functions with special symmetry properties. The respective edge
and tangent direction measures will be defined in Chapter 4. (Input image: Les bretonnes aux
ombrelles (Émile Bernard, 1892). Source: Wikimedia Commons.)

processing and image analysis. In many cases, the respective applications are strongly
related to the notion of sparsity. Broadly speaking, a sequence is called sparse if it only
contains a small number of non-zero coefficients. The concept of sparsity has recently gained
a lot of attention in the wake of the theory of compressed sensing [24, 61], which provides
guarantees for the exact recovery of a signal from only a small number of measurements
under the assumption that the signal satisfies certain sparsity constraints. This concept of
sparse regularization is also widely utilized in the context of digital image processing, where
an additional sparsity constraint can be applied to define tractable optimization problems
whose solutions yield, for example, denoised, or inpainted versions of a given signal [95], or
which separate distinct morphological components in an image (see, e.g., [155]).

In the methods presented in this thesis, however, the capability of the considered
multiscale systems to yield sparse representations will only be used implicitly. In fact, in
most cases, we will not even require the considered function systems to provide complete
descriptions of the analyzed functions in the sense that it can be fully recovered from the
obtained analysis coefficients. In contrast, we will directly utilize the ability of specifically
tailored transforms to be particularly sensitive towards the structures and properties of
an image that are most significant in the considered application. The analysis coefficients
yielded by the respective transforms can then directly be processed to yield the desired
results. The basic pipeline of this approach to applied harmonic analysis-based image
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analysis, which will be followed by all of the methods discussed in the three main chapters
of this thesis, is schematically depicted in Figure 1.1.

The thesis is structured such that each of the following three chapters is devoted to a
specific application. In all three cases, we will discuss and analyze a novel approach to
solving the respective tasks via measures, or algorithms, which are based on specific types
of multiscale image transforms. To allow for a progressive build-up of the associated theory,
the chapters are ordered with respect to the complexity of the considered transforms.
Furthermore, each chapter is preceded by a prelude, which aims to provide a comprehensive
introduction to the respective tools and ideas from applied harmonic analysis that will
subsequently be used. Note that the three preludes are written such that they could also
be read independently of the other contents of this thesis.

Chapter 2 introduces the Haar wavelet-based perceptual similarity index (HaarPSI), a
novel full reference image similarity measure that is solely based on the analysis coefficients
obtained from convolving the considered input images with six discrete Haar wavelet filters.
Given a pair of images, where one image is a distorted version of the other, the goal of
such a measure is to quantitatively assess the similarity between both images such that
the result matches the human perception of similarity. The HaarPSI incorporates various
important principles from the early visual system, such as orientation, and frequency
selectivity, or visual saliency, and can be considered as a structurally, and computationally
simplified version of the well-known feature similarity index (FSIM) [174]. Despite its
simple computational structure, the HaarPSI achieves state of the art correlations with
human opinion scores on several large benchmarking databases.

In Chapter 3, we discuss a novel framework for applying wavelet- or shearlet-based
multiscale image representations in the context of vision-based robot control, which is also
known as visual servoing. Classical visual servoing methods typically rely on the precise
detection and tracking of specific features within the observed domain. To increase the
stability in unfavorable conditions, so-called direct visual servoing schemes have recently
been introduced, which only consider the observed image intensities. The newly proposed
wavelet- and shearlet-based visual servoing control laws can be considered as a best of
both worlds approach in the sense that the detail coefficients of a wavelet or shearlet
transform are sensitive to structures and thereby implicit feature detectors, while the coarse
approximation yielded by a multiscale image representation is closely related to the feature
vectors used in direct visual servoing schemes. Besides an analytical derivation of the
so-called interaction matrix, which linearly relates the motion of the robot with changes
in the wavelet- and shearlet-based feature vectors, we discuss a number of simulated and
real-world experiments that aim to evaluate the applicability and respective strengths and
weaknesses of the newly proposed control laws.
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In Chapter 4, we present a novel approach to the detection and characterization of
edges, ridges, and blobs in two-dimensional images which exploits the symmetry properties
of directionally sensitive analyzing functions in multiscale systems that are constructed
in the framework of 𝛼-molecules [71, 73]. The proposed feature detectors are inspired by
the notion of phase congruency, stable in the presence of noise, and by definition invariant
to changes in contrast. We also show how the behavior of coefficients corresponding to
differently scaled and oriented analyzing functions can be used to obtain a comprehensive
characterization of the geometry of features in terms of local tangent directions, widths,
and heights. The accuracy and robustness of the proposed measures are validated and
compared to various state of the art algorithms in extensive numerical experiments in
which we consider sets of clean and distorted synthetic images that are associated with
reliable ground truths. To further demonstrate the applicability, we show how the proposed
measures can be used to characterize the geometry of flame fronts, to detect and characterize
blood vessels in digital retinal images, and how the proposed blob measure can be applied
to automatically count the number of cell colonies in a Petri dish.

All methods presented in this thesis aim to fully exploit the vast theoretical knowledge
that has been developed within the field of applied harmonic analysis to this date. However,
the works themselves are undoubtedly more of an applied than of a theoretical nature. The
following list summarizes the main theoretical contributions:

• Sections 3.2 and 3.3 contain an analytical derivation of interaction matrices that
provide a linear relationship between the velocity of a visual sensor and the associated
wavelet- and shearlet-based visual feature vectors.

• Theorem 3.2.1 gives a simple rule for obtaining wavelet and scaling filters associated
with a derivative wavelet multiresolution analysis (MRA).

• Theorem 4.3.4 shows that the systems of two-dimensional symmetric molecules
considered in the definition of the respective feature detectors in Chapter 4 indeed
fall into the framework of 𝛼-molecules.

• Lemma 4.3.1 provides a closed-form expression for the 𝐿1-norms of arbitrary deri-
vatives of the Gaussian based on the zeros of the associated Hermite polynomials.
This result is helpful for defining 𝐿1-normalized symmetric molecules which play an
integral part in the definition of the newly proposed edge, ridge, and blob measures.
Furthermore, it is used in Theorem 4.3.5, which associates the second and fourth
derivatives of the Gaussian with a notion of a radius, which is required for the
definition of the newly proposed ridge and feature width measures.
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Table 1.1: List of commonly used symbols

Symbol Description
𝑥 scalar
𝑥 vector; elements in ℓ2(Z)
𝑥𝑛 or 𝑥[𝑛] 𝑛-th entry in 𝑥

𝑥𝑛 or 𝑥[𝑛] 𝑛-th element in a sequence of vectors
A matrix; elements in ℓ2(Z2)
𝐴𝑛,𝑚 or 𝐴[𝑚,𝑛] entries of the matrix A
A𝑛 or A[𝑛] 𝑛-th element in a sequence of matrices
𝑓(𝑥) continuous-time function
𝑓(𝑥) vector-valued function
H(𝑥) matrix-valued function
𝑥 complex conjugate
|𝑥| absolute value
⌈𝑥⌉ ceiling function; ⌈𝑥⌉ = min{𝑛 ∈ Z : 𝑛 ≥ 𝑥}
⌊𝑥⌋ floor function; ⌊𝑥⌋ = max{𝑛 ∈ Z : 𝑛 ≤ 𝑥}
N {1, 2, 3, . . .}
N0 {0, 1, 2, 3, . . .}
R+ positive real numbers
R≥0 non-negative real numbers

1.1 Notation

To ensure a consistent discrimination of continuous-time and discrete-time objects, we will
use bold symbols to denote vectors, matrices, and vector-, or matrix-valued functions, and
non-bold symbols to denote scalars and scalar-valued functions (see Table 1.1).

We use 𝐿𝑝(R𝑑) with 𝑝, 𝑑 ∈ {1, 2} to denote the Banach space of equivalence classes of
functions 𝑓 : R𝑑 → C that are equal almost everywhere and satisfy

‖𝑓‖𝑝 =

⎛⎝ ∫︁
R𝑑

|𝑓(𝑥)|𝑝 d𝑥

⎞⎠1/𝑝

< ∞. (1.2)

Furthermore, for 𝑝 = 2, the space 𝐿2(R𝑑) is a separable Hilbert space equipped with the
inner product

⟨𝑓, 𝑔⟩𝐿2 =
∫︁
R𝑑

𝑓(𝑥)𝑔(𝑥) d𝑥, 𝑓, 𝑔 ∈ 𝐿2(R𝑑). (1.3)
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We denote the Fourier transform of a function 𝑓 ∈ 𝐿1(R𝑑) as

̂︀𝑓(𝜉) =
∫︁
R𝑑

𝑓(𝑥)𝑒−2𝜋𝑖⟨𝑥,𝜉⟩ℓ2 d𝑥, 𝜉 ∈ R𝑑, (1.4)

with the ℓ2-inner product ⟨·, ·⟩ℓ2 as defined below, and consider the usual extension to
𝐿2(R𝑑).

In the discrete-time setting, we use ℓ𝑝(Z) for 𝑝 > 0 to denote the space of sequences
that satisfy

‖𝑥‖𝑝 =
(︃∑︁
𝑛∈Z

|𝑥𝑛|𝑝
)︃1/𝑝

< ∞. (1.5)

Note that for 𝑝 ∈ (0, 1), ‖·‖𝑝 is only a quasi-norm and that ℓ2(Z) is again a Hilbert space
equipped with the inner product

⟨𝑥,𝑦⟩ℓ2 =
∑︁
𝑛∈Z

𝑥𝑛𝑦𝑛, 𝑥,𝑦 ∈ ℓ2(Z). (1.6)

Furthermore, for sequences 𝑥 and 𝑦, we define the discrete convolution operator as

(𝑥 * 𝑦)[𝑚] =
∑︁
𝑛∈Z

𝑥𝑛 · 𝑦𝑚−𝑛, 𝑚 ∈ Z, (1.7)

and the dyadic down-, and upsampling operators via

(𝑥↓2)[𝑛] = 𝑥2𝑛, (𝑥↑2)[𝑛] =

⎧⎨⎩𝑥[𝑛/2] 𝑛 is even,

0 else,
, 𝑛 ∈ Z, (1.8)

respectively.
Furthermore, with a measurable space 𝑋, we define the indicator function 1𝐵 : 𝑋 →

{0, 1} of a measurable set 𝐵 ⊂ 𝑋 via

1𝐵(𝑥) =

⎧⎨⎩1 𝑥 ∈ 𝑋,

0 else.
(1.9)

The edge, ridge, and blob measures introduced in Chapter 4 rely heavily on the use of
functions with special symmetry properties. We call a function 𝑓 : R → R even-symmetric,
if it satisfies

𝑓(𝑥) = 𝑓(−𝑥), ∀𝑥 ∈ R, (1.10)
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odd-symmetric, if it holds that

𝑓(𝑥) = −𝑓(−𝑥), ∀𝑥 ∈ R, (1.11)

and symmetric if either (1.10), or (1.11) is true.
For functions 𝑓 and 𝑔, we write 𝑓(𝑥) . 𝑔(𝑥) to indicate that there exists a constant

𝐶 > 0 such that
𝑓(𝑥) ≤ 𝐶 · 𝑔(𝑥) ∀𝑥. (1.12)

If both 𝑓(𝑥) . 𝑔(𝑥) and 𝑓(𝑥) & 𝑔(𝑥), we write 𝑓(𝑥) ≍ 𝑔(𝑥).
In Chapter 3, we will sometimes consider displacements in three-dimensional space

as elements of the special Euclidean group 𝑆𝐸(3). An element of 𝑆𝐸(3) is a pair (R, t),
where R ∈ 𝑆𝑂(3) describes a rotation in three-dimensional space and t ∈ R3 a translation.
For simplicity, we will sometimes write elements in 𝑆𝐸(3) as six-dimensional vectors
[𝑥, 𝑦, 𝑧, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧]ᵀ, where the first three components describe the translational and the
latter three components the angular displacement with regards to the respective axis.

Throughout this thesis, we will often use dot-notation to denote functions that were
obtained via an operator that acts on the argument of another function. For instance, for
a translation parameter 𝑡 ∈ R, and a function 𝑓 , we would write 𝑓(· − 𝑡) to denote the
function obtained from shifting 𝑓 by 𝑡.





CHAPTER 2
Perceptual Image Quality Assessment

The contents of this chapter are based on:

• Reisenhofer, R., Bosse, S., Kutyniok, G., and Wiegand, T.: “A Haar wavelet-
based perceptual similarity index for image quality assessment”. Signal Process.
Image Comm. (2018), vol. 61: pp. 33–43

Prelude The Haar Wavelet

A historically interesting example of an ONB for 𝐿2(0, 1) that can easily be extended to
an ONB for 𝐿2(R) was already proposed in 1910 by Alfreed Haar [76]. In his dissertation,
which was supervised by none other than David Hilbert, Haar showed that such a basis
can be defined by considering a set of shifts and dilates of the simple step function

𝜓haar(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 0 ≤ 𝑥 < 1

2 ,

−1 1
2 ≤ 𝑥 < 1,

0 else.

(2.1)

To be precise, Haar considered the set of normalized dyadic dilates and their integer shifts

𝛹haar =
{︁
𝜓haar
𝑗,𝑚 = 2−𝑗/2𝜓haar (︀2−𝑗 · −𝑚

)︀
: 𝑗,𝑚 ∈ Z

}︁
. (2.2)

The Haar functions 𝜓haar
0,0 , 𝜓haar

−1,0, and 𝜓haar
−2,0 are plotted in Figure 2.1(a). It is in fact easy to

show that 𝛹haar is an orthonormal system by exploiting the binary tree structure induced
by the support sets of the elements 𝜓haar

𝑗,𝑚 , as illustrated by the following lemma.

Lemma 2.0.1 ([76]). The set 𝛹haar is an orthonormal system.

Proof. Note that for any 𝑗,𝑚 ∈ Z, the function 𝜓haar
𝑗,𝑚 is supported on the interval 𝐼𝑗,𝑚 =[︀

2𝑗𝑚, 2𝑗(𝑚+ 1)
)︀

with 𝜓haar
𝑗,𝑚 (𝑥) = 2−𝑗/2 for 𝑥 ∈

[︀
2𝑗𝑚, 2𝑗(𝑚+ 1) − 2𝑗−1)︀, and 𝜓haar

𝑗,𝑚 (𝑥) =

11
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−2−𝑗/2 for 𝑥 ∈
[︀
2𝑗𝑚+ 2𝑗−1, 2𝑗(𝑚+ 1)

)︀
. Let 𝑗1, 𝑗2,𝑚1,𝑚2 ∈ Z. A simple computation

yields ⟨
𝜓haar
𝑗1,𝑚1 , 𝜓

haar
𝑗1,𝑚1

⟩
𝐿2

=
2𝑗1 (𝑚1+1)∫︁
2𝑗1𝑚1

2−𝑗1 d𝑥 = 1. (2.3)

In the case of 𝑗1 = 𝑗2, the support sets of differently shifted Haar wavelets never overlap,
that is, 𝐼𝑗1,𝑚1 ∩ 𝐼𝑗1,𝑚2 = ∅ and therefore⟨

𝜓haar
𝑗1,𝑚1 , 𝜓

haar
𝑗1,𝑚2

⟩
𝐿2

= 0, (2.4)

for 𝑚1 ≠ 𝑚2. Let us finally assume without loss of generality that 𝑗2 < 𝑗1. In this case,
the function 𝜓haar

𝑗1,𝑚1
is constant on the interval 𝐼𝑗2,𝑚2 and

⟨
𝜓haar
𝑗1,𝑚1 , 𝜓

haar
𝑗2,𝑚2

⟩
𝐿2

= 𝜓haar
𝑗1,𝑚1(2𝑗2𝑚2)

∫︁
𝐼𝑗2,𝑚2

𝜓haar
𝑗2,𝑚2(𝑥) d𝑥 = 0, (2.5)

independently of the choices of 𝑚1 and 𝑚2.

A nice way of proving that 𝛹haar is also a basis is by showing that its orthogonal complement
in 𝐿2(R) only contains the zero function. This is also the approach Haar used in his original
work to show that a subset of 𝛹haar, in which only non-negative scaling parameters 𝑗 are
considered, together with the indicator function on the unit interval yields an ONB for
𝐿2(0, 1). Here, we will consider a different technique, which was also used for illustrative
purposes by Ingrid Daubechies in [43], and explicitly construct linear combinations of Haar
functions 𝜓haar

𝑗,𝑚 that yield arbitrarily close approximations of a given function in 𝐿2(R). In
particular, we will use the Haar functions to encode the difference between increasingly
coarse approximations of the considered 𝐿2-function, that are based on functions that
are piecewise constant on the intervals 𝐼𝑗,𝑚 (see proof of Lemma 2.0.1). In doing so,
we will implicitly construct a structure that defines a so-called multiresolution analysis
(MRA) [120]. The MRA framework, which will be discussed in more detail in the prelude
to Chapter 3, is a powerful tool that can be used to define an extensive class of orthonormal
bases for 𝐿2(R). It furthermore establishes a faithful transition between the transform of
an 𝐿2-function with respect to an ONB in the continuum and transforms of digitals signals
that are based on convolutions with finite and discrete filters.

Theorem 2.0.2 ([43, 76]). The set 𝛹haar (see (2.2)) is an ONB for 𝐿2(R). In particular,
for each function 𝑓 ∈ 𝐿2(R) and every 𝜀 > 0, there exist positive integers 𝐽,𝐾 ∈ N and a
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finite sequence 𝑐−𝐽 = {𝑐−𝐽,𝑚}22𝐽 −1
𝑚=−22𝐽 such that the linear combination of Haar functions

𝑓 =
𝐽∑︁

𝑗=−𝐽+1
2𝑗/2

2𝐽−𝑗−1∑︁
𝑚=−2𝐽−𝑗

𝑑𝑗,𝑚𝜓
haar
𝑗,𝑚 +

𝐽+1+𝐾∑︁
𝑗=𝐽+1

2𝑗/2
(︁𝑐𝐽,−1

2𝑗−𝐽 𝜓
haar
𝑗,−1 −

𝑐𝐽,0
2𝑗−𝐽 𝜓

haar
𝑗,0

)︁
, (2.6)

where for 𝑗 ∈ {−𝐽 + 1, . . . , 𝐽} the finite sequences 𝑑𝑗 and 𝑐𝑗 are defined as

𝑑𝑗 =
{︂
𝑑𝑗,𝑚 = −1

2𝑐𝑗−1,2𝑚 + 1
2𝑐𝑗−1,2𝑚+1

}︂2𝐽−𝑗−1

𝑚=−2𝐽−𝑗

, (2.7)

𝑐𝑗 =
{︂
𝑐𝑗,𝑚 = 1

2𝑐𝑗−1,2𝑚 + 1
2𝑐𝑗−1,2𝑚+1

}︂2𝐽−𝑗−1

𝑚=−2𝐽−𝑗

, (2.8)

satisfies ⃦⃦
𝑓 − 𝑓

⃦⃦
2 < 𝜀. (2.9)

Proof. It was already shown in Lemma 2.0.1 that 𝛹haar is an orthonormal system. Let
𝑓 ∈ 𝐿2(R) and 𝜀 > 0. The set of piecewise constant functions with compact support is
dense in 𝐿2(R). Retaining the notation for intervals 𝐼𝑗,𝑚 =

[︀
2𝑗𝑚, 2𝑗(𝑚+ 1)

)︀
from the

proof of Lemma 2.0.1, this means that there exists an integer 𝐽 ∈ N and a sequence
𝑐−𝐽 = {𝑐−𝐽,𝑚}22𝐽 −1

𝑚=−22𝐽 such that the piecewise constant function

𝑓−𝐽(𝑥) =

⎧⎨⎩𝑐−𝐽,𝑚 𝑥 ∈ 𝐼−𝐽,𝑚,𝑚 ∈
{︀

−22𝐽 , . . . , 22𝐽 − 1
}︀

0 else,
(2.10)

which is compactly supported on the interval [−2𝐽 , 2𝐽 ], satisfies

‖𝑓 − 𝑓−𝐽‖2 < 𝜀/2. (2.11)

For 𝑗 ∈ {−𝐽+1, . . . , 𝐽}, we now define sequences 𝑑𝑗 and 𝑐𝑗 as in (2.7) and (2.8), respectively,
and piecewise constant functions 𝑓𝑗 analogous to (2.10). Note that the piecewise constant
functions 𝑓𝑗 represent increasingly coarse approximations of 𝑓 . For 𝑗 ∈ {−𝐽, . . . , 𝐽 − 1},
each function 𝑓𝑗 can be written as the sum of its successor 𝑓𝑗+1 and a linear combination
of Haar wavelets weighted by the entries of the sequence 𝑑𝑗+1:

𝑓𝑗 =
2𝐽−𝑗−1∑︁
𝑚=−2𝐽−𝑗

𝑐𝑗,𝑚1𝐼𝑗,𝑚 (2.12)
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=
2𝐽−𝑗−1−1∑︁
𝑚=−2𝐽−𝑗−1

𝑐𝑗,2𝑚 + 𝑐𝑗,2𝑚+1
2 1𝐼𝑗+1,𝑚 + 𝑐𝑗,2𝑚+1 − 𝑐𝑗,2𝑚

2
(︀
1𝐼𝑗,2𝑚 − 1𝐼𝑗,2𝑚+1

)︀
(2.13)

=
2𝐽−𝑗−1−1∑︁
𝑚=−2𝐽−𝑗−1

𝑐𝑗+1,𝑚1𝐼𝑗+1,𝑚 +
2𝐽−𝑗−1−1∑︁
𝑚=−2𝐽−𝑗−1

𝑑𝑗+1,𝑚
(︀
1𝐼𝑗,2𝑚 − 1𝐼𝑗,2𝑚+1

)︀
(2.14)

= 𝑓𝑗+1 + 2(𝑗+1)/2
2𝐽−𝑗−1−1∑︁
𝑚=−2𝐽−𝑗−1

𝑑𝑗+1,𝑚𝜓
haar
𝑗+1,𝑚. (2.15)

In the coarsest case of 𝑓𝐽−1, Equation (2.15) reduces to a weighted sum of two pairs of
indicator functions and Haar wavelets which are compactly supported on the intervals
[−2𝐽 , 0] and [0, 2𝑗 ], respectively:

𝑓𝐽−1 = 𝑐𝐽,−11𝐽,−1 + 𝑐𝐽,01𝐽,0 + 2𝐽/2
(︁
𝑑𝐽,−1𝜓

haar
𝐽,−1 + 𝑑𝐽,0𝜓

haar
𝐽,0

)︁
. (2.16)

To obtain an arbitrarily precise approximation of 𝑓 , this process can be continued by
smearing out the two remaining averages 𝑐𝐽,−1 and 𝑐𝐽,0 beyond the original support of 𝑓−𝐽 .
For 𝑗 ∈ {𝐽, . . . , 𝐽 +𝐾}, we define

𝑓𝑗 = 𝑐𝐽,−1
2𝑗+1−𝐽 1𝐼𝑗+1,−1 + 𝑐𝐽,0

2𝑗+1−𝐽 1𝐼𝑗+1,0 + 2(𝑗+1)/2
(︁ 𝑐𝐽,−1

2𝑗+1−𝐽 𝜓
haar
𝑗+1,−1 −

𝑐𝐽,0
2𝑗+1−𝐽 𝜓

haar
𝑗+1,0

)︁
. (2.17)

By finally choosing the integer 𝐾 large enough such that

1
2𝐾+1

(︁
𝑐𝐽,−1

⃦⃦
1𝐼𝐽+𝐾+1,−1

⃦⃦
2 + 𝑐𝐽,0

⃦⃦
1𝐼𝐽+𝐾+1,0

⃦⃦
2

)︁
= 2

𝐽−𝐾+1
2 (|𝑐𝐽,−1| + |𝑐𝐽,0|) < 𝜀/2, (2.18)

the Haar wavelet-based approximation

𝑓 =
𝐽∑︁

𝑗=−𝐽+1
2𝑗/2

2𝐽−𝑗−1∑︁
𝑚=−2𝐽−𝑗

𝑑𝑗,𝑚𝜓
haar
𝑗,𝑚 +

𝐽+1+𝐾∑︁
𝑗=𝐽+1

2𝑗/2
(︁𝑐𝐽,−1

2𝑗−𝐽 𝜓
haar
𝑗,−1 −

𝑐𝐽,0
2𝑗−𝐽 𝜓

haar
𝑗,0

)︁
(2.19)

satisfies⃦⃦
𝑓 − 𝑓

⃦⃦
2 =

⃦⃦⃦
𝑓 − 𝑓−𝐽 + 𝑐𝐽,−1

2𝐾+11𝐼𝐾+𝐽+1,−1 + 𝑐𝐽,0
2𝐾+11𝐼𝐾+𝐽+1,0

⃦⃦⃦
2

(2.20)

≤ ‖𝑓 − 𝑓−𝐽‖2 +
⃦⃦⃦ 𝑐𝐽,−1

2𝐾+11𝐼𝐽+𝐾+1,−1

⃦⃦⃦
2

+
⃦⃦⃦ 𝑐𝐽,0

2𝐾+11𝐼𝐽+𝐾+1,0

⃦⃦⃦
2
< 𝜀. (2.21)

The linear combination of Haar functions (2.6) is defined such that for any fixed scale
𝑗 ∈ {−𝐽 + 1, . . . , 𝐽}, the shifts of the function 𝜓haar

𝑗,0 are used to encode the difference
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(a) Haar wavelets 𝜓haar
0,0 ,

𝜓haar
−1,0, and 𝜓haar

−2,0

(b) Haar scaling function
1[0,1)

(c) A function 𝑓 and its
piecewise constant approxi-
mation 𝑓−6

(d) 𝑓−5 (e) 𝑓−4 (f) 𝑓−3

Figure 2.1: (a) and (b) show examples of three differently scaled Haar wavelets and the
associated scaling function. (c)-(f) show plots of a function 𝑓 and the respective piecewise
constant approximations 𝑓𝑗 for 𝑗 ∈ {−6, . . . ,−3} (cf. proof of Theorem 2.0.2).

between the piecewise constant approximations 𝑓𝑗−1 and 𝑓𝑗 , that are themselves linear
combinations of shifts of the dilated indicator functions 1[0,1)(2−𝑗+1·) and 1[0,1)(2−𝑗 ·),
respectively. In this setup, the linear spans of shifts of dilated indicator functions implicitly
define a nested structure of approximation spaces where the orthogonal complement of
the space at scale 𝑗 within the space at scale 𝑗 − 1 is given by the linear span of shifts of
the dilated Haar function 𝜓haar

𝑗,0 . This specific structure can in fact be generalized to yield
the powerful MRA framework, in which the function taking the role of 1[0,1) is typically
denoted as the scaling function, and 𝜓haar as the mother wavelet (see prelude to Chapter 3).
The term wavelet here refers to a certain class of locally oscillating functions that will also
be discussed in more detail in the prelude to Chapter 3.

Another intriguing aspect of Theorem 2.0.2 is that the sequence 𝑐−𝐽 yields a finite and
discrete description of a an arbitrarily close approximation of a given function 𝑓 when its
entries are interpreted as the coefficients of a linear combination of translates of 1[0,1)(2−𝐽 ·).
Examples of approximations 𝑓𝑗 for 𝑗 ∈ {−6, . . . ,−3} of an 𝐿2-function 𝑓 are shown in
Figure 2.1. In particular, a closer look at Equations (2.7), (2.8), and (2.15) reveals that
the approximation 𝑓𝑗 at a fixed scale 𝑗 can be written in terms of a linear combination of
Haar functions 𝜓haar

𝑗+1,𝑚 and a linear combination of indicator functions 1[0,1)(2−𝑗−1 · −𝑚),
where the respective coefficients are defined as the dyadically subsampled convolutions of
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the sequence 𝑐𝑗 with the finite and discrete filters
{︀

−1
2 ,

1
2
}︀

, and
{︀1

2 ,
1
2
}︀

, respectively. In
other words, the proof of Theorem 2.0.2 suggests that, when interpreting a discrete and
finite signal as the coefficients of a linear combination of translates of the indicator function
1[0,1)(2−𝐽 ·), the associated sequences of Haar coefficients 𝑑𝑗 can directly be computed in
the discrete setting by convolving the signal with a simple discrete and finite filter. This
provides a faithful transition between the continuum, where the coefficients representing
𝑓 in terms of the Haar ONB are given via the respective 𝐿2-inner products, and the
discrete setting, which we can also exploit to justify the application of the so-called Haar
wavelet filters (2.32) in the definition of the Haar wavelet-based perceptual similarity index
(HaarPSI) later in this chapter. In particular, we will see in the prelude to Chapter 3
that each MRA uniquely defines a so-called scaling filter that assumes the role of

[︀1
2 ,

1
2
]︀

in
Equation (2.8). Due to the fact that the sequences 𝑐𝑗 define approximations of a given
function 𝑓 , they are often denoted as approximation coefficients while the sequences 𝑑𝑗 are
termed detail coefficients.

2.1 Introduction

Digital images and videos are omnipresent in daily life and the importance of visual data
is still growing. By 2020, nearly a million minutes of video content is estimated to cross
the internet every second [34].

Typically, video and image signals are compressed before storage or transmission and
ultimately intended to be viewed by humans. However, both compression and transmission
errors can introduce distortions to video or image signals that are visible to human viewers.
For evaluating or optimizing a transmission system or parts of it, for example by controlling
the rate-distortion trade-off of a video encoder, it is crucial to measure the severity of
distortions in a perceptually meaningful way. Quality in a perceptually meaningful way
can only be measured reliably in psychometric tests. In such tests, participants are asked
to rate the subjectively perceived quality of images or videos that have previously been
subject to some kind of distortion introducing processing. The quality ratings of individual
participants can eventually be averaged to obtain a single mean opinion score (MOS) for
each stimulus. However, although being the gold standard for assessing perceived quality,
such studies are expensive and time-consuming and not feasible for real-time tasks like
optimizing or monitoring transmission systems.

Image quality assessment (IQA) methods typically belong to one of three categories
with different challenges and scopes of applications: Full reference image quality assessment
(FR IQA) approaches require and utilize the availability of a reference image. Reduced
reference image quality assessment (RR IQA) methods exploit a small set of features
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extracted from the reference image. No reference image quality assessment (NR IQA)
approaches estimate the perceived quality of a possibly distorted image solely from the
image itself [113]. Unconstrained NR IQA has the notion of being the holy grail of IQA
and, when successful, essentially replicates human abilities. It is, however, not a feasible
approach for some applications such as, for example, encoder control for video compression.
An NR IQA metric used for rate-distortion optimization in a video encoder would steer the
optimization towards coding decisions that remove any type of noise or artifacts. However,
there are videos in which noise and artifacts were intentionally added to create a certain
visual effect. As an example, the reader is invited to imagine a video encoder that removes
film grain from the Quentin Tarantino movie The Hateful Eight due to the application
of an NR IQA metric that penalizes in a sense noisy coding decisions. Such an encoder
would change a deliberate artistic decision made by the filmmakers and thus deteriorate
the viewing experience.

The simplest FR IQA metric is the mean squared error (MSE), which is defined as
the average of the squared differences of the reference and the distorted image. Although
being widely used, it does not correlate well with perceived visual quality [67]. More
sophisticated approaches towards perceptually accurate IQA typically follow one of three
strategies. Bottom-up approaches explicitly model various processing mechanisms of the
human visual system (HVS), such as masking effects [167], contrast sensitivity [41], or
just-noticeable-distortion [90, 118] in order to assess the perceived quality of images. For
instance, the adaptivity of the HVS to the magnitude of distortions is modeled explicitly
by the concept of most apparent distortion (MAD) [112] in order to apply two different
assessment strategies for supra- and near-threshold distortions.

However, the method proposed in this chapter as well as most image quality metrics
developed recently follow a top-down approach. There, general functional properties of the
HVS are assumed in order to identify and to exploit image features corresponding to the
perceived quality. Prominent examples are structural similarity index (SSIM) [165], visual
information fidelity (VIF) [149], the gradient gradient similarity measure (GSM) [116],
spectral residual-based similarity (SR-SIM) [172], and the visual saliency-induced index
(VSI) [173]. The SSIM [165] aims at taking into account the sensitivity of the HVS
towards structural information. This is done by pooling three complementary components,
namely luminance similarity (comparing local mean luminance values), contrast similarity
(comparing local variances) and structural similarity, which is defined as the local covariance
between the reference image and its perturbed counterpart. Although being criticized [53],
it is highly cited and among the most popular image quality assessment metrics. The SSIM
was generalized for a multi-scale setting by the multi-scale structural similarity index (MS-
SSIM) [166]. One of the first information theoretic approaches to FR IQA was the VIF [149].
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The VIF models wavelet coefficients as Gaussian scale mixtures and quantifies the mutual
information shared between reference and test images. The information theoretic measure
of mutual information was furthermore shown to be correlated to perceived image quality.
In [116], changes in contrast and structure are captured by considering local gradients, while
the squared difference in pixel values between the reference image and the distorted image
is used to measure luminance variations. This approach thus follows the basic framework
of combining complementary feature maps originally introduced in [165]. Additionally,
masking effects are estimated, based on the local gradient magnitude of the reference image
and incorporated when the two feature maps are combined. The SR-SIM [172] takes into
account changes in the local horizontal and vertical gradient magnitudes. Additionally, it
incorporates changes in a spectral residual-based visual saliency estimate. The VSI [173] is
similar to the SR-SIM in the sense that it assesses similarities in the gradient magnitude
and utilizes visual saliency maps. However, it further exploits the visual saliency map
by using its entries as weights in the spatial similarity pooling. Furthermore, [173] also
explores the influence of different saliency models on the performance of the proposed
image quality measure. A combination of two feature maps is also applied successfully by
the feature similarity index (FSIM) [174]. Due to its conceptual similarity to the proposed
method, it will be discussed in more detail in Section 2.1.2.

Adopting the advances in machine learning and data science, IQA methods following
a third, purely data driven strategy have been proposed recently. So far, data driven
approaches were mainly developed for the domain of NR IQA [17, 93, 170, 175], but they
have also been adapted in the context of FR IQA [16].

2.1.1 Contributions

This work introduces the HaarPSI, a novel and computationally inexpensive measure
yielding FR IQAs. The HaarPSI utilizes the magnitudes of high-frequency Haar wavelet
coefficients to define local similarities and low-frequency Haar wavelet coefficients to weigh
the importance of (dis)similarities at specific locations in the image domain.

The six discrete two-dimensional Haar wavelet filters used in the definition of the
HaarPSI respond to horizontal and vertical edges on different frequency scales. The
HaarPSI is thus based on elementary implementations of functional properties known to
be exhibited by neurons in the primary visual cortex, namely orientation selectivity and
spatial frequency selectivity. We aim to demonstrate that such a simple model already
suffices to define a similarity measure that yields state of the art correlations with human
opinion scores.

The HaarPSI can also be seen as a drastic simplification of the FSIM [174], which is
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based on a similar combination of similarity and weight maps. In the definition of the
FSIM, local similarities as well as the weights rely on the phase congruency measure [100].
Computing this measure requires images to be convolved with 16 complex-valued filters
and contains several non-trivial steps such as adaptive thresholding. For the HaarPSI on
the other hand, the two maps are computed from the responses of only six discrete Haar
wavelet filters and are cleanly separated in the sense that local similarities and weights are
based on different frequency scales. Surprisingly, these simplifications not only decrease
the required computational effort but also lead to consistently higher correlations with
human mean opinions scores.

In Section 2.3, we evaluate the consistency of the HaarPSI with the human quality of
experience and compare its performance to state of the art similarity measures like the
SSIM [165], the FSIM [174], and the VSI [173]. As depicted in Tables 2.1 and 2.2, the
HaarPSI achieves higher correlations with human opinion scores than all other considered
FR IQA metrics in all test cases except one, where it only comes second to the VSI.
In addition, the HaarPSI can be computed significantly faster than the metrics yielding
the second and third highest correlations with human opinion scores, namely the VSI
and the FSIM. In order to facilitate reproducible research, a Matlab and a Python
implementation of the HaarPSI are publicly available at http://www.haarpsi.org/ and
github.com/rgcda/haarpsi.

It is both convenient and surprising that the promising experimental results of the
HaarPSI are based on the responses of Haar filters, which are arguably the simplest and
computationally most efficient wavelet filters existing. The results of a numerical analysis
of the applicability of other wavelet filters in the newly proposed similarity measure can be
found in Table 2.4.

2.1.2 The Feature Similarity Index

The FSIM [174], proposed in 2011, is currently one of the most successful and influential
FR IQA metrics. The FSIM combines two feature maps derived from the phase congruency
measure [100] and the local gradients of the reference and the distorted image to assess
local similarities between two images. For a grayscale image I ∈ ℓ2(Z2), the gradient map
is defined by

GI[𝑚] =
√︁

((𝑔hor * I)[𝑚])2 + ((𝑔ver * I)[𝑚])2, 𝑚 ∈ Z2, (2.22)

where 𝑔hor and 𝑔ver denote horizontal and vertical gradient filters (e.g. Sobel or Scharr
filters), and * denotes the discrete two-dimensional convolution operator. The method used

http://www.haarpsi.org/
github.com/rgcda/haarpsi
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in the implementation of the FSIM to compute the phase congruency map was developed
by Peter Kovesi [101] and contains several non-trivial operations, such as adaptive soft
thresholding. In its essence, the phase congruency map of a grayscale image I is given by

PCI[𝑚] ≈
|
∑︀

𝑛(𝑔c
𝑛 * I)[𝑚]|∑︀

𝑛 |(𝑔c
𝑛 * I)[𝑚]| , 𝑚 ∈ Z2, (2.23)

where 𝑔c
𝑛 denotes differently scaled and oriented complex-valued wavelet filters. The basic

idea behind (2.23) is that if the obtained complex-valued wavelet coefficients have the same
phase at a location 𝑚, taking the absolute value of the sum is the same as taking the
sum of the absolute values. If this is the case, PCI[𝑚] will be close to or precisely 1. The
phase congruency measure is also strongly related to the measures for the detection of
edges, ridges, and blobs introduced in Chapter 4. It is therefore discussed in more detail in
Section 4.2.2.

To assess local similarities between two images with respect to the maps defined in (2.22)
and (2.23), the FSIM – like many other image quality metrics – uses a simple similarity
measure for non-negative scalar values that already appeared in [165], namely

S(𝑎, 𝑏, 𝐶) = 2𝑎𝑏+ 𝐶

𝑎2 + 𝑏2 + 𝐶
, 𝑎, 𝑏 ≥ 0, (2.24)

with a constant 𝐶 > 0. The graph of S(𝑎, 𝑏, 𝐶) for values ranging from 0 to 100 and
𝐶 = 30 is shown in Figure 2.2(b). The local feature similarity map for two grayscale images
I1, I2 ∈ ℓ2(Z2) is defined as

FSI1,I2 [𝑚] = S (GI1 [𝑚],GI2 [𝑚], 𝐶1)𝛽 · S (PCI1 [𝑚],PCI2 [𝑚], 𝐶2)𝛾 , 𝑚 ∈ Z2, (2.25)

with constants 𝐶1, 𝐶2 > 0 and exponents 𝛽, 𝛾 > 0. Based on the assumption that the HVS
is especially sensitive towards structures at which the phases of the Fourier components
are in congruency (see, e.g., [130]), the phase congruency map is not only used in (2.25)
but also applied to determine the relative importance of different image areas with respect
to human perception. The feature similarity index is computed by taking the weighted
mean of all local feature similarities, where the phase congruency map is used as a weight
function, that is

FSIMI1,I2 =
∑︀

𝑚 FSI1,I2 [𝑚] · PCI1,I2 [𝑚]∑︀
𝑚 PCI1,I2 [𝑚] , (2.26)

where
PCI1,I2 [𝑚] = max {PCI1 [𝑚],PCI2 [𝑚]} , 𝑚 ∈ Z2. (2.27)

The FSIM was also generalized to a color-sensitive feature similarity index (FSIMC) that is
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defined in the YIQ color space [174]. In the YIQ space, the Y channel encodes luminance
information, while the I and Q channels encode chromatic information. Color images
defined in the RGB color space can easily be transformed to the YIQ space with a linear
mapping, namely ⎡⎢⎣IY

II

IQ

⎤⎥⎦ ≈

⎡⎢⎣0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

⎤⎥⎦ ·

⎡⎢⎣IR

IG

IB

⎤⎥⎦ . (2.28)

FSIMC simply incorporates the chroma channels I and Q into the local feature similarity
measure (2.25) while the gradient maps as well as the phase congruency maps are purely
derived from the luminance channel Y. Formally, the FSIMC is defeind for color images I1

and I2, where the single channels are denoted as I1 = [IY
1 , II

1, I
Q
1 ]ᵀ, and I2 = [IY

2 , II
2, I

Q
2 ]ᵀ,

respectively, by

FSIMCI1,I2 =
∑︀

𝑚 FSCI1,I2 [𝑚] · PCIY
1 ,IY

2
[𝑚]∑︀

𝑚 PCIY
1 ,IY

2
[𝑚] , (2.29)

where the local feature similarity measure is now defined as

FSCI1,I2 [𝑚] = S(GIY
1

[𝑚],GIY
2

[𝑚], 𝐶1)𝛼 · S(PCIY
1

[𝑚],PCIY
2

[𝑚], 𝐶2)𝛽 (2.30)

· S(II
1[𝑚], II

2[𝑚], 𝐶3)𝛾 · S(IQ
1 [𝑚], IQ

2 [𝑚], 𝐶4)𝛾 , (2.31)

with 𝑚 ∈ Z2, constants 𝐶1, 𝐶2, 𝐶3, 𝐶4 > 0, and exponents 𝛼, 𝛽, 𝛾 > 0.

2.2 The Haar Wavelet-Based Perceptual Similarity Index

The basic idea of the HaarPSI is to construct feature maps in the spirit of (2.22) as well as
a weight function similar to (2.23) by considering a single wavelet filterbank. The response
of any high-frequency wavelet filter will look similar to the response yielded by a gradient
filter like the Sobel operator. Furthermore, the phase congruency measure used as a weight
function in the FSIM is computed directly from the output of a multi-scale complex-valued
wavelet filterbank, as illustrated by Equation (2.23). This gives a strong intuition that it
should be possible to define a similarity measure derived from the response of a single set
of discrete wavelet filters that at least matches the performance of the FSIM on benchmark
databases but requires significantly less computational effort.

The wavelet chosen for this endeavor is the so-called Haar wavelet, which we already
got to know in the prelude to this chapter. The one-dimensional ℓ2-normalized Haar filters
are given by

ℎ1D
1 = 1√

2
· {1, 1} and 𝑔1D

1 = 1√
2

· {−1, 1}, (2.32)
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where ℎ1D
1 denotes the low-pass scaling filter and 𝑔1D

1 the corresponding high-pass wavelet
filter (cf. Equations (2.8) and (2.7)). For any scale 𝑗 ∈ N, we can construct two-dimensional
Haar filters by setting

𝑔
(1)
𝑗 = 𝑔1D

𝑗 ⊗ ℎ1D
𝑗 , (2.33)

𝑔
(2)
𝑗 = ℎ1D

𝑗 ⊗ 𝑔1D
𝑗 , (2.34)

where ⊗ denotes the outer product and the one-dimensional filters ℎ1D
𝑗 and 𝑔1D

𝑗 are given
for 𝑗 > 1 by

𝑔1D
𝑗 = ℎ1D

1 * (𝑔1D
𝑗−1)↑2, (2.35)

ℎ1D
𝑗 = ℎ1D

1 * (ℎ1D
𝑗−1)↑2, (2.36)

where ↑ 2 is the dyadic upsampling operator, and * denotes the one-dimensional convolution
operator. Note that 𝑔

(1)
𝑗 responds to horizontal structures, while 𝑔

(2)
𝑗 picks up vertical

structures. The six Haar filters used to define the HaarPSI are shown in Figure 2.2(a).
The local similarity map FSI1,I2 multiplicatively combines gradient-based and phase
congruency-based similarities whose contributions are weighted by the exponents 𝛼, 𝛽 > 0.
The HaarPSI does not consider different types of similarities. However, to correctly predict
the perceptual similarity experienced by human viewers, it can be useful to apply an
additional non-linear mapping to the local similarities obtained from high-frequency Haar
wavelet filter responses. This non-linearity is chosen to be the logistic function, which
is widely used as an activation function in neural networks for modeling thresholding in
biological neurons and is given for a parameter 𝛼 > 0 as

𝑙𝛼(𝑥) = 1
1 + 𝑒−𝛼𝑥 . (2.37)

For two grayscale images I1, I2 ∈ ℓ2(Z2), the local similarity measure used to compute
the HaarPSI is based on the first two stages of a two-dimensional discrete Haar wavelet
transform and given by

HS(k)
I1,I2

[𝑚] = 𝑙𝛼

⎛⎝1
2

2∑︁
𝑗=1

S
(︁⃒⃒⃒

(𝑔(k)
𝑗 * I1)[𝑚]

⃒⃒⃒
,
⃒⃒⃒
(𝑔(k)
𝑗 * I2)[𝑚]

⃒⃒⃒
, 𝐶
)︁⎞⎠ , 𝑚 ∈ Z2, (2.38)

where 𝐶 > 0, 𝑘 ∈ {1, 2} selects either horizontal or vertical Haar wavelet filters, S denotes
the similarity measure (2.24), and * is the two-dimensional convolution operator. The local
similarity measure HS(k)

I1,I2
can be seen as an analog to FSI1,I2 . However, HS(k)

I1,I2
does
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(a) Haar wavelet filters (b) 𝑆(𝑥, 𝑦, 𝐶) (c) 𝑙𝛼(𝑥)

Figure 2.2: Main components of the HaarPSI. (a) The six Haar wavelet filters whose responses
build the core of the HaarPSI. (b) The function 𝑆(𝑥, 𝑦, 𝐶) for 𝐶 = 30. (c) The logistic function
𝑙𝛼(𝑥) for 𝛼 = 4.2.

not mix different different concepts like gradients and phase congruency and is computed
straightforwardly on the responses of two high-frequency discrete Haar wavelet filters. A
visualization of the local similarity map HS(k)

I1,I2
is shown in Figure 2.3.

Analogous to the phase congruency map PCI in the definition of the FSIM, the HaarPSI
considers a weight map which is derived from the response of a single low-frequency Haar
wavelet filter:

W(k)
I [𝑚] =

⃒⃒⃒
(𝑔(k)

3 * I)[𝑚]
⃒⃒⃒
, 𝑚 ∈ Z2, (2.39)

where 𝑘 ∈ {1, 2} again differentiates between horizontal and vertical filters. Figure 2.3
shows an example of the weight map W(k)

I computed from a natural image.
The HaarPSI for two grayscale images I1, I2 is finally defined as the weighted average

of the local similarity map HS(k)
I1,I2

, that is,

HaarPSII1,I2 = 𝑙−1
𝛼

⎛⎜⎜⎜⎝
∑︀
𝑚

2∑︀
𝑘=1

HS(k)
I1,I2

[𝑚] · W(k)
I1,I2

[𝑚]

∑︀
𝑚

2∑︀
𝑘=1

W(k)
I1,I2

[𝑚]

⎞⎟⎟⎟⎠
2

, (2.40)

with
W(k)

I1,I2
[𝑚] = max

{︁
W(k)

I1
[𝑚],W(k)

I2
[𝑚]

}︁
, 𝑚 ∈ Z2, (2.41)

for 𝑘 ∈ {1, 2}. The function 𝑙−1
𝛼 (·) maps the weighted average from the interval [1

2 , 𝑙𝛼(1)]
back to [0, 1]. Applying (·)2 further spreads the HaarPSI in the unit interval and helps to
linearize the relationship between the HaarPSI and human opinion scores. In particular,
this procedure aims to increase the readability of the HaarPSI in the sense that a single
value should be meaningful on its own and not only relative to other HaarPSI values. Note
that, due to the monotonicity of the logistic function, applying 𝑙−1

𝛼 (·)2 cannot improve or
worsen the rank order-based correlations with human opinion scores reported in Section 2.3.
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(a) reference I1 (b) HS(1)
I1,I2

(c) W(1)
I1,I2

(d) distorted I2 (e) HS(2)
I1,I2

(f) W(2)
I1,I2

Figure 2.3: Examples for HaarPSI similarity and weight maps. (a) An undistorted reference
image. (b) The reference image distorted by the JPEG compression algorithm. (c) The
horizontal local similarity map HS(1)

I1,I2
. (d) The vertical local similarity map HS(2)

I1,I2
. (e) The

(normalized) horizontal weight function W(1)
I1,I2

. (f) The (normalized) vertical weight function
W(2)

I1,I2
. The images (a) and (b) are part of the CSIQ database [112].

Analogous to the FSIM, the HaarPSI can be extended to color images in the YIQ
color space by considering a third local similarity map based on the chroma channels I
and Q. The map HS(3)

I1,I2
is computed analogous to (2.38) by averaging local similarities

obtained from comparing II
1 with II

2 and IQ
1 with IQ

2 . In contrast to HS(1)
I1,I2

and HS(2)
I1,I2

,
the chromatic information used for HS(3)

I1,I2
is not based on orientation sensitive filters.

The corresponding weight map W(3)
IY

1 ,IY
2

is thus also computed by averaging W(1)
IY

1 ,IY
2

and

W(2)
IY

1 ,IY
2

. Formally, the generalization of the HaarPSI to color images is given by

HaarPSICI1,I2 = 𝑙−1
𝛼

⎛⎜⎜⎜⎝
∑︀
𝑚

3∑︀
𝑘=1

HS(k)
I1,I2

[𝑚] · W(k)
IY

1 ,IY
2

[𝑚]

∑︀
𝑚

3∑︀
𝑘=1

W(k)
IY

1 ,IY
2

[𝑚]

⎞⎟⎟⎟⎠
2

, (2.42)
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All databases TID 2008 & 2013 LIVE & CSIQ

Parameters
𝐶 30 30 20
𝛼 4.2 4.2 5.8
SROCC
LIVE 0.9683 0.9683 0.9677
TID 2008 0.9097 0.9097 0.9031
TID 2013 0.8732 0.8732 0.8651
CSIQ 0.9604 0.9604 0.9625

The highest correlation in each row is written in bold-
face.

(a) (b)

Figure 2.4: HaarPSI parameter optimization. (a) Values for the parameters 𝐶 and 𝛼 which
maximize the mean SROCC with respect to randomly selected subsets of the considered
databases. The values in the first column were obtained by including all four databases in
the optimization procedure. For the results depicted in columns 2 and 3, the optimization
was restricted to the TID 2008 & TID 2013 respectively the LIVE & CSIQ databases. The
SROCC values shown in the last four rows are with respect to the full databases. (b) The
mean SROCC with respect to the subsets of all four databases plotted as a function of the
parameters 𝐶 and 𝛼.

with HS(1)
I1,I2

and HS(2)
I1,I2

defined as in (2.38),

HS(3)
I1,I2

[𝑚] = 𝑙𝛼

(︁
1
2

(︁
S(
⃒⃒
(𝑓 * II

1)[𝑚]
⃒⃒
,
⃒⃒
(𝑓 * II

2)[𝑚]
⃒⃒
, 𝐶) + S(

⃒⃒⃒
(𝑓 * IQ

1 )[𝑚]
⃒⃒⃒
,
⃒⃒⃒
(𝑓 * IQ

2 )[𝑚]
⃒⃒⃒
, 𝐶)

)︁)︁
, (2.43)

with a 2 × 2 mean filter 𝑓 and

W(3)
IY

1 ,IY
2

[𝑚] = 1
2

(︁
W(1)

IY
1 ,IY

2
[𝑚] + W(2)

IY
1 ,IY

2
[𝑚]

)︁
, 𝑚 ∈ Z2. (2.44)

2.2.1 Parameter Selection

The HaarPSI as well as the color-sensitive Haar wavelet-based perceptual similarity index
(HaarPSIC) require only two parameters to be selected, namely 𝐶 and 𝛼. Both parameters
were optimized on randomly chosen subsets of four large publicly available databases, where
each subset was a quarter the size of the original database. Each of the databases, which will
be described in more detail in Section 2.3, contains large numbers of differently distorted
images and their corresponding MOS values. The parameters 𝐶 and 𝛼 were selected to
maximize the mean of the Spearman’s rank-order correlation coefficient (SROCC) obtained
from comparing HaarPSIC and MOS values from subsets of the Tampere image database
(TID) 2008 [138], the TID 2013 [139], the Laboratory for Image & Video Engineering
image quality assessment database (LIVE) [150] and the Laboratory of Computational
and Subjective Image Quality image quality database (CSIQ) [112]. The optimization was
carried out in two steps. First, a grid search was performed in which the parameter 𝐶 took
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values in the interval [5, 100] and 𝛼 in the range between 2 and 8. The best (𝐶,𝛼)-pair was
then used as the initial value of the Nelder-Mead algorithm. The thus refined parameters
were eventually rounded to the nearest integer in the case of 𝐶 and to the nearest tenth in
the case of 𝛼. This procedure resulted in the choices of 𝐶 = 30 and 𝛼 = 4.2. To verify
the generality of the HaarPSI, the same optimization procedure was repeated once only
considering the TID 2008 and TID 2013 databases and once restricted to the LIVE and the
CSIQ image databases. The results of all three optimizations are compiled in Figure 2.4.

2.3 Experimental Results

The consistency of the HaarPSI with the human perception of image quality was evaluated
and compared with most of the image quality metrics discussed in Section 2.1 on four large
publicly available benchmark databases of quality-annotated images. Those databases
differ in the number of reference images, the number of distortion magnitudes and types,
the number of observers, the level of control of the viewing conditions, and the stimulus
presentation procedure.

The LIVE database [150] contains 29 reference color images and 779 distorted images
that were perturbed by JPEG compression, JPEG 2000 compression, additive Gaussian
white noise, Gaussian blurring as well as JPEG 2000 compressed images that have been
transmitted over a simulated Rayleigh fading channel. Each distortion is introduced at five
to six different levels of magnitude. On average, about 23 subjects evaluated the quality
of each image with respect to the reference image. The viewing conditions were fairly
controlled for in terms of viewing distance. Ratings were collected in a double stimulus
manner.

The TID 2008 database [138] comprises 25 colored reference images and 1700 degraded
images, that had been subject to a wide range of distortions, including various types of noise,
blur, JPEG and JPEG 2000 compression, transmission errors, local image distortions, as
well as luminance and contrast changes. Subjective ratings were gathered by comparisons.
The results from several viewing conditions of experiments in three different labs and on
the internet were averaged. TID 2008 was later extended to TID 2013 [139], which added
new types of distortions, which are mostly of a chromatic nature. In total, TID 2013
contains 3000 differently distorted images.

The CSIQ database [112] is based on 30 reference color images and contains 866 distorted
images. Six different types of distortions (JPEG compression, JPEG 2000 compression,
global contrast decrements, additive pink Gaussian noise, and Gaussian blurring) at four
to five different degradation magnitudes were applied to the reference images. The viewing
distance was controlled. Images were presented on a monitor array and subjects were asked
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to place all distorted versions of one reference image according to its perceived quality.
The main goal of most computational image similarity measures is to yield a monotonic

relationship with human mean opinion scores across different databases and distortion
types. To ensure a fair evaluation, different computational measures are typically compared
with respect to rank order-based correlations or after performing nonlinear regression.
Throughout the numerical evaluation of the HaarPSI, we apply the rank order-based SROCC
to measure correlations between human mean opinion scores and different computational
similarity and distortion indexes. We also considered applying Kendall’s 𝜏 and the
Pearson product-moment correlation after performing a four parameter logistic regression as
alternatives for the SROCC. We found that these correlation coefficients essentially duplicate
the results reported in this section. The corresponding versions of Tables 2.1 and 2.3 were
thus not included here but can be found at www.haarpsi.org.

Following the ITU guidelines for evaluating quality prediction models [85], we also
tested the statistical significance of the results reported in this section. Correlation
coefficients for which the 𝐻0 hypothesis that they are not significantly different than the
respective HaarPSI correlation can be refuted with 𝑝 < 0.05 are highlighted in color in
Tables 2.1, 2.3 and 2.4. In accordance with [59], the variance of the z-transforms were
approximated by 1.06/(𝑁 − 3), where 𝑁 denotes the degrees of freedom (i.e., the number
of samples in the considered database or distortion-specific subset).

The four databases used in the numerical evaluation only contain color images. However,
out of the metrics considered in our experiments, only the FSIM and the HaarPSI are
defined for both grayscale and color images, while the VSI was specifically designed for
color images. All other similarity measures considered in our experiments only accept
grayscale images as input or perform an RGB to grayscale conversion as a first processing
step. To reflect these differing designs, all methods were tested on all databases once with
the original color images and once with grayscale conversions obtained from the Matlab
rgb2gray function. To obtain the VSI for pairs of grayscale images, corresponding RGB
images were created by setting the values for all three color channels to the values of
the given grayscale channel. The correlation coefficients of all ten considered similarity
measures with the human mean opinion scores for the LIVE image database, TID 2008,
TID 2013 and the CSIQ database are compiled in Table 2.1.

Table 2.2 provides a quick impression of the overall performance of each metric. It
depicts the average SROCC of each metric with respect to all four databases as well as
the mean execution time in milliseconds. The average execution time was measured on a
Intel Core i7-4790 CPU clocked at 3.60 GHz. To measure the execution time, each quality
measure was computed ten times for ten different pairs of randomly generated 512 × 512
pixel images. All computations and measurements were carried out in Matlab using

www.haarpsi.org
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Table 2.1: Spearman rank order correlations of IQA metrics on benchmark databases.

PSNR VIF SSIM MS-SSIM GSM MAD SR-SIM FSIM VSI HaarPSI

Grayscale Images
LIVE 0.8756 0.9636 0.9479 0.9513 0.9561 0.9672 0.9619 0.9634 0.9534 0.9690
TID 2008 0.5531 0.7491 0.7749 0.8542 0.8504 0.8340 0.8913 0.8804 0.8830 0.9043
TID 2013 0.6394 0.6769 0.7417 0.7859 0.7946 0.7807 0.8075 0.8022 0.8048 0.8094
CSIQ 0.8058 0.9195 0.8756 0.9133 0.9108 0.9466 0.9319 0.9242 0.9372 0.9546
Color Images
LIVE 0.8756 0.9636 0.9479 0.9513 0.9561 0.9672 0.9619 0.9645 0.9524 0.9683
TID 2008 0.5531 0.7491 0.7749 0.8542 0.8504 0.8340 0.8913 0.8840 0.8979 0.9097
TID 2013 0.6394 0.6769 0.7417 0.7859 0.7946 0.7807 0.8075 0.8510 0.8965 0.8732
CSIQ 0.8058 0.9195 0.8756 0.9133 0.9108 0.9466 0.9319 0.9310 0.9423 0.9604

Lower and higher correlations than HaarPSI (statistically significant with 𝑝 < 0.05).
The highest correlation in each row is written in boldface.

Table 2.2: Mean SROCC and average execution time.

Color Images Grayscale Images
Mean SROCC Avg. time Mean SROCC Avg. time

HaarPSI 0.9279 24 ms 0.9093 10 ms
VSI 0.9223 79 ms 0.8946 80 ms
FSIM 0.9076 142 ms 0.8925 121 ms
SRSIM 0.8982 10 ms 0.8982 10 ms
MAD 0.8821 892 ms 0.8821 891 ms
GSM 0.8780 8 ms 0.8780 7 ms
MS-SSIM 0.8762 30 ms 0.8762 24 ms
SSIM 0.8350 6 ms 0.8350 5 ms
VIF 0.8273 459 ms 0.8273 453 ms
PSNR 0.7185 2 ms 0.7185 1 ms

implementations made freely available by the respective authors. Note that due to an
additional conversion step, metrics that are only defined for grayscale images can have
slightly higher execution times when evaluated on color images.

A high correlation with the mean opinion scores annotated to the distorted images of a
large database containing many different types and degrees of distortions is arguably the
best indicator of an image quality measure’s consistency with human perception. However,
for certain applications like compression or denoising, it could be more important to know
if an image quality metric has a high correlation with the human experience within a single
distortion class. Table 2.3 depicts the SROC coefficients for all image quality metrics
when only subsets of databases containing specific distortions like Gaussian blur or JPEG
transmission errors are considered.
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Table 2.3: Distortion-specific SROCC for different IQA metrics.

PSNR VIF SSIM MS-SSIM GSM MAD SR-SIM FSIM VSI HaarPSI

LIVE
jpg2k 0.8954 0.9696 0.9614 0.9627 0.9700 0.9692 0.9700 0.9724 0.9604 0.9684
jpg 0.8809 0.9846 0.9764 0.9815 0.9778 0.9786 0.9823 0.9840 0.9761 0.9832
gwn 0.9854 0.9858 0.9694 0.9733 0.9774 0.9873 0.9812 0.9716 0.9835 0.9845
gblur 0.7823 0.9728 0.9517 0.9542 0.9518 0.9510 0.9660 0.9708 0.9527 0.9676
ff 0.8907 0.9650 0.9556 0.9471 0.9402 0.9589 0.9466 0.9519 0.9430 0.9527
TID 2008
gwn 0.9070 0.8797 0.8107 0.8086 0.8606 0.8386 0.8989 0.8758 0.9229 0.9177
gwnc 0.8995 0.8757 0.8029 0.8054 0.8091 0.8255 0.8957 0.8931 0.9118 0.8982
scn 0.9170 0.8698 0.8145 0.8209 0.8941 0.8678 0.9084 0.8711 0.9296 0.9271
mn 0.8515 0.8683 0.7795 0.8107 0.7452 0.7336 0.7881 0.8264 0.7734 0.7909
hfn 0.9270 0.9075 0.8729 0.8694 0.8945 0.8864 0.9195 0.9156 0.9253 0.9155
in 0.8724 0.8327 0.6732 0.6907 0.7235 0.0650 0.7678 0.7719 0.8298 0.8269
qn 0.8696 0.7970 0.8531 0.8589 0.8800 0.8160 0.8348 0.8726 0.8731 0.8842
gblr 0.8697 0.9540 0.9544 0.9563 0.9600 0.9196 0.9551 0.9472 0.9529 0.9001
den 0.9416 0.9161 0.9530 0.9582 0.9725 0.9433 0.9666 0.9618 0.9693 0.9711
jpg 0.8717 0.9168 0.9252 0.9322 0.9393 0.9275 0.9393 0.9294 0.9616 0.9417
jpg2k 0.8132 0.9709 0.9625 0.9700 0.9758 0.9707 0.9809 0.9780 0.9848 0.9860
jpgt 0.7516 0.8585 0.8678 0.8681 0.8790 0.8661 0.8881 0.8756 0.9160 0.8921
jpg2kt 0.8309 0.8501 0.8577 0.8606 0.8936 0.8394 0.8902 0.8555 0.8942 0.8963
pn 0.5815 0.7619 0.7107 0.7377 0.7386 0.8287 0.7659 0.7514 0.7699 0.8010
bdist 0.6193 0.8324 0.8462 0.7546 0.8862 0.7970 0.7798 0.8464 0.6295 0.8026
ms 0.6957 0.5096 0.7231 0.7338 0.7190 0.5163 0.5704 0.6554 0.6714 0.6051
ctrst 0.5859 0.8188 0.5246 0.6381 0.6691 0.2723 0.6475 0.6510 0.6557 0.6209
TID 2013
gwn 0.9291 0.8994 0.8671 0.8646 0.9064 0.8843 0.9251 0.9101 0.9460 0.9368
gwnc 0.8981 0.8299 0.7726 0.7730 0.8175 0.8019 0.8562 0.8537 0.8705 0.8593
scn 0.9200 0.8835 0.8515 0.8544 0.9158 0.8911 0.9223 0.8900 0.9367 0.9311
mn 0.8323 0.8450 0.7767 0.8073 0.7293 0.7380 0.7855 0.8094 0.7697 0.7858
hfn 0.9140 0.8972 0.8634 0.8604 0.8869 0.8876 0.9131 0.9040 0.9200 0.9069
in 0.8968 0.8537 0.7503 0.7629 0.7965 0.2769 0.8280 0.8251 0.8741 0.8656
qn 0.8808 0.7854 0.8657 0.8706 0.8841 0.8514 0.8497 0.8807 0.8748 0.8893
gblr 0.9149 0.9650 0.9668 0.9673 0.9689 0.9319 0.9622 0.9551 0.9612 0.9149
den 0.9480 0.8911 0.9254 0.9268 0.9432 0.9252 0.9398 0.9330 0.9484 0.9456
jpg 0.9189 0.9192 0.9200 0.9265 0.9284 0.9217 0.9396 0.9339 0.9541 0.9512
jpg2k 0.8840 0.9516 0.9468 0.9504 0.9602 0.9511 0.9672 0.9589 0.9706 0.9704
jpgt 0.7685 0.8409 0.8493 0.8475 0.8512 0.8283 0.8543 0.8610 0.9216 0.8938
jpg2kt 0.8883 0.8761 0.8828 0.8889 0.9182 0.8788 0.9165 0.8919 0.9228 0.9204
pn 0.6863 0.7720 0.7821 0.7968 0.8130 0.8315 0.7967 0.7937 0.8060 0.8154
bdist 0.1552 0.5306 0.5720 0.4801 0.6418 0.2812 0.4722 0.5532 0.1713 0.4471
ms 0.7671 0.6276 0.7752 0.7906 0.7875 0.6450 0.6562 0.7487 0.7700 0.7152
ctrst 0.4400 0.8386 0.3775 0.4634 0.4857 0.1972 0.4696 0.4679 0.4754 0.4382
ccs 0.0766 0.3099 0.4141 0.4099 0.3578 0.0575 0.3117 0.8359 0.8100 0.6735
mgn 0.8905 0.8468 0.7803 0.7786 0.8348 0.8409 0.8781 0.8569 0.9117 0.8902
cn 0.8411 0.8946 0.8566 0.8528 0.9124 0.9064 0.9259 0.9135 0.9243 0.9275
lcni 0.9145 0.9204 0.9057 0.9068 0.9563 0.9443 0.9608 0.9485 0.9564 0.9622
icqd 0.9269 0.8414 0.8542 0.8555 0.8973 0.8745 0.8810 0.8815 0.8839 0.8953
cha 0.8872 0.8848 0.8775 0.8784 0.8823 0.8310 0.8758 0.8925 0.8906 0.8599
ssr 0.9042 0.9353 0.9461 0.9483 0.9668 0.9567 0.9613 0.9576 0.9628 0.9651
CSIQ
gwn 0.9363 0.9575 0.8974 0.9471 0.9440 0.9541 0.9628 0.9359 0.9636 0.9666
jpeg 0.8881 0.9705 0.9546 0.9634 0.9632 0.9615 0.9671 0.9664 0.9618 0.9695
jpg2k 0.9362 0.9672 0.9606 0.9683 0.9648 0.9752 0.9773 0.9704 0.9694 0.9815
gpn 0.9339 0.9511 0.8922 0.9331 0.9387 0.9570 0.9520 0.9370 0.9638 0.9594
gblr 0.9291 0.9745 0.9609 0.9711 0.9589 0.9682 0.9767 0.9729 0.9679 0.9783
ctrst 0.8621 0.9345 0.7922 0.9526 0.9354 0.9207 0.9528 0.9438 0.9504 0.9450

Lower and higher correlations than HaarPSI (statistically significant with 𝑝 < 0.05).
The highest correlation in each row is written in boldface.
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(a) LIVE (b) TID 2008

(c) TID 2013 (d) CSIQ

Figure 2.5: Scatter plots of HaarPSIC values against the difference mean opinion score
(DMOS) from the LIVE, TID 2008, TID 2013 and CSIQ image databases.

Single correlation coefficients provide a useful means of objectively evaluating and
comparing different computational models of image quality. However, they only measure a
specific aspect of the relationship between an image similarity metric and human opinion
scores, like linearity in the case of the Pearson correlation coefficient or monotonicity in
the case of the SROCC. In an attempt to better visualize the relationship between the
HaarPSI and human opinion scores, Figure 2.5 shows scatter plots of the HaarPSI against
the DMOS for all four databases. To provide as much insight as possible, the plots are
categorized by specific distortion types.

It should be noted that for all results reported in this section, the HaarPSI, as well as
other image quality metrics such as the SSIM, the FSIM or the VSI, were preprocessing each
image by convolving it with a 2 × 2 mean filter as well as a subsequent dyadic subsampling
step. This preprocessing approximates the low-pass characteristics of the optical part of
the human visual system [134] by a simple model.
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2.4 Conclusion

The HaarPSI is a novel and computationally inexpensive image quality measure based
solely on the coefficients of three stages of a discrete Haar wavelet transform. Its validity
with respect to the human perception of image quality was tested on four large databases
containing more than 5000 differently distorted images, with very promising results. In a
comparison with 9 popular state of the art image similarity metrics, the HaarPSI yields
significantly higher or statistically indistinguishable Spearman correlations when restricted
to grayscale conversions. For color images, it only comes second to the VSI when tested
on the TID 2013 (see Table 2.1). Along with its simple computational structure and its
comparatively short execution time, this suggests a high applicability of the HaarPSI in
real world optimization tasks. In particular, image quality metrics like PSNR, SSIM, or
SR-SIM, that outperform the HaarPSI with respect to speed achieve considerably inferior
correlations with human opinion scores (see Table 2.2). Regarding the applicability of the
HaarPSI in specific optimization tasks, we would like to mention that the HaarPSI has
consistently high correlations with human opinion scores throughout all databases with
respect to distortions caused by the JPEG and JPEG 2000 compression algorithms (see
Table 2.3).

The results reported in Tables 2.1 and 2.3 might seem contradictory at first glance.
In many cases, the HaarPSI yields the highest SROCC for a complete database but is
outperformed by other metrics like the VSI when restricting the same database to a single
distortion type. However, taking into account statistical significance, it is apparent that
only when tested on the TID databases restricted to Gaussian blur, the performance
of the HaarPSI is consistently lower than the performance of other similarity metrics.
This particular shortcoming can be explained by the fact that the HaarPSI is almost
exclusively relying on high-frequency information and thus maybe too sensitive in the case
of distortions purely based on low-pass filtering.

When only considering a specific type of distortion, the correlations yielded by the
HaarPSI might be improved by tuning the constants 𝐶 and 𝛼, which have originally been
selected to optimize the overall performance. Increasing 𝐶 decreases the sensitivity of the
HaarPSI to changes in the high-frequency components measured by the similarity maps
HS(1,2)

I1,I2
relative to the weights W(1,2)

f , which are based on a lower frequency band and serve
as a rough model of attention-like processes. The effect of the parameter 𝛼 on the HaarPSI
is qualitatively similar when it is approaching zero. This could explain the roughly negative
linear relationship between 𝐶 and 𝛼 in Figure 2.4. However, for larger choices of 𝛼, the
function 𝑙𝛼(·) is increasingly mimicking the behavior of a thresholding operator in the sense
that only severe changes in the high-frequency components will have a significant effect
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on the HaarPSI. To also provide a quantitative analysis of these relationships, Figure 2.6
depicts the influence of 𝐶 and 𝛼 on the correlation with human opinion scores in the case
of TID 2013 with respect to six different distortions. Figure 2.6(c) indeed suggests that in
the case of Gaussian blur, the performance of the HaarPSI can be improved by attenuating
its sensitivity to changes in the high-frequency components via increasing 𝐶 and choosing
𝛼 close to 0. In contrast, Figure 2.6(a) indicates that the HaarPSI achieves the highest
correlations in the case of JPEG compression artifacts when it is tuned to be sensitive to
severe changes in the high frequency components at highly salient locations.

It is surprising that the extremely simple computational model of orientation and
spatial frequency selectivity used in the HaarPSI suffices to obtain comparatively high
correlations with human opinion scores. Additionally, these correlations are stable with
respect to a wide range of parameters 𝐶 and 𝛼 (cf. Figure 2.4). This could indicate that
the computational structure of the HaarPSI succeeds at reproducing the functional essence
of at least some parts of the human visual system. It is, however, quite likely that the
HaarPSI owes some of its experimental success to the limitations of the used benchmark
databases, which only consider a limited number of reference images and specific types of
distortions. Certainly, orientation selectivity in the primary visual cortex is not restricted
to horizontal and vertical edges.

Another computational principle that plays an important role in natural neural systems
and that was recently successfully applied in the context of perceptual image similarity
measurement is divisive normalization [111]. While the similarity measure S(𝑎, 𝑏, 𝐶)
introduces some kind of normalization, divisive normalization is not included in any of the
computational stages of the HaarPSI. It remains an open question if and how the HaarPSI
could be further improved by incorporating divisive normalization in a similar fashion as
the concepts of orientation selectivity and spatial frequency selectivity.

Many practical applications demand image similarity metrics to yield values that are
easy to interpret. Ideally, an image similarity of 0.9 would in fact indicate that the average
human would also assess a similarity of 90 % between two images or that a decrease in
similarity to 0.8 corresponds to a 10 % decrease in perceived quality for a human viewer.
Due to the generality and difficulty of this task, computational models of image similarity
typically only aim at establishing a monotonic relationship with human mean opinion
scores, which is also reflected in the choice of the SROCC as a measure of consistency. In
the case of the HaarPSI, applying 𝑙−1

𝛼 (·)2 to the final similarity score significantly linearizes
its relationship with human opinion scores, thereby leading to the strong linear correlations
depicted in the scatter plots in Figure 2.5. While 𝑙−1

𝛼 (·)2 is monotonically increasing on
[1
2 , 1) and therefore not affecting the SROCC, we hope that this improves the readability

and applicability of the HaarPSI. To also provide an objective measure of linear correlation,
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(a) JPEG (b) JP2K (c) Blur

(d) AWGN (e) SCN (f) Denoising

Figure 2.6: Spearman rank order correlations as functions of the parameters 𝐶 and 𝛼 for
images affected by (a) JPEG compression, (b) JP2K compression, (c) Gaussian Blur, (d)
additive Gaussien white noise, (e) spatially correlated noise white noise, and (f) denoising. All
correlations are with respect to TID 2013.

we repeated the numerical evaluation from Section 2.3 with the Pearson product-moment
correlation instead of the SROCC (see Tables A.1 and A.2 in the appendix). The results
of this analysis indicate that even without additional nonlinear regression, the HaarPSI
has a highly linear relationship with human mean opinion scores from different databases
and across varying types of distortion.

The HaarPSI can conceptually be understood as a simplified version of the FSIM. Both
metrics rely on the construction of two maps, where one map measures local similarities
between a reference image and a distorted image and the other map assesses the relative
importance of image areas. However, in the HaarPSI, these maps are defined only in terms
of a single Haar wavelet filterbank, while the FSIM utilizes an implementation of the phase
congruency measure that requires the input images to be convolved with 16 complex-valued
filters and contains several non-trivial computational steps, like adaptive thresholding.
Another difference is that the FSIM uses the phase congruency measure both as a weight
function in (2.26) and as a part of the local similarity measure (2.25). In the HaarPSI, the
weight function (2.39) and the local similarity measure (2.38) are strictly separated in the
sense that they are based on distinct bands of the frequency spectrum.

These conceptual simplifications lead to a significant decrease in execution time (see
Table 2.2) and enable a better understanding of how single elements of the measure and
properties of the input images contribute to the final similarity score. In the case of the
HaarPSI, it is clear that the local similarity measure is based on high-frequency information,
while the weight map, which provides a crude measure of visual saliency, is using filters
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Table 2.4: SROCC on benchmark databases for different choices of wavelet filters.

Daub2PSI Daub4PSI Sym4PSI CDFPSI Coif1PSI HaarPSI
Grayscale images
LIVE 0.9620 0.9530 0.9552 0.9604 0.9603 0.9690
TID 2008 0.8971 0.8796 0.8915 0.8836 0.8965 0.9043
TID 2013 0.8064 0.7982 0.8022 0.7965 0.8055 0.8094
CSIQ 0.9492 0.9442 0.9454 0.9404 0.9485 0.9546
Color images
LIVE 0.9659 0.9610 0.9630 0.9675 0.9644 0.9683
TID 2008 0.8992 0.8804 0.8950 0.8932 0.8986 0.9097
TID 2013 0.8724 0.8643 0.8696 0.8633 0.8716 0.8732
CSIQ 0.9603 0.9577 0.9592 0.9596 0.9593 0.9604

Lower and higher correlations than HaarPSI (statistically significant with
𝑝 < 0.05). The highest correlation in each row is written in boldface.

that are tuned to lower frequencies. We suspect that a similar principle plays an important
role in the FSIM, where additional high-frequency filters are applied to obtain the gradient
map used in the local similarity measure (2.25). However, for the FSIM, it is difficult to
verify this, as filters that are tuned to lower frequencies are only implicitly used in the
computation of the phase congruency measure, which is in turn part of both the local
similarity measure and the weight map.

We do not have a straightforward explanation as to why the HaarPSI outperforms the
FSIM with respect to correlations with human opinion scores (see Table 2.1). After all, both
measures have a similar overall structure and implement similar principles such as frequency
and orientation selectivity. We assume that the reduced complexity of the HaarPSI also
limits uncontrollable side effects when accentuating different aspects of the input images
by varying the parameters 𝐶 and 𝛼. This could improve the chance of successfully fitting
subsets of benchmark databases when only considering two free parameters, but also
decrease the generalization error. Furthermore, the principle of orientation selectivity is
implemented differently in the HaarPSI in the sense that measurements regarding horizontal
and vertical structures are only combined at the very end, that is, when taking the weighted
average. It is well known that orientation selectivity is a strong organization principle in
the primary visual cortex, where neurons that are tuned to similar orientations are grouped
together in so-called orientation columns [82]. It thus seems reasonable that a consistent
separation of the information yielded by vertical and horizontal filters has a positive effect
on the correlations with human opinion scores. From a computational point of view, it
is very beneficial to apply discrete Haar wavelet filters instead of other wavelet filters.
However, by changing ℎ1D

1 and 𝑔1D
1 in (2.32) to the respective filters, the measure given in
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(2.40) can easily be defined for other wavelets. Table 2.4 depicts the performance of such
measures based on selected Daubechies wavelets [43], symlets [45], coiflets [44] and the
Cohen-Daubechies-Feauveau wavelet [36] with respect to the four databases considered in
Section 2.3. It is interesting to see that Haar filters not only seem to be the computationally
most efficient but also the qualitatively best choice for the measure (2.40).
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Visual Servoing

The contents of this chapter are based on:

• Duflot, L.-A., Reisenhofer, R., Tamadazte, B., Andreff, N., and Krupa, A.:
“Wavelet and shearlet-based image representations for visual servoing”. To appear in
Int. J. Robot. Res.

Prelude Wavelet- and Shearlet-Based Transforms

The theory of wavelets is certainly one of the biggest success stories in the field of applied
harmonic analysis. Broadly speaking, a wavelet is an oscillating but localized function
whose shifts and dilates can be used to construct systems of functions that are well suited to
represent and analyze arbitrary functions in 𝐿2(R). One of the most significant advantages
of wavelet-based transforms with respect to classical Fourier analysis is that, due to being
localized in the time domain, wavelets not only yield information about which frequencies
are present in a signal but can also identify when they are occurring in the time domain.
What sets wavelets apart from other approaches in time-frequency analysis, such as the
short-time Fourier transform, is that instead of considering fixed windows that provide
localization in the time domain and using the modulation operator as a means of changing
the frequency of a generating function, the construction of systems of wavelets is based
on dilation. By squeezing or stretching a function, the dilation operator changes the
frequencies but also the localization in the time domain (see, e.g., Figure 2.1(a)). As a
result, wavelet-based systems are adaptive in the sense that high-frequency wavelets have
a higher degree of localization in the time domain than their low-frequency counterparts.

The first definition of a transform that can be considered a wavelet transform was
already given in 1910 by Alfreed Haar [76] (see prelude to Chapter 2). However, it was
the groundbreaking work of pioneers like Ingrid Daubechies [43], Stéphane Mallat [120]
and Yves Meyer [128] in the late 1980’s and early 1990’s, that made discrete wavelet
transforms applicable in many areas of engineering and applied mathematics and led to
the development of a new generation of multiscale signal and image representations. A

37
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comprehensive introduction to the theory of wavelets can be found in textbooks such as [45]
or [121], which have also been the main source for the first part of this prelude.

Formally, a function 𝜓 ∈ 𝐿2(R) is called a wavelet if it satisfies the wavelet admissibility
condition ∫︁

R

⃒⃒⃒ ̂︀𝜓(𝜉)
⃒⃒⃒2

|𝜉|−1 d𝜉 < ∞, (3.1)

and we denote shifts and dilates of a generating wavelet 𝜓 by

𝜓𝑎,𝑏 = |𝑎|−
1
2 𝜓

(︂
· − 𝑏

𝑎

)︂
, 𝑎, 𝑏 ∈ R, 𝑎 ̸= 0, (3.2)

where 𝑎 is a dilation paramter and 𝑏 is a translation parameter. The wavelet admissibility
condition (3.1) is a necessary condition for the existence of an inversion formula of the
continuous wavelet transform of a function 𝑓 ∈ 𝐿2(R) associated with 𝜓 that is defined as

(𝒞𝒲𝜓𝑓)(𝑎, 𝑏) = ⟨𝑓, 𝜓𝑎,𝑏⟩𝐿2 = |𝑎|−
1
2

∫︁
R

𝑓(𝑥)𝜓
(︂
𝑥− 𝑏

𝑎

)︂
d𝑥, 𝑎, 𝑏 ∈ R, 𝑎 ̸= 0. (3.3)

Note that if 𝜓 ∈ 𝐿1(R), which implies that ̂︀𝜓 is continuous, (3.1) can only be satisfied if 𝜓
has a vanishing mean value, that is if

𝜓(0) =
∫︁
R

𝜓(𝑥) d𝑥 = 0. (3.4)

The admissibility condition hence enforces wavelets to exhibit some kind of oscilla-
tory behavior, which can also be observed in the examples of wavelets plotted in Fi-
gures 2.1(a), 3.1(a) and 3.1(c). A first example of a function that satisfies (3.1) and (3.4),
the Haar wavelet 𝜓haar, was already discussed in the prelude to Chapter 2. In particular,
it was shown in Theorem 2.0.2 that the set 𝛹haar, which consists of shifts and dilates of
𝜓haar, is an ONB for 𝐿2(R). In the proof of Theorem 2.0.2, we explicitly constructed
linear combinations of Haar wavelets that can approximate any given function in 𝐿2(R)
arbitrarily well by representing the difference of increasingly coarse step functions. This
approach implicitly defined a nested structure of approximation spaces which were defined
as the closure of the linear span of the shifts of dilated indicator functions 1[0,1)(2−𝑗 ·). This
specific structure is in fact an instance of a so-called multiresolution analysis (MRA) [120],
which is a powerful framework that enables us to define a wide class of wavelet-based ONBs
for 𝐿2(R).

Definition 3.0.1 (MRA, as in [45]). A sequence {𝑉𝑗}𝑗∈Z of closed subspaces in 𝐿2(R) that
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are nested in the sense that

· · · ⊂ 𝑉2 ⊂ 𝑉1 ⊂ 𝑉0 ⊂ 𝑉−1 ⊂ 𝑉−2 ⊂ · · · , (3.5)

constitutes a multiresolution analysis (MRA) if the following properties are satisfied:

∀𝑗 ∈ Z : 𝑓 ∈ 𝑉𝑗 ⇔ 𝑓
(︀
2𝑗 ·
)︀

∈ 𝑉0, (3.6)

∀𝑚 ∈ Z : 𝑓 ∈ 𝑉0 ⇔ 𝑓(· −𝑚) ∈ 𝑉0, (3.7)
∞⋃︁

𝑗=−∞
𝑉𝑗 = 𝐿2(R), (3.8)

∞⋂︁
𝑗=−∞

𝑉𝑗 = {0}, (3.9)

and if there exists a scaling function 𝜙 ∈ 𝐿2(R) such that the sequence {𝜙(· −𝑚)}𝑚∈Z is
an ONB of 𝑉0.

In the case of Haar wavelets, the approximation space 𝑉0 is defined as the closure of
the linear span of the integer shifts of the indicator function 1[0,1), which thus assumes
the role of the scaling function 𝜙 in Definition 3.0.1. In the proof of Theorem 2.0.2, we
already saw that the Haar wavelets 𝜓haar

𝑗,𝑚 can be used to encode the difference between
two consecutive approximation spaces 𝑉𝑗 and 𝑉𝑗−1. To construct an ONB for 𝐿2(R) from
an arbitrary MRA, we now consider the so-called wavelet spaces 𝑊𝑗 , which are defined for
𝑗 ∈ Z as the orthogonal complement of 𝑉𝑗 in 𝑉𝑗−1, that is,

𝑊𝑗 = 𝑉 ⊥
𝑗 ⊂ 𝑉𝑗−1, 𝑗 ∈ Z. (3.10)

Due to 𝑉𝑗−1 = 𝑊𝑗 ⊕ 𝑉𝑗 for all 𝑗 ∈ Z and the nested structure of the approximation spaces
(see (3.5)), this implies that

𝑊𝑗1 ⊥ 𝑊𝑗2 , if 𝑗1 ̸= 𝑗2, (3.11)

for all 𝑗1, 𝑗2 ∈ Z. Furthermore, the MRA properties (3.8) and (3.9) imply that⨁︁
𝑗∈Z

𝑊𝑗 = 𝐿2(R). (3.12)

In summary, the sequence of wavelet spaces {𝑊𝑗}𝑗∈Z consists of mutually orthogonal spaces
whose infinite direct sum equals 𝐿2(R). The following theorem shows that it is indeed
possible to define a generating wavelet 𝜓 based on the scaling function of an MRA that
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can be used to construct orthonormal bases for the spaces 𝑊𝑗 , as well as 𝐿2(R).

Theorem 3.0.2 (Wavelet ONB for 𝐿2(R), [45, 121]). Let {𝑉𝑗}𝑗∈Z be an MRA (see
Definition 3.0.1) and 𝜙 ∈ 𝐿2(R) be the associated scaling function. Furthermore, let us
consider the sequence ℎ =

{︀
ℎ𝑛 =

√
2 ⟨𝜙(2 · −𝑛), 𝜙⟩𝐿2

}︀
𝑛∈Z, that is,

𝜙 =
√

2
∑︁
𝑛∈Z

ℎ𝑛𝜙(2 · −𝑛), (3.13)

and the trigonometric polynomial

𝑚0(𝜉) = 2− 1
2
∑︁
𝑛∈Z

ℎ𝑛𝑒
−2𝜋𝑖𝑛𝜉. (3.14)

Then, the function ̂︀𝜓(𝜉) = 𝑒𝜋𝑖𝜉𝑚0 (𝜉/2 + 1/2)̂︀𝜙 (𝜉/2) (3.15)

is the Fourier transform of a wavelet 𝜓 such that for each 𝑗 ∈ Z, the sequence{︁
𝜓𝑗,𝑚 = 2− 𝑗

2𝜓(2−𝑗 · −𝑚)
}︁
𝑚∈Z

is an ONB for the space 𝑊𝑗 (cf. (3.10)), and the family
{𝜓𝑗,𝑚}𝑗,𝑚∈Z is an ONB for 𝐿2(R).

It should be noted that not every wavelet ONB for 𝐿2(R) necessarily constitutes an
MRA. For instance, the so-called Journé wavelet (see, e.g., [45]), is a somewhat pathological
example of a mother wavelet 𝜓, for which the set {𝜓𝑗,𝑚}𝑗,𝑚∈Z is an ONB but which is not
associated with an MRA.

Equation (3.13) is also known es the scaling relation and illustrates the special connection
between the scaling function 𝜙 and the scaling filter ℎ. Note that by inverting the Fourier
transform, the definition of the mother wavelet 𝜓 in (3.15) can also be written as

𝜓 =
√

2
∑︁
𝑛∈Z

𝑔𝑛𝜙(2 · −𝑛), (3.16)

where the so-called wavelet filter is defined as the sequence 𝑔 =
{︀
𝑔𝑛 = (−1)𝑛−1ℎ−𝑛−1

}︀
𝑛∈Z.

Two examples of wavelets and scaling functions that are associated with an MRA are
plotted along with their respective filters 𝑔 and ℎ in Figure 3.1. While Equation (3.15)
is not the only way of defining orthonormal wavelet bases for the spaces 𝑊𝑗 , the filter 𝑔

can always be obtained by considering the sequence
{︀
𝑔𝑛 =

√
2 ⟨𝜙(2 · −𝑛), 𝜓⟩𝐿2

}︀
𝑛∈Z and

we denote the associated trigonometric polynomial with

𝑚1(𝜉) = 2− 1
2
∑︁
𝑛∈Z

𝑔𝑛𝑒
−2𝜋𝑖𝑛𝜉. (3.17)
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(a) Coiflet mother
wavelet

(b) Coiflet scaling
function

(c) Daubechies mot-
her wavelet

(d) Daubechies
scaling function

(e) Coiflet wavelet
filter

(f) Coiflet scaling
filter

(g) Daubechies
wavelet filter

(h) Daubechies
scaling filter

Figure 3.1: Examples of mother wavelets, scaling functions and their associated discrete
filters.

The question remains, however, how a scaling function 𝜙 that defines an MRA in the sense
of Definition 3.0.1 can be obtained. Applying the Fourier transform to both sides of the
scaling relation (3.13) yields

̂︀𝜙(𝜉) = 𝑚0(𝜉/2)̂︀𝜙(𝜉/2) = 𝑚0(𝜉/2)𝑚0(𝜉/4)̂︀𝜙(𝜉/4) = · · · , (3.18)

and similarly in the case of (3.16),

̂︀𝜓(𝜉) = 𝑚1(𝜉/2)̂︀𝜙(𝜉/2). (3.19)

Assuming that ̂︀𝜙 is continuous in 0 and 𝜓 normalized in the sense that ̂︀𝜓(0) =
∫︀
R 𝜓(𝑥) d𝑥 =

1, it follows from (3.18) that

𝜙(𝜉) =
∞∏︁
𝑗=1

𝑚0(2−𝑗𝜉). (3.20)

This means that, under certain conditions, the trigonometric polynomial 𝑚0 defined by a
sequence ℎ via (3.14) can in fact be used to construct a scaling function 𝜙 that in turn
defines an MRA. Sufficient conditions for the sequence ℎ such that the scaling function
(3.20) defines an MRA can, for instance, be found in [45] or [121].

It was already observed in the prelude to Chapter 2 that by interpreting the entries
of a discrete-time signal in ℓ2(Z) as the coefficients of a linear combination of shifts of
a dilate of the indicator function 1[0,1), the corresponding Haar wavelet coefficients can
directly be computed via discrete convolutions with the filters ℎ and 𝑔 (cf. Theorem 2.0.2).
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This relationship is not exclusive to Haar wavelets but can be defined for general MRAs.
Analogous to Equation (2.2) in the prelude to Chapter 2, let us now consider dyadic dilates
and shifts of a mother wavelet 𝜓 of an MRA, that is,

𝜓𝑗,𝑚 = 2−𝑗/2𝜓
(︀
2−𝑗 · −𝑚

)︀
, 𝑗,𝑚 ∈ Z, (3.21)

and the associated discrete wavelet transform of a function 𝑓 ∈ 𝐿2(R), defined as

(𝒲𝜓𝑓)(𝑗,𝑚) = ⟨𝑓, 𝜓𝑗,𝑚⟩𝐿2 = 2−𝑗/2
∫︁
R

𝑓(𝑥)𝜓 (2−𝑗 · −𝑚) d𝑥, 𝑗,𝑚 ∈ Z. (3.22)

Note that here, the term discrete refers to the discrete sampling of the scale parameter
𝑗 and the shift parameter 𝑚. In this setting, the family {𝜓𝑗,𝑚}𝑗,𝑚∈Z also constitutes an
ONB for 𝐿2(R) (cf. Theorem 3.0.2). Using Equation (3.16), it follows that

(𝒲𝜓𝑓)(1,𝑚) = ⟨𝑓, 𝜓1,𝑚⟩𝐿2 =
⟨
𝑓,
∑︁
𝑛∈Z

𝑔𝑛𝜙(· − 2𝑚− 𝑛)
⟩
𝐿2

=
∑︁
𝑛∈Z

𝑔𝑛−2𝑚 ⟨𝑓, 𝜙0,𝑛⟩𝐿2 ,

(3.23)
or, more general,

(𝒲𝜓𝑓)(𝑗,𝑚) =
∑︁
𝑛∈Z

𝑔𝑛−2𝑚 ⟨𝑓, 𝜙𝑗−1,𝑛⟩𝐿2 , 𝑗,𝑚 ∈ Z. (3.24)

Similarly, it holds for the scaling function 𝜙 that

⟨𝑓, 𝜙𝑗,𝑚⟩𝐿2 =
∑︁
𝑛∈Z

ℎ𝑛−2𝑚 ⟨𝑓, 𝜙𝑗−1,𝑛⟩𝐿2 , 𝑗,𝑚 ∈ Z. (3.25)

Analogous to the proof of Theorem 2.0.2, we now assume that for an arbitrarily large
positive integer 𝐽 ∈ N and a finite sequence 𝑐−𝐽 ∈ ℓ2(Z), a given function 𝑓 ∈ 𝐿2(R) can
be expressed as a linear combination of shifts of the dilated scaling function 𝜙−𝐽,0:

𝑓 =
∑︁
𝑛∈Z

𝑐−𝐽,𝑛𝜙−𝐽,𝑛 =
∑︁
𝑛∈Z

⟨𝑓, 𝜙−𝐽,𝑛⟩𝐿2 𝜙−𝐽,𝑛. (3.26)

Here, the sequence 𝑐−𝐽 can be interpreted as a finite and discrete-time representation
of the function 𝑓 . The coefficients of the discrete wavelet transform (3.22) of 𝑓 can now
directly be computed for all scales 𝑗 > −𝐽 by iteratively convolving the sequence 𝑐−𝐽 with
the associated scaling filter ℎ and the wavelet filter 𝑔, yielding a faithful transition between
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the continuous setting and the discrete-time world:

𝑑𝑗 = (𝑐𝑗−1 * ̃︀𝑔)↓2, and 𝑐𝑗 = (𝑐𝑗−1 * ̃︀ℎ)↓2, (3.27)

where ̃︀𝑔𝑛 = 𝑔−𝑛 and ̃︀ℎ𝑛 = ℎ−𝑛. As in the prelude to Chapter 2, the sequences 𝑑𝑗

contain the so-called detail coefficients while the entries of the sequences 𝑐𝑗 are denoted
as approximation coefficients. Note that omitting the dyadic subsampling operator ↓ 2
in Equation 3.27 corresponds to a wavelet transform where the translation parameters
are sampled with a higher density than in (3.22). Such transforms are often denoted as
stationary or non-subsampled wavelet transforms. This type of transform was already used
in the definition of the HaarPSI in Chapter 2 (see Equation 2.40) and will also play an
important role in the definition of wavelet- and shearlet-based visual servoing schemes later
in this chapter.

So far in this prelude, we have only considered wavelet transforms of one-dimensional
signals. All of the three applications discussed in this thesis, however, are concerned with
the analysis of images and thus require a two-dimensional approach. A straightforward
way of defining two-dimensional wavelet transforms is to consider two-dimensional wavelet
generators that are based on tensor products of a one-dimensional mother wavelet and
the associated one-dimensional scaling functions. For a scaling function 𝜙 ∈ 𝐿2(R) and a
mother wavelet 𝜓 ∈ 𝐿2(R), we consider separable two-dimensional wavelet generators

𝜓(1)(𝑥) = (𝜙⊗ 𝜓)(𝑥) = 𝜙(𝑥1)𝜓(𝑥2), (3.28)

𝜓(2)(𝑥) = (𝜓 ⊗ 𝜙)(𝑥) = 𝜓(𝑥1)𝜙(𝑥2), (3.29)

𝜓(3)(𝑥) = (𝜓 ⊗ 𝜓)(𝑥) = 𝜓(𝑥1)𝜓(𝑥2), (3.30)

and the two-dimensional scaling function

𝜙(1)(𝑥) = (𝜙⊗ 𝜙)(𝑥) = 𝜙(𝑥1)𝜙(𝑥2). (3.31)

Analogous to the one-dimensional setting, we apply the dyadic scaling matrix

A =
[︃

2 0
0 2

]︃
, (3.32)

and define shifts and 𝐿2-normalized dilates of a two-dimensional wavelet generator by

𝜓𝑗,𝑚 = 2𝑗𝜓
(︀
A𝑗 · −𝑚

)︀
, 𝑗 ∈ Z,𝑚 ∈ Z2. (3.33)
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Note that by writing A𝑗 instead of A−𝑗 , the usage of the dilation parameter 𝑗 is slightly
different than in the one-dimensional case (cf. Equation 3.21). Here, the high-frequency
wavelets are associated with parameters 𝑗 ≫ 0, while low-frequency wavelets are obtained
by choosing 𝑗 ≪ 0. This convention will be maintained throughout the remainder of this
thesis and was also used in the definition of the HaarPSI in Chapter 2. For a function
𝑓 ∈ 𝐿2(R2), the discrete wavelet transform with respect to a wavelet generator 𝜓 ∈ 𝐿2(R2)
can now be defined as

(𝒲𝜓𝑓)(𝑗,𝑚) = ⟨𝑓, 𝜓𝑗,𝑚⟩𝐿2 = 2𝑗
∫︁
R2

𝑓(𝑥)𝜓(A𝑗𝑥 − 𝑚) d𝑥, 𝑗 ∈ Z,𝑚 ∈ Z2. (3.34)

Analogous to (3.26), by interpreting a given discrete-time image I ∈ ℓ2(Z2) as an approxi-
mation of a function 𝑓 ∈ 𝐿2(R2) in the sense that

𝑓 ≈ 2𝐽
∑︁

𝑚∈Z2

𝐼[𝑚]𝜙(1)(A𝐽 · −𝑚), (3.35)

for a fixed scale 𝐽 ∈ N, the MRA framework facilitates the faithful computation of wavelet
coefficients (𝒲𝜓𝑓)(𝑗,𝑚) in terms of convolutions of I with the associated scaling and
wavelet filters. Figure 3.2 depicts the first and second stage of a two-dimensional wavelet
transform of a digital image. Both representations shown in Figure 3.2 contain a coarse
approximation of the original image associated with the scaling function 𝜙(1) as well as
several levels of detail coefficients, associated with the wavelets 𝜓(1), 𝜓(2), and 𝜓(3).

Just as in the one-dimensional case, the two-dimensional mother wavelets defined in
Equations (3.28) to (3.30) can be used to define an ONB for 𝐿2(R2), as illustrated by the
following theorem.

Theorem 3.0.3 (Wavelet ONB for 𝐿2(R2), e.g. [121]). Let 𝜙,𝜓 ∈ 𝐿2(R) be the scaling
function respectively the mother wavelet of an MRA for 𝐿2(R). Then, the two-dimensional
wavelets 𝜓(1), 𝜓(2), and 𝜓(3) (see (3.28) to (3.30)) are the generators of an ONB for 𝐿2(R2)
in the sense that the set

{︁
𝜓

(𝑙)
𝑗,𝑚 : 𝑗 ∈ Z,𝑚 ∈ Z2, 𝑙 ∈ {1, 2, 3}

}︁
is an ONB for 𝐿2(R2).

By virtue of being localized in the time domain, wavelets are well suited for characterizing
transient features such as singularities in the one-dimensional setting. To a certain extent,
this property is carried over to the two-dimensional world. For instance, the detail
coefficients associated with the wavelet generators 𝜓(1), 𝜓(2), and 𝜓(3) in the wavelet-based
image representations in Figure 3.2 are clearly highlighting the edges of the image depicted
in Figure 3.2(a). However, it can be shown that systems of two-dimensional wavelets
are in a sense not optimal for representing the curvilinear features typically occurring
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(c) Decomposition at level 2.

Figure 3.2: Wavelet decompositions of a digital image at level 1 and 2. Each pixel in 3.2(b)
and 3.2(c) corresponds to the inner product of the image 3.2(a) with a discrete wavelet filter.
The coefficients associated with the low-pass scaling function 𝜙(1) define a coarse approximation
of the original image. The coefficients associated with the high-pass wavelet functions 𝜓(1), 𝜓(2),
and 𝜓(3) highlight horizontal, vertical and diagonal edges, respectively. Wavelet transforms
often yield sparse representations of images, which is indicated by the large number of zeros in
3.2(b) and 3.2(c).

in a two-dimensional image [50]. The main reason behind this that such features are
typically associated with a direction (e.g. the tangent direction of an edge), that is, they
are anisotropic. The scaling matrix A defined in (3.32), however, is isotropic in the sense
that both dimensions are either squeezed or stretched by the same amount. To optimally
characterize transient anisotropic two-dimensional features, it would be preferable to
use systems in which the high-frequency elements are also directionally sensitive. This
motivated the investigation of multiscale transforms for two- and higher-dimensional
signals that are based on anisotropic scaling such as curvelets [25], contourlets [49], and
shearlets [104, 110]. All of these approaches have since found numerous applications in
image processing tasks such as image denoising [58], inpainting [95], or edge detection [108,
144, 171]. In this chapter, we will focus on shearlet-based image representations. However,
we will see in the prelude to Chapter 4 that many of the theoretical results regarding
approximation properties can indeed be transferred between different constructions of
multiscale representation systems.

In most cases, systems that are based on anisotropic scaling contain redundancies in the
sense that their elements are not linearly independent. In particular, this means that such
systems do not constitute an ONB and hence do not provide uniquely defined expansions.
At first glance, this might seem like a drawback. However, when applying a transform that
is based on a redundant system, it is often possible to find representations that are sparser
and thus, in a sense, more efficient, than when only considering ONBs. Furthermore, for
the specific applications considered in this thesis, the most important question is not if
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and how an analyzed image can be reconstructed after applying a certain transform but
whether the transform succeeds at reliably extracting the features that are most significant
for the respective task. In such a setting, redundant systems can have huge advantages
over ONBs.

Before introducing shearlet-based transforms, we will thus take a short detour and briefly
discuss the definition of a frame, which provides a useful generalization of the concept of an
orthonormal basis and is one of the most important tools for the investigation of redundant
representation systems. For a countable index set 𝛬, a family 𝛷 = {𝜙𝜆}𝜆∈𝛬 ⊂ 𝐿2(R2) is
called a frame for 𝐿2(R2) if there exist constants 0 < 𝐴 ≤ 𝐵 such that

𝐴 ‖𝑓‖2
2 ≤

∑︁
𝜆∈𝛬

|⟨𝑓, 𝜙𝜆⟩𝐿2 |2 ≤ 𝐵 ‖𝑓‖2
2 , ∀𝑓 ∈ 𝐿2(R2). (3.36)

This condition is a relaxation of Parseval’s identity
∑︀
𝜆∈𝛬

|⟨𝑓, 𝜙𝜆⟩𝐿2 |2 = ‖𝑓‖2
2, which holds for

orthonormal systems if and only if they also constitute a basis. If 𝐴 = 𝐵, the corresponding
frame is called a tight frame. If furthermore 𝐴 = 𝐵 = 1, (3.36) reduces to Parseval’s
identity and the associated frame is called a Parseval frame. Note that even Parseval
frames do not necessarily define an ONB if they do not constitute an orthonormal system.
The transform of a function 𝑓 ∈ 𝐿2(R2) with respect to a frame is defined via the so-called
analysis operator

𝒯𝛷 : 𝐿2(R2) → ℓ2(𝛬) : 𝑓 ↦→ {⟨𝑓, 𝜙𝜆⟩𝐿2}𝜆∈𝛬, (3.37)

whose adjoint
𝒯 *
𝛷 : ℓ2(𝛬) → 𝐿2(R2) : {𝑐𝜆}𝜆∈𝛬 ↦→

∑︁
𝜆∈𝛬

𝑐𝜆𝜙𝜆, (3.38)

is often denoted as the synthesis operator. Due to 𝒯 *
𝛷 being bounded, a series of the form∑︀

𝜆∈𝛬 𝑐𝜆𝜙𝜆, where 𝑐 is in ℓ2(𝛬), and {𝜙𝜆}𝑖∈𝛬 is a frame, is associated with a notion of
unconditional convergence (see, e.g., [69]). In particular, this means that certain manipula-
tions such as rearrangements, or interchanging the summation with a linear operator, are
permitted. Due to the fact that the so-called frame operator 𝒮𝛷 = 𝒯 *

𝛷 𝒯𝛷 : 𝐿2(R2) → 𝐿2(R2)
is invertible (see, e.g., [33]), unconditional convergence can also be applied to obtain the
following reconstruction formula:

𝑓 = 𝒮−1
𝛷 𝒮𝛷𝑓 = 𝒮−1

𝛷

∑︁
𝜆∈𝛬

⟨𝑓, 𝜙𝜆⟩𝐿2 𝜙𝜆 =
∑︁
𝜆∈𝛬

⟨𝑓, 𝜙𝜆⟩𝐿2 𝒮−1
𝛷 𝜙𝜆, ∀𝑓 ∈ 𝐿2(R2), (3.39)

This means that, analogous to the case of an orthonormal basis, it is always possible
to reconstruct a function 𝑓 from its analysis coefficients 𝒯𝛷𝑓 . Note that in the case of
tight frames, 𝒮𝛷 = 1

𝐴 , and for Parseval frames, the frame operator is just the identity. A
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comprehensive introduction to the theory of frames can be found in [33].
Let us now turn to shearlet-based transforms for functions in 𝐿2(R2). The main idea

behind the construction of shearlet systems is to replace the isotropic scaling matrx A (see
(3.32)) with an anisotropic scaling matrix

A1/2 =
[︃

2 0
0 21/2

]︃
, (3.40)

which treats both dimensions differently. Broadly speaking, applying the anisotropic
scaling matrix A1/2 to the argument of a generating function will cause the function to be
more severely squeezed in the first dimension than in the second one. This means that
consecutive applications of the scaling matrix A1/2 will introduce an increasing directional
bias to the high-frequency elements of a shearlet-based system. The difference between
isotropic scaling and anisotropic scaling is illustrated in Figure 3.3 in the case of digital
two-dimensional wavelet and shearlet filters. Note that the exponent 1/2 defines a so-called
parabolic scaling matrix. There exist generalizations in which 1/2 can be replaced with
an exponent 𝛼 ∈ [0, 1] [71], which will be discussed in more detail in Chapter 4, and
generalizations which are not restricted to the dyadic scaling factor 2 [66]. In the wavelet
case, due to their localization in the time domain, it is necessary to also consider shifts
of dilated mother wavelet in order to define an ONB for 𝐿2(R) or 𝐿2(R2). Analogously,
in the case of systems of directionally sensitive functions, we require a means of changing
their preferred orientation in order to have a chance of obtaining frames or even bases for
𝐿2(R2). In the shearlet setting, this is done by applying the shear matrices

S𝑘 =
[︃

1 𝑘

0 1

]︃
, 𝑘 ∈ Z (3.41)

to the argument of a shearlet generator. Other constructions that are based on anisotropic
scaling, such as curvelets [25], use rotations rather than shears. However, one of the most
significant advantages of the shear operator is that for shear parameters 𝑘 ∈ Z, the integer
grid is invariant under the action of the shear matrix S𝑘. In particular, this facilitates the
faithful digitization of shearlet-based transforms defined in 𝐿2(R).

Similar to the wavelet case, a function 𝜓 ∈ 𝐿2(R2) is said to be an admissible shearlet
if it satisfies ∫︁∫︁

R2

⃒⃒⃒ ̂︀𝜓(𝜉1, 𝜉2)
⃒⃒⃒2
𝜉−2

1 d𝜉2 d𝜉1 < ∞, (3.42)

which implies the existence of an inverse of the continuous shearlet transform (see, e.g., [105]),
and for a shearlet generator 𝜓 ∈ 𝐿2(R2), we will consider anisotropically dilated, sheared,
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(b) Discrete 2D shearlet filters.

Figure 3.3: Comparison of discrete 2D wavelet and shearlet filters at different scales. Due to
the anisotropic scaling, the high-frequency shearlet filters in the last row of 3.3(b) are elongated
and better adapted to fit edges in images than the high-frequency wavelet filters in the last
row of 3.3(a). The frequency spectrum of each filter is depicted in the right columns of 3.3(a)
and 3.3(b).

and shifted 𝐿2-normalized functions of the form

𝜓𝑗,𝑘,𝑚 = 2
3𝑗
4 𝜓(S𝑘A𝑗

1/2 · −𝑚), 𝑗 ∈ Z, 𝑘 ∈ Z,𝑚 ∈ Z2. (3.43)

Like in the wavelet case, the discrete shearlet-based transform 𝒮ℋ𝜓𝑓 of a function 𝑓 ∈
𝐿2(R2) with respect to a generating shearlet 𝜓 ∈ 𝐿2(R2) is given for a scale parameter
𝑗 ∈ Z, a shear parameter 𝑘 ∈ Z, and a translation parameter 𝑚 ∈ Z2 by

(𝒮ℋ𝜓𝑓)(𝑗, 𝑘,𝑚) = ⟨𝑓, 𝜓𝑗,𝑘,𝑚⟩𝐿2 = 2
3𝑗
4

∫︁
R2

𝑓(𝑥)𝜓(S𝑘A𝑗
1/2𝑥 − 𝑚) d𝑥. (3.44)

One of the problems of using shear matrices of the form (3.41) to construct shearlet systems
is that they have an intrinsic directional bias in the sense that changing the preferred
orientation of a shearlet generator by 90 ∘ is only possibly in the limit 𝑘 → ∞. Furthermore,
due to the effect of the shear operator, shearlets 𝜓𝑗,𝑘,𝑚 with |𝑘| ≫ 0 will be unnaturally
elongated. A straightforward solution to this problem is given by considering so-called
cone-adapted shearlet systems. Such systems are based on two shearlet generators denoted
as 𝜓 and ̃︀𝜓, where the essential support of ̂︀𝜓 is contained in the horizontal frequency cones
and the essential support of ̂︀̃︀𝜓 is contained in the vertical frequency cones. By considering
the matrices ̃︀A1/2 =

[︃
21/2 0

0 2

]︃
, and S𝑘ᵀ =

[︃
1 0
𝑘 1

]︃
, 𝑘 ∈ Z, (3.45)
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and with a two-dimensional scaling function 𝜙 ∈ 𝐿2(R2), a discrete cone-adapted shearlet
system is defined as the union

𝑆𝐻(𝜙,𝜓, 𝜓) = 𝛷(𝜙) ∪ 𝛹(𝜓) ∪ 𝛹(𝜓), (3.46)

where

𝛷(𝜙) =
{︀
𝜙𝑚 = 𝜙(· − 𝑚) : 𝑚 ∈ Z2}︀ , (3.47)

𝛹(𝜓) =
{︁
𝜓𝑗,𝑘,𝑚 = 2𝑗

3
4𝜓 (S𝑘A𝑗 · −𝑚) : 𝑗 ∈ N0, |𝑘| <

⌈︁
2

𝑗
2

⌉︁
,𝑚 ∈ Z2

}︁
, (3.48)

𝛹(𝜓) =
{︁
𝜓𝑗,𝑘,𝑚 = 2𝑗

3
4𝜓
(︁

S𝑘ᵀ ̃︀A𝑗 · −𝑚
)︁

: 𝑗 ∈ N0, |𝑘| <
⌈︁
2

𝑗
2

⌉︁
,𝑚 ∈ Z2

}︁
. (3.49)

Here, the condition |𝑘| <
⌈︁
2

𝑗
2

⌉︁
prohibits shears of a generating shearlet that would change

the preferred orientation by more than 45 ∘. In particular, this forces the essential support
of a shearlet in the frequency domain to remain within the cones in which the corresponding
generating shearlet is located (hence the name cone-adapted). In turn, this means that
for a cone-adapted shearlet system to cover the whole frequency plane, it is important to
choose the generating shearlets 𝜓 and ̃︀𝜓 such that they are supported in different frequency
cones. In particular, this can be ensured by defining the functions 𝜙,𝜓 and ̃︀𝜓 analogous
to Equations (3.28) to (3.31) as tensor products of one-dimensional scaling and wavelet
functions. The tiling of the frequency domain induced by the system (3.46) is schematically
depicted in Figure 3.4(b), where it can also be compared to the tiling induced by a discrete
wavelet system, shown in Figure 3.4(a). Note that in the case of cone-adapted systems, the
definition of the shearlet transform (𝒮ℋ𝜓𝑓) (cf. (3.44)) needs to be adapted for ̃︀𝜓 in the
sense that the matrices S𝑘 and A1/2 have to be replaced with Sᵀ

𝑘 and ̃︀A1/2, respectively.
It seems evident that systems based on anisotropic scaling should be better suited for

characterizing the curvilinear features that often govern the geometry of two-dimensional
images than systems based on isotropic scaling. For a special class of images, so-called
cartoon-like images, which were first considered in this context in [52], it can indeed be shown
that shearlet-based systems of the form (3.46) yield in a sense optimal approximations.

Definition 3.0.4 (Cartoon-like image function, [52], as in [104]). Let 𝑓 ∈ 𝐿2(R2) be
compactly supported in [0, 1]2. If 𝑓 can be written as

𝑓 = 𝑓0 + 1𝐵 · 𝑓1, (3.50)

𝐵 ⊂ [0, 1]2 is a measurable set whose boundary is a closed 𝐶2-curve with bounded curvature,
𝑓0, 𝑓1 ∈ 𝐶2(R2) are compactly supported in [0, 1]2, and ‖𝑓0‖𝐶2 , ‖𝑓1‖𝐶2 ≤ 1, then 𝑓 is a
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(a) Tiling of the frequency
domain induced by a dis-
crete wavelet system

(b) Tiling of the frequency
domain induced by a dis-
crete shearlet system

(c) Example of a cartoon-
like image

Figure 3.4: Schematic depiction of partitions of the Fourier domain induced by (a): wavelets
and (b): shearlets. In each image, the areas drawn in the same shade of gray indicate the
frequency support of an element of a discrete wavelet or shearlet system associated with the
same generator and the same scaling and rotation parameters.

cartoon-like image function.

An example of a cartoon-like image is shown in Figure 3.4(c). Before stating the
associated optimality result, we need to briefly discuss the notion of 𝑁 -term approximations,
which will provide us with a meaningful way of comparing the approximation properties
of different systems of analyzing functions with respect to a given class of signals. Let 𝛬
be a countable index set and 𝛷 = {𝜙𝜆}𝜆∈𝛬 denote a normalized frame for 𝐿2(R2), that is,
‖𝜙𝜆‖2 = 1 for all 𝜆 ∈ 𝛬. Furthermore, let 𝑓 ∈ 𝐿2(R2), 𝑁 ∈ N, and 𝛬𝑁 ⊂ 𝛬 denote the
subset of 𝛬 that contains the 𝑁 largest coefficients of 𝒯𝛷𝑓 in magnitude, that is,

|𝛬𝑁 | = 𝑁, and ∀𝜆 ∈ 𝛬𝑁 , 𝜇 ∈ 𝛬 ∖ 𝛬𝑁 : |⟨𝑓, 𝜙𝜆⟩𝐿2 | ≥
⃒⃒
⟨𝑓, 𝜙𝜇⟩𝐿2

⃒⃒
. (3.51)

Then, the 𝑁 -term approximation of 𝑓 associated with the 𝑁 largest coefficients is defined
as

𝑓𝑁 =
∑︁
𝜆∈𝛬𝑁

⟨𝑓, 𝜙𝜆⟩𝐿2 𝒮−1
𝛷 𝜙𝜆, (3.52)

where 𝒮𝛷 denotes the frame operator associated with the frame 𝛷 (cf. (3.39)). It was
shown in [52] that when only considering sets 𝛬𝑁 that are obtained by a practically feasible
selection process, it is in fact possible to characterize the optimal approximation behavior
of a frame with respect to cartoon-like image functions.

Definition 3.0.5 (Optimally sparse approximations of cartoon-like images, [52], as in [106]).
Let 𝛷 = {𝜙𝜆}𝜆∈𝛬 be a normalized frame for 𝐿2(R2). Then, 𝛷 is said to yield optimally sparse
approximations of cartoon-like image functions if the 𝑁-term approximations associated



51

1 256

1

256

𝑗 = 0, 𝑘 = −1
1 256

1

256

𝑗 = 0, 𝑘 = 0

1 256

1

256

𝑗 = 0, 𝑘 = 1
1 256

1

256

𝑗 = 1, 𝑘 = −2

1 256

1

256

𝑗 = 1, 𝑘 = −1
1 256

1

256

𝑗 = 1, 𝑘 = 0

1 256

1

256

𝑗 = 1, 𝑘 = 1
1 256

1

256

𝑗 = 1, 𝑘 = 2

(a) Horizontal frequency cones

1 256

1

256

𝑗 = 0, 𝑘 = 0
1 256

1

256

𝑗 = 1, 𝑘 = −1

1 256

1

256

𝑗 = 1, 𝑘 = 0
1 256

1

256

𝑗 = 1, 𝑘 = 1

(b) Vertical frequency cones

1 256

1

256

(c) Coarse approximation

Figure 3.5: Non-subsampled shearlet decomposition at level 2 of the 256 × 256 digital image
shown in Figure 3.2(a). The parameter 𝑗 denotes the scale of the corresponding shearlet filter
while the shear parameter 𝑘 controls its orientation. All coefficient matrices have the same size
as the input image. The depicted decomposition is thus highly redundant with a redundancy
factor of 13.
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with the 𝑁 largest coefficients of the sequence 𝒯𝛷𝑓 in magnitude 𝑓𝑁 ∈ 𝐿2(R2) satisfy

‖𝑓 − 𝑓𝑁‖2 . 𝑁−1, (3.53)

for all cartoon-like image functions 𝑓 ∈ 𝐿2(R2).

The following theorem illustrates that, apart from a logarithmic factor, the optimal
approximation rate (3.53) can in fact be achieved for cartoon-like images when considering
cone-adapted shearlet systems.

Theorem 3.0.6 (Shearlet-based approximations of cartoon-like functions are optimally
sparse, e.g., [106]). Let 𝜓,𝜓 ∈ 𝐿2(R2) be aptly chosen shearlet generators and 𝜙 ∈ 𝐿2(R2)
be an aptly chosen scaling function. Then, apart from a log-factor, the cone-adapted
shearlet system SH(𝜙,𝜓, 𝜓) provides optimally sparse approximations of cartoon-like image
functions in the sense that

‖𝑓 − 𝑓𝑁‖2 . 𝑁−1(log2𝑁)3/2, (3.54)

for all cartoon-like image functions 𝑓 ∈ 𝐿2(R2), where 𝑓𝑁 denotes the 𝑁 -term approxima-
tion associated with the 𝑁 largest shearlet coefficients in magnitude.

During the past decade, several libraries implementing different types of shearlet
transforms for finite and discrete data have been developed. The fast finite shearlet
transform (FFST) [78] implements non-subsampled transforms based on band-limited
shearlet generators. ShearLab [109] implements subsampled transforms that are based on
separable and compactly supported shearlet generators while ShearLab 3D [107] contains
both two-and three-dimensional non-subsampled shearlet transforms which are based on
non-separable and compactly supported shearlets.

Figure 3.5 shows the coefficients of a non-subsampled shearlet-based transform of a
digital image after two stages of decomposition that was obtained with ShearLab 3D.
Comparing Figure 3.2 and Figure 3.5 also illustrates the difference between subsampled and
non-saubsampled decompositions. The main advantage of subsampled shearlet- and wavelet-
based transforms is that the total number of coefficients is almost equal to the original
number of pixel values, while non-subsampled transforms often introduce a significant
amount of redundancy. An exhaustive overview of the theory and applications of shearlets
can be found in [104].
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3.1 Introduction

Visual servoing is a technique in which visual features provided by one or multiple vision
sensors are used to control the motion of a robot in a closed-loop scheme [31, 83]. The
past thirty years have seen rapid advances in this field, with applications in industrial
manipulation [115], medical robotics [3, 103] or, more recently, drone navigation [9, 126].
The general goal of vision-based control laws is to succeed at a positioning task by
minimizing the difference between a set of desired visual features 𝑠* and a set of currently
observed features 𝑠(𝑡). The historically first type of visual features considered in visual
servoing were geometric features such as points [30], lines [146], and image moments [160],
and most visual servoing approaches strongly depend on the ability to detect and track
visual features over time during the control process.

Recently, new methods emerged that avoid challenging visual tracking tasks by di-
rectly using readily available information such as image intensities [151, 161], mutual
information [42], the sum of conditional variance [147], the Fourier transform [124, 125], or
Gaussian mixtures [38]. Such techniques, which are typically referred to as direct visual
servoing schemes, are often considered to be more accurate and robust than visual servoing
approaches that are based on the extraction of geometric features.

The work described in this chapter deals with the development of new direct visual
servoing approaches where the input control signals are chosen as the coefficients of wavelet-
and shearlet-based multiscale image representations. Multiscale representations of an image
are typically obtained by repeatedly smoothing and subsampling the image while also
storing the detail information lost at each stage of this process. Such decompositions are
not only useful for defining increasingly coarse approximations of images, but also to obtain
sparse representations in the sense that most coefficients describing the detail information
lost in each transformation step are typically close to zero. A widely used multiscale image
representation scheme is the so-called Laplacian pyramid, introduced in 1983 by Burt
and Adelson [20], which is based on repeated applications of a Gaussian blurring kernel.
The Laplacian pyramid was later extended by Simoncelli et al. [152] to yield improved
representations of oriented features such as curves and edges. Another way of defining
multiscale image representations can be found by considering the two-dimensional wavelet-
and shearlet-based transforms that were already discussed in the prelude to this chapter.

Despite their prominent role in digital image processing, the application of wavelet-
or shearlet-based image representations as signal control inputs in a vision-based control
scheme has only recently been considered. A six degrees of freedom (DOF) visual servoing
approach based on the low-pass approximation of an image obtained from a discrete wavelet
transform was proposed in [132, 133]. Shearlet-based transforms were considered in a
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six DOF ultrasound-based visual servoing scheme that was proposed for automatically
positioning an ultrasound probe mounted on a robotic arm [54, 55]. These preliminary
investigations already indicate the feasibility and potential benefits of considering wavelet-
or shearlet-based multiscale image representations in a visual servoing scheme when dealing
with unfavorable conditions that include noise, partial image occlusions, or changes in
illumination. In particular, using multiscale image decompositions could provide an
interesting compromise between purely geometric feature-based approaches and image-
intensity-based visual servoing techniques. The coarse approximation of an image yielded
by a multiscale representation scheme is a smoothed and subsampled version of the original
image and thus robust to noise. In addition, the detail coefficients obtained at the different
decomposition levels are highlighting basic image features, such as edges or curves, and
can thus be seen as implicit visual feature detectors.

3.1.1 Contributions

Up to now, one of the main obstacles in the application of wavelet- and shearlet-based
multiscale image representations in the field of visual servoing was the issue of obtaining
an analytical formulation of the interaction model, typically denoted as the interaction
matrix, that links the variation of the wavelet or shearlet coefficients to the spatial velocity
of the visual sensor. For instance, in [54, 55], the interaction matrix was obtained via a
numerical approximation. In this chapter, we analytically derive interaction matrices for
control laws based on both wavelet and shearlet coefficients. That is, the variation of the
wavelet or shearlet coefficients in the visual feature vector over time is analytically linked to
the velocity of the camera which can be controlled by a robot with six degrees of freedom.

Moreover, the proposed wavelet- and shearlet-based control laws are tested in both
simulation and experimental scenarios using a 6 DOF Cartesian robot with an eye-in-hand
configuration. The goal of these experiments is to provide a thorough qualitative and
quantitative analysis of their respective strengths and weaknesses. In particular, numerous
experiments under favorable (nominal) conditions and unfavorable (partial occlusions,
unstable illumination) working conditions were carried out. It can be highlighted that
wavelet as well as shearlet-based visual servoing approaches provide good performances
with regards to accuracy and robustness to external disturbances.

Section 3.1.2 provides a short review of a classical direct visual servoing approach,
so-called photometric visual servoing, in which image intensities are used as the only visual
features. It is then shown in Sections 3.2 and 3.3 how the concept of photometric visual
servoing scheme can be extended to obtain wavelet- and shearlet-based control laws and
how the associated interaction matrices can be derived analytically. Section 3.4 finally
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presents the results obtained from several simulations and experimental validations under
different working conditions and a comparison of wavelet- and shearlet-based schemes with
the classical photometric approach.

3.1.2 Photometric Visual Servoing

Before discussing wavelet- and shearlet-based visual servoing control laws, we will briefly
revisit the well-known photometric visual servoing approach in order to recall some basic
concepts and notation. The objective of a visual servoing scheme is to control the motion
of a robot such that a set of 𝑁 ∈ N visual features 𝑠 ∈ R𝑁 depending on the robot’s
pose 𝑟(𝑡) ∈ 𝑆𝐸(3) at time 𝑡 matches a set of desired features 𝑠* ∈ R𝑁 , obtained at the
desired pose 𝑟*. While the feature vector 𝑠 should technically be viewed as a function
of the robot’s pose, to simplify our notation, we will treat the set of visual features as a
function of time by setting 𝑠(𝑡) := 𝑠(𝑟(𝑡)).

For the remainder of this chapter, we will use 𝐼(𝑥, 𝑦, 𝑡) ∈ R≥0 to denote the image
intensities at the coordinates (𝑥, 𝑦) observed at time 𝑡. Furthermore, we write 𝐼𝑡 = 𝐼(·, ·, 𝑡)
to denote the two-dimensional image observed at time 𝑡. This notation will be helpful
in unambiguously stating expressions that contain operations which are only defined for
two-dimensional functions such as two-dimensional wavelet and shearlet transforms. The
control laws derived in this chapter will eventually be based on the spatial gradient ∇𝐼𝑡
as well as wavelet and shearlet transforms of the two-dimensional image 𝐼𝑡, that is, the
coefficients (𝒲𝜓𝐼𝑡)(𝑗,𝑚) and (𝒮ℋ𝜓𝐼𝑡)(𝑗, 𝑘,𝑚) (cf. (3.34) and (3.44)). Note that formally,
these objects are only defined in the continuum. Consequently, the corresponding visual
servoing schemes are also derived in the continuous realm. In practice, however, we cannot
observe the complete continuous-time image 𝐼𝑡 but only a discretized approximation I𝑡
that is typically obtained by spatial averaging and sampling. This means that in any
implementation of the proposed control laws, the spatial gradient as well as the wavelet-
and shearlet-based transforms of 𝐼𝑡 need to be approximated in the discrete realm. This
can be achieved by convolving I𝑡 with gradient filters and by computing the discrete-time
wavelet and shearlet transforms of I𝑡, respectively.

In the case of photometric visual servoing, introduced in [37], the visual feature vector at
time 𝑡 is a finite set of image intensities sampled at a sequence of points {(𝑥𝑛, 𝑦𝑛)}𝑛≤𝑁 ⊂ R2:

𝑠ph(𝑡) = [𝐼(𝑥1, 𝑦1, 𝑡), 𝐼(𝑥2, 𝑦2, 𝑡), . . . , 𝐼(𝑥𝑁 , 𝑦𝑁 , 𝑡)]ᵀ. (3.55)

To reach the desired pose 𝑟*, a control law is applied to minimize the visual error given by

𝑒ph(𝑡) = 𝑠ph(𝑡) − 𝑠*
ph (3.56)
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over time by accordingly moving the robotic system. In order to obtain an error-decreasing
six-dimensional camera velocity vector 𝑣 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜔𝑥, 𝜔𝑦, 𝜔𝑧]ᵀ, where 𝑣𝑥, 𝑣𝑦, and 𝑣𝑧

denote linear translational, and 𝜔𝑥, 𝜔𝑦, and 𝜔𝑧 denote angular velocities, it is necessary
to establish a link between the variation of the visual features 𝑠ph, defined in the image
plane, and the movement of the camera. In [37], the authors formalize this relationship
by linearly describing the time derivative of the image intensities in terms of the spatial
velocities of the camera via a so-called interaction matrix L𝑠ph :

d𝑠ph(𝑡)
d𝑡 = L𝑠ph(𝑡)𝑣(𝑡). (3.57)

By assuming temporal luminance constancy and applying the optical flow constraint
equation (OFCE) introduced in [81], we can write

𝜕𝐼(𝑥, 𝑦, 𝑡)
𝜕𝑡

= −
(︁

∇𝐼𝑡(𝑥, 𝑦)
)︁ᵀ(︂𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡

)︂ᵀ

. (3.58)

Using the velocity vector 𝑣(𝑡), (3.58) can be written as

𝜕𝐼(𝑥, 𝑦, 𝑡)
𝜕𝑡

= −
(︁

∇𝐼𝑡(𝑥, 𝑦)
)︁ᵀ

Lp(𝑥, 𝑦)𝑣(𝑡), (3.59)

where Lp(𝑥, 𝑦) denotes the interaction matrix of the point (𝑥, 𝑦) ⊂ R2 corresponding to
the projection of a three-dimensional point in the scene into the image plane, as proposed
in [31]. Lp is defined for a point (𝑥, 𝑦) in the image plane as

Lp(𝑥, 𝑦) =
[︃

− 1
𝑍 0 𝑥

𝑍 𝑥𝑦 −(1 + 𝑥2) 𝑦

0 − 1
𝑍

𝑦
𝑍 1 + 𝑦2 −𝑥𝑦 −𝑥

]︃
, (3.60)

where 𝑍 ∈ R is the depth of the considered three-dimensional point in the Cartesian camera
frame. Here, the depth 𝑍 is assumed to remain constant over time.

Applying (3.57) and (3.59), we can explicitly compute the interaction matrix L𝑠ph at a
point in time 𝑡 as follows:

L𝑠ph(𝑡) = −

⎡⎢⎢⎢⎣
(︁

∇𝐼𝑡(𝑥1, 𝑦1)
)︁ᵀ

Lp(𝑥1, 𝑦1)
...(︁

∇𝐼𝑡(𝑥𝑁 , 𝑦𝑁 )
)︁ᵀ

Lp(𝑥𝑁 , 𝑦𝑁 )

⎤⎥⎥⎥⎦ . (3.61)

Finally, the velocity vector of the camera at a time 𝑡 is obtained by

𝑣(𝑡) = −𝜆
(︁

L𝑠ph(𝑡)
)︁+

𝑒ph(𝑡), (3.62)
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where 𝜆 > 0 is a gain parameter, and
(︀
L𝑠ph(𝑡)

)︀+ denotes the Moore-Penrose pseudo-inverse
of the interaction matrix L𝑠ph(𝑡).

To increase the domain of convergence, we consider the Levenberg-Marquardt method,
which is a generalization of the traditional Gauss-Newton optimization approach (3.62).
With a damping parameter 𝜇 > 0, the corresponding control law can then be written as

𝑣(𝑡) = −𝜆
(︁

H(𝑡) + 𝜇 diag
(︀
H(𝑡)

)︀)︁−1(︁
L𝑠ph(𝑡)

)︁ᵀ
𝑒ph(𝑡), (3.63)

where H(𝑡) =
(︀
L𝑠ph(𝑡)

)︀ᵀL𝑠ph(𝑡), and diag
(︀
H(𝑡)

)︀
denotes the diagonal matrix given by the

diagonal entries of H(𝑡).

3.2 Wavelet-Based Visual Servoing

Instead of the pixel intensities used in (3.55), we now consider the design of a visual
servoing scheme in which the visual features are defined as the coefficients of a wavelet-
based multiscale representation of an image.

Let us consider a finite set of 𝐿 ∈ N generating wavelets
{︀
𝜓(𝑙)}︀

𝑙≤𝐿 ⊂ 𝐿2(R2), which
typically consists of a total of four separable generators constructed from one-dimensional
wavelet and scaling functions, as defined in Equations (3.28) to (3.31). The wavelet-based
feature vector for a set of 𝑁 ∈ N triples {(𝑙𝑛, 𝑗𝑛,𝑚𝑛)}𝑛≤𝑁 ⊂ {1, . . . , 𝐿} × N × Z2, where
𝑙𝑛 specifies a wavelet generator, 𝑗𝑛 defines the scale and 𝑚𝑛 the translation parameter is
given at a time 𝑡 as

𝑠w(𝑡) =
[︁
(𝒲𝜓(𝑙1)𝐼𝑡)(𝑗1,𝑚1), (𝒲𝜓(𝑙2)𝐼𝑡)(𝑗2,𝑚2), . . . , (𝒲𝜓(𝑙𝑁 )𝐼𝑡)(𝑗𝑁 ,𝑚𝑁 )

]︁ᵀ
. (3.64)

The goal is now to derive an interaction matrix L𝑠w ∈ R𝑁×6 that relates the camera motion
defined by the six-dimensional velocity vector 𝑣 to the time derivative of the wavelet-based
feature vector 𝑠w, such that the following linearization holds:

d𝑠w(𝑡)
d𝑡 = L𝑠w(𝑡)𝑣(𝑡). (3.65)

Let us assume that all wavelet generators as well as the image intensities 𝐼 are continuously
differentiable. With the two-dimensional generalization of the Leibniz integral rule, also
known as the Reynolds transport theorem (see for example [60]), we can express the time
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derivative of a single entry of the feature vector 𝑠w at a fixed point (𝑙, 𝑗,𝑚) by

d(𝒲𝜓(𝑙)𝐼𝑡)(𝑗,𝑚)
d𝑡 =

d
⟨
𝐼𝑡, 𝜓

(𝑙)
𝑗,𝑚

⟩
𝐿2

d𝑡 =
∫︁∫︁
R2

𝜕𝐼(𝑥, 𝑦, 𝑡)
𝜕𝑡

𝜓
(𝑙)
𝑗,𝑚(𝑥, 𝑦) d𝑥 d𝑦. (3.66)

Then, by applying (3.59), we get

d
⟨
𝐼𝑡, 𝜓

(𝑙)
𝑗,𝑚

⟩
𝐿2

d𝑡 = −
∫︁∫︁
R2

(︀
∇𝐼𝑡(𝑥, 𝑦)

)︀ᵀLp(𝑥, 𝑦)𝑣(𝑡)𝜓(𝑙)
𝑗,𝑚(𝑥, 𝑦) d𝑥 d𝑦. (3.67)

Let 𝑒𝑖 ∈ R6 denote the 𝑖-th canonical unit vector in R6. Then we can simplify our notation
by setting

𝐼
(𝑖)
𝑡 =

(︀
∇𝐼𝑡(𝑥, 𝑦)

)︀ᵀLp(𝑥, 𝑦)𝑒𝑖, (3.68)

for 𝑖 ∈ {1, . . . , 6}. Note that in (3.68), Lp(𝑥, 𝑦)𝑒𝑖 selects the 𝑖-th column of the matrix
Lp(𝑥, 𝑦). In other words, 𝐼(𝑖)

𝑡 encodes the correlation of the image gradient with the
movement contributed by the 𝑖-th degree of freedom. Using (3.68), the interaction matrix
with respect to the wavelet-based feature vector 𝑠w can be written as:

L𝑠w(𝑡) = −

⎡⎢⎢⎣
(𝒲𝜓(𝑙1)𝐼

(1)
𝑡 )(𝑗1,𝑚1) · · · (𝒲𝜓(𝑙1)𝐼

(6)
𝑡 )(𝑗1,𝑚1)

... . . . ...
(𝒲𝜓(𝑙𝑁 )𝐼

(1)
𝑡 )(𝑗𝑁 ,𝑚𝑁 ) · · · (𝒲𝜓(𝑙𝑁 )𝐼

(6)
𝑡 )(𝑗𝑁 ,𝑚𝑁 )

⎤⎥⎥⎦ ∈ R𝑁×6. (3.69)

Each column of L𝑠w represents the wavelet transform of a two-dimensional image 𝐼(𝑖)
𝑡 with

respect to the system of wavelets defined by the wavelet generators
{︀
𝜓(𝑙)}︀

𝑙≤𝐿, and the
sequence {(𝑙𝑛, 𝑗𝑛,𝑚𝑛)}𝑛≤𝑁 . Constructing the interaction matrix L𝑠w thus corresponds to
computing the image gradient of 𝐼𝑡 and performing six discrete wavelet transforms. While
the fast wavelet transform (FWT) is indeed a linear time algorithm, this might still be too
much in time-critical applications. One possibility to limit the computational effort is to
reduce the number of considered scales 𝑗. Another approach, which reduces the number
of necessary discrete wavelet transforms from six to two, is given by only considering an
approximation of L𝑠w .

Let us assume that all generator functions 𝜓(𝑙) are compactly supported in the spatial
domain with their support being centered around the origin. It was already noted in [13]
that in such a setting, the velocities

(︁
𝑑𝑥
𝑑𝑡 ,

𝑑𝑦
𝑑𝑡

)︁
in the optical flow constraint equation

(3.58) remain approximately constant on the support set of a wavelet 𝜓(𝑙)
𝑗,𝑚. Formally, this

assumption is equivalent with replacing Lp(𝑥, 𝑦) inside the integral in (3.67) with a matrix
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Lpw(𝑗,𝑚), that only depends on the center of the support set of the wavelet 𝜓(𝑙)
𝑗,𝑚 and is

thus fixed for any pair of parameters (𝑗,𝑚) ∈ N × Z2. Therefore, Lpw(𝑗,𝑚) can simply be
computed by evaluating Lp at the center of the associated wavelet:

Lpw(𝑗,𝑚) = Lp(2−𝑗𝑚1, 2−𝑗𝑚2). (3.70)

By using (3.70), an approximation ̃︀L𝑠w(𝑡) ≈ L𝑠w(𝑡) of the wavelet-based interaction matrix
at a time 𝑡 that, instead of six, only requires the computation of two discrete wavelet
transforms is thus given by:

̃︀L𝑠w(𝑡) = −

⎡⎢⎢⎢⎣
[︁
(𝒲𝜓(𝑙1)

𝜕𝐼𝑡
𝜕𝑥 )(𝑗1,𝑚1), (𝒲𝜓(𝑙1)

𝜕𝐼𝑡
𝜕𝑦 )(𝑗1,𝑚1)

]︁
· Lpw(𝑗1,𝑚1)

...[︁
(𝒲𝜓(𝑙𝑁 )

𝜕𝐼𝑡
𝜕𝑥 )(𝑗𝑁 ,𝑚𝑁 ), (𝒲𝜓(𝑙𝑁 )

𝜕𝐼𝑡
𝜕𝑦 )(𝑗𝑁 ,𝑚𝑁 )

]︁
· Lpw(𝑗𝑁 ,𝑚𝑁 )

⎤⎥⎥⎥⎦ ∈ R𝑁×6.

(3.71)
Let us now denote the visual error with respect to the wavelet feature vector by

𝑒w(𝑡) = 𝑠w(𝑡) − 𝑠*
w. (3.72)

In order to minimize 𝑒w, we can again apply the Levenberg-Marquardt approach

𝑣(𝑡) = −𝜆
(︁

H(𝑡) + 𝜇 diag
(︀
H(𝑡)

)︀)︁−1(︁
L𝑠w(𝑡)

)︁ᵀ
𝑒w(𝑡), (3.73)

where 𝜆 > 0 is a controller gain parameter, 𝜇 > 0 a damping factor, and H(𝑡) =(︁
L𝑠w(𝑡)

)︁ᵀ
L𝑠w(𝑡).

The interaction matrix ̃︀L𝑠w is based on wavelet transforms of the partial derivatives
of the two-dimensional image 𝐼𝑡. However, by applying integration by parts, ̃︀L𝑠w could
also be computed by considering the partial derivatives of the wavelets 𝜓(𝑙)

𝑗,𝑚. While this
approach is of limited practical value, it has some interesting theoretical aspects and is
thus briefly described in the upcoming Section 3.2.1.

3.2.1 Computing the Interaction Matrix via Derivative Wavelets

Using integration by parts, we can move the partial derivatives in (3.71) from the two-
dimensional image 𝐼𝑡 to the respective wavelet and write:

⟨
𝜕𝐼𝑡
𝜕𝑥

, 𝜓
(𝑙)
𝑗,𝑚

⟩
𝐿2

=
⟨
𝐼𝑡,

𝜕𝜓
(𝑙)
𝑗,𝑚

𝜕𝑥

⟩
𝐿2

, and
⟨
𝜕𝐼𝑡
𝜕𝑦

, 𝜓
(𝑙)
𝑗,𝑚

⟩
𝐿2

=
⟨
𝐼𝑡,

𝜕𝜓
(𝑙)
𝑗,𝑚

𝜕𝑦

⟩
𝐿2

. (3.74)
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This means that instead of computing the wavelet transform of the image gradient ∇𝐼𝑡, one
can compute the wavelet transform of 𝐼𝑡 associated to the partial derivatives of the wavelet
generators 𝜓(𝑙). In particular, for separable two-dimensional wavelet generators, the partial
derivatives can easily be computed by considering the derivatives of the corresponding
one-dimensional wavelet and scaling functions (cf. Equations (3.28) to (3.31)).

This approach of obtaining wavelet transforms that are based on the derivatives of
wavelets was already investigated in [13] with the goal of defining an efficient multiscale
transform-based framework for computing optical flows. In particular, it was shown that for
a sufficiently smooth one-dimensional scaling function 𝜙 ∈ 𝐿2(R), and an associated one-
dimensional wavelet 𝜓 ∈ 𝐿2(R), that are defined by a pair of finite impulse response filters
ℎ, 𝑔 ⊂ ℓ2(Z) (cf. Equations (3.13) and (3.16)) and associated trigonometric polynomials
𝑚0 and 𝑚1 (cf. Equations (3.14) and (3.17)), an MRA can be constructed that is based
on a wavelet 𝜓der ∈ 𝐿2(R), and a scaling function 𝜙der ∈ 𝐿2(R) that satisfy the following
relationships:

𝜓der = 𝜓′, (3.75)

𝜙der(· + 1) − 𝜙der = 𝜙′. (3.76)

In [13], this was achieved by computing the derivatives of 𝜓 and 𝜙 in the frequency domain
via ̂︀𝑓 ′(𝜉) = 2𝜋𝑖𝜉 ̂︀𝑓(𝜉), (3.77)

where 𝑓 is differentiable and 𝑓 ′, 𝑓 ∈ 𝐿1(R), and considering the identity

2𝜋𝑖𝜉 = (𝑒2𝜋𝑖𝜉 − 1)

⎛⎝ ∞∏︁
𝑗=1

𝑒2−𝑗+1𝜋𝑖𝜉 + 1
2

⎞⎠−1

, 𝜉 ∈ R. (3.78)

Eventually, it was shown that the wavelet 𝜓der and the scaling function 𝜙der can be defined
by the trigonometric polynomials

𝑚der
0 (𝜉) = 2𝑚0(𝜉)

𝑒2𝜋𝑖𝜉 + 1 , (3.79)

𝑚der
1 (𝜉) = 𝑒2𝜋𝑖𝜉 − 1

2 𝑚1(𝜉), (3.80)

in the sense that

̂︀𝜙der(𝜉) =
∞∏︁
𝑗=1

𝑚der
0 (2−𝑗𝜉), (3.81)
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̂︀𝜓der(𝜉) = 𝑚der
1 (2−1𝜉)̂︀𝜙der(2−1𝜉). (3.82)

The following theorem, which is not part of the original work presented in [13], provides
a simple rule for constructing the filters ℎder and 𝑔der associated with the trigonometric
polynomials defined in Equations (3.79) and (3.80).

Theorem 3.2.1. Let 𝜓 be a wavelet and 𝜙 be a scaling function defined by a low-pass
filter ℎ, and a high-pass filter 𝑔 via Equations (3.19), (3.20), (3.14), and (3.17). Then,
the derivative wavelet 𝜓der and the scaling function 𝜙der satisfying (3.75) and (3.76) are
defined by finite impulse response filters that satisfy

ℎder
𝑛 = 2ℎ𝑛 − ℎder

𝑛+1, (3.83)

𝑔der
𝑛 = 𝑔𝑛+1 − 𝑔𝑛

2 , (3.84)

and the associated trigonometric polynomials

𝑚der
0 (𝜉) = 2− 1

2
∑︁
𝑛∈Z

ℎder
𝑛 𝑒−2𝜋𝑖𝑛𝜉, (3.85)

𝑚der
1 (𝜉) = 2− 1

2
∑︁
𝑛∈Z

𝑔der
𝑛 𝑒−2𝜋𝑖𝑛𝜉, (3.86)

via Equations (3.81) and (3.82).

Proof. We use the definitions of 𝑚0 and 𝑚der
0 as well as (3.79) and compute

𝑚0(𝜉) = 2− 1
2
∑︁
𝑛∈Z

ℎ𝑛𝑒
−2𝜋𝑖𝑛𝜉 = 1

2

(︁
𝑒2𝜋𝑖𝜉 + 1

)︁
𝑚der

0 (𝜉) (3.87)

= 2− 3
2

(︃∑︁
𝑛∈Z

ℎder
𝑛 𝑒−2𝜋𝑖(𝑛−1)𝜉 +

∑︁
𝑛∈Z

ℎder
𝑛 𝑒−2𝜋𝑖𝑛𝜉

)︃
(3.88)

= 2− 1
2
∑︁
𝑛∈Z

ℎder
𝑛+1 + ℎder

𝑛

2 𝑒−2𝜋𝑖𝑛𝜉. (3.89)

For 𝑔der, the definitions of the trigonometric polynomials 𝑚1 and 𝑚der
1 , combined with

(3.80) yield

𝑚der
1 (𝜉) =2− 1

2
∑︁
𝑛∈Z

𝑔der
𝑛 𝑒−2𝜋𝑖𝑛𝜉 = 1

2

(︁
𝑒2𝜋𝑖𝜉 − 1

)︁
𝑚1(𝜉) (3.90)

= 2− 3
2

(︃∑︁
𝑛∈Z

𝑔𝑛𝑒
−2𝜋𝑖(𝑛−1)𝜉 −

∑︁
𝑛∈Z

𝑔𝑛𝑒
−2𝜋𝑖𝑛𝜉

)︃
(3.91)
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= 2− 1
2
∑︁
𝑛∈Z

𝑔𝑛+1 − 𝑔𝑛
2 𝑒−2𝜋𝑖𝑛𝜉. (3.92)

Theorem 3.2.1 provides an analytically interesting perspective on the entries of the
matrix ̃︀L𝑠w as coefficients of an MRA-based representation of the image 𝐼𝑡. However, it
does unfortunately not yield a straightforward method to compute ̃︀L𝑠w by simply applying
the filters ℎder and 𝑔der. While 𝜓′ is in fact equal to the derivative wavelet 𝜓der, the
derivative of the scaling function needs to be computed via 𝜙der(· + 1) − 𝜙der = 𝜙′ (cf.
Equations (3.75) and (3.76)). Furthermore, the usual assumption when representing a
digital image with an MRA-based transform is that the observed pixel values correspond
to coefficients defining a coarse approximation with respect to the scaling function 𝜙 (cf.
Equation (3.35)). However, when computing the coefficients of the derivative wavelet-based
MRA, we would already assume that the pixel values correspond to a coarse approximation
with respect to 𝜙der.

3.3 Shearlet-Based Visual Servoing

Shearlet-based image representations can be used in visual servoing tasks analogously to
the wavelet-based approach described in Section 3.2. For a finite set of 𝐿 ∈ N shearlet
generators

{︀
𝜓(𝑙)}︀

𝑙≤𝐿 ⊂ 𝐿2(R2), the shearlet-based feature vector for a sequence of 𝑁 ∈ N
quadruples {(𝑙𝑛, 𝑗𝑛, 𝑘𝑛,𝑚𝑛)}𝑛≤𝑁 ⊂ {1, . . . , 𝐿} × N × Z × Z2, where 𝑙𝑛 specifies a shearlet
generator, 𝑗𝑛 defines the scale, 𝑘𝑛 the shear operator, and 𝑚𝑛 the translation parameter,
is given as a function of 𝑡 by

𝑠sh(𝑡) =
[︁
(𝒮ℋ𝜓(𝑙1)𝐼𝑡)(𝑗1, 𝑘1,𝑚1), . . . , (𝒮ℋ𝜓(𝑙𝑁 )𝐼𝑡)(𝑗𝑁 , 𝑘𝑁 ,𝑚𝑁 )

]︁ᵀ
, (3.93)

where the shearlet transform 𝒮ℋ is defined as in (3.44).
Retaining the notation from Section 3.2 and after repeating the computations

(3.66) to (3.68) for the shearlet case, the interaction matrix associated with the shearlet-
based feature vector 𝑠sh at a time 𝑡 can be written as:

L𝑠sh(𝑡) = −

⎡⎢⎢⎣
(𝒮ℋ𝜓(𝑙1)𝐼

(1)
𝑡 )(𝑗1, 𝑘1,𝑚1) · · · (𝒮ℋ𝜓(𝑙1)𝐼

(6)
𝑡 )(𝑗1, 𝑘1,𝑚1)

... . . . ...
(𝒮ℋ𝜓(𝑙𝑁 )𝐼

(1)
𝑡 )(𝑗𝑁 , 𝑘𝑁 ,𝑚𝑁 ) · · · (𝒮ℋ𝜓(𝑙𝑁 )𝐼

(6)
𝑡 )(𝑗𝑁 , 𝑘𝑁 ,𝑚𝑁 )

⎤⎥⎥⎦ ∈ R𝑁×6.

(3.94)
The main formal difference between shearlet- and wavelet-based visual servoing control
laws can be found in the definition of the approximated interaction matrix ̃︀L𝑠sh . This is
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Table 3.1: Overview of the four different wavelet- and shearlet-based control laws considered
in the numerical and experimental validation.

s-wavelet s-shearlet ns-wavelet ns-wavelet

Length of feature vector 𝑠w/𝑠sh 20059 24576 262144 327680
Number of scales in the transform 3 4 4 4
Scales 𝑗 used for 𝑠w/𝑠sh 𝑗 ∈ {0, 1} 𝑗 ∈ {0, 1} only 𝑗 = 0 only 𝑗 = 0
Duration of one iteration 100 ms 140 ms 700 ms 800 ms

due to the fact that the center of a shearlet is not only determined by the scale parameter
𝑗, but also depends on the shear parameter 𝑘. Under the assumption that the shearlet
generators are compactly supported in the time-domain with their supports being centered
around the origin, we can write

Lpsh(𝑗, 𝑘,𝑚) = Lp

(︁
2−𝑗(𝑚1 − 𝑘𝑚2), 2−𝑗/2𝑚2

)︁
, (3.95)

if the corresponding generator belongs to the horizontal frequency cones respectively

Lpsh(𝑗, 𝑘,𝑚) = Lp

(︁
2−𝑗/2𝑚1, 2−𝑗(𝑚2 − 𝑘𝑚1)

)︁
, (3.96)

if the generator belongs to the vertical frequency cones. The approximated shearlet-based
interaction matrix ̃︀L𝑠sh(𝑡) ≈ L𝑠sh(𝑡) is now given by

̃︀L𝑠sh(𝑡) = −

⎡⎢⎢⎢⎣
[︁
(𝒮ℋ𝜓(𝑙1)

𝜕𝐼𝑡
𝜕𝑥 )(𝑗1, 𝑘1,𝑚1), (𝒮ℋ𝜓(𝑙1)

𝜕𝐼𝑡
𝜕𝑦 )(𝑗1, 𝑘1,𝑚1)

]︁
· Lpsh(𝑗1, 𝑘1,𝑚1)

...[︁
(𝒮ℋ𝜓(𝑙𝑁 )

𝜕𝐼𝑡
𝜕𝑥 )(𝑗𝑁 , 𝑘𝑁 ,𝑚𝑁 ), (𝒮ℋ𝜓(𝑙𝑁 )

𝜕𝐼𝑡
𝜕𝑦 )(𝑗𝑁 , 𝑘𝑁 ,𝑚𝑁 )

]︁
· Lpsh(𝑗𝑁 , 𝑘𝑁 ,𝑚𝑁 )

⎤⎥⎥⎥⎦ ∈ R𝑁×6. (3.97)

The visual error with respect to the shearlet-based feature vector

𝑒sh(𝑡) = 𝑠sh(𝑡) − 𝑠*
sh, (3.98)

can again be minimized by applying a Levenberg-Marquardt optimization

𝑣(𝑡) = −𝜆
(︁

H(𝑡) + 𝜇 diag
(︀
H(𝑡)

)︀)︁−1(︁
L𝑠sh(𝑡)

)︁ᵀ
𝑒sh(𝑡), (3.99)

where 𝜆 > 0 is a gain parameter, 𝜇 > 0 a damping factor and H(𝑡) =
(︁

L𝑠sh(𝑡)
)︁ᵀ

L𝑠sh(𝑡).
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(a) s-wavelet (b) ns-wavelet (c) s-shearlet (d) ns-shearlet

Figure 3.6: Visualization of the cost functions associated with wavelet- and shearlet-based
visual servoing control laws. The value ‖𝑠 − 𝑠*‖2 is plotted against linear translations in 𝑥-
and 𝑦-direction.

3.4 Numerical and Experimental Validation

To investigate the applicability of the proposed wavelet- and shearlet-based control laws
in both favorable and unfavorable conditions, we performed a series of experiments and
numerical simulations. The author of this thesis contributed initial Matlab scripts
that implement the wavelet- and shearlet-based optimization procedures (3.73) and (3.99)
but the experiments discussed in this section were primarily designed and conducted by
Lesley-Ann Duflot.

For the numerical and experimental validation, we consider wavelet- and shearlet-
based features vectors 𝑠w and 𝑠sh (cf. Equations (3.64) and (3.93)) that are based on
both subsampled and non-subsampled discrete-time transforms. The respective wavelet
transforms are computed for two-dimensional digital images via the Matlab Wavelet
Toolbox1. For non-subsampled shearlet-based transforms, we use ShearLab 3D2 [107], and
for subsampled shearlet transforms ShearLab 1.12 [109]. The complete visual servoing
framework was finally implemented within the Visual Servoing Platform (ViSP)3 C++
library, which also facilitated a simple means of comparing the newly proposed control
laws with the classical photometric approach. For the remainder of this section, we use
s-wavelet and ns-wavelet to denote the implementation of the control law (3.73) that is
based on a subsampled, respectively non-subsampled, wavelet transform and s-shearlet,
respectively ns-shearlet, to denote the implementation of the control law (3.99) based on
subsampled and non-subsampled sherlet transforms.

Table 3.1 provides an overview of the main properties of the interaction matrices
associated with the four considered control laws. In all cases, we consider interaction
matrices of the form L𝑠w and L𝑠sh (cf. Equations (3.69) and (3.94)) rather than the

1 https://en.mathworks.com/products/wavelet.html
2 http://www.shearlab.org/software
3 https://visp.inria.fr/

https://en.mathworks.com/products/wavelet.html
http://www.shearlab.org/software
https://visp.inria.fr/
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(a) Difference image
after simulated camera
displacement (simula-
tion 1 )

(b) Difference image
after simulated camera
displacement (simula-
tion 2 )

(c) Difference image
after simulated camera
displacement (simula-
tion 3 )

Linear displacement Angular displacement
𝑥 𝑦 𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧

simulation 1 10 mm −10 mm 100 mm 5 ∘ −5 ∘ 10 ∘

simulation 2 5 mm −5 mm 100 mm −20 ∘ 10 ∘ −5 ∘

simulation 3 −2 mm 2 mm −50 mm 5 ∘ 10 ∘ −30 ∘

The pixel length is ≈ 1.2 mm.

(d) Initial camera pose displacements in the simulated experiments.

Figure 3.7: Overview of the three different camera displacements considered in our numerical
simulations.

approximations ̃︀L𝑠w and ̃︀L𝑠sh (cf. Equations (3.71) and (3.97)). Note that due to the high
redundancy of the non-subsampled transforms, besides the associated coarse approximation,
we only consider the detail coefficients from a single scale for the feature vectors in the case
of ns-wavelet and ns-shearlet. Examples of the feature vectors used in the implemented
control laws s-wavelet, ns-wavelet, s-shearlet, and ns-shearlet can be found in Appendix B
in Figures B.1(b), B.3, B.2, and B.4, respectively.

For all simulations and experiments, the depth 𝑍 in the definition of the interaction
matrix Lp (cf. Equation 3.60) was estimated manually and assumed to remain constant
during the visual servoing process. To increase the domain of convergence, the parameters
of the Levenberg-Marquardt method 𝜆 and 𝜇 (cf. Equation (3.73)) were chosen adaptively
as functions of the ℓ2-norm of the currently observed error 𝑒w, respectively 𝑒sh. Examples
of the behavior of the associated cost functions ‖𝑠w − 𝑠*

w‖2, and ‖𝑠sh − 𝑠*
sh‖2 with respect

to linear translations in the image plane are plotted for all of the four considered control
laws in Figure 3.6.
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(a) Nominal conditions (b) Partial occlusions (c) Unstable lighting

Figure 3.8: The three different conditions considered in the numerical simulations.

3.4.1 Numerical Simulations

We first consider numerical simulations of positioning tasks in which the simulated camera
is displaced by an element in 𝑆𝐸(3) after saving a set of desired visual features 𝑠*

ph, 𝑠*
w, or

𝑠*
sh, respectively, that are associated with the initial camera pose. The respective control

laws are then applied with the goal of recovering the original pose. A main advantage of
working with a simulated environment is that it provides reliable testing conditions in the
sense that it is independent of factors such as the calibration of the visual sensor, mechanical
properties of the robot, or possible measurement errors. In all simulated experiments,
the newly proposed wavelet- and shearlet-based control laws are also compared to the
classical photometric approach. Note that the pixel length in the images used in our
simulations is considered to be approximately 1.2 mm. In total, we use three different
camera displacements, which will subsequently be denoted as simulation 1 , simulation 2 ,
and simulation 3 (see Figure 3.7). To further test for stability in unfavorable conditions, we
also the consider the case of small occlusions and variations in illumination (see Figure 3.8).

Table 3.2 reports the final positioning errors of the simulated camera in nominal
conditions (i.e., without external influences such as occlusions) for all three considered
displacement vectors. In this setting, all of the five evaluated control laws successfully
converge at the initial camera poses with only small deviations.

The final positioning errors when the visual servoing process is impeded by partial
occlusions are compiled in Table 3.3. In this setting, roughly a fifth of the initially observed
image remains occluded for the duration of the positioning process (cf. Figure 3.8(b)). In
the case of simulation 1 , all five control laws also seem to successfully converge towards
the desired pose with respect to the two-dimensional plane parallel to the observed image.
However, all control laws also seem to have difficulties with exactly recovering the correct
position with respect to the 𝑧-axis and the angular displacement around the 𝑥- and 𝑦-axes.
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Table 3.2: Final camera pose displacements yielded by the five considered control laws in
simulated positioning tasks in nominal conditions.

𝑥 𝑦 𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧

simulation 1
initial displacement 10 mm −10 mm 100 mm 5 ∘ −5 ∘ 10 ∘

photometry 10−4 10−4 10−4 10−4 −10−4 10−4

s-wavelet 10−4 10−4 10−4 10−4 −10−4 10−4

s-shearlet 10−4 10−4 10−4 10−4 −10−4 10−4

ns-wavelet 10−4 10−4 10−3 10−4 −10−3 10−4

ns-wavelet 10−4 10−4 10−3 10−3 −10−4 10−4

simulation 2
initial displacement 5 mm −5 mm 100 mm −20 ∘ 10 ∘ −5 ∘

photometry 10−4 10−4 10−4 10−4 −10−4 10−4

s-wavelet 10−4 10−4 10−4 10−4 10−4 10−4

s-shearlet 10−4 10−4 10−4 10−4 10−4 10−4

ns-wavelet 10−4 10−4 10−4 10−3 10−4 −10−4

ns-wavelet 10−4 10−4 10−4 10−4 10−4 10−4

simulation 3
initial displacement −2 mm 2 mm −50 mm 5 ∘ 10 ∘ −30 ∘

photometry 10−4 10−4 10−4 10−4 10−4 10−4

s-wavelet 10−4 10−4 10−4 10−4 10−4 10−4

s-shearlet 10−4 10−4 10−4 10−4 10−4 10−4

ns-wavelet 10−4 10−4 10−4 10−4 10−4 10−4

ns-wavelet 10−4 10−4 10−4 10−4 10−4 10−4

𝑥, 𝑦, 𝑧: Translational displacement along the respective axis.
𝜔𝑥, 𝜔𝑦, 𝜔𝑧: Angular displacement around the respective axis.

A similar behavior can be observed in the case of simulation 2 , although it should be
noted that both in simulation 1 as well as in simulation 2 , the s-wavelet control law is
significantly better at recovering the displacement along the 𝑧-axis. When considering
simulation 3 , which is characterized by a rather severe angular displacement around the
𝑧-axis, all of the five control laws completely fail to perform the image registration task in
the presence of a partial occlusion.

The results of the simulated positioning task in the case of unstable lighting conditions
can be found in Table 3.4. Here, the initial feature vectors 𝑠*

ph, 𝑠*
w, and 𝑠*

sh, are obtained
in the presence of an additional light source (cf. Figure 3.8(c)), while the visual servoing
process after displacing the simulated camera is carried out in nominal conditions (cf.
Figure 3.8(a)). The results are similar to the case of partial occlusions in the sense that
for simulation 1 , and simulation 2 , all control laws are mostly successful in recovering
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Table 3.3: Final camera pose displacements yielded by the five considered control laws in
simulated positioning tasks impeded by partial occlusions.

𝑥 𝑦 𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧

simulation 1
initial displacement 10 mm −10 mm 100 mm 5 ∘ −5 ∘ 10 ∘

photometry 0.69 0.01 −4.61 4.30 −5.64 0.05
s-wavelet 0.56 −0.16 0.52 4.43 −5.60 0.17
s-shearlet 0.56 −0.16 −1.94 4.31 −5.51 0.08
ns-wavelet 0.78 −0.14 −2.79 4.30 −5.60 0.15
ns-wavelet 0.74 −0.14 −2.74 4.33 −5.54 0.13
simulation 2
initial displacement 5 mm −5 mm 100 mm −20 ∘ 10 ∘ −5 ∘

photometry 1.18 −0.24 −42.84 −20.29 9.14 −1.50
s-wavelet 0.55 2.06 −11.06 −20.30 9.17 −1.27
s-shearlet 0.52 1.18 −28.98 −20.40 9.18 −1.50
ns-wavelet 1.10 0.10 −31.24 −20.37 9.18 −1.43
ns-wavelet 1.04 0.16 −31.04 −20.36 9.22 1.47
simulation 3
initial displacement −2 mm 2 mm −50 mm 5 ∘ 10 ∘ −30 ∘

photometry ✗ ✗ ✗ ✗ ✗ ✗

s-wavelet ✗ ✗ ✗ ✗ ✗ ✗

s-shearlet ✗ ✗ ✗ ✗ ✗ ✗

ns-wavelet ✗ ✗ ✗ ✗ ✗ ✗

ns-wavelet ✗ ✗ ✗ ✗ ✗ ✗

𝑥, 𝑦, 𝑧: Translational displacement along the respective axis.
𝜔𝑥, 𝜔𝑦, 𝜔𝑧: Angular displacement around the respective axis.
✗ = fail.

the correct position with respect to the 𝑥- and 𝑦-axes as well as the angular displacement
around the 𝑧-axis, with the exception of the photometric control law, which completely
fails in the case of simulation 2 . A possible explanation for the fact that in this specific
case, the classical photometric approach is outperformed by the newly proposed wavelet-
and shearlet-based control laws is that the detail coefficients obtained in the respective
transforms are in fact invariant to changes in the mean (cf. Equation 3.4) and should
thus more stable in this setting. However, in the case of simulation 3 , again all of the five
control laws fail to successfully converge to the initial camera pose in the presence of a
large angular displacement around the 𝑧-axis.
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Table 3.4: Final camera pose displacements yielded by the five considered control laws in
simulated positioning tasks impeded by unstable lighting conditions.

𝑥 𝑦 𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧

simulation 1
initial displacement 10 mm −10 mm 100 mm 5 ∘ −5 ∘ 10 ∘

photometry 0.84 0.57 −31.49 4.27 −5.61 −0.26
s-wavelet 0.10 0.69 −23.48 4.43 −5.65 −0.10
s-shearlet 0.52 0.49 −13.57 4.26 −5.60 −0.07
ns-wavelet 0.83 0.60 −23.66 4.26 −5.65 −0.22
ns-wavelet 0.78 0.59 −22.76 4.27 −5.62 −0.21
simulation 2
initial displacement 5 mm −5 mm 100 mm −20 ∘ 10 ∘ −5 ∘

photometry ✗ ✗ ✗ ✗ ✗ ✗

s-wavelet 0.34 0.66 −59.68 −20.27 9.25 −2.40
s-shearlet 0.80 0.89 −52.28 −20.31 9.28 −2.12
ns-wavelet 1.34 0.456 −60.99 −20.32 9.33 −2.20
ns-wavelet 1.20 0.52 −59.19 −20.28 9.35 −2.22
simulation 3
initial displacement −2 mm 2 mm −50 mm 5 ∘ 10 ∘ −30 ∘

photometry ✗ ✗ ✗ ✗ ✗ ✗

s-wavelet ✗ ✗ ✗ ✗ ✗ ✗

s-shearlet ✗ ✗ ✗ ✗ ✗ ✗

ns-wavelet ✗ ✗ ✗ ✗ ✗ ✗

ns-wavelet ✗ ✗ ✗ ✗ ✗ ✗

𝑥, 𝑦, 𝑧: Translational displacement along the respective axis.
𝜔𝑥, 𝜔𝑦, 𝜔𝑧: Angular displacement around the respective axis.
✗ = fail.

3.4.2 Experimental Validation

For the experimental validation of the newly proposed wavelet- and shearlet-based control
laws, we used a CCD camera which was mounted on a robotic system with six degrees of
freedom. The corresponding experimental setup is shown in Figure 3.9(a). The camera
yielded images with a resolution of 450 × 450 pixels, which were resized to a resolution of
256 × 256 pixels to decrease the computational cost of the considered control laws, at a
frame rate of 25 frames per second. A personal computer clocked at 2.4 GHz was used
to execute the implementations of the wavelet- and shearlet-based control laws and to
communicate with the robotic system and the mounted CCD camera.

As in the numerical simulations discussed in Section 3.4.1, the experimental evaluation
was carried out by using the considered visual servoing control laws to recover the initial
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(a) Experimental setup

Linear displacement Ang. displacement
𝑥 𝑦 𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧

experiment 1 50 mm 50 mm 100 mm 5 ∘ −5 ∘ −4 ∘

experiment 2 −20 mm −30 mm −20 mm 10 ∘ 2 ∘ 2 ∘

(b) Initial camera pose displacements considered in the experimental
validation.

Figure 3.9: Overview of the two different camera displacements considered in the experimental
evaluation of the wavelet- and shearlet-based control laws.

pose of the displaced camera by considering reference feature vectors 𝑠*
w and 𝑠*

sh that
were obtained at the original position. The two considered displacements, which can be
described by elements in 𝑆𝐸(3) and will subsequently be denoted as experiment 1 , and
experiment 2 , can be found in Table 3.9(b). In order to keep this section concise, only
the results with respect to experiment 1 are directly reported here. The detailed results
of the respective wavelet- and shearlet-based control laws when considering the initial
displacement defined by experiment 2 can be found in Appendix C. Again, the positioning
tasks were carried out in both favorable and unfavorable conditions, where in the latter
case, the visual servoing process was impeded by either partial occlusions or unstable
lighting conditions.

Due to the high computational demand associated with the large feature vectors
yielded by non-subsampled wavelet- and shearlet-based transforms (cf. Table 3.1), we
only considered the control laws s-wavelet and s-shearlet, which are based on subsampled
transforms. Throughout all experiments, the depth parameter 𝑍 (cf. Equation (3.60)) was
assumed to remain constant and defined as 𝑍 = 0.8 m, that is, approximately equal to the
distance between the camera and the observed planar scene.

Figures 3.10 and C.1 illustrate the behavior of the control laws s-wavelet and s-
shearlet in the considered positioning tasks in nominal conditions. The development
of the translational and angular displacement of the camera over time for both cont-
rol laws is depicted in Figures 3.10(e), 3.10(f), C.1(e), and C.1(f), respectively. The
associated difference images obtained at the respective final iteration are shown in Figu-
res 3.10(c), 3.10(d), C.1(c), and C.1(d). For both of the two considered displacements, both
control laws succeed at the positioning task in the sense that after 400 to 700 iterations,
the errors with respect to the initial camera pose are vanishingly small.
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(a) Planar scene (b) Initial diffe-
rence image

(c) Final difference
(s-wavelet)

(d) Final difference
(s-shearlet)
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(f) Positioning errors over time (s-shearlet)

Figure 3.10: Wavelet- and shearlet-based visual servoing in nominal conditions with a planar
scene. The initial displacement was chosen according to experiment 1 (cf. Table 3.9(b)).
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(a) Planar scene
with a partial
occlusion

(b) Initial diffe-
rence image

(c) Final difference
(s-wavelet)

(d) Final difference
(s-shearlet)
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(f) Positioning errors over time (s-shearlet)

Figure 3.11: Wavelet- and shearlet-based visual servoing with a planar scene that is partially
occluded by an object. The initial displacement was chosen according to experiment 1 (cf.
Table 3.9(b)).



3.4 Numerical and Experimental Validation 73

(a) Planar scene
with additional light
source

(b) Initial diffe-
rence image

(c) Final difference
(s-wavelet)

(d) Final difference
(s-shearlet)
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(f) Positioning errors over time (s-shearlet)

Figure 3.12: Wavelet- and shearlet-based visual servoing with a planar scene and unstable
lighting conditions. The initial displacement was chosen according to experiment 1 (cf.
Table 3.9(b)).
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Figure 3.11 contains the results of the wavelet- and shearlet-based control laws with
respect to experiment 1 when the visual servoing process is impeded by a partial occlusion
that is caused by a three-dimensional object (cf. Figure 3.11). In this scenario, both control
laws are again mostly successful at recovering the initial camera pose. It is, however, not
entirely clear from the experimental results whether the local minimum of the respective
cost function towards the control laws seem to converge exactly coincides with the original
camera pose. Furthermore, in the case of experiment 2 , the shearlet-based control law
completely fails at correctly identifying the initial displacement, while the control law
based on a subsampled wavelet transform still succeeds (see Figure C.2). A possible
explanation for this might be found in the anisotropic nature of shearlet-based transforms.
It was already discussed in the prelude to this chapter that, due to the application of an
anisotropic scaling matrix (cf. Equation 3.40), shearlet-based transforms are better suited
for representing curvilinear features such as edges, than wavelet-based transforms. This
also suggests that a shearlet-based feature vector 𝑠sh should indeed be more sensitive to
the highly anisotropic structures introduced by the occluding object considered in this
scenario, than the wavelet-based feature vector 𝑠w.

Analogous to the simulated experiments, we also tested the control laws s-wavelet and
s-shearlet in an unfavorable environment characterized by unstable lighting conditions. The
evolution of the translational and angular positioning errors of the camera in this setting,
as well as the eventually obtained difference images, are compiled in Figures 3.12 and C.3.
In the simulated experiments, we were able to observe an improvement with respect to
the classical photometric approach in this setting (cf. Table 3.4) and conjectured that
this could be connected to the insensitivity of the detail coefficients of a wavelet- or
shearlet-based transform to changes in the mean. Unfortunately, we were not able to
fully reproduce this behavior in the non-simulated experiments. While the final difference
images shown in Figures 3.12(d) and C.3(d) indicate that for both experiment 1 and
experiment 2 , the shearlet-based control law s-shearlet is successful at undoing some of
the initial displacement, the plots in Figures 3.12(f) and C.3(f) reveal that the camera
poses at the respective last iterations still significantly differ from the original position.
Furthermore, in both these cases, the positioning error graphs show a highly undesirable
oscillatory behavior which indicates that the control law is not successfully converging to
a local minimum. The wavelet-based control law s-wavelet exhibits a similar behavior in
the case of experiment 2 . In the case of experiment 1 , on the other hand, s-wavelet seems
to converge but also fails to recover the initial camera pose. In particular with respect to
the observed oscillatory behavior, it is not entirely clear whether these negative results
are due to intrinsic properties of the proposed methods or if they could be remedied by
appropriately adapting parts of the implementation, such as the choices for the damping
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parameter 𝜇 and the gain parameter 𝜆 in (3.73), respectively (3.99).
Further details regarding the numerical and experimental validation can be found in

our original publication [56], where we also evaluated the proposed control laws in a setting
where a three-dimensional object was observed rather than a purely planar scene. The
online version of [56] furthermore contains video recordings of some of the simulations and
experiments described in this section1.

3.5 Conclusion

The main contribution of this chapter was the analytical derivation of interaction matrices
that linearly describe the relationship between the time derivative of wavelet- and shearlet-
based feature vectors and the translational and angular velocities of a robotic system with
six degrees of freedom, which facilitates the application of wavelet- and shearlet-based
control laws in visual servoing tasks. In particular, these control laws can be seen as a
best of both worlds approach in the sense that the approximation coefficients of a wavelet-
or shearlet-based multiscale image representation can be treated analogous to the case of
classical photometric visual servoing, while the detail coefficients are sensitive to geometrical
features such as edges and thereby more related to visual servoing schemes that are based
on detecting and tracking specific features.

To qualitatively evaluate the accuracy and robustness of the newly proposed visual
servoing schemes in both favorable and unfavorable conditions, we performed a series of
simulations and experiments involving positioning tasks in which the control laws were
applied to recover the original pose of a displaced camera. In nominal conditions without
external disturbances, the wavelet- and shearlet-based control laws demonstrated a high
accuracy in the simulations (cf. Table 3.2) as well as during the experimental validation (cf.
Figures 3.10 and C.1), which indicates their general applicability in visual servoing tasks.

The robustness of the newly proposed control laws to partial occlusions of the observed
scene was comparable to the robustness of the classical photometric approach in our
simulated experiments (cf. Table 3.3). This is most likely due to the fact that all wavelet-
and shearlet-based feature vectors also contained a coarse approximation of the original
image (cf. Figures B.1(b), B.2, B.3, and B.4), which is comparable to the feature vector
considered in the photometric case and thus equipped with similar stability properties
with respect to partial occlusions. In particular, a reasonable degree of robustness to
partial occlusions could also be observed in the experiments with a robotic system (see
Figures 3.11 and C.2).

1 https://doi.org/10.1177/0278364918769739

https://doi.org/10.1177/0278364918769739
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When considering unstable lighting conditions, our simulations indicate a slight impro-
vement of the newly proposed control laws over the photometric approach (cf. Table 3.4).
We were, however, unsuccessful in reproducing a convincing degree of robustness to unstable
lighting in our subsequently conducted real-world experiments (cf. Figures 3.12 and C.3).
To understand this behavior, it is important to observe that, due to the vanishing mean
property (3.4) of the respective analyzing functions, the detail coefficients of the considered
wavelet-, or shearlet-based transforms are invariant to changes in the mean and thus also
robust to changes in the overall luminosity of a scene. While this is certainly not the case
for the associated approximation coefficients, one would still expect that a visual servoing
control law that utilizes wavelet- or shearlet-based feature vectors would thus exhibit a
certain degree of robustness to unstable lighting conditions. However, the detail coefficients
of the wavelet- or shearlet-based representation of a digital image are typically characterized
by a high degree of sparsity (see, e.g., Figures 3.5 and B.1(b)), which could also lead to
problems when applying the associated control laws. Broadly speaking, when considering a
large displacement between the desired and the current pose, the cost function associated
with the detail coefficients of a wavelet- and shearlet-based feature vector will locally be
governed by various shallow local minimums and thus not yield a conclusive direction
during optimization. This could also partly explain the oscillatory behavior exhibited
by the wavelet- and shearlet-based control laws during the experimental validation (cf.
Figures 3.12(f), C.3(e), and C.3(f)). One way of taking this into consideration would
be to restrict the experimental analysis with respect to unstable lighting to a setting in
which only small displacements are being considered, as opposed to the rather severe
displacements used in the simulations and experiments discussed in this chapter. Another
approach that could lead to improved wavelet- and shearlet-based visual servoing schemes
that are truly robust to variations in lighting, even when dealing with large displacements,
is to consider transforms that are based on complex-valued generalizations of wavelets
and shearlets [74, 97, 142, 157]. The magnitude response of complex-valued wavelet and
shearlet transforms is known to exhibit a certain degree of shift invariance, which should
lead to smoother cost functions and could help increase the robustness of the proposed
methods, especially with respect to the detail coefficients.

Another drawback of the newly proposed control schemes is their comparatively high
computational demand, especially when considering non-subsampled transforms. However,
it should be noted that for the simulations and experiments considered in this chapter, the
computation of wavelet- and shearlet-based coefficients was performed by external Matlab
libraries. We expect that the runtime can be significantly decreased by considering a
pure C++ implementation and by using GPU hardware for parallelized computations and
that it should eventually be possible to design wavelet- and shearlet-based visual servoing
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controllers that can also be considered for real-time applications.





CHAPTER 4
Edge, Ridge, and Blob Detection

The contents of this chapter are based on:

• Reisenhofer, R. and King, E. J.: “Edge, ridge, and blob detection with symmetric
molecules”. In preparation.

• Reisenhofer, R., Kiefer, J., and King, E. J.: “Shearlet-based detection of flame
fronts”. Exp. Fluid. (Feb. 2016), vol. 57(3): p. 41

• King, E. J., Reisenhofer, R., Kiefer, J., Lim, W.-Q., Li, Z., and Heygster,
G.: “Shearlet-based edge detection: flame fronts and tidal flats”. Applications of
Digital Image Processing XXXVIII. ed. by G. Tescher, A. G. Vol. 9599. Society
of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. 2015

Prelude 𝛼-Molecules

We have already discussed the construction principles behind wavelet- and shearlet-based
systems of functions and some of the properties of their associated transforms in the
preludes to Chapters 2 and 3. As we recall, the most significant difference between the
definition of systems of two-dimensional wavelets and systems of shearlets is that the former
are constructed by considering an isotropic scaling matrix (cf. Equation (3.32)), while the
latter are defined by applying a so-called parabolic scaling matrix (cf. Equation (3.40)),
that yields anisotropically dilated elements, which are better suited for representing
two-dimensional curvilinear singularities. While systems of shearlets indeed exhibit an
approximation behavior with respect to a certain model class of two-dimensional images
that is provably in a sense optimal (cf. Theorem 3.0.6), they are not the only multiscale
representation system that has been proposed to address the weaknesses of wavelets when
dealing with anisotropic features in two-dimensional signals. Other prominent examples
include ridgelets [26, 27], which apply a maximally anisotropic scaling matrix in the sense
that dilation only occurs in a single direction, curvelets [131], which use a rotation matrix
instead of a shear matrix to change the preferred orientation of a generator, as well as
contourlets [49].

79
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Figure 4.1: The weight function on the right hand side of (4.5) for parameters 𝑀 = 2, 𝑁1 =
𝑁2 = 8, 𝑠𝜆 = 8, and 𝛼 ∈ {0, 1

2 , 1}.

In spite of various differences in their construction and their approximation behavior
for different classes of signals, many of the aforementioned function systems are similar
in the sense that all of them are constructed by applying translation, scaling, rotation,
or shear operators to a possibly infinite number of so-called generator functions, which
typically need to satisfy a certain admissibility condition. In a series of papers [71, 72,
73], so-called 𝛼-molecules were introduced to provide a unifying framework that includes
different constructions of multiscale representations in order to enable the transfer of results
from one theory to another, to allow for a categorization of multiscale representations with
respect to the approximation behavior, and to facilitate the construction of novel systems.

Systems of 𝛼-molecules are constructed by translating, scaling, and rotating members of
a possibly infinite set of generator functions, where the latter two operations are performed
by applying scaling matrices

A𝑠,𝛼 =
[︃
𝑠 0
0 𝑠𝛼

]︃
, 𝑠 > 0, 𝛼 ∈ [0, 1], (4.1)

and rotation matrices

R𝜃 =
[︃

cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]︃
, 𝜃 ∈ T, (4.2)

to the argument of a generator function, where T = [−𝜋
2 ,

𝜋
2 ). Note that the parameter

𝛼 in (4.1) controls the degree of anisotropy and interpolates between isotropic scaling
(𝛼 = 1), which is used in the definition of wavelet-based systems, and fully anisotropic
scaling (𝛼 = 0), as applied in the definition of ridgelets.

For a fixed parameter 𝛼 ∈ [0, 1], a single 𝛼-molecule is thus defined by its corresponding
generator and a point (𝑠, 𝜃,𝑦) in the parameter space

P := R+ × T × R2, (4.3)
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where 𝑠 is a scaling, 𝜃 a rotation, and 𝑦 a translation parameter.
Let 𝛬 be an index set and 𝛼 ∈ [0, 1] be fixed. A family of functions {𝑚𝜆}𝜆∈𝛬 ⊂

𝐿2(R2) is called a system of 𝛼-molecules of order (𝐿,𝑀,𝑁1, 𝑁2), with control parameters
𝐿,𝑀,𝑁1, 𝑁2 ∈ N0 ∪ {∞}, if each molecule can be written as

𝑚𝜆 = 𝑠
(1+𝛼)/2
𝜆 𝑔(𝜆) (A𝑠𝜆,𝛼R𝜃𝜆

(· − 𝑦𝜆)) , (4.4)

where (𝑠𝜆, 𝜃𝜆,𝑦𝜆) ∈ P is a point in the 𝛼-molecule parameter space and the corresponding
generator 𝑔(𝜆) ∈ 𝐿2(R2) satisfies⃒⃒⃒
𝜕𝜌̂︂𝑔(𝜆)(𝜉)

⃒⃒⃒
. min

{︁
1, 𝑠−1

𝜆 + |𝜉1| + 𝑠
−(1−𝛼)
𝜆 |𝜉2|

}︁𝑀
· (1 + ‖𝜉‖2

2)
−𝑁1

2 · (1 + (𝜉2)2)
−𝑁2

2 , (4.5)

with 𝜉 ∈ R2 for all |𝜌| ≤ 𝐿, such that the implicit constants associated with the definition
of . are uniform over 𝜆 ∈ 𝛬. Note that 𝜌 ∈ N2

0 denotes a multi-index with |𝜌| = 𝜌1 + 𝜌2.
Further note that if one or more of the parameters 𝐿, 𝑀 , 𝑁1, and 𝑁2 equal ∞, the
respective values in (4.5) can be arbitrarily large. Three examples of the weight function
(4.5) for different choices of 𝛼 are visualized in Figure 4.1.

Equation (4.5) provides a maximum amount of flexibility by allowing each molecule
of an 𝛼-molecule system to be based on a different generator. In practice, however,
systems of 𝛼-molecules are often constructed from only a small number of generators. For
instance, wavelet orthonormal bases of 𝐿2(R2) are typically based on four generators (cf.
Equations (3.28) to (3.31)), while so-called cone-adapted shearlet systems only require
three different generators (cf. Equations (3.47) to (3.49)). Note that in the latter case, due
to the application of the shear matrix, the elements of a cone-adapted shearlet system can
not directly be expressed in the form (4.4) when just considering the two shearlet generators
from Equations (3.48) and (3.49). However, it can be shown that the cone-adapted discrete
shearlet system (3.46) is equivalent to an 𝛼-molecule system that is based on an infinite
number of sheared generators, all of which satisfy Condition (4.5) [71].

Analogous to the wavelet- and shearlet-based transforms discussed in the prelude to
Chapter 3, the transform of a function 𝑓 ∈ 𝐿2(R2) with respect to an 𝛼-molecule system
{𝑚𝜆}𝜆∈𝛬 ⊂ 𝐿2(R2) can be defined in terms of the analysis operator:

(𝒯 𝑓)(𝑔(𝜆), 𝑠𝜆, 𝜃𝜆,𝑦𝜆) = ⟨𝑓,𝑚𝜆⟩𝐿2 = 𝑠
(1+𝛼)/2
𝜆

∫︁
R2

𝑓(𝑥)𝑔(𝜆) (A𝑠𝜆,𝛼R𝜃𝜆
(𝑥 − 𝑦𝜆)) d𝑥. (4.6)

Note that the decay condition (4.5) requires the generators of an 𝛼-molecule system to
satisfy certain time-frequency localization properties, where the parameter 𝐿 describes the
degree of spatial localization, 𝑀 is the number of directional (almost) vanishing moments
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and 𝑁1 and 𝑁2 describe the smoothness of a generator. At first glance, Condition (4.5) can
seem a bit unintuitive. Let us thus briefly elaborate on the relationship between the single
control parameters 𝐿, 𝑀 , 𝑁1, and 𝑁2, and the respective properties of the 𝛼-molecule
system. We have already observed in the prelude to Chapter 3, that for integrable wavelet
generators, the wavelet admissibility condition implies that the generator has a vanishing
mean (cf. Equation 3.4). This notion can be generalized in the sense that a one-dimensional
function 𝑓 is said to have 𝑁 ∈ N vanishing moments, if∫︁

R

𝑓(𝑥)𝑥𝑛 d𝑥 = 0, ∀𝑛 ∈ {0, . . . , 𝑁 − 1}. (4.7)

By considering the Taylor expansion, it can in fact be shown that the number of vanishing
moments of a wavelet generator also determines the decay rate of the associated wavelet
coefficients at locations at which an analyzed signal is smooth. To illustrate the link
between the control parameter 𝑀 in Condition 4.5 and the vanishing moments of an
𝛼-molecule generator, let us consider the following lemma.

Lemma 4.0.1 (as in [73]). Let 𝑓 : R → C be a continuous and compactly supported function
that possesses 𝑁 vanishing moments. Then, it holds that⃒⃒⃒ ̂︀𝑓(𝜉)

⃒⃒⃒
. min {1, |𝜉|}𝑁 . (4.8)

Proof. Due to
𝑑𝑛

𝑑𝜉𝑛
̂︀𝑓(0) = (−2𝜋𝑖)𝑛

∫︁
R

𝑓(𝑥)𝑥𝑛 d𝑥, 𝑛 ∈ N, (4.9)

the vanishing moments of 𝑓 imply that 𝑑𝑛

𝑑𝜉𝑛
̂︀𝑓(0) = 0 for all 𝑛 ∈ {0, . . . , 𝑁 − 1}. As 𝑓 is

compactly supported, ̂︀𝑓 is analytic, and considering the respective power series expansion
at 0 yields ⃒⃒⃒ ̂︀𝑓(𝜉)

⃒⃒⃒
. |𝜉|𝑁 . (4.10)

Furthermore, since 𝑓 ∈ 𝐿1(R), ̂︀𝑓 is bounded and we can write⃒⃒⃒ ̂︀𝑓(𝜉)
⃒⃒⃒
. min {1, |𝜉|}𝑁 . (4.11)

Lemma (4.8) illustrates that the first factor in (4.5), which requires the generators of an
𝛼-molecule systems to decay in the frequency domain near the origin, is in fact a necessary
condition for the existence of vanishing moments.
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As for the connection between the control parameters 𝐿, 𝑁1, and 𝑁2, and the de-
gree of spatial localization, respectively the smoothness of a generator, one can consider
a consequence of the Riemann-Lebesgue lemma, which states that for 𝑓 ∈ 𝐿1(R), the
Fourier transform goes to zero at infinity, that is, lim|𝜉|→∞ ̂︀𝑓(𝜉) = 0. Let an integra-
ble function 𝑓 be 𝑁 -times continuously differentiable with integrable derivatives, then
(2𝜋𝑖𝜉)𝑁 ̂︀𝑓(𝜉) = 𝑑̂𝑁

𝑑𝑥𝑁 𝑓(𝜉) (cf. Equation (3.77)), and the Riemann-Lebesgue lemma implies

that lim|𝜉|→∞
𝑑̂𝑁

𝑑𝑥𝑁 𝑓(𝜉) = 0, and, in turn, that ̂︀𝑓(𝜉) . 𝜉−𝑁 for 𝜉 → ∞. Broadly speaking,
this means that regularity in the time domain implies fast decay in the frequency domain,
and, due to the interchangeable nature of the Fourier transform and its inverse, vice versa,
which is reflected in Condition (4.5) by the control parameters, 𝐿, 𝑁1, and 𝑁2.

For the final part of this prelude, we will briefly sketch how the framework of 𝛼-
molecules can be applied to transfer results about the approximation properties of one type
of multiscale representation system to another. We have already seen that shearlet-based
frames can yield optimally sparse 𝑁 -term approximations of cartoon-like image functions (cf.
Theorem 3.0.6), which is mostly owed to the fast decay of shearlet coefficients at locations
where the respective elements of the shearlet frame are not spatially and directionally
aligned with a curvilinear singularity. In general, there is a close relationship between the
decay rate of the 𝑁 -term approximation error of a frame and the sparsity, that is, the
decay rate, of the respective sequence of analysis coefficients. An analytically tractable
way of measuring the sparsity of a sequence is by considering a possibly non-convex ℓ𝑝-
(quasi)-norm, where 𝑝 ∈ (0, 1]. It can in fact be shown that if, for a given function or class
of functions, the respective sequences of analysis coefficients of two distinct frames have
a similar decay behavior, these frames also yield the same 𝑁 -term approximation rate
(see, e.g., [71]). This observation motivated the following definition of sparsity equivalence
for frames, which was first proposed in [73], and which is based on the cross-Gramian,
that is, the matrix whose entries are all pairwise inner products of elements from the two
considered frames.

Definition 4.0.2 (Sparsity equivalence, [73]). Let 𝑝 ∈ (0, 1], and let {𝜓𝜆}𝜆∈𝛬, and { ̃︀𝜓̃︀𝜆}̃︀𝜆∈ ̃︀𝛬
denote frames for 𝐿2(R2) with discrete index sets 𝛬, and ̃︀𝛬. The frames are said to be
sparsity equivalent in ℓ𝑝(Z), if the cross-Gramian

G
𝜆,̃︀𝜆 =

⟨
𝜓𝜆, ̃︀𝜓̃︀𝜆

⟩
𝐿2
, 𝜆 ∈ 𝛬, ̃︀𝜆 ∈ ̃︀𝛬, (4.12)

satisfies
‖G‖ℓ𝑝→ℓ𝑝 < ∞, (4.13)

where ‖·‖ℓ𝑝→ℓ𝑝 denotes the operator norm of a matrix on ℓ𝑝(Z).
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One of the main contributions of the theory of 𝛼-molecules thus far is the derivation
of sufficient conditions for the sparsity equivalence of two distinct systems of 𝛼-molecules
that are frames for 𝐿2(R2). As one would expect, these conditions partly depend on the
order of an 𝛼-molecule system, which imposes restrictions on the regularity, the spatial
localization, and the number of vanishing moments of the associated generators. However,
when considering systems of 𝛼-molecules, the cross-Gramian (4.12) also strongly depends
on the associated sets of dilation, rotation, and translation parameters. The following
notion of (𝛼, 𝑘)-consistency was first proposed in [73] and yields a practical means of
evaluating whether two different parameter sets in P are suitable for obtaining sparsity
equivalent frames. Note that the precise definition of the so-called 𝛼-scaled index distance
function 𝜔𝛼(·, ·), which provides a distance measure for points in the parameter space P, is
omitted here for brevity, but can be found in [71].

Definition 4.0.3 ((𝛼, 𝑘)-consistency, as in [71]). Let 𝛼 ∈ [0, 1], 𝑘 > 0, and 𝛬, and ̃︀𝛬
denote two discrete index sets. Two 𝛼-molecule parameter sets {𝑞𝜆 = (𝑠𝜆, 𝜃𝜆,𝑦𝜆)}𝜆∈𝛬 ⊂ P,
and

{︁̃︀𝑞̃︀𝜆 = (̃︀𝑠̃︀𝜆, ̃︀𝜃̃︀𝜆, ̃︀𝑦̃︀𝜆)
}︁
̃︀𝜆∈ ̃︀𝛬 ⊂ P, are called (𝛼, 𝑘)-consistent, if

sup
𝜆∈𝛬

∑︁
̃︀𝜆∈ ̃︀𝛬

𝜔𝛼
(︀
𝑞𝜆, ̃︀𝑞̃︀𝜆)︀−𝑘

< ∞, and sup̃︀𝜆∈ ̃︀𝛬
∑︁
𝜆∈𝛬

𝜔𝛼
(︀
𝑞𝜆, ̃︀𝑞̃︀𝜆)︀−𝑘

< ∞, (4.14)

where 𝜔𝛼(·, ·) : P × P → [1,∞) denotes the so-called 𝛼-scaled index distance (see Defini-
tion 4.1. in [71]).

As demonstrated by the following theorem, the notion of (𝛼, 𝑘)-consistency and the
order of an 𝛼-molecule system can be used to obtain a sufficient condition for the sparsity
equivalence of frames for 𝐿2(R2).

Theorem 4.0.4 ([71]). Let 𝛼 ∈ [0, 1], 𝑘 > 0, 𝑝 ∈ (0, 1], and let {𝑚𝜆}𝜆∈𝛬, and {̃︀𝑚̃︀𝜆}̃︀𝜆∈ ̃︀𝛬,
where 𝛬 and ̃︀𝛬 are discrete index sets, denote systems of 𝛼-molecules of order (𝐿,𝑀,𝑁1, 𝑁2)
that are frames for 𝐿2(R2). If the associated parameter sets are (𝛼, 𝑘)-consistent and it
furthermore holds that

𝐿 ≥ 2𝑘
𝑝
, 𝑀 > 3𝑘

𝑝
− 3 − 𝛼

2 , 𝑁1 ≥ 𝑘

𝑞
+ 1 + 𝛼

2 , and 𝑁2 ≥ 2𝑘
𝑝
, (4.15)

the systems of 𝛼-molecules are sparsity equivalent in ℓ𝑝(Z).

Theorem (4.0.4) can now be used to obtain results about the approximation behavior
of a given 𝛼-molecule frame by relating it to another system of 𝛼-molecules for which these
results have already been established. To give an example, let us consider the following
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generalization of the definition of cartoon-like image functions (cf. Definition 3.0.4). Note
that for the remainder of this preludes, we will use 𝐶𝛽 with 𝛽 ∈ (1, 2] to denote the space of
continuously differentiable functions whose derivatives are Hölder continuous with exponent
𝛽 − 1.

Definition 4.0.5 (𝐶𝛽-cartoon-like image functions, as in [71]). Let 𝛽 ∈ (1, 2] and 𝑓 ∈
𝐿2(R2) be compactly supported in [0, 1]2. Then 𝑓 is called a 𝐶𝛽-cartoon-like image function
if it can be written as

𝑓 = 𝑓0 + 1𝐵 · 𝑓1, (4.16)

where 𝐵 ⊂ [0, 1]2 is a measurable set whose boundary is a regular closed piecewise 𝐶𝛽-curve,
and 𝑓0, 𝑓1 ∈ 𝐶𝛽([0, 1]2) are compactly supported.

It was shown in [70] that a tight frame of so-called 𝛼-curvelets provides, up to a
log-factor, optimally sparse approximations of 𝐶𝛽-cartoon-like image functions in the sense
that for a fixed anisotropy parameter 𝛼 ∈ [1

2 , 1), and 𝛽 = 𝛼−1, there exists a constant
𝐶 > 0 such that for every 𝐶𝛽-cartoon-like image function 𝑓 , it holds that

‖𝑓 − 𝑓𝑁‖2 ≤ 𝐶𝑁− 𝛽
2 · (log2𝑁)

𝛽+1
2 , for 𝑁 → ∞, (4.17)

where 𝑓𝑁 denotes the 𝑁 -term approximation of 𝑓 obtained by choosing the 𝑁 largest
coefficients yielded by the analysis operator of the considered 𝛼-curvelet frame (cf. Equa-
tion (3.52)). Note that in the parabolic case of 𝛼 = 1

2 , (4.17) is equivalent to the decay
rate of shearlet-based 𝑁 -term approximations discussed in the prelude to Chapter 3 (see
Equation (3.54)). In particular, Equation (4.17) generalizes the result from Chapter 3
by showing that a higher regularity of the boundary curves and the smooth regions of a
cartoon-like image allows for better approximation rates that can be achieved by increa-
sing the degree of anisotropy of the scaling matrix A𝑠,𝛼 (cf. (4.1)). It was furthermore
shown in [71] that the system of 𝛼-curvelets that yields (4.17) also constitutes a system
of 𝛼-molecules of order (∞,∞,∞,∞). The following theorem combines both results and
provides a powerful tool for obtaining a large class of multiscale representation systems
that yield an (almost) optimal approximation behavior with respect to cartoon-like image
functions.

Theorem 4.0.6 (Optimally sparse approximations of 𝐶𝛽-cartoon-like images, [71]). Let
𝛼 ∈ [1/2, 1), and 𝛽 = 𝛼−1. Furthermore, let {𝑚𝜆}𝜆∈𝛬 denote a system of 𝛼-molecules
of order (𝐿,𝑀,𝑁1, 𝑁2), that is a tight frame for 𝐿2(R2), where 𝛬 is a discrete index set,
and Q𝛬 ⊂ P denotes the associated set of parameters. Then, if for some fixed 𝑘 > 0, the
parametrization Q𝛬 is (𝛼, 𝑘)-consistent with the parametrization of a specific tight frame
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of 𝛼-curvelets (see Definition 2.2. in [71]), and it holds that

𝐿 ≥ 𝑘(1 + 𝛽), 𝑀 ≥ 3𝑘
2 (1 + 𝛽), 𝑁1 ≥ 𝑘

2 (1 + 𝛽) + 1 + 𝛼

2 , and 𝑁2 ≥ 𝑘(1 + 𝛽), (4.18)

the {𝑚𝜆}𝜆∈𝛬-based 𝑁 -term approximations of 𝐶𝛽-cartoon-like image functions are (almost)
optimally sparse, that is,

‖𝑓 − 𝑓𝑁‖2 . 𝑁− 𝛽
2 +𝜀, (4.19)

where 𝑓 is a 𝐶𝛽-cartoon-like image function, 𝑓𝑁 denotes the 𝑁 -term approximation obtained
from the 𝑁 largest coefficients in magnitude (cf. Equation 3.52), and 𝜀 > 0 can be chosen
arbitrarily small.

4.1 Introduction

The correct localization of the significant structures in an image as well as the precise
characterization of their geometry are two of the most eminent tasks in digital image
processing with an overwhelming number of applications. Since the advent of digital image
processing, a large body of research has been devoted to the development and analysis
of algorithms for the detection and characterization of features such as edges, ridges, or
well-defined two-dimensional shapes. Surprisingly, in many practical situations, even highly
optimized implementations of popular methods such as the Canny edge detector [28],
approaches that are based on directionally sensitive filters [88], or even multiscale systems
of anisotropic functions [171] are not always capable of reliably identifying the features
in question. This is often the case for images which are heavily distorted by noise, in
which different features are strongly overlapping, or where the geometry of the considered
features is characterized by a high variation and irregularities such as corner points. It is
also worth noting that feature detection in general is a task where, despite recent advances,
computers are still often outperformed by humans.

A main difficulty researchers face when developing methods for feature detection is to
identify universal and computationally tractable properties that are characteristic of or even
unique to points at which a certain feature is localized. In the case of edge detection, the first
and most basic observation was that edges are typically associated with changes in contrast
and can thus be identified by considering points with large image gradients. This approach
led to the development of early edge enhancement filters such as the Roberts filter [148],
the Prewitt filter [140], and the Sobel filter [153], which are still widely applied today.
However, any procedure merely considering the magnitude of gradient filters as an indicator
is highly sensitive to noise and variations in image illumination. Two famous and influential
descriptors which already made a big step towards capturing the structural nature of edges
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were proposed in the 1980’s by Marr and Hildreth [123], and Canny [28]. Marr and Hildreth
observed that edges coincide with zero-crossings in the second directional-derivative of the
image intensities while Canny developed an algorithm for edge detection which identifies
points at which the image gradient reaches a local maximum. The Canny edge detector is
also based on a gradient filter, and the Marr-Hildreth-operator applies a discrete Laplace
filter. However, both methods are not just evaluating whether a magnitude exceeds a
certain threshold but consider local structural properties by testing for zero-crossings and
local maxima.

A fully dimensionless approach to identifying features such as edges and ridges can
be found in the so-called local energy model, which was proposed in the late 1980’s and
postulates that the location of features coincides with points in an image for which the
Fourier components are maximally in phase [129, 130, 163]. However, to precisely calculate
the degree of phase congruency, it is necessary to optimize a certain value over inputs from
a continuous interval for every point in an image. This computationally highly inefficient
procedure was later significantly simplified by Kovesi, who showed that an equivalent
measure can be formulated in terms of convolutions with differently scaled and oriented
complex-valued wavelet filters [99, 100]. The resulting phase congruency measure yields a
contrast invariant feature detector that simultaneously detects edges and ridges and can be
efficiently implemented to process digital images. It has furthermore strongly inspired the
measures for edge, ridge, and blob detection presented here and will therefore be introduced
in greater detail later in this work.

In this chapter, we derive measures for the detection of edges, ridges, and blobs that
are inspired by the local energy model and the notion of phase congruency but realized
by making full use of the flexibility of modern construction principles for anisotropic
analyzing functions provided within the framework of 𝛼-molecules. Saying that the Fourier
components are in phase at the location of an edge basically means that locally the
considered function is purely defined by odd-symmetric sine components while all even-
symmetric cosine components vanish. In the first step, we will derive a novel edge measure
that utilizes this observation by testing for the local symmetry properties of a function by
considering differently scaled and oriented odd- and even-symmetric analyzing functions
constructed in the 𝛼-molecule framework. This measure can then be generalized to detect
ridges by interchanging the roles of the odd- and even-symmetric molecules. We further
show how, with a few modifications regarding the measure and the construction of analyzing
functions, similar principles can be applied to the case of blob detection. Each analyzing
function in a multiscale system considered in this work is associated with a specific pair
of scaling and orientation parameters and thus conveys not only information about the
location of features but also about their geometry in terms of feature width and orientation.
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Eventually, we demonstrate how this information can be utilized to obtain measures for
local tangent directions, widths, and heights, that yield detailed information about the
geometry of an image.

4.1.1 Contributions

Variants of the edge measure derived in Section 4.3.2 and the ridge measure derived in
Section 4.3.3 that are based on complex-valued shearlets have already been published
previously by the author of the present thesis and co-authors [96, 142, 144]. The main
contribution of the work presented in this chapter is to provide a comprehensive derivation
and description of the proposed measures within the framework of 𝛼-molecules, which
provides enough flexibility to allow for a unified treatment of the cases of edge, ridge,
and blob detection. In particular, we demonstrate in Theorem 4.3.4 that by considering
tensor products of derivatives of the one-dimensional Gaussian and their Hilbert transforms,
one can obtain a large class of well-behaved 𝛼-molecules that also provide the necessary
symmetry properties. We furthermore show in Section 4.3.4 how the concept of considering
local symmetry properties can also be generalized to yield a blob measure and specifically
derive functions that estimate the local tangent orientations of edge contours and ridge
centerlines, local diameters of ridges and blobs, and the local contrast of a feature.

To evaluate the strengths and weaknesses of the proposed measures in comparison with
other state of the art methods for feature detection, we performed extensive numerical
experiments with respect to synthetic images with reliable ground truths, which can
be found in Section 4.5. To furthermore demonstrate the applicability of the proposed
framework, we consider the application of the ridge measure in the context of retinal
image analysis in Section 4.6.1, flame front characterization in Section 4.6.3, and show how
the proposed blob measure can be applied for automatically counting the number of cell
colonies in a Petri dish in Section 4.6.2.

We also developed a Matlab toolbox that implements all of the proposed measures
for two-dimensional digital images. The implementation strategies are briefly explained in
Section 4.4 and the toolbox can be downloaded from http://www.math.uni-bremen.de/

cda/software.html.

4.2 Related Work

We begin by giving a short review of the most important tools and concepts that will later
be used to derive the respective edge, ridge, and blob measures.

http://www.math.uni-bremen.de/cda/software.html
http://www.math.uni-bremen.de/cda/software.html
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4.2.1 Derivative of Gaussian Wavelets

In order to detect features by testing for local symmetry properties, we require even-
and odd-symmetric real-valued functions with good localization in both the time and
the frequency domain. In the remainder of this work, we will consider two simple tools
to construct one-dimensional even- and odd-symmetric generators with these properties,
namely taking derivatives of the Gaussian as well as applying the so-called Hilbert transform.
A comprehensive discussion of the methods reviewed in this section can be found in [12].
For 𝑘 ∈ N0, let us denote the 𝑘-th derivative of the unnormalized Gaussian by

𝐺𝑘(𝑥) = (−1)𝑘𝐻𝑘(𝑥)𝑒−𝑥2
, (4.20)

where 𝐻𝑘 is the 𝑘-th Hermite polynomial. The Hermite polynomials are orthogonal with
respect to the weight function 𝑒−𝑥2 and can be defined by 𝐻0(𝑥) = 1 and the recurrence
relation

𝐻𝑘+1(𝑥) = 2𝑥𝐻𝑘(𝑥) − 2𝑘𝐻𝑘−1(𝑥), (4.21)

where 𝐻−1(𝑥) = 0. For more details on orthogonal polynomials and Hermite polynomials
in particular, see [159]. It is furthermore well known that for a differentiable function 𝑓

with 𝑓, 𝑓 ′ ∈ 𝐿1(R), its derivative can be expressed algebraically in the frequency domain
(cf. Equation 3.77), and that the Gaussian 𝐺0(

√
𝜋𝑥) = 𝑒−𝜋𝑥2 is a fixed point of the Fourier

transform. 𝐺𝑘 can thus be expressed in the Fourier domain by

̂︁𝐺𝑘(𝜉) = (2𝜋𝑖𝜉)𝑘
√
𝜋𝑒−𝜋2𝜉2

. (4.22)

Note that if 𝑘 is odd, ̂︁𝐺𝑘 is purely imaginary, while if 𝑘 is even, ̂︁𝐺𝑘 is purely real. This
implies that 𝐺𝑘 is odd-symmetric if 𝑘 is odd and even-symmetric if 𝑘 is even. Furthermore,
the Gaussian lies in the Schwartz space of rapidly decreasing functions. That is, the
Gaussian is infinitely differentiable and all of its derivatives decay faster than the inverse
of any polynomial. With ̂︁𝐺𝑘(0) = 0, this implies that 𝐺𝑘 satisfies the wavelet admissibility
condition (cf. Equation (3.1)) for any integer 𝑘 > 0. The Hilbert transform is a bounded
linear operator on 𝐿2(R) and defined for functions 𝑓 ∈ 𝐿2(R) by

(ℋ𝑓)(𝑥) = 1
𝜋

∫︁
R

𝑓(𝑡)
𝑡− 𝑥

d𝑡, (4.23)

or equivalently in the Fourier domain via

̂︂ℋ𝑓(𝜉) = −𝑖 sgn(𝜉)𝑓(𝜉), (4.24)
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where sgn denotes the sign function.
It is easy to see from (4.24) that if 𝑓 is purely real, ̂︂ℋ𝑓 is purely imaginary and vice

versa. This implies that for any even-symmetric function 𝑓 , its Hilbert transform ℋ𝑓 is
odd-symmetric, while any odd-symmetric function will become even-symmetric under the
Hilbert transform. The Fourier-based definition (4.23) also illustrates that the Hilbert
transform leaves the magnitude of the Fourier transform invariant. In particular, this
implies that the wavelet admissibility condition (3.1) is preserved by the Hilbert transform
and that for any function 𝑓 ∈ 𝐿2(R), it holds that ‖𝑓‖2 = ‖ℋ𝑓‖2. Note that the latter
does not hold for the 𝐿1-norm. Two examples of even- and odd-symmetric wavelets based
on derivatives of the Gaussian are plotted along with their respective Hilbert transforms in
Figure 4.2.

4.2.2 Feature Detection via Phase Congruency

By taking the Fourier series expansion, any real-valued function 𝑓 ∈ 𝐿2(−𝜋, 𝜋) can be
written as

𝑓(𝑥) = 1
2𝜋
∑︁
𝑛∈Z

|𝑐𝑛| cos(𝑛𝑥+ 𝜙𝑛) = |𝑐0|
2𝜋 + 1

𝜋

∑︁
𝑛∈N+

|𝑐𝑛| cos(𝑛𝑥+ 𝜙𝑛), (4.25)

for almost every 𝑥 ∈ (−𝜋, 𝜋), where 𝑐𝑛 =
⟨︀
𝑓, 𝑒𝑖𝑛·⟩︀

𝐿2 , and 𝜙𝑛 denotes the phase angle of 𝑐𝑛,
i.e., 𝑐𝑛 = |𝑐𝑛| 𝑒𝑖𝜙𝑛 . It was already observed in the mid-80s [129, 130] that at the location of
features like jump-discontinuities, the angles 𝑛𝑥+𝜙𝑛 are in congruency for different choices
of 𝑛 ∈ N. This led to the definition of a so-called phase congruency measure (e.g. [99]),
given by

PC(𝑓, 𝑥) = max
𝜇∈[0,2𝜋]

∑︀
𝑛∈N

|𝑐𝑛| cos(𝑛𝑥+ 𝜙𝑛 − 𝜇)∑︀
𝑛∈N

|𝑐𝑛|
, (4.26)

where 𝑐𝑛 and 𝜙𝑛 are defined as above. This measure can be computed for any non-zero
square integrable function and every point in its domain. PC(𝑓, 𝑥) takes 1 if the phases of
the frequency components of 𝑓 are locally in perfect congruency, indicating the presence
of a significant feature at 𝑥, and goes towards 0 if the converse is the case. However,
maximizing the weighted mean in (4.26) over all possible phases for each point in the
domain of a signal is a computationally demanding task. To simplify matters, Morrone and
Owens suggested considering local energy functions, whose maxima coincide with the local
maxima of the phase congruency measure [129, 163]. These local energies were obtained
by first convolving a signal with an even-symmetric filter and its odd-symmetric Hilbert
transform and then summing the squares of the respective outputs (see also [5]).
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Figure 4.2: The first and the second derivative of the Gaussian plotted alongside their
respective Hilbert transforms.

The apparent issue behind computing (4.26) is that phase congruency is a local property
but based on the coefficients of the discrete Fourier transform, which – when viewed
independently – only provide information about which frequency components are present in
a signal but not where they occur. A possible solution was given by Kovesi, who proposed
extracting the local phase congruency by using sets of differently scaled complex-valued
wavelets [99]. Similar to the use of sines and cosines in the local energy approach, the
real and imaginary parts of these wavelets formed Hilbert transform pairs, with the real
part being even- and the imaginary part being odd-symmetric. However, by considering
multiple scalings, Kovesi was able to combine phase information from different parts of the
frequency domain and to eventually derive a dimensionless and easy-to-compute complex
wavelet-based phase congruency measure, namely

PC𝜓c(𝑓, 𝑥) =

⃒⃒⃒⃒ ∑︀
𝑎∈𝐴

⟨︀
𝑓, 𝜓c

𝑎,𝑥

⟩︀
𝐿2

⃒⃒⃒⃒
∑︀
𝑎∈𝐴

⃒⃒⃒⟨︀
𝑓, 𝜓c

𝑎,𝑥

⟩︀
𝐿2

⃒⃒⃒
+ 𝜀

, (4.27)

where 𝜓c ∈ 𝐿2(R) is a complex-valued wavelet, 𝐴 ⊂ R+ a set of scaling parameters,
𝜓c
𝑎,𝑥 = 𝑎− 1

2𝜓
(︀ ·−𝑥
𝑎

)︀
(i.e., 𝜓c centered at 𝑥 and scaled by 𝑎) and 𝜀 > 0 prevents division

by zero. Analogous to (4.26), this measure is defined for any square integrable function
𝑓 and each point 𝑥 in its domain. It goes towards 1 if the phases of the local frequency
components are in congruency and towards 0 if they are widely spread. More details about
the generalization of this measure to two dimensions and its implementation can be found
here [99, 100, 101].

The measure (4.27) can effortlessly be computed and is by construction contrast
invariant. Features such as edges and ridges are picked up solely by the traces their
structure leaves in the phases of the frequency representation of a signal rather than the
local magnitude of contrast. Furthermore, as Kovesi points out in his original work, it
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is an interesting property of the phase congruency measure that from the perspective of
(4.26) or (4.27), there is no difference between edges and ridges.

While contrast invariance is indeed a highly desirable feature in many edge and ridge
detection tasks, localizing a property of the frequency components in the time representation
of a signal comes at a price. Indeed, it was already observed in [157] and [142] that replacing
isotropic wavelets with anisotropically scaled analyzing functions in (4.27) deteriorates
the detection of features in images rather than improving it. This should come as a
surprise, as one would assume that anisotropically scaled elements would be better suited
for detecting typically anisotropic features such as edges or ridges than their isotropically
scaled counterparts. Finding a way of bringing together the intuitions behind the phase
congruency measure PC𝜓c(𝑓, 𝑥) and modern constructions of anisotropic analyzing functions
was in fact one of the main factors motivating the present work.

4.2.3 Maximum Point Estimation From Discrete Samples

Each two-dimensional analyzing function within a system of 𝛼-molecules is associated with
a certain scaling and rotation parameter (cf. (4.4)). These parameters can be used to
obtain first estimates of the local tangent direction and the width of a feature by considering
the most significant analyzing function (i.e., the member of a system of functions yielding
the largest coefficient). To obtain more precise measurements, we consider a refinement
procedure which allows us to estimate the maximum point of a function defined in the
continuum from only a few discrete samples.

Let 𝑓 ∈ 𝐶2(R), {𝑥𝑛}𝑁𝑛=1 ⊂ R be a strictly increasing sequence of 𝑁 ∈ N sampling
points (i.e. 𝑥𝑛 < 𝑥𝑛+1 for all 1 ≤ 𝑛 ≤ 𝑁 − 1) and denote

𝑛* = argmax
𝑛≤𝑁

𝑓(𝑥𝑛). (4.28)

If 1 < 𝑛* < 𝑁 , the function 𝑓 has at least one local maximum point in the interval
[𝑥𝑛*−1, 𝑥𝑛*+1], which is in real-world applications often taken as a best guess for the global
maximum point of 𝑓 . One method of refining the estimate 𝑥𝑛* for a local maximum point
is to assume that 𝑓 can be approximated on [𝑥𝑛*−1, 𝑥𝑛*+1] by a parabola fit through the
points (𝑥𝑛*−1, 𝑓(𝑥𝑛*−1)),(𝑥𝑛* , 𝑓(𝑥𝑛*)), and (𝑥𝑛*+1, 𝑓(𝑥𝑛*+1)), that is

𝑓(𝑥) ≈ 𝑐2(𝑥− 𝑥𝑛*)2 + 𝑐1(𝑥− 𝑥𝑛*) + 𝑐0 (4.29)

for 𝑥 ∈ [𝑥𝑛*−1, 𝑥𝑛*+1], where the parameters 𝑐2, 𝑐1, 𝑐0 ∈ R are chosen such that

𝑓(𝑥𝑛*) = 𝑐0, (4.30)
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Figure 4.3: Example of a refined maximum point estimation based on discrete samples. (a):
A 𝐶2-function and its maximum point in the interval [−2, 2]. (b): An estimate 𝑥𝑛* of the
maximum point obtained from sampling the function at 17 different points. (c): A refined
estimate 𝑥* of the maximum point obtained from fitting a parabola through 𝑥𝑛* and its nearest
neighbors.

𝑓(𝑥𝑛*−1) = 𝑐2(𝑥𝑛*−1 − 𝑥𝑛*)2 + 𝑐1(𝑥𝑛*−1 − 𝑥𝑛*) + 𝑐0, and (4.31)

𝑓(𝑥𝑛*+1) = 𝑐2(𝑥𝑛*+1 − 𝑥𝑛*)2 + 𝑐1(𝑥𝑛*+1 − 𝑥𝑛*) + 𝑐0. (4.32)

Setting 𝑑− = 𝑥𝑛*−1 − 𝑥𝑛* and 𝑑+ = 𝑥𝑛*+1 − 𝑥𝑛* , the parameters 𝑐2 and 𝑐1 are given by

𝑐2 = 𝑑+(𝑓(𝑥𝑛*−1) − 𝑓(𝑥𝑛*)) − 𝑑−(𝑓(𝑥𝑛*+1) − 𝑓(𝑥𝑛*))
𝑑+((𝑑−)2 − 𝑑+𝑑−) , (4.33)

𝑐1 = (𝑑−)2(𝑓(𝑥𝑛*+1) − 𝑓(𝑥𝑛*)) − (𝑑+)2(𝑓(𝑥𝑛*−1) − 𝑓(𝑥𝑛*))
𝑑−(𝑑+𝑑− − (𝑑+)2) (4.34)

and the maximum point of the parabola (4.29), denoted as 𝑥*, can be computed by

𝑥* = 𝑥𝑛* − 𝑐1
2𝑐2

. (4.35)

Note that in the case 𝑑− = −1 and 𝑑+ = 1, equations (4.33) and (4.34) simplify
significantly. A short review of this and other methods for estimating maximal points from
discrete samples in the context of edge and line detection can be found in [40].

Figure 4.3 illustrates how (4.35) can be used to yield refined estimates of local maxima
from a finite number of samples. Here, we will use (4.35) to improve on estimates of local
tangent orientations and widths of features from finite samples of coefficients associated
with differently scaled and oriented 𝛼-molecules.

4.3 Symmetric Molecule-Based Feature Detection

In this section, we will evaluate the likelihood of a certain feature being centered at a point
𝑦 ∈ R2 in the image domain for a given image 𝑓 ∈ 𝐿2(R2) by considering the transform of
𝑓 with respect to systems of even- and odd-symmetric 𝛼-molecules and demonstrate how
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additional information about the detected features, namely the local tangent orientations
of edges and ridges as well as local widths (diameters) of ridges and blobs and heights
(contrasts) can be extracted. Formally, we will define three mappings that serve as feature
detectors:

an edge measure E(𝑓,𝑦) : 𝐿2(R2) × R2 → [0, 1], (4.36)

a ridge measure R(𝑓,𝑦) : 𝐿2(R2) × R2 → [0, 1], (4.37)

and a blob measure B(𝑓,𝑦) : 𝐿2(R2) × R2 → [0, 1]. (4.38)

Furthermore, we will define functions that extract local properties of a feature centered at
a given point in the image domain, namely

tangent orientation measures O𝑥(𝑓,𝑦) : 𝐿2(R2) × R2 →
[︁
−𝜋

2 ,
𝜋

2

)︁
, 𝑥 ∈ {E,R},

(4.39)

local width measures W𝑥(𝑓,𝑦) : 𝐿2(R2) × R2 → R+, 𝑥 ∈ {R,B},
(4.40)

and local height measures H𝑥(𝑓,𝑦) : 𝐿2(R2) × R2 → R, 𝑥 ∈ {E,R,B}.
(4.41)

In particular, E(𝑓,𝑦), and HE(𝑓,𝑦) will be defined in Section 4.3.2, R(𝑓,𝑦), WR(𝑓,𝑦),
and HR(𝑓,𝑦) in Section 4.3.3, B(𝑓,𝑦), WB(𝑓,𝑦), and HB(𝑓,𝑦) in Section 4.3.4, and
OE(𝑓,𝑦), and OR(𝑓,𝑦) in Section 4.3.5.

Before turning to the derivation of the measures in (4.36) to (4.41), we would like
to explain the basic principle of symmetric molecule-based feature detection in the one-
dimensional setting. Figure 4.4(a) depicts what we consider an ideal one-dimensional edge,
namely a step discontinuity preceded and followed by two distinct constant functions. An
ideal ridge, which could be described as a short constant function interrupting a constant
baseline, is shown in Figure 4.4(b). The features plotted in Figures 4.4(a) and 4.4(b) are
both centered at the point 1/2 and the main question we aim to answer is how this point
could be discriminated from its neighborhood and, in general, from other points not lying
in the center of a ride, edge, or another kind of feature. Note that the notions of ridges
and blobs coincide in the one-dimensional setting.

One way of looking at this problem is to observe that the function plotted in Figure 4.4(a)
is odd-symmetric around 1/2, while the function shown in Figure 4.4(b) is even-symmetric
around 1/2. This is consistent with the phase congruency-based approach to feature
detection, in which edges are characterized by phase congruency with respect to the angle
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(a) Ideal 1D edge (b) Ideal 1D ridge/blob (c)

(d) (e) (f)

Figure 4.4: Behavior of even- and odd-symmetric coefficients at the location of ideal features.
(a): An idealized one-dimensional edge. (b): An idealized one-dimensional ridge/blob. (c):
Three different 𝐿1-normalized dilates of the first derivative of the Gaussian centered at 1/2.
(d): Three different 𝐿1-normalized dilates of the second derivative of the Gaussian centered at
1/2. (e): Inner products of the dilates of the first derivative of the Gaussian with an ideal edge
plotted as a function of the shift parameter 𝑡. (f): Inner products of the dilates of the second
derivative of the Gaussian with the ideal edge.

𝜋/2 and ridges are characterized by phase congruency with respect to the angle 0 (cf.
(4.27)). In the phase congruency framework, this simply means that in the vicinity of an
edge, a function can purely be represented by odd-symmetric sine components, while in
the vicinity of a ridge, a function solely consists of even-symmetric cosine components.
For edges, we can additionally observe a certain kind of self-similarity. When restricting
the function plotted in Figure 4.4(a) to any neighborhood around the point 1/2 and then
scaling it back to the full interval [0, 1], the function will remain unchanged. Ridges on the
other hand are not defined by a single step-discontinuity but by two step-discontinuities
which are in close proximity of each other. Any ridge can thus be associated with a width
(i.e. the distance between its step-discontinuities) and is not invariant under the restricting
and rescaling operation described above. In the one-dimensional setting, we will only deal
with the case of edge detection but this issue will be taken into consideration when defining
the two-dimensional ridge measure in Section 4.3.3.

To summarize: In order to detect edges, we aim to test each point in the domain of a
function for the scale-invariant symmetry and self-similarity properties described in the
preceding paragraph. If a point is at the location of an edge, restrictions of the analyzed
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function to reasonably small neighborhoods around this point should look roughly the
same and, in particular, be odd-symmetric when centered at the analyzed point. A simple
and efficient way of testing for these properties is to consider the coefficients associated
with differently scaled even- and odd-symmetric wavelets that are centered around the
point of interest. Again, this approach is consistent with (4.27), where complex-valued
wavelets whose real part is even- and whose imaginary part is odd-symmetric are applied
to approximate the phase congruency measure (4.26).

Figures 4.4(c) and 4.4(d) show three differently scaled versions of the odd-symmetric
first and the even-symmetric second derivative of the Gaussian (cf. (4.20) and (4.22)), all
of which are 𝐿1-normalized to one. Figures 4.4(e) and 4.4(f) depict the corresponding inner
products with the idealized one-dimensional edge as a function of the translation parameter
𝑡. For the remainder of this chapter, we shall call inner products of a function 𝑓 with an
even-symmetric wavelet or 𝛼-molecule the even-symmetric coefficients of 𝑓 and the inner
products with an odd-symmetric wavelet or 𝛼-molecule the odd-symmetric coefficients.
Independently of scale, the even-symmetric coefficients shown in Figure 4.4(f) go to zero at
the location of the step-discontinuity, as the even-symmetric wavelets are orthogonal to the
locally odd-symmetric function centered at the point 1/2. Furthermore, the odd-symmetric
coefficients all peak in the point 1/2 with a maximum value of approximately 1/2, which is
due to the fact that the jump size of the singularity is one and because

1
‖𝐺1‖1

0∫︁
−∞

𝐺1(𝑥) d𝑥 = 𝐺0(0)
2𝐺0(0) = 1

2 . (4.42)

In summary, Figure 4.4 illustrates that at the location of an ideal edge, 𝐿1-normalized
symmetric wavelets show scale invariant behavior in the sense that odd-symmetric coeffi-
cients remain constant under scaling, while even-symmetric coefficients remain fixed at
zero. In particular, this behavior is also invariant of the jump size of the singularity and
thus unaffected by changes in contrast.

To translate the above observations into an edge measure for functions in 𝐿2(R), we
first use the derivatives of the Gaussian and the Hilbert transform defined in Section 4.2.1
to define sets of odd- and even-symmetric 𝐿1-normalized wavelets:

𝛹 e =
{︂

𝐺2𝑘
‖𝐺2𝑘‖1

: 𝑘 ∈ N
}︂

∪
{︂

ℋ𝐺2𝑘−1
‖ℋ𝐺2𝑘−1‖1

: 𝑘 ∈ N
}︂

⊂ 𝐿2(R) ∩ 𝐿1(R), (4.43)

𝛹o =
{︂

𝐺2𝑘−1
‖𝐺2𝑘−1‖1

: 𝑘 ∈ N
}︂

∪
{︂

ℋ𝐺2𝑘
‖ℋ𝐺2𝑘‖1

: 𝑘 ∈ N
}︂

⊂ 𝐿2(R) ∩ 𝐿1(R). (4.44)

When applying generators from the sets 𝛹 e and 𝛹o in practice, it will often be sufficient
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to numerically approximate the 𝐿1-norm of the corresponding derivative of the Gaussian,
respectively its Hilbert transform. Assuming that the zeros of the associated Hermite
polynomial are known, the following lemma shows how the 𝐿1-norms of derivatives of the
Gaussian can also be computed explicitly.

Lemma 4.3.1. Let 𝐺𝑘 denote the 𝑘-th derivative of the Gaussian and 𝑧 = {𝑧𝑛}𝑘𝑛=1 be the
strictly increasing sequence of zeros of the associated Hermite polynomial 𝐻𝑘 (cf. (4.20)),
that is, 𝐻𝑘(𝑧𝑛) = 0 for all 1 ≤ 𝑛 ≤ 𝑘 and 𝑧𝑛 < 𝑧𝑛+1 for all 1 ≤ 𝑛 < 𝑘 − 1. The 𝐿1-norm
of 𝐺𝑘 is then given by

‖𝐺𝑘‖1 = 2

⎛⎝(−1)⌊𝑘/2⌋𝐺𝑘−1(0) + 2
⌊𝑘/2⌋∑︁
𝑛=1

(−1)𝑛−1𝐺𝑘−1(𝑧𝑛)

⎞⎠ . (4.45)

Proof. As it was already noted, the Hermite polynomials are orthogonal with respect to
the measure 𝑒−𝑥2 . Their zeros are therefore real and unique (a proof can be found in [159]).
It is easy to see from the recursion (4.21), that 𝐻𝑘 is of degree 𝑘 and thus has exactly 𝑘
real-valued zeros. This means that (4.45) is well defined for all 𝑘 ∈ N. Due to 𝑒−𝑥2

> 0
for all 𝑥 ∈ R, the zeros of 𝐻𝑘 coincide with the zeros of 𝐺𝑘(𝑥) = (−1)𝑘𝐻𝑘(𝑥)𝑒−𝑥2 (cf.
(4.20)). Let us denote the number of negative zeros with 𝑘 = ⌊𝑘/2⌋ and consider the
strictly increasing sequence 𝑧 =

(︀
−∞, 𝑧1, . . . , 𝑧𝑘, 0

)︀
, which partitions R− into intervals

on which 𝐺𝑘 yields either strictly positive or strictly negative values. By exploiting the
symmetry of 𝐺𝑘 and with the fundamental theorem of calculus, it follows that

‖𝐺𝑘‖1
2 =

0∫︁
−∞

|𝐺𝑘(𝑥)| d𝑥 =
𝑘+1∑︁
𝑛=1

𝑧𝑛+1∫︁
𝑧𝑛

|𝐺𝑘(𝑥)| d𝑥 =
𝑘+1∑︁
𝑛=1

(−1)𝑛−1
𝑧𝑛+1∫︁
𝑧𝑛

𝐺𝑘(𝑥) d𝑥 (4.46)

= 𝐺𝑘−1(𝑧2) − lim
𝑎→−∞

𝐺𝑘−1(𝑎) +
𝑘+1∑︁
𝑛=2

(−1)𝑛−1 (𝐺𝑘−1(𝑧𝑛+1) −𝐺𝑘−1(𝑧𝑛)) (4.47)

= 𝐺𝑘−1(𝑧1) + (−1)𝑘
(︀
𝐺𝑘−1(0) −𝐺𝑘−1(𝑧𝑘)

)︀
+

𝑘−1∑︁
𝑛=1

(−1)𝑛 (𝐺𝑘−1(𝑧𝑛+1) −𝐺𝑘−1(𝑧𝑛)) (4.48)

= (−1)𝑘𝐺𝑘−1(0) + 2
𝑘∑︁

𝑛=1
(−1)𝑛−1𝐺𝑘−1(𝑧𝑛). (4.49)

Obtaining the exact set of zeros of a given Hermite polynomial is in general not a trivial
task. However, at least for the first five Hermite polynomials, the zeros can easily be found
using elementary methods, as illustrated by the following lemma.
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Lemma 4.3.2. The sets of zeros for 𝐺1, 𝐺2, 𝐺3, 𝐺4, and 𝐺5 are

𝑧(1) = {0} , (4.50)

𝑧(2) =
{︂

−
√

2
2 ,

√
2

2

}︂
, (4.51)

𝑧(3) =
{︃

−
√︂

3
2 , 0,

√︂
3
2

}︃
, (4.52)

𝑧(4) =

⎧⎨⎩−

√︃
3
2 +

√︂
3
2 ,−

√︃
3
2 −

√︂
3
2 ,

√︃
3
2 −

√︂
3
2 ,

√︃
3
2 +

√︂
3
2

⎫⎬⎭ , (4.53)

𝑧(5) =

⎧⎨⎩−

√︃
5
2 +

√︂
5
2 ,−

√︃
5
2 −

√︂
5
2 , 0,

√︃
5
2 −

√︂
5
2 ,

√︃
5
2 +

√︂
5
2

⎫⎬⎭ , (4.54)

respectively.

Proof. The zeros of 𝐺𝑘(𝑥) = (−1)𝑘𝐻𝑘(𝑥)𝑒−𝑥2 coincide with the zeros of the 𝑘-th Hermite
polynomial 𝐻𝑘. For 𝐻1(𝑥) = 2𝑥, the only zero is 0. In the case of 𝐻2(𝑥) = 4𝑥2 − 2 =
(2𝑥−

√
2)(2𝑥+

√
2), the zeros are

{︁
−

√
2

2 ,
√

2
2

}︁
. We can factorize

𝐻3(𝑥) = 8𝑥3 − 12𝑥 = (8𝑥2 − 12)𝑥 =
(︂

4√
2
𝑥− 6√

3

)︂(︂
4√
2
𝑥+ 6√

3

)︂
𝑥, (4.55)

which yields the zeros
{︁

−
√︁

3
2 , 0,

√︁
3
2

}︁
. In the case of 𝐻4(𝑥) = 16𝑥4 −48𝑥2 +12, we consider

the normalized polynomial

𝑥2 − 3𝑥+ 3
4 =

(︂
𝑥− 3

2

)︂2
− 3

2 =
(︃
𝑥−

√︂
3
2 + 3

2

)︃(︃
𝑥+

√︂
3
2 − 3

2

)︃
, (4.56)

which yields the set of zeros 𝑧(4). The complete set of zeros 𝑧(5) in the case of 𝐻5(𝑥) =
32𝑥5 − 160𝑥3 + 120𝑥 is obtained by considering

𝑥2 − 5𝑥+ 15
4 =

(︂
𝑥− 5

2

)︂2
− 5

2 =
(︃
𝑥−

√︂
5
2 + 5

2

)︃(︃
𝑥+

√︂
5
2 − 5

2

)︃
. (4.57)

Remark 4.3.3. Using Lemmas 4.3.1 and 4.3.2, the 𝐿1-norms of the first five derivatives
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of the Gaussian can be computed explicitly:

‖𝐺1‖1 = 2, (4.58)

‖𝐺2‖1 = 4𝐺1

(︂
−

√
2

2

)︂
≈ 3.43105554, (4.59)

‖𝐺3‖1 = 4𝐺2

(︃
−
√︂

3
2

)︃
− 2𝐺2(0) ≈ 7.57008256, (4.60)

‖𝐺4‖1 = 4𝐺3

⎛⎝−

√︃
3
2 +

√︂
3
2

⎞⎠− 4𝐺3

⎛⎝−

√︃
3
2 −

√︂
3
2

⎞⎠ ≈ 19.85573915, (4.61)

‖𝐺5‖1 = 2𝐺4(0) + 4𝐺4

⎛⎝−

√︃
5
2 +

√︂
5
2

⎞⎠− 4𝐺4

⎛⎝−

√︃
5
2 −

√︂
5
2

⎞⎠ ≈ 59.25755290. (4.62)

Let us now turn to the definition of a one-dimensional edge measure that is based on
even- and odd-symmetric generators from the sets 𝛹 e and 𝛹o. Let 𝜓o ∈ 𝛹o, 𝜓e ∈ 𝛹 e, 𝑎 > 0
be fixed, 𝐽 = {𝑗𝑛}𝑁𝐽

𝑛=1 ⊂ Z be an increasing sequence of 𝑁𝐽 ∈ N scaling parameters and
denote 𝐿1-normalized dilates and shifts of the generating wavelets 𝜓o and 𝜓e with

𝜓o
𝑗,𝑦 = 𝑎𝑗𝜓o(𝑎𝑗(· − 𝑦)), (4.63)

𝜓e
𝑗,𝑦 = 𝑎𝑗𝜓e(𝑎𝑗(· − 𝑦)), (4.64)

for scaling parameters 𝑗 ∈ 𝐽 and translation parameters 𝑦 ∈ R. Note that 𝑓 ↦→ 𝑎𝑗𝑓(𝑎𝑗 ·)
defines an isometric mapping of 𝐿1. As already discussed earlier in the case of the first
derivative of the Gaussian, the odd-symmetric coefficient at the location of an ideal edge
is, independently of scaling, fully determined by the jump size of the discontinuity and the
integral of the generating wavelet 𝜓o over R−. To be precise, the value

𝐾𝜓o =
0∫︁

−∞

𝜓o(𝑥) d𝑥, (4.65)

is equal to the odd-symmetric coefficients at the location of an ideal edge with jump size
one. With a soft-thresholding parameter 𝛽 > 0 that corresponds to the minimal jump size
that is required for the detection of an edge and a fixed scaling offset for the even-symmetric
wavelets 𝑗e ∈ R≥0, a one-dimensional edge measure for a function 𝑓 ∈ 𝐿2(R) and 𝑦 ∈ R is
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given by

Ĕ1D(𝑓, 𝑦) =

⃒⃒⃒⃒
⃒∑︀𝑗∈𝐽

⟨
𝑓, 𝜓o

𝑗,𝑦

⟩
𝐿2

⃒⃒⃒⃒
⃒−

∑︀
𝑗∈𝐽

⃒⃒⃒⟨
𝑓, 𝜓e

𝑗−𝑗e,𝑦

⟩
𝐿2

⃒⃒⃒
− 𝛽𝑁𝐽𝐾𝜓o

𝑁𝐽 max
𝑗∈𝐽

{︁⃒⃒⃒⟨
𝑓, 𝜓o

𝑗,𝑦

⟩
𝐿2

⃒⃒⃒}︁
+ 𝜀

, (4.66)

where 𝜀 > 0 prevents division by zero. The measure Ĕ1D is bounded above by one but to
ensure a mapping to [0, 1], we finally set

E1D(𝑓, 𝑦) = max{0, Ĕ1D(𝑓, 𝑦)}. (4.67)

For example, if a function 𝑔 has an ideal edge at a point 𝑦* with jump size 𝑠, then all
odd-symmetric coefficients will virtually1 be equal to 𝐾𝜓o times the jump size 𝑠, and
all even-symmetric coefficients will be zero. That is, when disregarding 𝜀, the measure
Ĕ1D(𝑔, 𝑦*) reduces to

Ĕ1D(𝑔, 𝑦*) = 𝑁𝐽𝑠𝐾𝜓o − 𝛽𝑁𝐽𝐾𝜓o

𝑁𝐽𝑠𝐾𝜓o
= 1 − 𝛽

𝑠
, (4.68)

illustrating that the jump size of edges that can be detected by the measure E1D is indeed
bounded below by the parameter 𝛽.

The term 𝛽𝐾𝜓o in (4.66) can also be seen as a soft-thresholding parameter that is
applied to all odd-symmetric coefficients and thereby implicitly denoises the analyzed signal
𝑓 . In practice, the parameter 𝛽 is typically chosen as a function of the expected level of
noise present in a given signal or image.

Besides the lower bound on 𝑠 introduced by 𝛽, the measure E1D is by construction
contrast invariant. Due to normalization with respect to the odd-symmetric coefficient
with the greatest magnitude, E1D is independent of the jump size of the discontinuity
associated with an edge. In particular, regardless of the jump size, E1D will be close to one
at the location of an ideal edge and only diminish at a point 𝑦 if the analyzed functions
have even-symmetric components around 𝑦, or if the odd-symmetric coefficients at 𝑦 have
a strong variance with respect to scaling. E1D thus provides a continuous measure of the
structural similarity of the neighborhood of a given point with an ideal edge, which sets
it categorically apart from most gradient-based approaches to edge detection, that are

1 Note that the derivatives of the Gaussian are not compactly supported in the time domain (cf. Figure 4.2)
and that an ideal edge that separates two different constant functions covering the whole real line is not
in 𝐿2(R).
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(a) Input signal (b) 1D edge measure with
𝑗e = 0

(c) 1D edge measure with
𝑗e = 2

Figure 4.5: Detection of one-dimensional edges. (a): A piecewise polynomial function
perturbed with additive Gaussian white noise (computed using [51]). (b): The one-dimensional
edge measure (4.67) with parameters 𝜓o = 𝐺1

‖𝐺1‖1
, 𝜓e = ℋ𝐺1

‖ℋ𝐺1‖1
, 𝑎 = 2, 𝑁𝐽 = 4, 𝛽 = 0.03

and 𝑗e = 0. (c): The one-dimensional edge measure (4.67) with a scaling offset 𝑗e = 2 (other
parameters are the same as in 4.5(b)).

measuring jump sizes.
Broadly speaking, the odd-symmetric coefficients in (4.66) serve as evidence in favor

of – while the even-symmetric coefficients serve as evidence against – the presence of an
edge at a given location. To suppress the emergence of false positives in the extended
neighborhood of an actual edge, it has proven useful to consider even-symmetric wavelets
that have lower frequencies than their odd-symmetric counterparts, which can be achieved
by setting the scale offset parameter 𝑗e to a real value greater than 0. The effect of the
scale offset parameter is illustrated in Figure 4.5, which visualizes the one-dimensional edge
measure E1D computed on a piecewise polynomial signal with additive Gaussian noise. The
odd- and even-symmetric wavelets were chosen to be the first derivative of the Gaussian
and its Hilbert transform, that is 𝜓o = 𝐺1

‖𝐺1‖1
and 𝜓e = ℋ𝐺1

‖ℋ𝐺1‖1
. The other parameters

were selected as follows: 𝑎 = 2, 𝑁𝐽 = 4, 𝛽 = 0.03, 𝑗e = 0 for the plot in Figure 4.5(b) and
𝑗e = 2 for the plot in Figure 4.5(c).

The main difference between edges and ridges is that edges are locally odd-symmetric
features while ridges are locally even-symmetric features. Thus, to obtain a one-dimensional
ridge measure, it almost suffices to simply switch the roles of the even- and odd-symmetric
wavelets in (4.66). However, due to the fact that ridges, in contrast to edges, are associated
with widths, even-symmetric coefficients are not scaling invariant at the location of an
ideal ridge as it is the case for odd-symmetric coefficients at the location of an ideal edge.
As the one-dimensional edge measure was mainly derived to illustrate the general concept
behind this work, a ridge measure will only be rigorously defined for the two-dimensional
case in Section 4.3.3.
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4.3.1 Symmetric 𝛼-Molecules for Edge, Ridge, and Blob Detection

We now generalize the one-dimensional edge measure E1D to edges, ridges and blobs in
the two-dimensional setting. With small adjustments, the symmetry and self-similarity
properties that characterize edges and ridges in the one-dimensional setting can also be
utilized to extract features from two-dimensional signals. A function describing a two-
dimensional image at a point lying on an edge is locally odd-symmetric with respect to the
tangent of the edge contour. On the other hand, the tangents of the contour of a ridge
define axes of symmetry associated with even-symmetry while a function is locally point
symmetric at the center of a blob. In order to test for two-dimensional symmetry properties,
we will consider generating functions in 𝐿2(R2) ∩ 𝐿1(R2) that are odd- or even-symmetric
wavelets in one dimension or defined by even-symmetric wavelets in both dimensions,
where the latter will only be applied in the case of blob detection. A simple and efficient
way of obtaining such generators is to consider tensor product constructions based on
the unnormalized one-dimensional Gaussian 𝐺0 as well as even- and odd-symmetric one-
dimensional wavelets from the sets 𝛹 e and 𝛹o. As mentioned in Section 4.2.1, we will use
derivatves of the Gaussian and their Hilbert transforms as the generating one-dimensional
odd- and even-symmetric 𝐿1-normalized wavelets to detect features by analyzing the local
symmetry properties of a function. To this end, we define the sets

𝛹 e
2 =

{︁
𝑐1𝑐2𝜋

− 1
2𝜓e(𝑐1·)𝐺0(𝑐2·) : 𝜓e ∈ 𝛹 e, 𝑐1, 𝑐2 ∈ R+

}︁
⊂ 𝐿2(R2) ∩ 𝐿1(R2), (4.69)

𝛹o
2 =

{︁
𝑐1𝑐2𝜋

− 1
2𝜓o(𝑐1·)𝐺0(𝑐2·) : 𝜓o ∈ 𝛹o, 𝑐1, 𝑐2 ∈ R+

}︁
⊂ 𝐿2(R2) ∩ 𝐿1(R2), (4.70)

that contain two-dimensional wavelet generators that are based on even- and odd-symmetric
one-dimensional wavelets and the Gaussian 𝐺0, while the generators in

̃︁𝛹 e
2 = {𝑐1𝑐2𝜓

e(𝑐1·)𝜓e(𝑐2·) : 𝜓e ∈ 𝛹 e, 𝑐1, 𝑐2 ∈ R+} ⊂ 𝐿2(R2) ∩ 𝐿1(R2) (4.71)

are even-symmetric and have vanishing moments in both dimensions. The parameters 𝑐1

and 𝑐2 can be used to adjust the scale of the even- and odd-symmetric generators as well
as their aspect ratio. Examples of two-dimensional symmetric generators contained in 𝛹 e

2 ,
𝛹o

2 , and ̃︁𝛹 e
2 are depicted in Figure 4.6.

Analogous to the one-dimensional case, we require sets of differently scaled analyzing
functions to test for scale-invariant local symmetry properties. However, the local symmetry
at the location of a two-dimensional feature is typically only given with respect to a specific
symmetry axes. Thus, the analysis of two-dimensional signals cannot solely be based
on differently scaled wavelet-like functions but also requires a means of changing their
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(a) (b) (c)

(d) 2D edge (e) 2D ridge (f) 2D blobs

Figure 4.6: Examples of 𝐿1-normalized two-dimensional symmetric generators and ideal
two-dimensional features. (a): Odd-symmetric generator given by a separable product of 𝐺1
and 𝐺0. (b): Even-symmetric generator based on 𝐺2 and 𝐺0. (c): Even-symmetric generator
given by the tensor product of 𝐺2 with itself. (d): Example of an ideal edge. (e): Example of
an ideal ridge. (f): Examples of ideal blobs.

preferred orientation. A natural way of obtaining systems of dilations, rotations and shifts
of a single two-dimensional generator is to consider the 𝛼-molecule framework [71] discussed
in the prelude to this chapter. Let 𝛼 ∈ [0, 1] be fixed, 𝑔 ∈ 𝛹 e

2 ∪ 𝛹o
2 ∪ ̃︁𝛹 e

2 be a symmetric
generator, 𝑎 > 0, 𝐽 ⊂ Z be a set of scaling parameters and 𝛩 ⊂

[︀
−𝜋

2 ,
𝜋
2
)︀

be a set of scaling
parameters, then the corresponding system of 𝐿1-normalized symmetric molecules is given
by

𝑆𝑀(𝑔, 𝛼, 𝑎, 𝐽,𝛩) =
{︁
𝑚𝑗,𝜃,𝑦 = 𝑎𝑗(1+𝛼)𝑔(A𝑎𝑗 ,𝛼R𝜃(· − 𝑦)) : 𝑗 ∈ 𝐽, 𝜃 ∈ 𝛩,𝑦 ∈ R2

}︁
. (4.72)

The parameter 𝛼 describes the degree of anisotropy introduced to a system by the scaling
matrix A𝑎𝑗 ,𝛼 and should be chosen as a function of the expected level of noise and the
regularity of the structures that are to be detected. If a signal was perturbed with severe
noise but the contours of its edges or ridges are smooth, introducing a high degree of
anisotropic scaling by choosing 𝛼 close to zero can significantly improve the detection
performance. However, setting 𝛼 close to zero can lead to problems at locations where
the contour of a feature is irregular and can thus not be well approximated by a linear
function. Note that the elements in (4.72) are 𝐿1-normalized, while classical systems of
𝛼-molecules are normalized with respect to the 𝐿2-norm (cf. (4.4)).
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The following theorem specifies the order of symmetric molecule systems obtained from
generators defined by (4.70), (4.69), and (4.71) in terms of a localization parameter 𝐿, a
vanishing moments parameter 𝑀 and smoothness parameters 𝑁1 and 𝑁2 (cf. (4.5)).

Theorem 4.3.4. Let 𝑘 ∈ N and denote four types of generators by

𝑔
(1)
𝑘 (𝑥) = 𝐺𝑘(𝑥1)𝐺0(𝑥2), 𝑔

(2)
𝑘 (𝑥) = ℋ𝐺𝑘(𝑥1)𝐺0(𝑥2), (4.73)

𝑔
(3)
𝑘 (𝑥) = 𝐺𝑘(𝑥1)𝐺𝑘(𝑥2), 𝑔

(4)
𝑘 (𝑥) = ℋ𝐺𝑘(𝑥1)ℋ𝐺𝑘(𝑥2). (4.74)

Let 𝛼 ∈ [0, 1], 𝑎 > 0, 𝐽 ⊂ Z be a set of scaling parameters and 𝛩 ⊂ [−𝜋
2 ,

𝜋
2 ) a set of

rotation parameters then it holds for all 𝜌 ∈ N2
0, 𝑀 ≤ 𝑘 and 𝑁1, 𝑁2 ∈ N0 that⃒⃒⃒⃒

𝜕𝜌̂︂𝑔(1)
𝑘 (𝜉)

⃒⃒⃒⃒
. min

{︁
1, 𝑎−𝑗 + |𝜉1| + 𝑎−𝑗(1−𝛼) |𝜉2|

}︁𝑀
· (1 + ‖𝜉‖2

2)
−𝑁1

2 · (1 + (𝜉2)2)
−𝑁2

2 , (4.75)

where the implicit constants are independent of the choice of parameters 𝑗 ∈
𝐽 and we call the associated set 𝑆𝑀(‖𝑔(1)

𝑘 ‖−1
1 𝑔

(1)
𝑘 , 𝛼, 𝑎, 𝐽,𝛩) a system of 𝐿1-

normalized symmetric 𝛼-molecules of order (∞, 𝑘,∞,∞). Furthermore, with
𝛼, 𝑎, 𝐽 and 𝛩 as above, the set 𝑆𝑀(‖𝑔(3)

𝑘 ‖−1
1 𝑔

(3)
𝑘 , 𝛼, 𝑎, 𝐽,𝛩) is also a sy-

stem of 𝐿1-normalized 𝛼-molecules of order (∞, 𝑘,∞,∞), while the systems
𝑆𝑀(‖𝑔(2)

𝑘 ‖−1
1 𝑔

(2)
𝑘 , 𝛼, 𝑎, 𝐽,𝛩) and 𝑆𝑀(‖𝑔(4)

𝑘 ‖−1
1 𝑔

(4)
𝑘 , 𝛼, 𝑎, 𝐽,𝛩) are of order (𝑘 − 1, 𝑘,∞,∞).

Proof. Let 𝜌 ∈ N2
0 and 𝑁1, 𝑁2 ∈ N0, then we can use that 𝑒−𝑥2

. (1 + |𝑥|)−𝑁 for all
𝑁 ∈ N0, and write⃒⃒⃒⃒
𝜕𝜌̂︂𝑔(1)

𝑘 (𝜉)
⃒⃒⃒⃒

=
⃒⃒⃒
𝜕𝜌
(︁

(2𝜋𝑖𝜉1)𝑘𝜋𝑒−𝜋2(𝜉1)2
𝑒−𝜋2(𝜉2)2

)︁⃒⃒⃒
(4.76)

=
⃒⃒⃒
(2𝑖)𝑘𝜋𝑘+1

(︁
𝜕𝜌1

1 (𝜉1)𝑘𝑒−𝜋2(𝜉1)2
)︁(︁

𝜕𝜌2
2 𝑒−𝜋2(𝜉2)2

)︁⃒⃒⃒
(4.77)

≍ |𝜉1|𝑘+𝜌1 𝑒−𝜋2(𝜉1)2 · |𝜉2|𝜌2 𝑒−𝜋2(𝜉2)2 (4.78)

. |𝜉1|𝑘+𝜌1 |𝜉2|𝜌2 (1 + |𝜉1|)−(𝑁1+𝑘+𝜌1)(1 + |𝜉2|)−(𝑁1+𝑁2+𝜌2) (4.79)

= |𝜉1|𝑘+𝜌1

(1 + |𝜉1|)𝑘+𝜌1

|𝜉2|𝜌2

(1 + |𝜉2|)𝜌2
(1 + |𝜉1|)−𝑁1(1 + |𝜉2|)−(𝑁1+𝑁2) (4.80)

≤ min
{︁

1, |𝜉1|𝑘+𝜌1 |𝜉2|𝜌2
}︁

(1 + |𝜉1|)−𝑁1(1 + |𝜉2|)−(𝑁1+𝑁2) (4.81)

. min
{︁

1, 𝑎−𝑗 + |𝜉1| + 𝑎−𝑗(1−𝛼) |𝜉2|
}︁𝑘

(1 + ‖𝜉‖2
2)

−𝑁1
2 · (1 + (𝜉2)2)

−𝑁2
2 , (4.82)

independently of the choice of parameters 𝑎 > 0, 𝑗 ∈ Z, and 𝛼 ∈ [0, 1]. This shows (4.75)
and a similar argument leads to the same properties for the generator 𝑔(3)

𝑘 .
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For 𝑔(2)
𝑘 , we consider |𝜌| = 𝜌1 + 𝜌2 < 𝑘, 𝑁1, 𝑁2 ∈ N0 and write⃒⃒⃒⃒
𝜕𝜌̂︂𝑔(2)

𝑘 (𝜉)
⃒⃒⃒⃒

=
⃒⃒⃒
𝜕𝜌
(︁

−𝑖 sgn(𝜉1)(2𝜋𝑖𝜉1)𝑘𝜋𝑒−𝜋2(𝜉1)2
𝑒−𝜋2(𝜉2)2

)︁⃒⃒⃒
(4.83)

=
⃒⃒⃒
(2𝑖)𝑘𝜋𝑘+1

(︁
𝜕𝜌1

1 |𝜉1| (𝜉1)𝑘−1𝑒−𝜋2(𝜉1)2
)︁(︁

𝜕𝜌2
2 𝑒−𝜋2(𝜉2)2

)︁⃒⃒⃒
, (4.84)

where 𝜕𝜌1
1 |𝜉1| (𝜉1)𝑘−1𝑒−𝜋2(𝜉1)2 only exists for 𝜌1 < 𝑘. By repeating the same steps as in the

case of ̂︂𝑔(1)
𝑘 , we can conclude that⃒⃒⃒⃒

𝜕𝜌̂︂𝑔(2)
𝑘 (𝜉)

⃒⃒⃒⃒
. min

{︁
1, 𝑎−𝑗 + |𝜉1| + 𝑎−𝑗(1−𝛼) |𝜉2|

}︁𝑘
(1 + ‖𝜉‖2

2)
−𝑁1

2 · (1 + (𝜉2)2)
−𝑁2

2 , (4.85)

independently of the choice of parameters 𝑎 > 0, 𝑗 ∈ Z and 𝛼 ∈ [0, 1]. The same argument
can be used to show that 𝑆𝑀(‖𝑔(4)

𝑘 ‖−1
1 𝑔

(4)
𝑘 , 𝛼, 𝑎, 𝐽,𝛩) is of order (𝑘 − 1, 𝑘,∞,∞).

Theorem 4.3.4 illustrates that symmetric molecule systems based on derivatives of the
Gaussian are well localized and smooth in the time domain while the number of vanishing
moments increases with the number of derivatives. However, it also shows that changing the
symmetry properties of a generator by applying the Hilbert transform reduces smoothness
in the Fourier domain and thus localization in the time domain.

4.3.2 Edge Detection

In the neighborhood of a point 𝑦 that lies on an ideal edge (cf. Figure 4.6(d)), the image
is locally odd-symmetric with respect to a symmetry axis defined by the tangent of the
edge contour. The measure E1D can thus be generalized to yield a two-dimensional edge
measure by restricting the analysis to symmetric molecules whose direction of vanishing
moments is orthogonal to the tangent of the edge contour going through 𝑦. Let 𝑔o ∈ 𝛹o

2 ,
𝑔e ∈ 𝛹 e

2 be a pair of odd- and even-symmetric generators, 𝛼 ∈ [0, 1], 𝑎 > 0, 𝐽 = {𝑗𝑛}𝑁𝐽
𝑛=1 ⊂

Z be an increasing sequence of 𝑁𝐽 ∈ N scaling parameters, and 𝛩 ⊂ T be a set of
orientation parameters. For the remainder of this section, we will denote elements from the
symmetric molecule system 𝑆𝑀(𝑔o, 𝛼, 𝑎,𝐽 , 𝛩) with 𝑚o

𝑗,𝜃,𝑦 and elements from the system
𝑆𝑀(𝑔e, 𝛼, 𝑎,𝐽 , 𝛩) with 𝑚e

𝑗,𝜃,𝑦 (cf. (4.72)). For an image defined by a two-dimensional
function 𝑓 ∈ 𝐿2(R2), we first denote the most significant scaling and orientation parameters
at a point 𝑦 ∈ R2 by

(𝑗*(𝑦), 𝜃*(𝑦)) = argmax
(𝑗,𝜃)∈𝐽×𝛩

⃒⃒⃒⟨︀
𝑓,𝑚o

𝑗,𝜃,𝑦

⟩︀
𝐿2

⃒⃒⃒
. (4.86)
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Then, with a soft-thresholding parameter 𝛽 > 0 and a scaling offset parameter 𝑗e ∈ R≥0, a
two-dimensional edge measure is given by

Ĕ(𝑓,𝑦) =

⃒⃒⃒⃒
⃒∑︀𝑗∈𝐽

⟨
𝑓,𝑚o

𝑗,𝜃*(𝑦),𝑦

⟩
𝐿2

⃒⃒⃒⃒
⃒−

∑︀
𝑗∈𝐽

⃒⃒⃒⟨
𝑓,𝑚e

𝑗−𝑗e,𝜃*(𝑦),𝑦

⟩
𝐿2

⃒⃒⃒
− 𝛽𝑁𝐽𝐾𝜓o

𝑁𝐽

⃒⃒⃒⟨
𝑓,𝑚o

𝑗*(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

⃒⃒⃒
+ 𝜀

, (4.87)

where 𝜀 > 0 prevents division by zero and 𝐾𝜓o (as defined in (4.65)) corresponds to the
odd-symmetric coefficient at the location of an ideal edge with jump-size one. As in the
one-dimensional case, we finally set

E(𝑓,𝑦) = max{0, Ĕ(𝑓,𝑦)}, (4.88)

to ensure that the measure maps to [0, 1].
As we already pointed out during the derivation of the one-dimensional edge measure

E1D(𝑓, 𝑦) earlier in this section (cf. (4.66)), the measure (4.87) is partly based on the
observation that the coefficients obtained from an odd-symmetric and 𝐿1-normalized
analyzing function are invariant to scaling if it is spatially and directionally aligned with
an ideal edge. In this regard, we would like to emphasize an interesting connection to other
shearlet-based approaches to edge detection, which utilize the special decay behavior of
𝐿2-normalized shearlets. It was shown in [75] that the coefficents of band-limited shearlets
at a point that lies on a smooth boundary curve, and whose local tangent direction is
aligned with the considered shearlet, decay with 𝑂(𝑠−3/4) for 𝑠 → ∞, where 𝑠 denotes
the scaling parameter (cf. (4.4)). Similar results have also been shown in the case of
compactly supported shearlet generators [108]. This is related to the measures proposed
here in the sense that, when considering a two-dimensional generator 𝜓 ∈ 𝐿1(R2) ∩ 𝐿2(R2)
and parabolic scaling (i.e., 𝛼 = 1/2), it holds that⃦⃦

𝜓
(︀
A𝑠,1/2 ·

)︀⃦⃦
2⃦⃦

𝜓
(︀
A𝑠,1/2 ·

)︀⃦⃦
1

= 𝑠− 3
4 ‖𝜓‖2

𝑠− 3
2 ‖𝜓‖1

= 𝑠
3
4

‖𝜓‖2
‖𝜓‖1

, 𝑠 > 0. (4.89)

In other words, considering 𝐿1- instead of 𝐿2-normalization precisely neutralizes the decay
of shearlet coefficients at points that lie on smooth boundary curves.

Further note that, due to ‖𝑚o‖1 = 1 for all 𝑚o ∈ 𝑆𝑀(𝑔o, 𝛼, 𝑎,𝐽 , 𝛩), the most significant
scale parameter 𝑗*(𝑦) at a point 𝑦 can directly be related to the contrast (i.e, the height)
of an edge going through 𝑦. By considering 𝐾𝜓o (cf. (4.65)), which denotes the value of
an odd-symmetric coefficient at the location of an ideal edge with jump size one, we define
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the local height measure for edges as

HE(𝑓,𝑦) =

⟨
𝑓,𝑚o

𝑗*(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

𝐾𝜓o
. (4.90)

4.3.3 Ridge Detection

For ridge detection, we can exploit the fact that in the neighborhood of a point that lies on
the centerline of an ideal ridge (cf. Figure 4.6(e)), the image is locally even-symmetric with
respect to a symmetry axis defined by the tangent of the centerline. A two-dimensional
ridge measure can in principle be obtained by simply interchanging the roles of the odd-
and even-symmetric molecules 𝑚o and 𝑚e in the definition of the edge measure E(𝑓,𝑦).
However, to fully retain contrast invariance, it is necessary to also take into account the
width of the ridge, that is, the distance between the two jump singularities that define
a ridge in an idealized setting. Contrary to the case of edge detection, even-symmetric
coefficients of 𝐿1-normalized molecules that are centered around the location of a ridge are
not invariant to scaling but depend on the scaling parameter as well as the width of the
respective ridge. This behavior is illustrated with respect to ridges of three different widths
in Figure 4.7. For an even-symmetric generator 𝑔e ∈ 𝛹 e

2 , let us denote the coefficient at
the location of an ideal ridge whose tangent direction in 𝑦 agrees with the orientation of 𝑔e

and that has width 2𝑟 and height 1 by

𝐾𝑔e(𝑟) = 𝐾𝜓e(𝑟) =
𝑟∫︁

−𝑟

𝜓e(𝑥) d𝑥, (4.91)

where 𝜓e is the one-dimensional even-symmetric wavelet associated with the two-
dimensional generator 𝑔e (cf. (4.70)). We furthermore define the radius of 𝑔e as half
of the width of the ideal ridge which yields the most significant coefficient, that is,

𝑟𝑔e = argmax
𝑟∈R

|𝐾𝑔e(𝑟)| , (4.92)

and extend this notion to arbitrarily shifted and rotated molecules by setting 𝑟𝑚e
0,𝜃,𝑦

=
𝑟𝑚e

0,0,0
= 𝑟𝑔e . The radius of a dilated molecule can directly be computed as a function of the

scale parameter and the underlying generator, that is, 𝑟𝑚e
𝑗,𝜃,𝑦

= 𝑎−𝑗𝑟𝑚e
0,0,0

= 𝑎−𝑗𝑟𝑔e . Note
that in most practical cases, the radius 𝑟𝑔e is equivalent to the distance between the origin
and the first zero crossing of the associated one-dimensional wavelet 𝜓e (cf. Figure 4.7(a)).
It is, for instance, easy to show this property in the case of the even-symmetric generators
𝐺2

‖𝐺2‖1
and 𝐺4

‖𝐺4‖1
, for which we have already obtained the exact sets of zeros in Lemma 4.3.2.
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(a) (b) (c)

Figure 4.7: Behavior of even-symmetric coefficients at the location of an ideal ridge. (a):
The radius 𝑟𝜓e of a one-dimensional even-symmetric wavelet, as defined in (4.92). (b): Three
ideal one-dimensional ridges with different widths. (c): The inner products of 𝜓e with the
ideal ridges plotted as a function of the scaling parameter 𝑎.

Theorem 4.3.5. Let 𝑧(2) and 𝑧(4) denote the zeros of 𝐺2 and 𝐺4, respectively, as in
Lemma 4.3.2.Then,

argmax
𝑟∈R

|𝐾𝐺2(𝑟)| = 𝑧
(2)
2 =

√
2

2 , (4.93)

argmax
𝑟∈R

|𝐾𝐺4(𝑟)| = 𝑧
(4)
3 =

√︃
3
2 −

√︂
3
2 . (4.94)

Proof. The second derivative of the Gaussian 𝐺2 is strictly positive on
(︁

−∞,−𝑧(2)
2

)︁
∪(︁

𝑧
(2)
2 ,∞

)︁
and strictly negative on

(︁
−𝑧(2)

2 , 𝑧
(2)
2

)︁
. The unique argument of the maximum of

𝑟 ↦→ |𝐾𝐺2(𝑟)| is therefore 𝑧(2)
2 =

√
2

2 . 𝐺4 is strictly positive on
(︁

−∞,−𝑧(4)
4

)︁
∪
(︁

−𝑧(4)
3 , 𝑧

(4)
3

)︁
∪(︁

𝑧
(4)
4 ,∞

)︁
and strictly negative on

(︁
−𝑧(4)

4 ,−𝑧(4)
3

)︁
∪
(︁
𝑧

(4)
3 , 𝑧

(4)
4

)︁
. Due to

𝐺3(−𝑧(4)
3 ) −𝐺3(−𝑧(4)

4 ) +𝐺3(−𝑧(4)
4 ) ≈ −3.9 < 0, (4.95)

𝑧
(4)
3 =

√︂
3
2 −

√︁
3
2 is the unique argument of the maximum of 𝑟 ↦→ |𝐾𝐺4(𝑟)|.

Let 𝑔e ∈ 𝛹 e
2 , 𝑔o ∈ 𝛹o

2 be a pair of odd-symmetric and even-symmetric generators,
𝛼 ∈ [0, 1], 𝑎 > 0, 𝐽 = {𝑗𝑛}𝑁𝐽

𝑛=1 ⊂ Z be an increasing sequence of of 𝑁𝐽 ∈ N scaling
parameters, and 𝛩 ⊂ T be a set of orientation parameters. Furthermore let 𝑓 ∈ 𝐿2(R2)
be a two-dimensional image. Analogous to the edge detection case, we denote the scaling
and rotation parameters associated with the most significant even-symmetric molecule at a
point 𝑦 ∈ R2 in the image plane by

(𝑗*(𝑦), 𝜃*(𝑦)) = argmax
(𝑗,𝜃)∈𝐽×𝛩

⃒⃒⃒⟨︀
𝑓,𝑚e

𝑗,𝜃,𝑦

⟩︀
𝐿2

⃒⃒⃒
. (4.96)
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For each point 𝑦, we first estimate the width of an assumed ideal ridge whose centerline
passes through 𝑦 and whose tangent direction at 𝑦 agrees with the most significant orien-
tation parameter 𝜃*(𝑦). We use 𝑗−(𝑦) and 𝑗+(𝑦) to denote the scaling parameters in the
strictly increasing sequence 𝐽 that precede, respectively succeed, the most significant scale
𝑗*(𝑦). The width measure is obtained by computing the maximum point of a parabola fit
through the points

(︁
𝑎−𝑗−(𝑦)𝑟𝑔e ,

⟨
𝑓,𝑚e

𝑗−(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

)︁
,
(︁
𝑎−𝑗*(𝑦)𝑟𝑔e ,

⟨
𝑓,𝑚e

𝑗*(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

)︁
,

and
(︁
𝑎−𝑗+(𝑦)𝑟𝑔e ,

⟨
𝑓,𝑚e

𝑗+(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

)︁
. Following (4.35), we define the local width measure

as
WR(𝑓,𝑦) = 2

(︁
𝑎

𝑐1
2𝑐2

−𝑗*(𝑦)
𝑟𝑔e

)︁
, (4.97)

where the values 𝑐1 and 𝑐2 are chosen according to (4.33) and (4.34).

Remark 4.3.6. Let 𝑥 ∈ R2 be fixed and assume that 𝑔e ∈ 𝐶2(R2), then the mapping

𝑠 ↦→ 𝑠1+𝛼𝑔e(A𝑠,𝛼R𝜃*(𝑦)(𝑥 − 𝑦))𝑓(𝑥) (4.98)

is also 𝐶2 on R+. This implies that the mapping

𝑠 ↦→
⟨
𝑓,𝑚e

𝑎,𝜃*(𝑦),𝑦

⟩
𝐿2

= 𝑠1+𝛼
∫︁
R2

𝑔e(A𝑠,𝛼R𝜃*(𝑦)(𝑥 − 𝑦))𝑓(𝑥) d𝑥 (4.99)

is also 𝐶2 on closed intervals in R+, which is important for the feasibility of the refinement
procedure for WR(𝑓,𝑦) described above.

Under the assumption that an ideal ridge with width WR(𝑓, 𝑦), height 1, and a local
tangent direction that agrees with 𝜃*(𝑦) passes through 𝑦, we can directly compute
the associated even-symmetric coefficients of differently dilated molecules with rotation
parameter 𝜃*(𝑦) and denote

𝐾𝑔e(𝑓, 𝑗,𝑦) = 𝐾𝑔e
(︀
𝑎𝑗 WR(𝑓,𝑦)/2

)︀
=

𝑎𝑗 WR(𝑓,𝑦)/2∫︁
−𝑎𝑗 WR(𝑓,𝑦)/2

𝜓e(𝑥) d𝑥. (4.100)

Based on the estimated width WR(𝑓, 𝑦), we can further define a measure that computes
the height of an assumed ideal ridge whose centerline passes through 𝑦 as the ratio between
the most significant coefficient and the value 𝐾𝑔e(𝑓, 𝑗*(𝑦),𝑦), that is,

HR(𝑓,𝑦) =

⟨
𝑓,𝑚e

𝑗*(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

𝐾𝑔e(𝑓, 𝑗*(𝑦),𝑦) . (4.101)
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A two-dimensional ridge measure can now be defined by carefully modifying the edge
measure E(𝑓,𝑦). To detect locally even-symmetric features instead of odd-symmetric ones,
the roles of the even-symmetric molecules 𝑚e and odd-symmetric molecules 𝑚o need to be
interchanged. While the odd-symmetric coefficients at the location of an ideal edge are
invariant to scaling, this is not the case for the even-symmetric coefficients at the location
of an ideal ridge. This can be taken into account by adjusting the normalizing factor for
every scaling parameter 𝑗 ∈ 𝐽 using the values HR(𝑓,𝑦)𝐾𝑔e(𝑓, 𝑗,𝑦), which correspond to
the even-symmetric coefficients at the location of an ideal ridge with width WR(𝑓,𝑦) and
height HR(𝑓,𝑦). Finally, when using strongly oscillating generators, even the sign of the
even-symmetric coefficients at the location of an ideal ridge is not invariant to scaling.
This can be addressed by considering the expected sign sgn(HR(𝑓,𝑦)𝐾𝑔e(𝑓, 𝑗,𝑦)) for each
scale parameter when taking the sum of the even-symmetric coefficients. To simplify our
notation, we write ℎ(𝑓, 𝑗,𝑦) = HR(𝑓,𝑦)𝐾𝑔e(𝑓, 𝑗,𝑦) and a two-dimensional ridge measure
is now given by

R̆(𝑓,𝑦) =
∑︀

𝑗∈𝐽
sgn(ℎ(𝑓,𝑗,𝑦))

⟨
𝑓,𝑚e

𝑗,𝜃*(𝑦),𝑦

⟩
𝐿2 −

∑︀
𝑗∈𝐽

⃒⃒⃒⟨
𝑓,𝑚o

𝑗−𝑗o,𝜃*(𝑦),𝑦

⟩
𝐿2

⃒⃒⃒
−𝛽𝑁𝐽 |𝐾𝑔e (𝑓,𝑗*(𝑦),𝑦)|∑︀

𝑗∈𝐽
max

{︁⃒⃒⃒⟨
𝑓,𝑚e

𝑗,𝜃*(𝑦),𝑦

⟩
𝐿2

⃒⃒⃒
,|ℎ(𝑓,𝑗,𝑦)|

}︁
+𝜀

,

(4.102)
where 𝜀 > 0 prevents division by zero, 𝛽 > 0 is a soft-thresholding parameter, and 𝑗o ∈ R≥0

denotes the scaling offset between even- and odd-symmetric molecules. As in the case of
edge detection, we finally set

R(𝑓,𝑦) = {0, R̆(𝑓,𝑦)}. (4.103)

4.3.4 Blob Detection

The measures E(𝑓,𝑦) and R(𝑓,𝑦) detect features that exhibit symmetry properties that
are locally defined by a singular symmetry axis, namely the normal of the tangent of an
edge contour or the centerline of a ridge. A similar approach can be used to detect features
in two-dimensional images that have less anisotropic symmetry properties in the sense that
locally, the center of such features is a point of symmetry for more than one or even all
possible directions. Let us consider an idealized blob as a filled square, which has four axes
of even symmetry, or a filled circle, for which each line that passes through its center is an
axis of even symmetry (cf. Figure 4.6(f)).

To detect such blobs, we will use a generator ̃︀𝑔e ∈ ̃︁𝛹 e
2 that is defined by the tensor

product of an even-symmetric wavelet with itself (cf. (4.71)). Like a square, such a
generator has by construction four axes of symmetry and is invariant to rotations of 𝜋

2 . Let
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us denote the coefficient at the location of an ideal square-shaped blob with side length
(width) 2𝑟 and height 1 by

̃︀𝐾 ̃︀𝑔e(𝑟) =
𝑟∫︁

−𝑟

𝑟∫︁
−𝑟

𝜓e(𝑥1)𝜓e(𝑥2) d𝑥2 d𝑥1 = 𝐾 ̃︀𝑔e(𝑟)2, (4.104)

and retain the definition of the radius of ̃︀𝑔e as half of the side length of the square-shaped
blob which maximizes its response, that is,

𝑟 ̃︀𝑔e = argmax
𝑟∈R

𝐾 ̃︀𝑔e(𝑟)2 = argmax
𝑟∈R

|𝐾𝑔e(𝑟)| . (4.105)

Let 𝑔o ∈ 𝛹o
2 be an odd-symmetric generator, 𝑎 > 0, 𝐽 = {𝑗𝑛}𝑁𝐽

𝑛=1 ⊂ Z be an increasing
sequence of of 𝑁𝐽 ∈ N scaling parameters, and 𝛩 ⊂ T be a set of orientation parameters.
Due to the isotropic nature of the features we aim to detect, and contrary to the cases
of edge and ridge detection, we set 𝛼 = 1 and denote elements from the molecule system
𝑆𝑀( ̃︀𝑔e, 1, 𝑎,𝐽 , 𝛩) with ̃︁𝑚e

𝑗,𝜃,𝑦 and elements from the system 𝑆𝑀(𝑔o, 1, 𝑎,𝐽 , 𝛩) with 𝑚o
𝑗,𝜃,𝑦.

For a two-dimensional image 𝑓 ∈ 𝐿2(R2), we again denote the most significant pair of
scaling and rotation parameters with respect to the even-symmetric generator ̃︀𝑔e at a point
𝑦 ∈ R2 with

(𝑗*, 𝜃*) = argmax
(𝑗,𝜃)∈𝐽×𝛩

⃒⃒⃒⟨
𝑓, ̃︁𝑚e

𝑗,𝜃,𝑦

⟩
𝐿2

⃒⃒⃒
. (4.106)

As in the case of ridge detection, the even-symmetric coefficients at the center of a blob
are not invariant to scaling but depend on both the scaling parameter 𝑗 and the width
of the respective blob. For each point 𝑦, we again estimate the width of an assumed
ideal blob by fitting a parabola through the points

(︁
𝑎−𝑗−(𝑦)𝑟 ̃︀𝑔e ,

⟨
𝑓, ̃︁𝑚e

𝑗−(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

)︁
,(︁

𝑎−𝑗*(𝑦)𝑟 ̃︀𝑔e ,
⟨
𝑓, ̃︁𝑚e

𝑗*(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

)︁
, and

(︁
𝑎−𝑗+(𝑦)𝑟 ̃︀𝑔e ,

⟨
𝑓, ̃︁𝑚e

𝑗+(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

)︁
, where 𝑗−(𝑦)

denotes the predecessor and 𝑗+(𝑦) the successor of 𝑗*(𝑦) in the sequence 𝐽 and compute

WB(𝑓,𝑦) = 2
(︁
𝑎

𝑐1
2𝑐2

−𝑗*(𝑦)
𝑟 ̃︀𝑔e

)︁
, (4.107)

where the values 𝑐1 and 𝑐2 are chosen according to (4.33) and (4.34). Under the assumption
that an ideal square-shaped blob with width WB(𝑓,𝑦) and height 1 is centered on 𝑦, we
can also directly compute the associated even-symmetric coefficients of differently dilated
molecules and denote

̃︀𝐾 ̃︀𝑔e(𝑓, 𝑗,𝑦) = ̃︀𝐾 ̃︀𝑔e
(︀
𝑎𝑗 WB(𝑓,𝑦)/2

)︀
= 𝐾 ̃︀𝑔e

(︀
𝑎𝑗 WB(𝑓,𝑦)/2

)︀2
. (4.108)
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The height of the blob can then be computed by

HB(𝑓,𝑦) =

⟨
𝑓, ̃︁𝑚e

𝑗*(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

𝐾 ̃︀𝑔e(𝑓, 𝑗*(𝑦),𝑦)2 . (4.109)

We are now ready to define a measure for blob detection that can be understood as a
generalization of the ridge measure R(𝑓,𝑦) in the sense that we aim to detect features
that are associated with more than one axis of even symmetry. In particular, we will take
into account that axes of even symmetry induce rotation invariance. A perfect square, for
instance, has four symmetry axes and is invariant to rotations by 𝜋

2 , while a pentagon
has five axes of even symmetry and is invariant to rotations by 2𝜋

5 . Let for each point in
the image plane 𝛩*(𝑦) ⊂ 𝛩 denote the subset of rotation parameters that correspond to
the expected rotation invariance properties of the blob centered on 𝑦. The subset 𝛩*(𝑦)
thus depends on the most significant rotation parameter 𝜃*(𝑦) and on the symmetry and
rotation invariance properties of the specific shape we aim to detect. Note that in the case
of circles, 𝛩*(𝑦) = 𝛩 independently of the most significant scale paramter 𝑗*(𝑦) for all
points 𝑦. With a soft-thresholding parameter 𝛽 > 0 and a scaling offset 𝑗o ∈ R≥0, the blob
measure is given by

B̆(𝑓,𝑦) =
∑︀

𝑗∈𝐽
min

𝜃∈𝛩*(𝑦)
{sgn(HB(𝑓,𝑦))⟨𝑓,̃︁𝑚e

𝑗,𝜃,𝑦⟩
𝐿2}−

∑︀
𝑗∈𝐽

max
𝜃∈𝛩*(𝑦)

{︁⃒⃒⃒⟨
𝑓,𝑚o

𝑗−𝑗o,𝜃,𝑦

⟩
𝐿2

⃒⃒⃒}︁
−𝛽𝑁𝐽𝐾 ̃︀𝑔e (𝑓,𝑗*(𝑦),𝑦)2

∑︀
𝑗∈𝐽

max
{︁
|⟨𝑓,̃︁𝑚e

𝑗,𝜃*(𝑦),𝑦⟩
𝐿2 |,|HB(𝑓,𝑦)|𝐾 ̃︀𝑔e (𝑓,𝑗,𝑦)2

}︁ ,

(4.110)
where 𝜀 > 0 prevents division by zero. Eventually, we define

B(𝑓,𝑦) = {0, B̆(𝑓,𝑦)}. (4.111)

4.3.5 Estimation of Local Tangent Directions for Edges and Ridges

The width estimates WR(𝑓,𝑦) and WB(𝑓,𝑦) exploit the fact that even-symmetric generators
from the sets 𝛹 e

2 and ̃︁𝛹 e
2 are themselves associated with a width which in turn depends on

the scale parameter 𝑗. By considering the orientation parameter 𝜃, a similar approach can
be used to estimate local tangent directions of anisotropic features such as edges or ridges.
Let us first consider the case of edges and a system 𝑆𝑀(𝑔o, 𝛼, 𝑎,𝐽 ,𝛩) of odd-symmetric
molecules with 𝑔o ∈ 𝛹o

2 , 𝛼 ∈ [0, 1], 𝑎 > 0, an increasing sequence 𝐽 = {𝑗𝑛}𝑁𝐽
𝑛=1 ⊂ Z

of 𝑁𝐽 ∈ N scaling parameters, and a clockwise (or counter-clockwise) ordered sequence
𝛩 = {𝜃𝑛}𝑁𝛩

𝑛=1 ⊂ T of 𝑁𝛩 ∈ N orientation parameters on the torus. Each odd-symmetric
molecule 𝑚o

𝑗,𝜃,𝑦 ∈ 𝑆𝑀(𝑔o, 𝛼, 𝑎,𝐽 ,𝛩) (cf. (4.72)) has a preferred orientation defined by the
rotation parameter 𝜃 and the preferred orientation of the generator 𝑔o. At the location of
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an ideal edge, the odd-symmetric coefficient is maximized with respect to rotation if the
direction of the one-dimensional wavelet 𝜓o used in the construction of the generator 𝑔o is
orthogonal to the local tangent of the edge. For an image 𝑓 ∈ 𝐿2(R2) and a point 𝑦 ∈ R2,
let us again denote the most significant scaling and orientation parameters with

(𝑗*(𝑦), 𝜃*(𝑦)) = argmax
(𝑗,𝜃)∈𝐽×𝛩

⃒⃒⃒⟨︀
𝑓,𝑚o

𝑗,𝜃,𝑦

⟩︀
𝐿2

⃒⃒⃒
. (4.112)

Analogous to the width measures WR(𝑓,𝑦) and WB(𝑓,𝑦), we can use 𝜃*(𝑦) as a first
approximation of the tangent direction of a potential edge going through the point 𝑦.
Again, this approximation can be refined by computing the maximum point of a parabola
fit through the points

(︁
𝜃−(𝑦),

⟨
𝑓,𝑚e

𝑗*(𝑦),𝜃−(𝑦),𝑦

⟩
𝐿2

)︁
,
(︁
𝜃*(𝑦),

⟨
𝑓,𝑚e

𝑗*(𝑦),𝜃*(𝑦),𝑦

⟩
𝐿2

)︁
, and(︁

𝜃+(𝑦),
⟨
𝑓,𝑚e

𝑗*(𝑦),𝜃+(𝑦),𝑦

⟩
𝐿2

)︁
, where 𝜃−(𝑦) denotes the preceding and 𝜃+(𝑦) the succee-

ding orientation parameter of 𝜃*(𝑦) in the sequence 𝛩. The local tangent orientation can
eventually be estimated by applying (4.35), that is,

OE(𝑓,𝑦) = 𝜃*(𝑦) − 𝑐1
2𝑐2

, (4.113)

where the values 𝑐1 and 𝑐2 are chosen as in (4.33) and (4.34). To obtain a function OR(𝑓,𝑦)
that estimates local tangent orientation of ridges, it suffices to replace the odd-symmetric
generator 𝑔o with an even-symmetric generator 𝑔e ∈ 𝛹 e

2 .

4.4 Implementation for Digital Images

A Matlab toolbox named Symmetric Molecule-based Feature Detector (SymFD) that
implements the measures defined in Section 4.3 for digital two-dimensional grayscale
images can be downloaded from http://www.math.uni-bremen.de/cda/software.html.
SymFD uses cyclic two-dimensional convolutions with digital symmetric molecule filters to
obtain the required even- and odd-symmetric coefficients. The convolutions are carried
out in the frequency domain via the fast Fourier transform (FFT). The computational
complexity of the evaluation of any of the measures implemented in SymFD is thus of
order 𝑂(𝑀𝑁 log(𝑁)), where 𝑁 denotes the number of pixels of the input image and 𝑀

the number of considered symmetric molecule filters.
A main difficulty of developing digital implementations of the proposed feature detectors

is to find a parametrization that makes it easy to configure SymFD for different types of
applications and inputs while retaining the flexibility of the original definitions. In this
section, we briefly summarize how systems of digital symmetric molecule filters can be
defined and how the different parameters of the proposed edge, ridge, and blob measures

http://www.math.uni-bremen.de/cda/software.html
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(a) (b)
anisotropic

scaling
→

rotation →

(c)

Figure 4.8: Digital symmetric molecules filters. (a): Example of an even-symmetric molecule
filter. (b): Example of an odd-symmetric molecule filter. (c): Digital symmetric molecule
filters that were obtained by rotating and anisotropically dilating the even-symmetric generator
depicted in (a) (𝛼 = 0.2).

are represented in SymFD.
In the continuum, a symmetric molecule system 𝑆𝑀(𝑔, 𝛼, 𝑎, 𝐽,𝛩) ⊂ 𝐿2(R2) is defined

by an even- or odd-symmetric generator 𝑔 ∈ 𝐿2(R2), an anisotropy parameter 𝛼 ∈
[0, 1], a constant scaling factor 𝑎 > 0, a set of scaling parameters 𝐽 ⊂ Z, and a set of
rotation parameters 𝛩 ⊂ T (see (4.72)). In SymFD, digital symmetric molecule filters
are constructed by sampling the frequency domain representations 𝑚𝑗,𝜃,𝑦(𝜉) of symmetric
molecules on a uniformly spaced grid of the size of the given input image. Note that all
even- and odd-symmetric generators in the set 𝛹 e

2 ∪̃︁𝛹 e
2 ∪𝛹o

2 are based on tensor products of
derivatives of the one-dimensional Gaussian and their Hilbert transforms (see (4.69), (4.70),
and (4.71)), for which we can use the explicit formulations in the Fourier domain (4.22) and
(4.24). Each function in the set 𝛹 e

2 ∪ ̃︁𝛹 e
2 ∪ 𝛹o

2 of two-dimensional symmetric generators is
associated with two scaling parameters 𝑐1, 𝑐2 ∈ R+ that determine the shape of their effective
support (cf. (4.72)). In SymFD, the parameters maxFeatureWidth and maxFeatureLength

can be used to directly specify the width and length of a generating symmetric molecule
filter in terms of pixels. Here, the width is defined as the distance between the two zero
crossings of the associated one-dimensional wavelet that are closest to the origin while
the length is defined as the size of the interval centered on the origin which contains 95 %
of the energy of the dilated one-dimensional Gaussian. Figures 4.8(a) and 4.8(b) depict
examples of an even-symmetric and an odd-symmetric digital filter, respectively, and their
corresponding lengths and widths. Note that in the case of even-symmetric molecules, this
notion of width agrees with the definition of the radius given in (4.92) and (4.105).

The anisotropy parameter 𝛼 is equivalent to the parameter alpha in SymFD. The
constant scaling factor 𝑎 is parameterized by the value scalesPerOctave which determines
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the number of scales within each dyadic scaling step, that is,

𝑎 = 21/scalesPerOctave. (4.114)

The set of scaling parameters 𝐽 can then be specified via the parameter minFeatureWidth

which defines the width of the symmetric molecule filters on the scale associated with the
highest frequencies. That is, 𝐽 = {0, . . . , 𝑗max} with

𝑗max = max
{︀
𝑗 ∈ N : 𝑎−𝑗maxFeatureWidth ≥ minFeatureWidth

}︀
. (4.115)

In SymFD, the set of rotation parameters 𝛩 is defined by the integer nOrientations

as a sequence of uniformly spaced samples from the interval [−𝜋
2 ,

𝜋
2 ), that is,

𝛩 =
{︁
𝜃𝑛 = 𝑛𝜋

nOrientations
− 𝜋

2

}︁nOrientations−1

𝑛=0
. (4.116)

Examples of differently dilated and rotated digital symmetric molecule filters are plotted
in Figure 4.8(c). SymFD furthermore supports the use of both rotation matrices R𝜃 (see
(4.2)) and shear matrices

Sℎ =
[︃

1 ℎ

0 1

]︃
, and Sℎᵀ =

[︃
1 0
ℎ 1

]︃
, ℎ ∈ R, (4.117)

to change to preferred orientation of a symmetric generator. In practice, however, we
recommend that one applies the rotation matrix R𝜃. As discussed in the prelude to
Chapter 3, a main advantage of the shear operator is that it preserves the integer grid for
shear parameters 𝑠 ∈ Z which facilitates the construction of discrete shearlet transforms
that provide a faithful transition between the continuous and the digital realm. However,
such transforms are typically only defined for special combinations of generators, scaling
parameters, and orientation parameters and thus substantially lacking in flexibility. For
this reason, all digital filters used in SymFD are constructed by sampling their analogs
from the continuum in the Fourier domain. This approach yields maximal freedom but
also renders the most significant advantage of applying shears instead of rotations moot.

The parameters introduced so far fully define a system of symmetric molecule filters
that is based on a generator 𝑔 which matches the symmetry of the feature that is to be
detected (i.e., even symmetry in the cases of ridges and blobs and odd symmetry in the
case of edges). In SymFD, the generator of opposite symmetry is by default constructed
by applying the Hilbert transform to the one-dimensional wavelet used in the definition of
𝑔. Furthermore, a parameter evenOddScaleOffset can be used to define 𝑗e in (4.87) and
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𝑗o in (4.102) and (4.110).
The soft-thresholding parameter 𝛽 used in all three proposed feature measures is equiva-

lent to the parameter minContrast in SymFD. Furthermore, SymFD implements two steps
of post-processing that can be applied if necessary. The parameter thinningThreshold

defines a threshold that is used to obtain a binary feature map which is then further
processed with morphological thinning using Matlab’s bwmorph function. The parameter
minComponentLength can be used to remove all connected components in the thinned
binary feature map that do not have the specified minimal size.

Note that there also exists a Python implementation developed by Jonas Wloka, which
is based on a previous version of the SymFD toolbox called Complex Shearlet-Based
Edge and Ridge Measure (CoShREM). Both toolboxes can also be downloaded from
http://www.math.uni-bremen.de/cda/software.html.

4.5 Performance Evaluation on Synthetic Images

To evaluate the performance of the proposed measures, we first consider sets of synthetic
digital grayscale images for which the locations and properties of features are unambiguously
defined. For each type of feature, we created two test images of varying complexity that
contain exemplary instances of the respective feature. To test the stability of the proposed
measures in adverse conditions, we furthermore applied a combination of Gaussian and
Poisson (shot) noise to each test image with three different degrees of severity (no noise,
medium noise, severe noise). Visualizations of all six synthetic images, their distorted
versions as well as the corresponding ground truths are compiled in Appendix D.

In all cases, both the synthetic image and the ground truth are based on a geometry
that was defined semi-randomly on the unit square and then discretized on a grid of

Table 4.1: Overview of algorithms considered in the evaluation with synthetic images.

Edges Ridges Blobs Tangent dir. Widths Parameters Avg. time

SymFD ✓ ✓ ✓ ✓ ✓ 12 18.56 s
Shearlet [171] ✓ ✗ ✗ ✓ ✗ 2 2.51 s
PhaseCong [99] ✓ ✓ ✗ ✓ ✗ 11 1.53 s
Canny [28] ✓ ✗ ✗ ✗ ✗ 3 0.39 s
Sobel [153] ✓ ✗ ✗ ✗ ✗ 1 0.05 s
Steger [156] ✗ ✓ ✗ ✗ ✓ 4 1.64 s
Frangi [63] ✗ ✓ ✗ ✓ ✗ 8 0.43 s
Circular Hough [7, 46] ✗ ✗ ✓ ✗ ✓ 4 0.36 s

http://www.math.uni-bremen.de/cda/software.html
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768 × 768 pixels. Hence, the ground truth is not directly tied to the discrete digital image
and therefore less likely to be biased towards any of the different algorithms we consider
in our numerical experiments. For all three features, the feature location ground truth
is stored as a binary image where white pixels denote the contours of edges, centerlines
of ridges, and centers of blobs, respectively. In the case of edges and ridges, the ground
truth also contains the orientation of the tangent for each pixel that lies on the contour
of an edge or the centerline of a ridge. The same holds for local feature widths in the
case of ridges and blobs. Due to the fact that the height measures HR(𝑓,𝑦) and HB(𝑓,𝑦)
directly depend on the corresponding width measures (cf. (4.101) and (4.109)), they are
not explicitly included in the numerical evaluation.

We consider different metrics to evaluate the results obtained by a feature detection
algorithm with respect to the corresponding ground truth. For a given image, let 𝑁gt denote
the number of pixels that are marked as feature points in the ground truth and 𝑁det the
number of points that were detected as feature points by the algorithm under evaluation.
We denote the set of feature points in the ground truth with 𝑃gt = {𝑝𝑛}𝑁gt

𝑛=1 ⊂ N2

and the set of detected feature points with 𝑃det = {𝑝𝑛}𝑁det
𝑛=1 ⊂ N2. Furthermore, let

𝐷det = {min𝑝2∈𝑃gt ‖𝑝1 − 𝑝2‖2 : 𝑝1 ∈ 𝑃det} denote the set of all Euclidean distances from
pixel coordinates in 𝑃det to the set 𝑃gt, and 𝐷gt = {min𝑝2∈𝑃det ‖𝑝1 − 𝑝2‖2 : 𝑝1 ∈ 𝑃gt}
denote the set of all distances from points in 𝑃gt to the set 𝑃det. A figure of merit that
evaluates how successful an algorithm was at correctly detecting the location of features
can then be defined by

FOM = 1
max{𝑁gt, 𝑁det}

𝑁gt∑︁
𝑛=1

1
1 + 𝛾𝑑𝑛

2 , (4.118)

where 𝑑𝑛 ∈ 𝐷 = 𝐷gt ∪𝐷det denotes the 𝑛-th largest element in the union of both sets of
distances, and 𝛾 > 0. All FOM-values reported in this section were computed with 𝛾 = 1

9 .
Note that for 𝐷 = 𝐷det and accordingly adjusted summation bounds, (4.118) yields exactly
the definition of Pratt’s figure of merit (PFOM) [2], which is defined as

PFOM = 1
max{𝑁gt, 𝑁det}

∑︁
𝑑∈𝐷det

1
1 + 𝛾𝑑2 , (4.119)

where 𝛾 > 0 is typically chosen as 𝛾 = 1
9 . The main reason for using a slightly adjusted

version here is that PFOM tends to be too forgiving of false positives in the case that
𝑁det < 𝑁gt.

For a fixed radius 𝑟 > 0, we define the set of successfully detected points in the ground
truth (true positives) as 𝑃tp = {𝑝1 ∈ 𝑃gt : min𝑝2∈𝑃det ‖𝑝1 − 𝑝2‖2 ≤ 𝑟} and let 𝑁tp ∈ N
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Figure 4.9: Detection of edges and local tangent orientations in a synthetic image using SymFD
with parameters 𝜓o = ℋ𝐺2

‖ℋ𝐺2‖1
, 𝜓e = 𝐺2

‖𝐺2‖1
, maxFeatureWidth = 16, maxFeatureLength = 16,

𝛼 = 1
2 , minFeatureWidth = 4, scalesPerOctave = 2, nOrientations = 16, 𝑗e = 1, and

𝛽 = 15. The input image is of size 768 × 768 and was distorted by a combination of Gaussian
and Poisson noise.

denote the number of points in 𝑃tp. To evaluate width and tangent orientation measures,
we compute the mean of the set of absolute errors obtained by comparing the corresponding
ground truth values at points in 𝑃tp with the values yielded by an algorithm at the nearest
neighbors of the ground truth points in the set 𝑃det. Formally, we define the mean absolute
error (MAE) of an arbitrary measure M(𝑓,𝑦) computed on a digital image 𝑓 as

MAEM = 1
𝑁tp

𝑁tp∑︁
𝑛=1

⃒⃒⃒⃒
⃒Mgt(𝑓,𝑝𝑛) − M

(︃
𝑓, argmin

𝑝∈𝑃det

‖𝑝𝑛 − 𝑝‖2

)︃⃒⃒⃒⃒
⃒ , (4.120)

where 𝑝𝑛 ∈ 𝑃tp and Mgt(𝑓,𝑝𝑛) denotes the ground truth of the estimated property at the
pixel 𝑝𝑛. Note that in the case of tangent orientation measures, the error is computed on
the torus. Finally, we define the number of true positives (TP) and the ratio of successfully
detected feature points (TPR) as

TP = 𝑁tp, and TPR = 𝑁tp
𝑁gt

, (4.121)
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Table 4.2: Evaluation of five edge detection methods on synthetic images.

No noise Medium noise Severe noise
FOM MAEOE TPR FOM MAEOE TPR FOM MAEOE TPR

Synthetic image 1
SymFD 0.91 1.79 ∘ 100 % 0.89 3.19 ∘ 100 % 0.72 4.46 ∘ 83 %
Shearlet [171] 0.85 3.78 ∘ 100 % 0.82 5.78 ∘ 98 % 0.64 8.71 ∘ 84 %
PhaseCong [99] 0.91 6.13 ∘ 100 % 0.85 8.48 ∘ 95 % 0.58 15.59 ∘ 72 %
Canny [28] 0.92 n/a 100 % 0.90 n/a 100 % 0.72 n/a 86 %
Sobel [153] 0.93 n/a 100 % 0.73 n/a 83 % 0.11 n/a 17 %
Synthetic image 2
SymFD 0.90 4.55 ∘ 100 % 0.85 7.43 ∘ 96 % 0.64 13.28 ∘ 76 %
Shearlet [171] 0.85 6.58 ∘ 100 % 0.79 9.67 ∘ 96 % 0.55 13.32 ∘ 73 %
PhaseCong [99] 0.87 9.46 ∘ 97 % 0.72 12.11 ∘ 82 % 0.42 17.01 ∘ 52 %
Canny [28] 0.91 n/a 100 % 0.87 n/a 99 % 0.65 n/a 79 %
Sobel [153] 0.93 n/a 100 % 0.65 n/a 76 % 0.16 n/a 22 %

respectively.
Throughout this section, the results of SymFD are not only compared to the ground

truth but also to the results of other well-known feature detection algorithms. An overview
of all considered algorithms is given in Table 4.1, which lists for each method the types of
features it can detect, the number of parameters of the algorithm and the average time it
took to process one synthetic digital image. The average processing time was measured on
an Intel Core i7-4790 CPU clocked at 3.60 GHz.

The parameters of each method were separately optimized for each test image and each
noise configuration. In the cases of edge and ridge detection, the optimization was carried
out in terms of the FOM-value. For blob detection, the goal was to maximize the number
of correctly detected blobs while keeping the number of false positives close to zero.

All Matlab scripts and configurations that were used to obtain the numerical results
presented in this section can be downloaded from http://www.math.uni-bremen.de/cda/

software.html.

4.5.1 Edges

The synthetic images for the evaluation the edge measure E(𝑓,𝑦) and the tangent orientation
measure OE(𝑓,𝑦) are based on shapes that are defined by closed smooth spline curves
and polygons. The main advantage of considering splines and polygons is that in both
cases, with the exception of corner points in a polygon, the tangent can easily be computed
for every point on the respective curve. The binary images that represent the feature
location ground truth were obtained by marking each pixel which intersects with any of the
defined curves. Each polygon and each spline curve is constructed from a finite sequence

http://www.math.uni-bremen.de/cda/software.html
http://www.math.uni-bremen.de/cda/software.html
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Figure 4.10: Visual comparison of the detection results yielded by different edge detection
methods. Where applicable, the detected edge contour is shown in combination with estimates
of the local tangent directions.

of points. These point sequences were predefined in the case of synthetic image 1 (see
Figure D.1(a)) and semi-randomly selected in synthetic image 2 (see Figure D.1(d)). The
shapes in both images were filled using a range of constant values and different types of
gradients to ensure a certain amount of contrast variation. Furthermore, both images were
overlaid with a smooth surface to test the capability of an algorithm to properly distinguish
between sharp and smooth transitions. The synthetic images, their distorted versions, and
the corresponding ground truths are compiled in Figure D.1 in Appendix D.

The edge measure E(𝑓,𝑦) and the tangent orientation measure OE(𝑓,𝑦) after post-
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Figure 4.11: Detection of ridges, local tangent orientations, and ridge widths in a synthetic
image. The results were yielded by SymFD with parameters 𝜓e = 𝐺2

‖𝐺2‖1
, 𝜓o = ℋ𝐺2

‖ℋ𝐺2‖1
,

maxFeatureWidth = 10, maxFeatureLength = 15, 𝛼 = 0.2, minFeatureWidth = 3,
scalesPerOctave = 6, nOrientations = 16, 𝑗o = 1, and 𝛽 = 20. All ridges in the in-
put have positive contrast. The analysis is therefore restricted to locations 𝑦 where the height
measure is positive, i.e., HR(𝑓,𝑦) ≥ 0. The input image is of size 768 × 768 and was distorted
by a combination of Gaussian and Poisson noise.

processing are plotted in Figure 4.9 in the case of synthetic image 1 distorted with medium
noise. We also compare the performance of SymFD with results obtained from the Canny
edge detector [28], the Sobel edge filter [153], the phase congruency measure [99], and a
shearlet-based edge detector [171], which can be seen as a shearlet-based generalization of
Canny. In the case of the Canny and Sobel edge detectors, we applied the implementation
provided by Matlab’s edge function. The phase congruency measure was computed with
the phasecong3 function [101] and an implementation of the shearlet-based edge detector
was kindly provided by the author of [171].

The detection performance of the considered algorithms for both synthetic images and
three different levels of noise are summarized in Table 4.2. The edge detection performance
was measured in terms of the FOM. Estimates of the local tangent directions are compared
to the ground truth via the MAEOE . Note that the TPR is equal to the percentage of
ground truth feature points that were used in the computation of the MAEOE (cf. (4.120)
and (4.121)). The radius defining the set of true positives 𝑃tp was set to three pixels. Note
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Table 4.3: Evaluation of four ridge detection methods on synthetic images.

No noise Medium noise Severe noise
FOM MAEWR MAEOR TPR FOM MAEWR MAEOR TPR FOM MAEWR MAEOR TPR

Synthetic image 3
SymFD 0.90 0.12 px 1.20 ∘ 100 % 0.89 0.26 px 2.15 ∘ 100 % 0.81 0.84 px 4.80 ∘ 94 %
Steger [156] 0.90 0.71 px n/a 100 % 0.85 1.31 px n/a 100 % 0.81 2.56 px n/a 98 %
Frangi [63] 0.80 n/a 1.24 ∘ 99 % 0.80 n/a 2.18 ∘ 99 % 0.20 n/a 3.26 ∘ 23 %
PhaseCong [99] 0.89 n/a 15.67 ∘ 99 % 0.81 n/a 31.39 ∘ 96 % 0.48 n/a 36.07 ∘ 52 %
Synthetic image 4
SymFD 0.88 0.55 px 4.18 ∘ 99 % 0.87 0.59 px 4.28 ∘ 98 % 0.84 0.77 px 5.12 ∘ 97 %
Steger [156] 0.88 1.12 px n/a 98 % 0.87 1.80 px n/a 99 % 0.83 1.85 px n/a 95 %
Frangi [63] 0.85 n/a 4.30 ∘ 98 % 0.85 n/a 4.55 ∘ 97 % 0.82 n/a 6.94 ∘ 97 %
PhaseCong [99] 0.81 n/a 25.71 ∘ 97 % 0.82 n/a 29.18 ∘ 96 % 0.64 n/a 33.55 ∘ 74 %

that out of the algorithms included in the evaluation, only SymFD, the phase congruency
measure, and the shearlet-based edge detector provide estimates of tangent orientations.

A visual comparison of the results yielded by the different methods when processing
synthetic image 2 with severe distortions can be found in Figure 4.10.

4.5.2 Ridges

Similar to the case of edge detection, we generated synthetic digital images that contain
exemplary ridges whose centerlines are based on smooth spline curves. The sequences
of points defining the spline curves were again predefined in synthetic image 3 (see
Figure D.2(a)) and chosen in a semi-random fashion in synthetic image 4 (see Figure D.2(d)).
To obtain ridges, the spline curves were thickened by a value ranging from three to ten
pixels. In the case of synthetic image 3 , the ridge-shapes were filled using different constant
values and different types of gradients, while in synthetic image 4 , all ridge-shapes are filled
with the same value. To test the capability of an algorithm to correctly differentiate between
edges and ridges, both synthetic images also contain filled shapes that are based on closed
curves. Furthermore, both images were overlaid with a smooth surface. Visualizations of
the noise-free and distorted versions of synthetic image 3 and synthetic image 4 as well as
the corresponding ground truths can be found in Figure D.2 in Appendix D.

Detection results for a noisy version of synthetic image 3 yielded by the ridge measure
R(𝑓,𝑦), the tangent orientation measure OR(𝑓,𝑦), and the width measure WR(𝑓,𝑦) are
depicted in Figure 4.11. The ridge detection performance of SymFD is furthermore
compared with results obtained from the phase congruency measure [99], the vessel
enhancement filter proposed by Frangi et al. [63], and a widely used scale space-based
ridge detection method proposed by Steger [156]. For the phase congruency measure, we
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Figure 4.12: Visual comparison of the detection results yielded by different ridge detection
methods. Where applicable, the detected centerline of a ridge is shown in combination with
estimates of the local tangent direction and/or the width of the ridge.

applied the same implementation already used during the evaluation of different edge
detection methods. An implementation of the Frangi vesselness measure can be found
on the Matlab Central File Exchange [102]. To obtain binary detection results, the
feature maps computed by the Frangi vesselness measure were further processed with the
same thresholding and thinning methods that are implemented in SymFD. For the Steger
ridge detection method, we used an implementation provided by a freely available ImageJ
plugin [164].

The ridge detection performances of SymFD, the phase congruency measure, the Frangi
vessel enhancement filter, and the method proposed by Steger are summarized in Table 4.3.
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Figure 4.13: Detection of blobs and blob widths (diameters) in a synthetic image.
The results were yielded by SymFD with parameters 𝜓e = ℋ𝐺1

‖ℋ𝐺1‖1
, maxFeatureWidth =

16, maxFeatureLength = 16, 𝛼 = 1, minFeatureWidth = 6, scalesPerOctave = 8,
nOrientations = 16, 𝑗o = 0, and 𝛽 = 5. All blobs in the input have positive contrast.
The analysis is therefore restricted to locations 𝑦 where the height measure is positive, i.e.,
HB(𝑓,𝑦) ≥ 0. The input image is of size 768 × 768 and was distorted by a combination of
Gaussian and Poisson noise.

The similarity between the ridge location ground truth and the map of feature points
detected by a single algorithm is again measured in terms of the FOM. Estimates of the
local tangent directions and ridge widths are compared to the ground truth via the MAEOR

and the MAEWR , respectively. The radius defining the set of true positives 𝑃tp was set
to three pixels. Similar to the evaluation of edge detection methods, errors in width and
tangent direction measurements are only computed for feature points in the set 𝑃tp. Out
of the algorithms included in the evaluation, SymFD, the phase congruency measure and
the implementation applied to obtain the Frangi vesselness measure also provide estimates
of local tangent directions. Furthermore, only SymFD and the Steger ridge detector yield
estimates of local ridge widths.

A visual comparison of the results yielded by the different methods when processing
synthetic image 4 with severe distortions can be found in Figure 4.12.
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Table 4.4: Evaluation of two blob detection methods on synthetic images.

No noise Medium noise Severe noise
TP FP MAEctr MAEWB TP FP MAEctr MAEWB TP FP MAEctr MAEWB

Synthetic image 5 (31 blobs)
SymFD 31 0 2.16 px 2.62 px 31 0 2.16 px 2.95 px 31 0 2.09 px 3.13 px
Circular Hough [7, 46] 31 0 0.99 px 0.61 px 30 0 1.82 px 2.33 px 20 0 2.03 px 8.15 px
Synthetic image 6 (200 blobs)
SymFD 200 0 1.10 px 0.87 px 198 0 1.04 px 0.97 px 155 1 1.30 px 1.19 px
Circular Hough [7, 46] 200 0 0.88 px 0.56 px 194 3 0.99 px 1.04 px 47 1 1.10 px 1.66 px

4.5.3 Blobs

To evaluate the proposed blob measure B(𝑓,𝑦) and width estimates WB(𝑓,𝑦), we consider
two synthetic images that show aggregations of filled circles with varying diameters and
contrasts. Synthetic image 5 (see Figure D.3(a)) consists of 31 large circles with diameters
ranging from 30 to 50 pixels while synthetic image 6 (see Figure D.3(d)) contains a total
of 200 small blobs whose diameters are between 7 and 13 pixels. In both cases, the center
points of the circles were semi-randomly selected in the sense that two center points have
at least a distance of 20 pixels in synthetic image 6 and 100 pixels in synthetic image 5 .
Noisy versions of synthetic image 5 and synthetic image 6 and the corresponding ground
truths are visualized in Figure D.1 in Appendix D.

SymFD blob detection results for a distorted version of synthetic image 6 are shown
in Figure 4.13. The circle detection performance of SymFD is furthermore compared to
the circular Hough transform [7, 46], which can be computed in Matlab via the function
imfindcircles. To compare detection results of an algorithm with the ground truth, we
consider the number TP of true positives with respect to a radius of six pixels, as defined in
(4.121), and the number FP of false positives. Here, FP is equal to the number of detected
blob center points which are not in the vicinity of an actual center of a blob. That is, FP is
equal to the number of elements in the set 𝑃fp = {𝑝1 ∈ 𝑃det : min𝑝2∈𝑃gt ‖𝑝1 − 𝑝2‖ > 6}. We
further consider the mean absolute errors in terms of center point location and blob width
denoted by MAEctr and MAEWB , respectively. The results of the numerical evaluation of
the blob detection performance of SymFD and the circular Hough transform are summarized
in Table 4.4.

A visual comparison of the results yielded by SymFD and the circular Hough transform
in the cases of synthetic image 5 and synthetic image 6 distorted by severe Gaussian and
Poisson noise is presented in Figure 4.14.
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Figure 4.14: Visual comparison of the detection results yielded by the measures B(𝑓,𝑦) and
WB(𝑓,𝑦) implemented in SymFD and the circular Hough transform.

4.6 Applications

Previous versions of E(𝑓,𝑦) and R(𝑓,𝑦) that are based on complex-valued shearlets [96,
142, 144] were already successfully applied in different feature extraction tasks such
as the detection and characterization of flame fronts [144] (see also Section 4.6.3), the
detection of borders of tidal flats in the Wadden Sea [96], the extraction of fracture-traces in
rockmasses [14], the detection of channel boundaries in seismic data [94], and the automated
detection of the boundaries of touching cells in scanning electron (SEM) images [127].

To further evaluate the applicability of the proposed measures, we consider two tasks
which require the correct localization and characterization of certain morphological com-
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(a) Image 7 of the REVIEW VDIS dataset with
manually annotated vessel profiles.

(b) Image 2 of the REVIEW CLRIS dataset with
manually annotated vessel profiles.

Figure 4.15: Examples of digital images in the REVIEW retinal vessel reference dataset [48]
with manually annotated ground truth vessel profiles.

ponents in biomedical images. In Section 4.6.1, we demonstrate how the width measure
WR(𝑓,𝑦) and estimates of local tangent directions yielded by OR(𝑓,𝑦) can be used in
combination with the ridge measure R(𝑓,𝑦) to obtain characterizations of the geometry
of retinal blood vessels. In particular, the blood vessel profiles yielded by SymFD are
validated and compared to other state of the art algorithms on the publicly available
REVIEW database [48]. In Section 4.6.2, we investigate the applicability of the blob
measure B(𝑓,𝑦) for automatically counting the number of grown cell colonies in a Petri
dish. Finally, in Section 4.6.3, we evaluate the applicability of the proposed edge and ridge
measures in the context of flame front characterization.

4.6.1 Determining Widths and Orientations of Retinal Blood Vessels

Retinal imaging is one of only a few existing techniques which provides non-invasive
observations of the human circulatory system. Variations in the geometry of the retinal
vasculature can furthermore be linked to a wide range of ocular diseases and systemic
diseases with a vascular component such as diabetes [11, 32], Alzheimer’s disease [168],
or high blood pressure [84]. In recent years, many methods have been proposed for
automatically extracting and analyzing the geometry of blood vessels in digital retinal
images [4, 135].

To give an example of how SymFD can be applied in the context of retinal image
analysis, we consider the REVIEW retinal vessel reference dataset [48]. For each image in
the REVIEW database, three independent experts were asked to manually define vessel
edge profiles on a number of preselected segments. Each profile consists of a pair of opposite
edge points that indicate the boundaries of a blood vessel. A single profile thus not only
contains information about the location of a retinal blood vessel but provides a complete
characterization in terms of the local width and the local normal direction of the centerline.
Two examples of images in the REVIEW database are shown along with manually marked
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Figure 4.16: Width and orientation measurements of retinal blood vessels yielded by SymFD.
The input image is part of the VDIS dataset from the REVIEW retinal vessel reference
database.

vessel profiles in Figure 4.15.
The REVIEW database consists of four subsets of digital images that aim to provide

meaningful benchmarks for different types of challenges in retinal image processing. The
high resolution image set (HRIS) contains four images that show severe cases of diabetic
retinopathy. Each image in the HRIS data set has a resolution of 896 × 609 × 3 pixels but
has previously been sub-sampled by a factor of four such that, disregarding human error,
the vessel widths are known to a precision of a quarter of a pixel. The vascular disease
image set (VDIS) contains eight retinal images of size 1360 × 1024 × 3 that were randomly
selected from a database of images of patients attending a retinopathy clinic. The central
light reflex image set (CLRIS) consists of only two images of a resolution of 2160 × 1440 × 3



4.6 Applications 129

Table 4.5: Evaluation of SymFD orientation measurements on the REVIEW database.

VDIS KPIS HRIS CLRIS
MAEOR SR MAEOR SR MAEOR SR MAEOR SR

Human Observers
O1 2.69 ∘ 100 % 2.40 ∘ 100 % 2.82 ∘ 100 % 1.62 ∘ 100 %
O2 2.97 ∘ 100 % 2.52 ∘ 100 % 2.41 ∘ 100 % 1.61 ∘ 100 %
O3 3.47 ∘ 100 % 3.18 ∘ 100 % 2.70 ∘ 100 % 1.51 ∘ 100 %
Algorithm
SymFD 3.30 ∘ 99 % 2.74 ∘ 100 % 2.46 ∘ 100 % 2.93 ∘ 95 %

pixels that show early atherosclerotic changes in retinal vessels. Finally, the kick point
image set (KPIS) contains two sub-sampled images where the normal direction of the
centerline of a given location was computationally determined from the neighboring pixels
on the centerline and the human observers where only asked to identify the kick-points
determining the width. In total, the REVIEW database contains 5066 manually marked
vessel profiles.

The diameters of blood vessels that are visible in the images of the database roughly
range from 2 to 20 pixels. To obtain a precise detection and characterization of both thin
and wide blood vessels, we use not a single pair but two pairs of systems of even- and
odd-symmetric molecules that cover different but overlapping regions in the frequency
domain. Both pairs of systems are based on the even-symmetric one-dimensional wavelet
𝜓e = ℋ𝐺1

‖ℋ𝐺1‖1
and the odd-symmetric wavelet 𝜓o = 𝐺1

‖𝐺1‖1
and cover two octaves with

scalesPerOctave = 4, 𝛼 = 1, and nOrientations = 16. The first pair of systems aims
at the detection of thin vessel and is defined by the parameters maxFeatureWidth1 = 8,
maxFeatureLength1 = 24, and minFeatureWidth1 = 2. The second pair is capable of
detecting vessels with a diameter of up to 24 pixels and is defined by the parameters
maxFeatureWidth2 = 24, maxFeatureLength2 = 72, and minFeatureWidth2 = 6. Each
image in the database is processed by computing the ridge measure R(𝑓,𝑦), the width
measure WR(𝑓,𝑦) and the tangent direction measure OR(𝑓,𝑦) for both pairs of systems
of even- and odd-symmetric molecules with parameters 𝑗o = 0, and 𝛽 = 2. In each case,
the computations are carried out solely on the green channel of the processed RGB image,
in which the blood vessels typically have the most significant contrast. For every pixel
location 𝑦, we keep the values yielded by the pair of systems associated with the larger ridge
measure R(𝑓,𝑦). We furthermore restrict the analysis to ridges with negative contrast,
that is, to locations where HR(𝑓,𝑦) ≤ 0. As the width measure WR(𝑓,𝑦) is not only based
on the even-symmetric coefficient on the most significant scale but also on the coefficients
with respect to the preceding and succeeding scaling parameters, measurements where the
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Table 4.6: Evaluation of width measurements obtained by nine different algorithms on the
REVIEW Database

VDIS KPIS HRIS CLRIS
SDWR SR SDWR SR SDWR SR SDWR SR

Human Observers
O1 0.54 px 100 % 0.23 px 100 % 0.29 px 100 % 0.57 px 100 %
O2 0.62 px 100 % 0.21 px 100 % 0.26 px 100 % 0.70 px 100 %
O3 0.67 px 100 % 0.23 px 100 % 0.28 px 100 % 0.57 px 100 %
Algorithms
SymFD 1.20 px 99 % 0.41 px 100 % 0.60 px 100 % 1.44 px 95 %
ARIA [8] 0.95 px 99 % 0.29 px 100 % 0.32 px 100 % 0.95 px 100 %
ETOS [10] 0.80 px 100 % 0.36 px 100 % 0.45 px 100 % 0.53 px 100 %
ESP [47] 0.77 px 100 % 0.33 px 100 % 0.42 px 100 % 1.47 px 93 %
Graph [169] 1.43 px 96 % 0.67 px 99 % 0.57 px 100 % 1.78 px 94 %
Gregson [68] 1.49 px 100 % 0.60 px 100 % 2.84 px 100 % 2.84 px 100 %
HHFW [18] 0.88 px 78 % 0.39 px 96 % 0.93 px 88 % n/a 0 %
1DG [176] 2.11 px 100 % 0.40 px 100 % 4.14 px 100 % 4.14 px 99 %
2DG [117] 1.33 px 77 % 0.34 px 100 % 6.02 px 99 % 6.02 px 27 %

first or last scales are most significant are not considered. The obtained feature maps in
the case of image 7 from the VDIS dataset are plotted in Figures 4.16(a) and 4.16(d).

To validate the obtained measurements, the width and tangent direction maps yielded
by SymFD are compared to the widths and orientations of the manually marked profiles.
For each vessel edge profile in the ground truth, we consider the difference with respect to
the width measure WR(𝑓,𝑦) and the orientation measure OR(𝑓,𝑦) at the nearest location
𝑦 in a two-pixel radius for which the ridge measure R(𝑓,𝑦) is greater than zero. If no such
pixel exists, the corresponding vessel edge profile counts as undetected. Visualizations of
the tangent direction error and the width error for measurements obtained from SymFD are
visualized in the case of image 7 from the VDIS dataset in Figures 4.16(e) and 4.16(f). For
the tangent orientation estimates OR(𝑓,𝑦), we compute the mean absolute error MAEOR

on the torus with respect to all manually marked profiles for each of the four subsets of
images. The respective values along with the success rate SR, which denotes the percentage
of successfully matched vessel profiles, are reported in Table 4.5.

For the validation of width measurements WR(𝑓,𝑦), we follow the procedure proposed
in [8, 47, 169] and consider the standard deviation SDWR of differences between the
measure WR(𝑓,𝑦) and the ground truth vessel diameters instead of the mean absolute
error. This way, the comparison is independent of possibly different implicit definitions of
vessel widths. We furthermore compare SymFD to a number of classical and state of the
art methods for the extraction of vessel diameters from digital retinal images. In [176],
vessel widths are obtained by fitting a one-dimensional Gaussian (1DG) model to the
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(a) The shown image was acquired with a
high-definition camera with a resolution of
1538 × 1536 pixels. Median human count of cell
colonies: 1090.

(b) The shown image was obtained from
a low-cost webcam with horizontal stripe
artifacts and acquired at a resolution of
1000 × 1000 pixels. Median human count
of cell colonies: 69.

Figure 4.17: Two pictures showing grown cell colonies in a Petri dish. The dataset containing
the displayed images was originally developed for the evaluation of the OpenCFU software
package [65].

vessel intensity profiles. A similar approach using a two-dimensional Gaussian (2DG)
model was proposed in [117]. The half height full width (HHFW) model defines the width
of a vessel as the distance between the points at which the vessel intensity profile reaches
half of the maximum intensity left and right of an assumed center point [18]. Gregson
et al. proposed to obtain vessel widths by fitting a rectangle to the intensity profile such
that the area under the rectangle is equal to the area under the intensity profile [68].
A graph-based edge segmentation technique for measuring vessel widths was proposed
in [169], while the extraction of segment profiles (ESP) algorithm proposed in [47] is based
on an active contour model. The automated retinal image analyzer (ARIA) employs a
wavelet-based approach for vessel segmentation which is followed by a refinement of edge
locations [8]. Finally, edge tracking based on orientation scores (ETOS) is an algorithm
that yields state of the art vessel width measurements by simultaneously tracking both
edges of a vessel in the coupled space of positions and orientations [10]. The accuracy of
vessel width measurements on images from the REVIEW database obtained by SymFD
and all aforementioned methods in terms of the standard deviation SDWR and success rate
SR are compiled in Table 4.6.

4.6.2 Automated Cell Colony Counting

Counting the number of cell colonies growing on an agar disk is a common but time-
consuming task in many areas of biomedical research. To evaluate the applicability of
the blob measure B(𝑓,𝑦) for automatically obtaining the number of colonies from digital
images, we consider a set of pictures which was originally developed for the evaluation of
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(a) Input 1 (HD image with a resolution of
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(b) Input 2 (Webcam image with a resolution
of 1000 × 1000 pixels. Median human colony
count: 525.)

(c) Cell colonies detected in input 1 by ap-
plying the blob measure B(𝑓,𝑦) implemented
in SymFD. Number of detected colonies: 357.

(d) Cell colonies detected in input 2 by ap-
plying the blob measure B(𝑓,𝑦) implemented
in SymFD. Number of detected colonies: 512.

Figure 4.18: SymFD-based detection of cell colonies in digital photographs of Petri dishes.

the OpenCFU software package [65]. The set consists of digital images of 19 different plates
containing between 10 and 1000 Staphylococcus aureus colonies and can be downloaded
from http://opencfu.sourceforge.net/. Each plate was photographed once with a
high-definition camera and once with a low-cost webcam. To provide a reference for the
evaluation of automated counting methods, the number of colonies on each plate was
independently counted by seven trained humans. For a single plate, the ground truth was
then defined as the median of the numbers reported by the human experts. Examples of
the considered images are displayed in Figure 4.17.

To automatically count the number of cell colonies in the high-definition images,
all 19 images were processed with SymFD by computing the blob measure B(𝑓,𝑦) on
the blue color channels using the parameters 𝜓e = ℋ𝐺1

‖ℋ𝐺1‖1
, maxFeatureWidthhd = 20,

maxFeatureLengthhd = 20, minFeatureWidthhd = 10, 𝛼 = 1, scalesPerOctave = 3,
nOrientations = 16, 𝑗o = −1, and 𝛽hd = 15. The obtained feature maps were then
transformed into binary images by applying the threshold 0.03. Centers of cell colonies
were eventually obtained by computing the centroids of all connected components in the
binary image via Matlab’s regionprops function. For processing the webcam images, the

http://opencfu.sourceforge.net/
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Table 4.7: Evaluation of the accuracy of automatically obtained cell colony counts.

HD Webcam
With Mask Without Mask With Mask Without Mask

SymFD 1.95 % 3.57 % 2.23 % 5.95 %
OpenCFU [65] 1.93 % 3.85 % 2.79 % n/a
ImageJ [22] 6.64 % 80.93 % 11.11 % n/a
NICE [35] 9.91 % 20.56 % 13.04 % n/a

The accuracy is reported in terms of the median relative deviation from counts
provided by human experts.

parameters specifying the effective support of the applied symmetric molecules had to be
adapted to accommodate for the lower resolution and were set to maxFeatureWidthwc = 8,
maxFeatureLengthwc = 8, and minFeatureWidthwc = 4. Furthermore, mostly due to
horizontal stripe artifacts (cf. Figure 4.17(b)), the contrasts of the cell colonies are slightly
lower in the images captured by a webcam than in their high-definition counterparts. Thus,
for processing the webcam images, the parameter specifying the minimal contrast was
chosen as 𝛽wc = 6. Examples of cell colony detection results obtained by SymFD for one
high-definition image and one webcam image are visualized in Figure 4.18.

To validate the accuracy of the cell colony counts obtained by SymFD, we follow the
procedure proposed in [65] and consider the median relative deviation from the counts
provided by the human experts across all 19 images. We furthermore compare the accuracy
of SymFD with three other methods for the automated detection and counting of cell
colonies. The NIST’s Integrated Colony Enumerator (NICE) [35] is a freely available
software package based on a combination of extended-minima transforms and thresholding
operations. We also consider an ImageJ plugin developed by Cai et al. [22] that is based
on adaptive thresholding, the application of a watershed algorithm, and particle filtering.
The results obtained by SymFD are compared to OpenCFU which is a highly versatile
and efficiently implemented open source library for the detection of cell colonies [65]. The
median relative deviations from human counts for SymFD and the aforementioned methods
with respect to high-definition and webcam images of all 19 plates are compiled in Table 4.7.
The cell colony counts for OpenCFU, NICE, and the ImageJ plugin proposed by Cai et al.
were kindly provided by the author of [65]. In particular NICE, and the ImageJ macro are
sensitive to artifacts in the background and at the border of the Petri dish. To facilitate a
fair comparison, Table 4.7 also reports the median relative errors when using an additional
foreground mask. To illustrate the robustness of the considered methods with respect to
images of agar plates with both small and large numbers of cell colonies, semilog graphs
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(a) High-definition images with additional
foreground mask.
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(b) High-definition images without mask.
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(c) Webcam images with additional fore-
ground mask.
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(d) Webcam images without mask.

Figure 4.19: Semilog graphs and trendlines for four automated cell counting methods, plotting
the relative deviation for a single plate against the number of cell colonies in the corresponding
plate.

plotting for each algorithm the relative deviation for a single plate against the number of
cell colonies in the corresponding plate are shown Figure 4.19.

4.6.3 Detection and Characterization of Flame Fronts

The development of laser combustion diagnostics employing planar imaging techniques
in the 1970s and 80s has transformed combustion research [6, 39, 86, 162]. Using a light
sheet to illuminate an entire two-dimensional cross-section of a flame and imaging the
laser-induced emission onto a camera provides spatially correlated information in contrast
to pointwise scanning. In particular, the use of short-pulse laser sources and gated cameras
enables imaging on time scales that are shorter than flow and diffusion phenomena, and
hence a true snapshot of a flame can be taken. Consequently, studying transient phenomena
is possible by capturing flame structures under turbulent conditions. However, processing
and evaluating such images is a challenge. Appropriate methods must be reproducible,
accurate, and quantitative. In addition, the information desired should be available within
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Figure 4.20: Detection and characterization of edges in a noisy mock image with CoShREM.
The input is perturbed with Gaussian blur (𝜎blur = 1.0) and additive Gaussian white noise
(𝜎noise = 50).

a reasonable period of time. This is particularly important when large data sets need to
be processed.

The most common task is to identify and to characterize the flame front in an image
recorded by planar laser-induced fluorescence (PLIF) [158], laser Rayleigh scattering
(LRS) [136] or particle imaging velocimetry (PIV) [136]. Regarding data processing, this
task comes down to an edge detection problem. Needless to say, the edge detection step
is crucial, as a slightly differently detected edge may suggest significantly different flame
parameters, e.g. in terms of the flame front curvature.

The majority of existing approaches for detecting the flame front in an image are
based either on direct binarization [87, 119] or on local intensity gradients [21, 57]. When
direct binarization is applied, an intensity threshold filter is used delivering a binary image
containing areas of zeroes and ones, representing unburnt and burnt regions. The boundary
between the two is the flame front, from which further information can be derived. In
gradient-based methods, the first step is to convert the initial image by computing an
approximation of the gradient pixel-by-pixel. Then a local or global threshold is applied
in order to discriminate between the steep gradients typical for the flame front and less
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Figure 4.21: Detection and analysis of ridges in a noisy mock image with CoShREM.
The input is perturbed with Gaussian blur (𝜎blur = 1.0) and additive Gaussian white noise
(𝜎noise = 50).

pronounced structures. This may be a simple threshold or a sophisticated combination of
multiple thresholds via hysteresis [28]. Subsequently, the remaining flame front data points
can be fitted with a mathematical function, from which parameters such as curvature and
flame surface density can be derived eventually. Pre-processing the original images with
filters for noise reduction and contour enhancement may be required in order to improve
the clearness and robustness of the flame front detection [21, 122, 158]. However, when the
signal-to-noise ratio is low or the edge to be detected is not sufficiently steep, the common
data processing algorithms may reach their limits. Further, the typical results must be
further processed (e.g., by fitting a cubic spline to the detected edge) in order to obtain
geometric information like curvature [136]. Finally, traditional edge-detection algorithms
are not capable of detecting ridges as coherent structures, which is problematic when
analyzing images of short-lived radicals like CH and HCO. Instead, completely different
ridge-detection methods have to be applied, which often are based on approximating local
optima [114, 154] or matching ridges to set shapes like circles [141].

In this section, we investigate the potential of the newly proposed edge and ridge
measures for evaluating data from planar laser diagnostics. Note that the numerical
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Table 4.8: Numerical comparison of CoShREM with five other edge detectors. The table
shows PFOM values for all considered algorithms and a total of 20 differently distorted versions
of the mock image shown in Figure 4.20, where 1.0 would indicate a perfect reproduction of
the ground-truth. For each algorithm, parameters remained fixed for all test images but were
carefully optimized such that the maximal error was minimized across all levels of noise. The
binary ground-truth was drawn from hand and consisted of minimally connected lines (i.e. with
the exception of intersections, each pixel with value 1 has at most two neighbors with value 1).
To ensure a fair comparison, a thinning operation was applied to the binary outcome of each
method. For a visual comparison of the results in the noisiest case (𝜎blur = 1.5, 𝜎noise = 100),
see Figure E.1.

𝜎blur = 0.0 𝜎blur = 0.5
𝜎noise = 0 20 50 80 100 𝜎noise = 0 20 50 80 100

CoShREM 0.97 0.96 0.93 0.92 0.91 0.97 0.96 0.93 0.92 0.91
Canny [28] 0.90 0.90 0.88 0.88 0.88 0.90 0.90 0.88 0.89 0.88
Sobel [153] 0.93 0.92 0.89 0.70 0.44 0.93 0.91 0.89 0.65 0.43
PhaseCong [99] 0.95 0.94 0.90 0.78 0.72 0.95 0.94 0.88 0.75 0.62
Shearlet [171] 0.88 0.88 0.88 0.87 0.88 0.88 0.89 0.88 0.88 0.87
Canny (std. param.) 0.92 0.11 0.10 0.11 0.11 0.92 0.11 0.10 0.11 0.11

𝜎blur = 1.0 𝜎blur = 1.5
𝜎noise = 0 20 50 80 100 𝜎noise = 0 20 50 80 100

CoShREM 0.96 0.95 0.94 0.92 0.91 0.95 0.94 0.93 0.90 0.89
Canny [28] 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.88 0.87 0.87
Sobel [153] 0.91 0.90 0.76 0.44 0.33 0.89 0.93 0.47 0.32 0.27
PhaseCong [99] 0.94 0.92 0.83 0.60 0.39 0.89 0.80 0.72 0.33 0.16
Shearlet [171] 0.88 0.88 0.88 0.87 0.85 0.87 0.88 0.87 0.86 0.86
Canny (std. param.) 0.92 0.10 0.10 0.10 0.11 0.91 0.10 0.10 0.10 0.11

evaluation presented in this section was performed prior to the development of the SymFD
toolbox using the complex shearlet-based edge and ridge measure (CoShREM). CoShREM
is a Matlab toolbox1 that implements essentially the same edge, ridge, and tangent
direction measures that were defined in Section 4.3, but only considers complex-valued
shearlet transforms instead of the more general 𝛼-molecule framework.

4.6.3.1 Synthetic Inputs

We first consider synthetic images with associated ground truths that were specifically
designed by Johannes Kiefer to represent the special characteristics of experimentally
obtained flame data. To allow for a systematic assessment of the stability of the evaluated
methods, the images were corrupted by varying degrees of Gaussian blur, Gaussian noise,
and Poisson noise. One set of images exhibits thin ridges, which are commonly observed

1 CoShREM can also be downloaded from http://www.math.uni-bremen.de/cda/software.html.

http://www.math.uni-bremen.de/cda/software.html
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Table 4.9: Numerical comparison of the stability under additional Poisson noise. The table
shows PFOM values for all six considered edge detectors and a total of five differently distorted
versions of the mock image shown in Figure 4.20(a), where 1.0 would indicate a perfect
reproduction of the ground-truth. The test images were first perturbed with five different
levels of additive Gaussian noise. Then, each pixel was resampled from a Poisson distribution
with an expectancy of one tenth of the original pixel value. Finally, the values of the thereby
obtained grayscale image were rescaled by a factor of 10. To test the stability with respect to
this kind of shot noise, the same parameters as in Table 4.8 were used for all algorithms.

𝜎noise = 0 20 50 80 100

CoShREM 0.95 0.94 0.91 0.89 0.83
Canny [28] 0.90 0.89 0.87 0.50 0.28
Sobel [153] 0.65 0.49 0.36 0.22 0.24
PhaseCong [99] 0.93 0.90 0.70 0.24 0.00
Shearlet [171] 0.89 0.88 0.86 0.78 0.65
Canny (std. param.) 0.18 0.11 0.11 0.11 0.12

when short-lived radicals such as CH and HCO are visualized using PLIF. The other data
set shows broader areas (edge detection), which are characteristic of LRS and PIV data, as
well as PLIF images of long-lived radicals like OH.

Figures 4.20 and 4.21 visualize the results of the CoShREM edge, respectively ridge,
detector in the case of two synthetic images corrupted by Gaussian noise and Gaussian
blur. In particular, Figures 4.20(d) and 4.21(d) depict estimated curvatures, which were
obtained for each pixel lying on a detected edge by computing the central difference with
respect to the tangent direction estimates shown in Figures 4.20(c) and 4.21(c).

We further compare the CoShREM implementation of the newly proposed measures to
a number of established approaches, such as the Canny edge detector [28], the Sobel edge
detector [153], and the phase congruency measure [99, 100], as well as the shearlet-based
edge detector developed by Yi et al. in 2009 [171]. In the case of the Canny and the Sobel
edge detectors, the implementations provided by the Matlab Image Processing Toolbox
(version 9.2) were applied. The software used to compute the phase congruency measure
can be downloaded from Peter Kovesi’s homepage [101], while an implementation of the
other shearlet-based edge detector was kindly provided by the authors of [171]. For the
latter, pre-processing with a Gaussian smoothing filter was added such that the algorithm
could also handle more severe levels of noise.

The comparison is carried out visually but also numerically by computing Pratt’s figure
of merit (PFOM) (cf. Equation 4.119) on the obtained results1. The images analyzed in

1 While the corresponding ground-truth is often created applying one of the edge detectors on the noiseless
image, in this case, it was handmade by the authors to prevent favoring a particular method.



4.6 Applications 139

Table 4.10: Numerical comparison of CoShREM and the phase congruency-based ridge
detector. The table shows again PFOM values, where 1.0 would indicate a perfect reproduction
of the ground-truth. Both methods were applied to a total of 20 differently distorted versions
of the mock image shown in Figure 4.21. For both algorithms, parameters remained fixed for
all test images but were carefully optimized such that the maximal error was minimized across
all levels of noise. The binary ground-truth was drawn from hand and consisted of minimally
connected lines (i.e. with the exception of intersections, each pixel with value 1 has at most
two neighbors with value 1). To ensure a fair comparison, a thinning operation was applied to
the binary outcome of each method. For a visual comparison for three differently distorted
images, see Figure E.3.

𝜎blur = 0.0 𝜎blur = 0.5
𝜎noise = 0 20 50 80 100 𝜎noise = 0 20 50 80 100

CoShREM 0.94 0.95 0.95 0.93 0.93 0.93 0.93 0.92 0.89 0.89
PhaseCong [99] 0.90 0.94 0.94 0.93 0.93 0.88 0.92 0.93 0.92 0.88

𝜎blur = 1.0 𝜎blur = 1.5
𝜎noise = 0 20 50 80 100 𝜎noise = 0 20 50 80 100

CoShREM 0.94 0.92 0.92 0.90 0.86 0.93 0.92 0.91 0.88 0.88
PhaseCong [99] 0.88 0.92 0.92 0.88 0.81 0.88 0.91 0.89 0.74 0.37

Figures 4.20 and 4.21 were perturbed by four levels of Gaussian blur (i.e. convolution with
a Gaussian filter kernel) and five levels of additive Gaussian white noise, yielding a total
of 20 different levels of corruption, before applying CoShREM and other edge detection
algorithms. To put an emphasis on testing the stability of the respective methods, the
parameters configuring the various algorithms remained fixed throughout the evaluation.
For each method, the associated set of parameters was chosen such that both visually and
with respect to the PFOM metric, the maximal error was minimized across all levels of
noise. To highlight the importance of carefully choosing fitting parameters for each edge
detector, the Canny edge detector applied with its default parameters in MATLAB was also
included in the comparison. The numerical results of this comparison are summarized in
Table 4.8 in the case of edge detection, and in Table 4.10 for the considered ridge detectors.

Visual comparisons of the results yielded by the respective edge and ridge detection
methods can be found in Figures E.1 and E.3 in Appendix E. Furthermore, a visual
comparison of tangent direction and curvature estimates obtained from different algorithms
can be found in Figures E.2 and E.4. Note that the computation of the local tangent
orientations differs from method to method, however, all curvature estimates were obtained
by computing the central difference with respect to the local tangent orientations yielded
by the respective algorithm.

While there are a number of different sources of noise in combustion diagnostics [89, 91,
92, 137], the assumption of an overall Gaussian noise distribution is reasonable. However,
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Figure 4.22: Detection and analysis of flame fronts with the edge measure E(𝑓,𝑦) and the
ridge measure R(𝑓,𝑦), as implemented in CoShREM.
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for completeness, we have also conducted a comparison of the edge detection algorithms in
a setting where the input image was corrupted by five different levels of additive Gaussian
noise and additional Poisson/shot noise. The respective results are compiled in Table 4.9.

4.6.3.2 Edge and Ridge Detection on PLIF Images

We conclude Section 4.6.3 by applying CoShREM to CH and OH PLIF images of a
turbulent jet flame to demonstrate its performance in the analysis of experimental data.
For this purpose, we reuse images recorded in simultaneous single-shot CH/OH PLIF
experiments of a turbulent jet flame. A description of the experimental conditions as well
as an analysis of the images can be found in a previous article [87], where the burner and
the diagnostic setup as well as the two images are discussed from a combustion point of
view in detail. In Figures 4.22(a) to 4.22(d), detected flame front locations, local tangent
orientations, and local curvature in a PLIF recording of long-lived OH radicals are shown.
Figures 4.22(e) to 4.22(h) depict detected flame front locations, local tangent orientations,
and local curvature in a PLIF recording of short-lived CH radicals. It can be seen that the
flame front is picked up reliably in both cases.

4.7 Discussion of Numerical Results

The results of the numerical evaluation on synthetic images summarized in Ta-
bles 4.2, 4.3, and 4.4 indicate that the detection accuracy of the proposed measures
E(𝑓,𝑦), R(𝑓,𝑦), and B(𝑓,𝑦) at least matches the performance of some of the most popular
state of the art algorithms for edge, ridge, and blob detection. In particular, all three
measures show a high robustness in the presence of noise. Maybe the most significant
instance of this can be found in the case of blob detection, where the circular Hough
transform clearly fails to reliably detect filled circles in severely distorted images, while
SymFD still yields a perfect detection result in the case of synthetic image 5 and correctly
identifies three quarters of the blobs in synthetic image 6 (see Table 4.4 and Figure 4.14).
However, the experiments also show that regarding the mere detection of features, SymFD
does not provide a significant advantage over some of the already established methods
for the considered test inputs. In the case of edge detection, the well-known Canny edge
detector [28] matches or even slightly outperforms the detection rate of SymFD for all of
the six test images (see Table 4.2) while the same is true in the case of ridge detection for
the Steger algorithm [156] (see Table 4.3).

One of the most significant benefits of the proposed framework is that it not only
allows for the detection of different types of features but also yields a comprehensive
characterization of their geometry in terms of local tangent directions and diameters. The
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respective mean absolute errors reported in Tables 4.2 and 4.3 indicate a comparatively
high accuracy of the tangent orientation measures OE(𝑓,𝑦) and OR(𝑓,𝑦), and the width
measure WR(𝑓,𝑦). However, the experiments also show that for all considered test images,
the width and orientation measures are sensitive to noise, where the most significant
decrease in accuracy can be found in the case of OE(𝑓,𝑦) and synthetic image 2 (see
Table 4.2). The visualization of the local error of the tangent direction estimates shown in
Figure 4.9(d) furthermore reveals that the accuracy of the measure OE(𝑓,𝑦) deteriorates
in the proximity of points on which the edge curve is not smooth (e.g. corner points).
In the case of blob detection, the errors of the width measure WB(𝑓,𝑦) summarized in
Table 4.4 and visualized in Figure 4.13(d) are relatively large, even in comparison with
the results yielded by the circular Hough transform. This can in part be explained by the
fact that the two-dimensional generators from the set ̃︁𝛹 e

2 are based on tensor products
of one-dimensional even-symmetric wavelets and thus designed to detect square-shaped
rather than circular blobs, which is also reflected in the definition of the function ̃︀𝐾 ̃︀𝑔e(𝑟) in
Section 4.3.4 (see (4.104)). We suspect that the accuracy of the measure WB(𝑓,𝑦) with
respect to filled circles would significantly be improved by using circular two-dimensional
generators and adjusting the definition of ̃︀𝐾 ̃︀𝑔e(𝑟) accordingly. A first choice for such a
generator could be the two-dimensional Mexican hat wavelet. We furthermore suspect that
using a generator that actually matches the symmetry properties and shape of the objects
that are to be detected would also have a positive effect on the overall accuracy of the
measure B(𝑓,𝑦).

The numerical experiments conducted in Section 4.6.1 show that the measures R(𝑓,𝑦),
OR(𝑓,𝑦), and WR(𝑓,𝑦) can be used to reliably describe the geometry of blood vessels in
different types of retinal images. In particular, the tangent direction estimates yielded by
OR(𝑓,𝑦) are highly accurate in the sense that their mean deviation from the ground truth
is only slightly above the variation within the group of human experts (see Table 4.5).
While the width measure WR(𝑓,𝑦) yields more accurate estimates of local vessel diameters
than many of the classical approaches it is also clearly outperformed by some of the more
recent algorithms that were specifically developed for processing retinal images, such as
ARIA [8] and ETOS [10] (see Table 4.6).

The applicability of the blob measure B(𝑓,𝑦) for automatically counting the number
of cell colonies on an agar plate was investigated in Section 4.6.2. It has been suggested
that in practice, an average relative deviation of less than 20 % will often be negligible
in comparison to noise introduced by other experimental factors [65]. When using an
additional foreground mask, SymFD achieves a median relative deviation from the ground
truth of about 2 % on a set of 19 high-definition images but also on a set of 19 low-quality
webcam images (cf. Table 4.7). This accuracy is comparable to the accuracy of the widely
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used OpenCFU software package [65] and suggests a high reliability of the results obtained
by SymFD when applied for cell colony detection. The values reported in Table 4.7
also show only a slight decrease in accuracy for SymFD when omitting the foreground
mask, which indicates that the measure B(𝑓,𝑦) is not sensitive to structures in the image
background or at the border of a Petri dish. Similar to other methods, SymFD tends to
slightly overestimate the number of cell colonies on sparse plates while underestimating
the cell colony count for high-density plates (cf. Figure 4.19). This is mostly due to the
high significance of false positives when only a few colonies are present and the difficulty
of correctly identifying single colonies in dense clusters which often occur on high-density
plates.

Section 4.6.3 demonstrates that the measures E(𝑓,𝑦), R(𝑓,𝑦), OE(𝑓,𝑦), and OR(𝑓,𝑦)
can be reliably applied over a wide range of noise levels to characterize the geometry
of flame fronts. When compared to other state of the art algorithms, the CoShREM
implementation of the newly proposed edge and ridge measures provides a consistently
high accuracy in a setting where the parameters of the considered methods remain fixed
across different types and levels of noise (cf. Tables 4.8, 4.9, and 4.10). At least visually,
these results can also be confirmed when considering experimentally obtained data of a
turbulent jet flame (cf. Figures 4.22). In particular, the results obtained in Section 4.6.3
suggest that considering finite differences computed one the post-processed results of the
tangent direction estimates OE(𝑓,𝑦), and OR(𝑓,𝑦) yields a simple but effective way of
obtaining curvature estimates.

The numerical experiments described in Sections 4.5 and 4.6 suggest that the proposed
measures indeed define a highly versatile and powerful framework that can be reliably
applied in a wide range of different feature detection and characterization tasks. There is,
however, a trade-off for this high degree of flexibility, namely the relatively large number
of parameters that are required to be selected when configuring SymFD for a specific task
(cf. Table 4.1). Furthermore, evaluating the proposed edge, ridge, and blob measures
on a digital image often requires the computation of more than 100 convolutions with
digital symmetric molecule filters. While an average execution time of slightly less than 20
seconds (cf. Table 4.1) is still acceptable in most tasks, SymFD is currently far from being
applicable in real-time applications.

4.8 Conclusion

In the present work, we propose a novel framework for the detection and characterization
of features such as edges, ridges, and blobs in two-dimensional images. Drawing inspiration
from investigations of the phase congruency property [99, 129, 130], the developed measures
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exploit the special symmetry properties of directionally sensitive analyzing functions that
are based on tensor products of 𝐿1-normalized derivatives of the one-dimensional Gaussian
and their Hilbert transforms. Differently scaled and oriented two-dimensional analyzing
functions are then constructed within the recently introduced 𝛼-molecule framework [71],
which provides a maximum degree of flexibility. Combining both old and new ideas
from applied harmonic analysis and computational vision, the developed measures are
by construction contrast invariant and furthermore capable of fully characterizing the
geometry of features in terms of local tangent directions and local widths.

We have demonstrated that the proposed measures can yield state of the art detection
performances when considering sets of both clean and distorted artificial images that are
associated with reliable ground truths. Furthermore, we have given examples of how the
developed feature detectors can be applied in tasks like the detection of flame fronts,
the characterization and detection of blood vessels in retinal images, or the automated
counting of cell colonies in a Petri dish. The obtained experimental results are promising
and suggest a high applicability of the proposed measures in a wide range of diverse
applications. However, they also reveal a number of open issues that leave ample room for
future improvements.

It was already discussed in Section 4.7 that the width measure WB(𝑓,𝑦) seems to be
inherently biased when used for the characterization of blobs with a circular shape, because
the considered tensor product constructions implicitly define two-dimensional generators
that are associated with square shapes. A possible solution to this problem would be to
further generalize the proposed framework to non-separable two-dimensional generators
that are not based on tensor products such as the two-dimensional Mexican hat wavelet.
It could furthermore be interesting to investigate which types of generators are ideal when
using the blob measure B(𝑓,𝑦) to detect other regular polygons or ellipsoids and whether
an orientation measure similar to OE(𝑓,𝑦) and OR(𝑓,𝑦) would be successful at recovering
the exact rotation of such objects.

The tangent direction and width measures OE(𝑓,𝑦), OR(𝑓,𝑦), WR(𝑓,𝑦), and WB(𝑓,𝑦)
utilize a refinement procedure in which a parabola is fit through a finite number of points
in order to locally approximate the behavior of even- and odd-symmetric coefficients when
considered as functions of the scaling parameter 𝑎𝑗 or the rotation parameter 𝜃. A parabola
fit requires only three discrete sample points and yields a uniquely defined argument
of the maximum that can be computed by a simple closed formula. These properties
make the parabola a practical but maybe not ideal candidate to provide a model for
the considered functions. It is not entirely clear how well a parabola can approximate
the respective functions and how stable the obtained fits are in the presence of noise. A
further mathematical analysis of the expected behavior of the even- and odd-symmetric
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coefficients when considering specific two-dimensional generators could improve both our
understanding and the precision of the proposed width and orientation measures.

Derivatives of the Gaussian and their Hilbert transforms constitute a large classes of
even- and odd-symmetric generators with explicit formulations in the frequency domain.
A main advantage of using such functions in the proposed framework is that this allows us
to obtain arbitrarily scaled and rotated two-dimensional digital filters by directly sampling
the corresponding symmetric molecules in the frequency domain. While derivatives of
the Gaussian belong to the Schwartz space of rapidly decreasing functions and are thus
equipped with a desirable decay behavior in the time domain, none of the generators
considered in this work are actually compactly supported in the time domain. It would be
interesting to investigate how the proposed measures could be defined and implemented
using compactly supported generators such as, for example, splines. Considering that
features such as edges, ridges, or blobs are defined by structures that are highly localized
in the time domain, this could lead to significant improvements with respect to detection
rates and accuracy.

By considering pairs of analyzing functions that only differ with respect to 90 ∘ phase
shifts (i.e. define Hilbert transform pairs) on different scales and with respect to different
orientations, the measures E(𝑓,𝑦), R(𝑓,𝑦), and B(𝑓,𝑦) are strongly inspired by functional
properties that are known to be exhibited by neurons in the early human visual system.
Another property that has widely been observed in neural populations is that the response
of single neurons is often normalized in the sense that it is divided by a weighted sum
of the responses of neighboring neurons [15, 29, 79]. This principle is often termed
divisive normalization and closely related to the normalization procedure which ensures
contrast invariance in the proposed measures (cf. (4.66), (4.87), (4.102), and (4.110)). The
implementations of the developed edge, ridge, and blob measures for digital images could
furthermore also be modeled as artificial neural networks, where the applied even- and
odd-symmetric digital filters define a convolutional layer, the absolute value is used as a
non-linearity and max-pooling as well as divisive normalization are applied to obtain the
final normalized values. It would be interesting to see whether a neural network architecture
that is based on similar design principles would yield computations that are related to
the formulas proposed in this work when trained for the detection of edges, ridges, or
blobs. Such an approach might also lead to new ideas how the proposed measures could
be improved to better handle difficulties such as corner points, intersections of ridges, or
densely grouped blobs.

The present work only considers two-dimensional images. However, similar measures
and construction principles of even- and odd-symmetric generators could also be applied
in a three-dimensional setting to detect and characterize surfaces, planes, or filled three-
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dimensional objects. The definition as well as the mathematical and experimental analysis
of such measures could also be a fruitful topic of future research.
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A Pearson Correlations for Different Image Quality Assessment Metrics

Table A.1: Pearson correlations for IQA metrics on benchmark databases.

PSNR VIF SSIM MS-SSIM GSM MAD SRSIM FSIM VSI HaarPSI

LIVE 0.8585 0.9411 0.8290 0.7670 0.7799 0.9559 0.7758 0.8595 0.7647 0.9592
TID 2008 0.5190 0.7769 0.7401 0.7897 0.7779 0.8290 0.8242 0.8341 0.8107 0.9032
TID 2013 0.4785 0.7335 0.7596 0.7773 0.7966 0.8074 0.7984 0.8322 0.8373 0.8904
CSIQ 0.7512 0.9219 0.7916 0.7720 0.7471 0.9500 0.7520 0.8208 0.8392 0.9463

Lower and higher correlations than HaarPSI (statistically significant with 𝑝 < 0.05).
The highest correlation in each row is written in boldface.
All correlations obtained without nonlinear regression.
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Table A.2: Distortion-specific Pearson correlations for different IQA metrics.

PSNR VIF SSIM MS-SSIM GSM MAD SR-SIM FSIM VSI HaarPSI

LIVE
jpg2k 0.8747 0.9476 0.8925 0.8697 0.8564 0.9725 0.8800 0.9036 0.8662 0.9673
jpg 0.8650 0.9600 0.9279 0.9184 0.9131 0.9742 0.9028 0.9117 0.9037 0.9779
gwn 0.9792 0.9632 0.9583 0.9181 0.8904 0.9764 0.8684 0.9263 0.9171 0.9791
gblur 0.7744 0.9575 0.8881 0.8450 0.8565 0.9486 0.8411 0.9086 0.8544 0.9576
ff 0.8753 0.9560 0.8619 0.8113 0.7925 0.9461 0.7837 0.8515 0.8151 0.9444
TID 2008
gwn 0.9336 0.8657 0.7494 0.7433 0.8078 0.8165 0.8284 0.8076 0.8719 0.9029
gwnc 0.9208 0.8928 0.7758 0.7772 0.7833 0.8267 0.8625 0.8671 0.9045 0.9131
scn 0.9526 0.8578 0.7678 0.7583 0.8422 0.8598 0.8492 0.8217 0.8862 0.9283
mn 0.8627 0.8900 0.7496 0.7849 0.5512 0.7566 0.7345 0.8106 0.6114 0.7480
hfn 0.9680 0.9441 0.8228 0.8176 0.8452 0.8931 0.8657 0.8597 0.8934 0.9393
in 0.8566 0.8146 0.6202 0.6220 0.6218 0.0417 0.6912 0.7044 0.7651 0.8077
qn 0.8729 0.7442 0.7239 0.7602 0.8090 0.7981 0.7586 0.7986 0.8077 0.8602
gblr 0.8439 0.9388 0.8936 0.8745 0.8761 0.9227 0.9078 0.9078 0.8731 0.8934
den 0.9428 0.8968 0.9208 0.9156 0.9052 0.9612 0.9133 0.9344 0.9162 0.9739
jpg 0.8597 0.9327 0.9319 0.9279 0.9546 0.9487 0.9444 0.9299 0.9566 0.9647
jpg2k 0.8629 0.9169 0.9492 0.9365 0.9564 0.9733 0.8965 0.9566 0.9632 0.9856
jpgt 0.6258 0.8720 0.8375 0.8150 0.8441 0.8556 0.8573 0.8446 0.8705 0.8882
jpg2kt 0.8528 0.8307 0.8252 0.7970 0.7958 0.8295 0.7932 0.7883 0.8142 0.8688
pn 0.5831 0.7366 0.6685 0.6637 0.7013 0.8242 0.7381 0.7297 0.7314 0.7936
bdist 0.6277 0.8340 0.8659 0.7861 0.8822 0.8007 0.7864 0.8410 0.6198 0.8069
ms 0.6845 0.5896 0.6834 0.6735 0.7431 0.5709 0.6098 0.6700 0.6420 0.5358
ctrst 0.5819 0.8816 0.5158 0.7686 0.7068 0.2573 0.6978 0.7275 0.6995 0.6446
TID 2013
gwn 0.9519 0.9010 0.7954 0.7891 0.8500 0.8732 0.8569 0.8435 0.8928 0.9248
gwnc 0.8948 0.8641 0.7615 0.7629 0.8216 0.8297 0.8603 0.8543 0.8975 0.8998
scn 0.9513 0.8783 0.7840 0.7681 0.8420 0.8804 0.8371 0.8240 0.8714 0.9261
mn 0.8447 0.8772 0.7569 0.7929 0.5934 0.7804 0.7615 0.8214 0.6585 0.7737
hfn 0.9607 0.9454 0.8342 0.8307 0.8575 0.9098 0.8702 0.8669 0.8939 0.9415
in 0.8856 0.8489 0.6625 0.6541 0.6602 0.2741 0.7183 0.7216 0.7776 0.8325
qn 0.8855 0.7805 0.7514 0.7752 0.8199 0.8365 0.7677 0.8096 0.8119 0.8643
gblr 0.8952 0.9530 0.8832 0.8616 0.8565 0.9336 0.8893 0.8922 0.8548 0.9030
den 0.9572 0.8914 0.9199 0.9110 0.9116 0.9602 0.9114 0.9304 0.9187 0.9690
jpg 0.8972 0.9332 0.9278 0.9207 0.9470 0.9510 0.9343 0.9242 0.9479 0.9750
jpg2k 0.9078 0.9184 0.9424 0.9183 0.9462 0.9663 0.8772 0.9360 0.9494 0.9787
jpgt 0.6410 0.9000 0.8721 0.8476 0.8697 0.8537 0.8772 0.8761 0.8972 0.9177
jpg2kt 0.8834 0.8692 0.8260 0.7929 0.7960 0.8648 0.7914 0.8010 0.8179 0.8913
pn 0.6702 0.7686 0.7481 0.7376 0.7718 0.8513 0.8034 0.7957 0.7971 0.8376
bdist 0.1448 0.5027 0.5589 0.4608 0.5939 0.3184 0.4436 0.5237 0.1356 0.4441
ms 0.7482 0.6829 0.7309 0.6823 0.8153 0.6654 0.6364 0.7103 0.7367 0.6365
ctrst 0.4812 0.8730 0.4941 0.7268 0.6701 0.2601 0.6520 0.6838 0.6595 0.5916
ccs 0.1378 0.3404 0.4349 0.4237 0.3739 0.0351 0.2491 0.6069 0.6852 0.6003
mgn 0.9187 0.8559 0.7358 0.7301 0.7903 0.8422 0.8049 0.8008 0.8505 0.8786
cn 0.8548 0.8992 0.8459 0.8105 0.9286 0.9280 0.9260 0.9214 0.9301 0.9571
lcni 0.9372 0.9034 0.9058 0.8917 0.9472 0.9520 0.9439 0.9364 0.9463 0.9686
icqd 0.9227 0.8582 0.8083 0.7767 0.8240 0.8626 0.7574 0.8053 0.8083 0.8826
cha 0.8569 0.9441 0.9519 0.9071 0.9563 0.9560 0.8819 0.9478 0.9498 0.9549
ssr 0.9167 0.9067 0.9528 0.9197 0.9601 0.9658 0.9135 0.9412 0.9449 0.9791
CSIQ
gwn 0.9437 0.9590 0.8043 0.8254 0.8517 0.9486 0.8669 0.7959 0.8875 0.9433
jpeg 0.7898 0.9590 0.9165 0.9064 0.8964 0.9696 0.8731 0.9077 0.8833 0.9780
jpg2k 0.9270 0.9360 0.8967 0.8843 0.8793 0.9808 0.8428 0.9106 0.9008 0.9853
gpn 0.9527 0.9552 0.7844 0.7790 0.8293 0.9548 0.7777 0.8160 0.8698 0.9470
gblr 0.9081 0.9627 0.8692 0.8670 0.8575 0.9713 0.8675 0.8843 0.8761 0.9623
ctrst 0.8888 0.9294 0.7666 0.9003 0.8656 0.9306 0.8878 0.8765 0.8686 0.9229

Lower and higher correlations than HaarPSI (statistically significant with 𝑝 < 0.05).
The highest correlation in each row is written in boldface.
All correlations obtained without nonlinear regression.
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(b) 𝑠w in the case of s-wavelet

Figure B.1: The feature vector 𝑠w was obtained by performing a discrete wavelet transform
at level 3. The upper left corner in Figure B.1(b) contains a coarse approximation of the
original image of size 32 × 32. The remaining pixels correspond to detail coefficients at the
second and third stage of decomposition. Note that the high-frequency detail coefficients from
the first stage of decomposition were omitted.
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Figure B.2: 𝑠sh in case of s-shearlet. Concatenating the six displayed coefficient matrices
yields the feature vector 𝑠sh. The matrices were obtained by performing a discrete subsampled
shearlet transform at level 4. Each upper left corner contains a coarse approximation of the
original image of size 16 × 16 along one of the six considered directions. The remaining pixels
in each matrix correspond to detail coefficients at the third and fourth stage of decomposition.
Note that the high-frequency detail coefficients from the first and second stage of decomposition
were omitted.
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Figure B.3: 𝑠w in case of ns-wavelet. Concatenating the four displayed coefficient matrices
yields the feature vector 𝑠w. The matrices were obtained by performing a non-subsampled
wavelet transform at level 4. The first coefficient matrix defines a coarse approximation of the
original image. The three remaining matrices show detail coefficients at the fourth level of
decomposition. Similar to the s-wavelet case, the high-frequency coefficients yielded by the
first, second and third stage of decomposition were omitted. Note that all matrices are of the
same size as the original image.
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Figure B.4: 𝑠sh in case of ns-shearlet. Concatenating the five displayed coefficient matrices
yields the feature vector 𝑠sh. The matrices were obtained by performing a non-subsampled
shearlet transform at level 4. The first coefficient matrix defines a coarse approximation of the
original image. Each of the other matrices was obtained by convolving the input image with a
discrete shearlet filter associated with a different orientation. Note that the high-frequency
shearlet coefficients from the first, second and third stage of decomposition were omitted and
that each matrix has the same size as the original image.



C Additional Visual Servoing Experiments
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(f) Positioning errors over time (s-shearlet)

Figure C.1: Wavelet- and shearlet-based visual servoing in nominal conditions with a planar
scene. The initial displacement was chosen according to experiment 2 (cf. Table 3.9(b)).
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with a partial
occlusion
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Figure C.2: Wavelet- and shearlet-based visual servoing with a planar scene that is partially
occluded by an object. The initial displacement was chosen according to experiment 2 (cf.
Table 3.9(b)).
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(a) Planar scene
with additional light
source

(b) Initial diffe-
rence image

(c) Final difference
(s-wavelet)

(d) Final difference
(s-shearlet)
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Figure C.3: Wavelet- and shearlet-based visual servoing with a planar scene and unstable
lighting conditions. The initial displacement was chosen according to experiment 2 (cf.
Table 3.9(b)).



D Synthetic Images Used for the Evaluation of SymFD

(a) Synthetic image 1 (b) Medium noise (c) Severe noise

(d) Synthetic image 2 (e) Medium noise (f) Severe noise
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(h) Groundtruth for synthetic image 2

Figure D.1: The synthetic images used for the evaluation of different edge detection methods.
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(a) Synthetic image 3 (b) Medium noise (c) Severe noise

(d) Synthetic image 4 (e) Medium noise (f) Severe noise
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(h) Groundtruth for synthetic image 4

Figure D.2: The synthetic images used for the evaluation of different ridge detection methods.
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(a) Synthetic image 5 (b) Medium noise (c) Severe noise

(d) Synthetic image 6 (e) Medium noise (f) Severe noise

(g) Groundtruth for synthetic image 5 (h) Groundtruth for synthetic image 6

Figure D.3: The synthetic images used for the evaluation of different blob detection methods.



E Visual Comparison of Feature Detectors on Synthetic Flame Data
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Figure E.1: Visual comparison of different edge detection algorithms. The processed image
was perturbed with Gaussian blur (𝜎blur = 1.5) and additive Gaussian white noise (𝜎noise = 100).
The PFOM values corresponding to the results shown here can be found Table 4.8.
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(a) CoShREM
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(b) Phase congruency measure [99]

-90°

0

90°

-90°

0

90°

Tangent directions

0°/px

2.5°/px

>5°/px

0°/px

2.5°/px

>5°/px

Curvature

(c) Shearlet-based edge detector [171]

Figure E.2: Visual comparison of tangent direction and curvature estimates obtained from
CoShREM, the phase congruency measure [99] and the shearlet-based edge detector [171]. The
processed image was perturbed with Gaussian blur (𝜎blur = 1.0) and additive Gaussian white
noise (𝜎noise = 50) (cf. Figure 4.20(a)). The PFOM values corresponding to the results shown
here can be found in Table 4.8.
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Figure E.3: Visual comparison of the robustness of CoShREM and the phase congruency-
based ridge detector with respect to Gaussian blur and Gaussian noise. The PFOM values
corresponding to the results shown here can be found in Table 4.10.
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Figure E.4: Visual comparison of tangent direction and curvature estimates obtained from
CoShREM and the phase congruency measure. The processed image is the same as in figure
Figure 4.21(a) (𝜎blur = 1.0, 𝜎noise = 50).
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Acronyms

Notation Description

1DG one-dimensional Gaussian model

2DG two-dimensional Gaussian model

ARIA automated retinal image analyzer

CH methylidyne radical

CLRIS central light reflex image set

CoShREM complex shearlet-based edge and ridge measure

CSIQ Laboratory of Computational and Subjective Image Quality image
quality database

DMOS difference mean opinion score

DOF degrees of freedom

ESP extraction of segment profiles

ETOS edge tracking based on orientation scores

FOM figure of merit

FP false positives

FR IQA full reference image quality assessment

FSIM feature similarity index

FSIMC color-sensitive feature similarity index

GSM gradient similarity measure

HaarPSI Haar wavelet-based perceptual similarity index

HaarPSIC color-sensitive Haar wavelet-based perceptual similarity index

HCO formyl radical
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Notation Description

HHFW half height full width

HRIS high resolution image set

HVS human visual system

IQA image quality assessment

KPIS kick point image set

LIVE Laboratory for Image & Video Engineering image quality asses-
sment database

LRS laser Rayleigh scattering

MAD most apparent distortion

MAE mean absolute error

MOS mean opinion score

MRA multiresolution analysis

MS-SSIM multi-scale structural similarity index

MSE mean squared error

NICE NIST’s integrated colony enumerator

NR IQA no reference image quality assessment

OH hydroxyl radical

ONB orthonormal basis

PFOM Pratt’s figure of merit

PIV particle imaging velocimetry

PLIF planar laser-induced fluorescence

PSNR peak signal-to-noise ratio
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Notation Description

RR IQA reduced reference image quality assessment

SD standard deviation

SR success rate

SR-SIM spectral residual-based similarity

SROCC Spearman’s rank-order correlation coefficient

SSIM structural similarity index

SymFD symmetric molecule-based feature detector

TID Tampere image database

TP true positives

TPR true positive rate

VDIS vascular disease image set

VIF visual information fidelity

ViSP visual Servoing Platform

VSI visual saliency-induced index
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