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Abstract

In this study we present improvements on an integrated retrieval method for atmospheric and
surface parameters in the Arctic. The instrument used is the Advanced Microwave Scanning Ra-
diometer - Earth Observing System (EOS]) (AMSR-E]) radiometer on board NASA’s Aqua satellite.
The core of the method is a forward model which can ingest bulk data for seven geophysical pa-
rameters to reproduce the brightness temperatures observed by a passive microwave radiometer.
The method inverts the forward model and produces ensembles of the seven parameters: wind
speed, integrated water vapor, liquid water path, sea and ice temperature, sea ice concentration
and multi-year ice fraction. The method is constrained using numerical weather prediction data
in order to retrieve a set of geophysical parameters that best fit the measurements. An iterative
method minimizes the cost function and finds the optimal ensemble of the seven parameters that
best match the observed brightness temperatures.

Benchmark comparison data sets are used for testing method sensitivities and improvements
as well as the consistency of the final retrieval set-up. It is found that the data source for the
background covariance matrix should be representative for the spatial and temporal domain of
the retrieval. The method is robust against the initialization conditions which can influence the
number of iterations but not the solution. The brightness temperature covariance matrix that
constrains the method to the observations has to include the measurement errors as well as the
modeling errors to avoid biasing the retrieved parameters.

A number of improvements have been developed which include a correction to the empirical
sea ice surface emissivities, a treatment of the sea ice surface temperature that takes into account
the channel specific penetration depth and the use of pixel wise collocated reanalysis data as back-
ground source instead of one static set of mean values. All of these have led to a better agreement
between the retrieval and atmospheric model data as well as validated sea ice concentrations. Over
open water, for all atmospheric parameters, the retrieval improves on the background knwoledge
and produces a better agreement with the different satellite retrievals used as benchmarks. The
correlations are increased for wind speed from 0.6 to 0.8, for water vapor from 0.8 to 0.9, for liquid
water path from 0.2 to 0.8 and for sea surface temperature from 0.6 to 0.8. Over sea ice, the
retrieved water vapor has a moderately high agreement of 0.7 with the benchmark. This is caused
in part by the temporal collocation between the retrieval and the benchmark and by the reduced
impact of the low water vapor values on the brightness temperatures measured over sea ice. The
sea ice concentration comparison results in a correlation of 0.99 with the benchmark. The retrieved
sea ice concentrations are free of weather effects as the atmospheric influences have been retrieved
as separate parameters.

An information content analysis of different combinations of the 12 radiometer channels shows
that discarding the 6.9 GHz channels in order to increase the spatial resolution of the output from
56 km to 38 km reduces the information content for surface parameters by 28% over open water and
by 16% over sea ice. By including the 89 GHz channels in the retrieval, the method benefits from
higher sensitivity to liquid water and water vapor especially over sea ice where the other AMSR-E
channels are dominated by the surface signal. This has resulted in an increase by 10% over open

water and by 25% over sea ice in the information content for the atmospheric parameters.
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1 Introduction

The Arctic sea ice and its seasonal variability heavily influence the heat balance between
the atmosphere and the ocean. The Arctic is affected more than any other region by global
warming and its evolution is a sensitive indicator for global climate change. Therefore a
detailed monitoring of the Arctic climate is urgently required.

Satellite monitoring efforts have shown that sea ice extent has been in decline through-
out all months of the year since 1979. This trend has been accelerating since the early
1990s. Sea ice thickness also shows a decline since 2001 that appears throughout the whole
Arctic |Serreze et al.l [2007].

The latest IPCC report concludes that under current predictions the Arctic will warm
at a faster pace than the global mean [Pachauri et al., 2014]. Current models however
have been shown to under predict the Arctic sea ice decline. In [Stroeve et al., 2007]
the 2007 historic ice extent minima is estimated to have appeared 30 years ahead of the
CMIP3 (World Climate Research Programme Coupled Model Intercomparison Project
Phase 3) ensemble mean model forecast. This sea ice decline underestimation is attributed
to an underestimation in the magnitude of anthropogenic forcing. In a following paper
[Stroeve et al., |[2012], the more advanced CMIP5 models are shown to better represent the
historical ice conditions. The authors conclude that improved parameterizations in the sea
ice components of the CMIP5 models have lead to the improvement. The model prediction
skill can be greatly improved by increasing the amount and quality of observations and
initial conditions |[Msadek et al., 2014]. This means that there is a need for more and
better observational data about the Arctic environment, describing the state of the ocean,
the sea ice and the atmosphere.

Because of the hostile conditions in the Arctic, field measurements of these parame-
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ters are scarce. Remote sensing satellites on polar orbits have very good coverage of the
Arctic. Especially suited to this monitoring task are passive microwave radiometers such
as [AMSR-E] Special Sensor Microwave Imager or Advanced Microwave Scanning
Radiometer 2 (AMSR2) which measure the microwave emissions of the surface and the
atmosphere. These instruments have a number of advantages over sensors that use differ-
ent techniques and different portions of the electromagnetic (EM]) spectrum. Microwave
radiation is affected little by non-precipitating clouds, allowing the sensor to “see” through
cloud cover. Because of the large footprint, these sensors offer daily coverage of the Arctic.
As opposed to visible spectrum sensors, passive microwave radiometers are not effected by
the polar night and offer year-round measurements.

A special characteristic of the Arctic sea ice covered regions at microwave imaging fre-
quencies is the high emissivity of sea ice and snow that contribute more to the microwave
signal than the often dry atmosphere [Selbach, 2003|. The satellite observed signal con-
tains contributions from both surface and atmosphere so that retrievals of atmospheric
parameters require some information about the surface emissivity. Over open ocean reli-
able models exist that can accurately represent the surface contribution to the microwave
signal [English and Hewison, (1998, [Wentz and Meissner, |2000|. Over sea ice, however,
there is no operational surface emissivity model, but there are empirical measurements
which provide an estimate for the sea ice contribution throughout the year and by ice type
[Mathews, |2007].

Single parameter retrieval methods based on passive microwave satellite measurements
have been developed for sea ice concentration retrieval e.g.,|Comiso et al. [1997], Svendsen
et al. |[1987], Spreen et al.| [2008|, Shokr et al. [2008|, Markus and Cavalieri [2000] as well
as integrated water vapor content |Melsheimer and Heygster, 2008, [Scarlat et al., 2018|.
In such algorithms the contribution of the retrieved parameter is the signal of interest
while the contributions from all the other geophysical parameters that also influence the
microwave emission are seen as noise that needs to be filtered out or compensated for by
using other channels of the radiometer or through a priori data.

The basic idea of integrated retrieval is to find a set of geophysical parameters which,
if applied to a forward model, simultaneously yield a best possible approximation of the
observed brightness temperatures for all radiometer channels. Over open ocean, such in-
tegrated retrieval exists and has been applied for more than a decade e.g. |Wentz and
Meissner| [2000]. However, over sea ice, an integrated retrieval is much more difficult.
The main challenge is the high and highly variable surface emissivity which dominates
the microwave signal. Although sea ice forward models exist [Wiesmann and Métzler,
1999|, their use in integrated retrieval has been limited because the number of required
geophysical parameters is high and their values are generally unknown, so that until now
only little effort has been undertaken for integrated retrieval of surface and atmospheric

parameters over sea ice [Pedersen, 1994, Kongoli et al., [2011] compared to the established




retrieval methods over open ocean. In order to take advantage of the multispectral capa-
bilities of imaging radiometers, in Melsheimer et al. [2008| an integrated retrieval method
is proposed that can retrieve the seven geophysical parameters: wind speed ((WSD)), total
water vapor (TWV]), liquid water path (CWPJ), sea surface temperature (SST), ice surface
temperature (IST)), sea ice concentration (SIC) and multi-year ice fraction (MYIEF). An
optimal estimation (OFE]) technique is used to invert the forward model and extract the
ensemble of seven parameters that optimally match the observed brightness temperatures.
A priori information from climatological and meteorological sources is used to constrain
the method to the natural variability of each parameter.

This study was started from the method prototype as described in [Melsheimer et al.

[2008] with three main aims for development:

(i) Explore the optimal estimation method’s (OEM) sensitivities to the a priori con-
straints. The OE theory and literature on implementation give guidelines and ex-
amples on how to choose the a priori data. Given the unique combination of sensor,
forward model and necessary simplifying assumptions for the OE integrated retrieval
over sea ice, concrete examples had to be tested in order to find the best set-up for

constraining the method.

(ii) Identifying and improving deficiencies in the OEM. Parameterizations and approx-
imations are required in any retrieval system. Their influence on the retrieval and
possible improvements need to be investigated. In order to avoid the discrepancies
that occur between the different channel footprints covering slightly different regions
of the Earth surface, we used the AMSR-E Level 2A product |Ashcroft and Wentz,
2000], where all channels have been interpolated to represent the same footprint on
the surface. Sea ice surface emissivities, surface temperature treatment, the back-
ground data source and input channel combinations have been tested and improved

from the prototype.

(iii) Test the method against benchmark data. Because validation data is scarce for some
of the parameters retrieved in the OEM, comparative tests against proven retrieval

products are needed in order to establish the reliability of the OEM output.

The final goal of developing the OEM is to obtain an operational retrieval method for
providing more and self-consistent data about the Arctic surface and atmospheric parame-
ters based on existing instrumental archives of passive microwave brightness temperatures.

For testing purposes it is important to isolate the contribution of the sea ice cover from
that of the other parameters. To this end the Round Robin Data Package (RRDP) has
been used extensively, a data set containing AMSR-E level 2A brightness temperatures as
well as collocated ERA-Interim data for the retrieval parameters of the OEM. It is split

into two subsets representing cases of 100% sea ice cover and open water |Pedersen and
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Saldo, 2012|. In addition, for each pixel in these datasets atmospheric parameter data from
the Arctic System Reanalysis (ASR]) model [Bromwich et al. [2001] have been collocated.

In order to observe the retrieval version behavior throughout the seasonal cycle of
freeze-up and melt, a separate, larger testing dataset was prepared including one full day
of data every ten days for the year 2006 for a total of 18 winter and 18 summer season day.
It covers the entire Arctic north of 60° N from January 11** 2006 to January 6" 2007.
[ASR] was used for evaluating the retrieved atmospheric parameters for both the RRDP
and the 2006 datasets. In order to evaluate the sea ice retrieval in the 2006 dataset we
used the ASI sea ice retrieval [Spreen et al., [2008]. We compared the OEM results with
those from Melsheimer and Heygster| [2008]| which is a microwave sounder based method
that is especially accurate for the low atmospheric water vapor values encountered in the
Arctic. A set of preliminary results for the OEM testing has been published in [Scarlat
et al. [2017].

The thesis is structured as follows:
Chapter [2] provides the theoretical basis for passive microwave retrieval as well as relevant
background information about the Arctic environment which this method aims to moni-
tor.
Chapter [3| describes the data sources used, starting from a description of the AMSR-E
instrument, the resampled brightness temperatures product, the comparison datasets cre-
ated for this study, atmospheric and surface parameter retrieval products used in evaluating
OEM output as well as the sources for the a priori data.
Chapter [4] presents the a posteriori OEM used to solve the inverse problem as well as
details about the forward model that needs to be inverted.
In Chapter [5] the tests for sensitivity to the a priori elements are shown and it concludes
with a recommended setup for the OEM which is used for subsequent comparative tests
with other retrieval products.
Chapter [0] details the results of comparing the improved OEM with different retrieval
products used as benchmarks. Because there is no one single product that covers all of the
retrieved parameters from the OEM, different benchmarks are used for different parame-
ters. The Remote Sensing Systems (RSS) Ocean product [Wentz et al., 2014]| was used for
evaluating the WSP, TWV, LWP and SST retrieval over open ocean scenes only. The ASI
algorithm is used for SIC output comparison, and the AMSU-B TWV |Melsheimer and
Heygster}, 2008| retrieval over sea ice.
Chapter [7] explores possibilities for using different AMSR-E channel combinations. De-
pending on possible applications for the OE retrieval, different input channel combinations
can improve the sensitivity to atmospheric parameters, surface parameters or increase the
retrieval resolution.
The conclusions are presented in Chapter [§] together with suggestions for the future devel-

opment of the method.




2 Physical background

This study is focused on satellite remote sensing in the Arctic region using passive mi-
crowave measurements. The regions of interest here are the sea ice covered Arctic Basin
and the adjacent open ocean regions. This chapter introduces the theory elements of mi-
crowave remote sensing which are relevant to this study. General principles of radiation
measurements and passive microwave applications are introduced in Section[2.1] The effect
of the atmosphere on satellite measurements are discussed in Section The distinct mi-
crowave signatures of open ocean and sea ice and the geophysical parameters that influence
them are covered in Section and Section respectively. The content in this chapter
closely follows [Ulaby et al. [2014] which offers a comprehensive overview of passive and

active microwave remote sensing theory.

2.1 Microwave remote sensing

2.1.1 Thermal radiation

The blackbody is the idealized model that helps in understanding how real world objects
emit thermal radiation. A blackbody is defined as a material that absorbs all incident ra-
diation. The conservation of energy states that in thermal equilibrium all absorbed energy
has to be emitted. The radiation emitted by a blackbody with an absolute temperature T

is given by the Planck radiation law

2h f3 1
I(f) = Cf <ehf/kT_1>, (2.1)

where f is the radiation frequency, h is Planck’s constant, c is the speed of light in vacuum
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and k is Boltzmann’s constant. The spectral brightness intensity represents by definition
the power (W) emitted by a blackbody surface of area equal to 1 m?, through a solid angle
of 1 sr and over a frequency bandwidth of 1 Hz.

Brightness intensity can be represented by a curve which increases with frequency up
to a maximum value after which it decreases. The maximum of the intensity curve and
the corresponding frequency increase with temperature T'. For frequencies well below the
maximum frequency (hf/kt << 1), the curve of Planck’s law can be approximated by a

linearized expression which is known as the Rayleigh-Jeans law:

_2f2%kT

c2

1(f)

In the microwave frequency domain (1 GHz - 300 GHz) and for temperatures suffi-

(2.2)

ciently higher than the cosmic background (2.73 K) the Rayleigh-Jeans approximation is
valid. The gray body brightness intensity will be equal to that of a blackbody of a lower

temperature. This blackbody equivalent temperature is called the brightness temperature:

_ I
2k f?

As a material characteristic of the gray body, emissivity is defined as the ratio between

Ty (2.3)

its brightness intensity to that of a blackbody of the same temperature:

e= IIbb = %, (2.4)
where Iy, is the equivalent blackbody brightness intensity. As I is smaller or equal to Iy,
the emissivity is always smaller or equal to 1, and the brightness temperature of a gray
body is at most equal to its physical temperature. By using the material characteristic
emissivity and its brightness temperature we can fully characterize the body’s thermal
emission.

Radiometry is concerned with the measurements of electromagnetic (EM) radiation.
When applied to Earth observation systems, radiometers will observe the sum of emission
contributions from all objects inside the antenna field of view. The simplest case for a
scene measured by a downward looking radiometer involves a contribution from the surface
emission, a contribution from the atmospheric upward emission and a reflected component
that was emitted by the atmosphere and scattered in the direction of the radiometer
antenna by the surface. Besides emission, there are also absorption and scattering terms
that are associated with the atmospheric composition. These terms play an important
role in relating the thermal measurements registered at the radiometer with the physical
and chemical properties of the observed surface and atmosphere. During a radiometric
measurement the antenna receives incoming thermal radiation which is described by two

quantities. A brightness temperature angular distribution 74 (6, ¢)d2 describes the energy
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incident upon the antenna, while the antenna temperature

_ S TB(0,9)F(0, ¢)d02
[[F6,¢)a2

represents the power that a perfect antenna delivers to the radiometer receiver. F(6,¢)

Ta (2.5)

represents the antenna radiation pattern and df? is the differential solid angle along direc-
tion (0, ¢). This perfect antenna is a simplification that assumes no absorption of energy
in the antenna body itself.

The antenna temperature for a lossless antenna will be equal to the integrated value of the
brightness temperature distribution weighted by the antenna radiation pattern.

Each antenna will have a particular radiation pattern. In an ideal case this pattern
can be represented by a narrow beam with no side lobes, such that the radiation received
by the antenna comes only from the target scene. In reality there will be contributions
from the antenna side lobes and back lobes which are added to the power received from

the antenna main beam. The difference between the main lobe solid angle

i = //mainlobe F(B, ¢)af, (26)

which represents the target area of the antenna and the pattern solid angle

o~ [[ Fo.0m. (27)

which represents all directions the antenna receives power from, including side and back
lobes, are represented by the domain of integration for the antenna pattern.

The ratio of the two solid angles gives the antenna beam efficiency

= %’” (2.8)
The ideal case where the antenna only receives power through its main lobe and does not
have any side lobe contributions will have a beam efficiency of 1.

Influences from outside the antenna main lobe are one source of noise for radiometer
measurements. Through the design of the antenna, engineers can maximize the antenna
beam efficiency. Another source of noise in the measurements comes from the power
absorption and emission that takes place in the antenna material itself. Thus the radiation
efficiency of a receiver antenna is given by the ratio of power delivered to the receiver to
the total power incident on the antenna. A radiometric measurement is represented by the
brightness temperature of the target scene observed inside the antenna main lobe and the

accuracy of this measurement is influenced by both the radiation efficiency, as a material

property and the beam efficiency as a design property of the antenna.
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2.1.2 Radiative Transfer Theory

Radiometric measurement accuracy is influenced by the technical characteristics of the
radiometer but also by the varying conditions inside the observation scene.

As it travels from its source of emission to the radiometer receiver, radiation can pass
through different materials. The nature of the materials will influence the radiation in
different ways. When radiation encounters an interface between two different materials, a
part of the radiation energy will be reflected back inside the initial medium and the rest
will be refracted and transmitted through. The material property that determines the
fraction of incident radiation that is reflected at the interface is reflectivity. For a plane
boundary between two materials, and an incidence angle 6; the reflectivity is the square

of the magnitude of the Fresnel reflection coefficient

rh(g,) = Veicosty — \/eacosts 2 (2.9)
V= Vercosty + \/ezcosls | '

v (0) = Vercostl — \/eacost 2 (2.10)
! Vercosty + \/ezcosy | '

€1 and ey represent the complex relative dielectric constants for materials 1 and 2, respec-
tively and - is the angle for the outgoing radiation represented as polarized EM waves.
The polarization state in vertical or horizontal plane will be discussed later in this section.
Here h and v denote the horizontal and respectively vertical polarization reflection coeffi-
cients. The relationship between the incidence angle #; and the outgoing angle 65 is given

by Snell’s law

Versinhy = /easinba. (2.11)

For a down-looking satellite radiometer, which is the case most relevant for this study,
the brightness temperature incident on the receiver antenna is composed of different contri-
butions from the surface and the atmosphere. The terrain will emit radiation in accordance
to its specific emissivity and will give a surface component Tsg of the total brightness tem-
perature signal. The atmosphere will also emit radiation in all directions in accordance
with its constituent gases and their emission spectra. The atmospheric emission component
that propagates towards the satellite radiometer is called the upward brightness tempera-
ture Typ. There is a downward component of the atmospheric emission that is scattered
by the surface and reflected in the direction of the radiometer noted by Tsg. As the surface
emitted and surface scattered components pass through the atmosphere, part of the energy
they carry is attenuated through scattering and absorption. The factor that describes the
amount of energy that is transmitted through the atmosphere is called the atmospheric
transmissivity Y,, so that the brightness temperature that reaches the radiometer antenna

is given as
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Tp=Tup+ Yo(Tsg + Tss). (2.12)

One other characteristic of EM waves is their polarization state. The wave polarization
refers to the alignment of the electric field vector of the EM wave. If the electric field
vector is varying randomly without any discernible alignment then it is called unpolarized.
If the vector oscillates in the EM wave incidence plane then the wave is called vertically
polarized, and if it is oscillating in the plane perpendicular to the incidence plane then the
wave is horizontally polarized. As a general rule a flat surface with respect to the radiation
wavelength will have a polarized or partially polarized emission, while surface or volume
scattering processes will lead to a depolarized EM wave. By measuring both polarization
components of an EM wave, more information can be gathered about the state of the
emitting surface as well as the medium that the wave traverses.

Equation [2.12] can be rewritten to represent the polarized components:

Th = Typ + Yo(Thy, + TL). (2.13)

Here the superscript p represents the polarization state (horizontal h or vertical v). In
order to retrieve information about the geophysical state of the surface the other three
components ( T§g, Typ and T,) have to be factored out of equation . This means
that some knowledge of the atmospheric state is required in order to gain knowledge about
the surface and vice versa.

Depending on the technical capabilities of the radiometer the vertical and horizontal

polarization components can be measured simultaneously.

2.2 The atmosphere

Atmospheric constituents can be found in gaseous, liquid or solid state and they can prove
to be completely opaque to microwave transmission, partially transparent or fully trans-
parent depending on the frequency range. This behaviour is based on the absorption and
emission spectra of each chemical component of the atmosphere, their abundance in the
atmospheric column and, in the case of liquid or solid particles, their size relative to the
radiation wavelength. Depending on the goal of the radiometric observations, different
frequency channels can be used. For measuring atmospheric constituents the observa-
tion channel frequencies have to be close to the frequency ranges where these constituents
exhibit strong interactions with the thermal radiation in the form of absorption and emis-
sion or scattering. The most important absorption ranges occur around 22.235 GHz and
183.31 GHz for water vapor and 50-70 GHz and 118.75 GHz for oxygen. If the purpose of
the measurements is to gain knowledge on the surface state, so called atmospheric window

frequency ranges have to be used where the lowest atmospheric attenuation is present.
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These windows occur between 1-15 GHz, around the 35 GHz value and between 85 and
90 GHz. The absorption behaviour over a wide microwave frequency range for the most

important atmospheric constituents is shown in Figure [2.1

100. T T T T T T T T T
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Figure 2.1: Atmospheric absorption in the microwave spectrum. Three water vapor
absorption lines are shown for different total water vapor values. The cloud liquid water
content of 0.2 mm represents a heavy non-precipitating cloud. From Wentz and Meissner
[2000].

2.2.1 Interaction with gases

Oxygen represents 21% of air volume. Of interest in the microwave domain is that oxygen
has the most significant absorption frequency range centred around 50 to 70 GHz. 37
absorption lines are spread here which blend together because of pressure broadening,
forming one continuous absorption band at the air pressures typical for the lower part of the
atmosphere. An additional absorption line is present at 118.75 GHz. An important feature
of oxygen is that it has a homogeneous horizontal distribution in the atmosphere and it
is stable in its concentration so that the absorption spectrum can be considered constant
for any given downward looking microwave radiometer observation while mantaining a
dependence on temperature however.

The other significant atmospheric absorber in the microwave range is water vapor. It
has two rotational absorption lines at 22.235 GHz and 183.31 GHz. Water vapor has,

10
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unlike oxygen, a heterogeneous horizontal and vertical distribution, is highly variable in
time and important for the global weather and climate. In order to quantify the total mass
of atmospheric water vapor in the atmosphere, the total integrated precipitable water vapor
quantity is defined. This represents the water vapor mass contained in a vertical column

with a base area of 1 cm? and is given by

My = /0 ()i, gem 2] (2.14)

with p,(z) representing the water vapor density at altitude z. If this mass of water vapor
would be condensed to liquid inside the vertical column then the height of the liquid would
be equal to
hy = @, [cm] (2.15)
PL
where py, is the liquid water density.
In the case of cloud liquid water we have a similar quantity defined as the liquid water
path. For a cloud vertical thickness H (km) and assuming uniform water content my

(g/m?) within the cloud volume the liquid water path is given by

hr ="V lem]  (2.16)
PL

Oxygen, water vapor and cloud liquid water represent the biggest contributors to the
atmospheric attenuation. Together these three atmospheric constituents define the total
atmospheric opacity 7 which quantifies the fraction of the microwave radiation that is

absorbed or scattered as it passes through the atmosphere.

T:TOQ—Fkvhv—l—/{LhL, (2.17)

where 7o, is the zenith opacity attributed to absorption by oxygen, ky and ki are the
temperature dependent coefficients for water vapor and liquid water respectively which
quantify the total absorption and scattering by water molecules and particles in the atmo-
sphere.

Besides oxygen and water vapor there are other atmospheric constituents that can
contribute to atmospheric attenuation. These include ozone Oz, SO, NOy and NoO as
the most significant. However for the purpose of nadir measurements these gases are found
in concentrations so low that their contribution to atmospheric absorption is negligible.
For applications of atmospheric limb sounding they are more important, but these are not

considered here.

11
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2.2.2 Interaction with hydrometeors

Besides absorption by atmospheric gases, upwelling thermal radiation can be attenuated
also through interaction with hydrometeors. These particles both absorb and, depending
on their dimensions, can scatter microwave radiation.

The relationship between the power incident on a particle and the fraction that is

absorbed by the particle the absorption cross section is defined as

Qo =g m", (2.18)

with P, representing the absorbed power and S; the incident power density. The absorption
cross section relates to the physical cross section of the particle through the absorption

efficiency factor

§a = (2.19)

=l
where r is the particle radius.
The corresponding parameters that characterize the amount of radiation scattered by

the particle are the scattering cross section

P,
Qs = §m2 (2.20)
7
and the scattering efficiency factor
Q
£ = 777“82' (2.21)

Both absorption and scattering attenuate the upwelling microwave radiation. The
attenuation (or extinction) cross section and the respective efficiency represent the sums

of the individual absorption and scattering parameters:

Qe = Qa + Qs, (2.22)

§e = Tlg + Tis. (2.23)

The Mie theory provides the general solution for scattering and absorption of EM waves

by a dielectric sphere with radius r if the size parameter

2mr
= —. 2.24
X = (2.24)
is in the order of 1. The solution is given in terms of a normalized particle circumference
x that varies with wavelength and the relative index of refraction n which is a material

constant.
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These solutions are in terms of infinite series and include calculation of extinction, scat-
tering, and absorption efficiencies. In more general terms, the Mie solution for absorption
and scattering by spherical particles is used for conditions when the particle size is almost
equal to the wavelength of the incident radiation.

In cases where the radiation wavelength is a lot larger than the diameter of the parti-
cles, an approximation of the Mie solution can be used, the Rayleigh approximation. For
most computational purposes, the Rayleigh approximation achieves reasonable accuracies
if [nx < 0.5].

Besides the radiation wavelength and the size of the particle one more parameter influ-
ences the scattering and absorption characteristics of non gaseous atmospheric constituents.
The particle’s complex dielectric constant (or complex refraction index) determines how
much of the incident energy is attenuated as the EM wave interacts with the particle.

For droplets of pure water in the atmosphere the complex dielectric constant depends
on the radiation frequency and on the water temperature. A pure water droplet will exhibit
large absorption and scattering effects in the frequency range 1-50 GHz, with a peak of
the complex dielectric components depending on temperature.

Ice particles behave differently from water. The real part of the complex dielectric
constant in the microwave frequency domain is smaller. It is also independent on fre-
quency between 10 GHz and 300 GHz and weakly dependent on the particle temperature.
The imaginary part of the dielectric constant (the dielectric loss factor) depends on both
frequency and temperature but its magnitude is so small that ice is shown to be a weak
absorber at microwave frequencies when compared to water. Another unique atmospheric
constituent especially relevant to the polar regions is snow. Snowflakes can have complex
shapes that differ from the simple spherical model. The shape has only a weak influence on
the scattering and absorption efficiency |Atlas| [1964] so that snowflakes can be treated as
spherical particles of an equivalent mass using the Rayleigh approximation, as long as the
Rayleigh criterion is met. For evaluating the complex dielectric constant of a snowflake, it

can be treated as a mixture of air and ice with a highly variable density.

2.3 Open ocean

The microwave emission of the ocean surface depends on the dielectric constant of sea
water and on the surface roughness. The dielectric constant in turn depends on salinity,
temperature and frequency.

At the window frequencies, the surface emission is the main source for microwave
radiation that is received by a downward looking radiometer. If the ocean surface is calm
and flat, it can be associated with a specular surface emitting upwards. Below the surface,
the microwave emission of water is randomly polarized and the process of transmission

across the interface determines what fraction of the upwelling power is transmitted for
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each polarization. For this scenario with a calm ocean surface the brightness temperature

seen by a downward looking radiometer will be

Tp(61) = [L = T5(00)]T, (2.25)

where 67 is the angle of the outgoing radiation, I', is the Fresnel reflectivity for incidence
in air, T' is the physical temperature of the emitting layer and p represents the polarization
state, vertical or horizontal.

The corresponding specular emissivity of the flat ocean surface is then

T5(61)
-

In the absence of wind the temperature of the uppermost layer of the ocean and the

eP(01) =

(2.26)

ocean salinity, determine the upwelling surface brightness temperature. The salinity sen-

sitivity Qg for an observed p-polarized brightness temperature Tg will be

oT?
or =B
ST 0987

for S being the sea surface salinity. The brightness temperature T has a non-linear

(2.27)

dependence on salinity and the salinity sensitivity Qg strongly depends on the sea surface
temperature and the frequency. For microwave frequencies above 2 GHz the influence
of salinity on the brightness temperature decreases rapidly to the point where it can be
neglected.

The surface roughness becomes important when the wind disturbs the calm ocean so
that the surface can no longer be considered specular. If the irregularities that appear on
the surface reach the size of the wavelength of the emitted radiation, then the power inci-
dent on the surface from below will be transmitted into different directions. Observed from
above, the emerging microwave emission is composed of contributions that have crossed
the ocean-atmosphere interface under various angles. The ocean waves will also have a pre-
vailing direction of propagation on the sea surface which is triggered by the wind direction,
and the brightness temperature of the surface will depend on the prevailing wind direction
relative to the antenna beam direction. Another important impact of wind action on the
ocean surface appears at the higher wind speeds when foam is formed. The presence of
foam patches presents a further alteration of the ocean surface emissivity in the microwave

range. The emissivity of the wind roughened, partially foam-covered ocean surface is

e’ (0,u,Cy) = (1 — Cp)el,(0,u) + Cres(6), (2.28)

where p is the polarization state, 6 is the antenna azimuth angle relative to the wind
direction, u is the wind speed, Cy represents the fraction of ocean surface covered by foam,

ery is the emissivity for the wind roughened sea surface and ey is the emissivity of the
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foam covered surface.

2.4 Sea ice

Sea ice is formed from freezing ocean water. In a first stage small ice crystals are nucleated
in the seawater and grow to form randomly oriented needle like structures called frazil ice.
The ice crystals then grow laterally forming a more consistent layer of flat patches on the
sea surface called grease ice as it resembles an oil slick on the ocean surface. The last stage
of ice growth entails vertical growth in which the ice layer thickens and is consolidated.
Throughout the freezing process salt dissolved in the seawater is rejected from the emerging
ice structure. This process mainly takes place at the ice-water interface with the resulting
brine being drained in the water. As the geometry of the ice structure becomes more
complex, some of the brine is trapped in the gaps between the ice discs and becomes fully
enclosed as the ice layer thickens. These are called brine pockets which can remain isolated
or form channels that drain into the seawater below or even up to the ice surface based on
the internal pressure. This desalination process is driven by temperature variations and
continues throughout the life cycle of the ice layer. The process of ice thickness growth
occurs mostly thermodynamically in winter as the air temperature is colder than that of
seawater but it can also occur mechanically as a result of ice floes colliding as they float on
the ocean. Turbulent atmospheric and ocean conditions will favour the latter, as broken
ice debris piles up along the edges of larger ice floes, rafting and ridging will lead to regions
of thicker ice.

One factor that can work against the vertical ice growth is snow cover. As snow deposits
on the sea ice it acts as a thermal insulator between the cold atmosphere and the ice layer,
causing a reduction in the heat flux through the ice from the warmer water below. Solar
radiation is reflected more efficiently by the higher albedo of dry snow. While the wetness
of the snow will have an impact, in general the thermal conductivity of the snow layer is
one order of magnitude lower than that of sea ice. The age of the snow layer will also
influence its insulating effectiveness as older snow tends to be more compacted, with lower
air content and as such a poorer insulator than fresh fallen snow.

As the ice floes float on the ocean, wind and ocean currents are the primary forces
that drive their mobility. The ensuing interaction between floes leads to ice deformation.
Thin ice floes can slide one on top of the other, thicker ice floes can break apart or get
compacted as they collide, while broken debris can form ridges as it piles up along floe
edges.

Ice decay starts once surface ice melt begins. The main factors for the onset of ice
decay are increasing air temperatures, the incoming solar radiation and the melting of the
snow cover. Absorbed solar radiation together with conductive heat from the atmosphere

initiate the surface melt. Because of unequal absorption of solar radiation, darker areas on
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the ice are the first ones to exhibit melt. They can be the result of dust deposition or the
presence of algae in the ice which have a lower albedo than the surrounding areas. The
unequal snow layer distribution across the ice means that areas with thinner snow layer will
be the first to exhibit surface melting. As the melt process continues, the resulting liquid
water accumulates in depressions in the ice surface creating melt ponds. The presence of
the lower albedo water further accelerates absorption of incoming radiation and the pond
deepens and expands.

As the Arctic Ocean is semi-enclosed, floating ice does not leave the Arctic basin as
easily as sea ice formed around Antarctica for example. If sea ice survives one summer melt
season in the Arctic it becomes second year ice. If it survives multiple summer seasons
it will become multi-year ice. This gradual transformation from first year ice into multi-
year ice is accompanied by significant changes in the physical properties. Generally, the
older the sea ice is the more weathered the surface aspect will be with smooth ridges and
refrozen melt ponds. One consequence of surviving the melt season is that surface melt
water percolates through the ice layer. If the brine pockets are connected into an effective
drainage network with access to both the surface of the ice layer and to the bottom, melt
water will flush out the brine pockets as long as the melt conditions continue at the surface.
Once the melt seasons ends, the water in the drainage network will continue to drain aided
by gravity. But without new surface melt waters some of the channels will be empty. Once
freezing conditions are in place again the empty channels become air inclusions.

Another physical parameter that differentiates between first year and multi-year ice is
the thickness of the ice layer. As long as the ice survives, it continues to grow through
accretion at the interface with the water underneath. First year ice can reach a maximum
thickness of around 2.5 m before the first melt season, multi-year ice floes can reach 6-8 m
after several growth seasons [Shokr and Sinha, [2015]. Sea ice growth beyond 3 m thickness
is caused by deformations and not thermodynamic growth.

Microwave radiometric measurements cannot reveal all of the subtle changes in the
structure of the sea ice cover in the observation scene but enough information can be
gained for a number of practical applications. For models representing the heat transfer
between ocean and atmosphere the detection of sea ice cover presence is frequently con-
sidered sufficient. For navigation the thickness of sea ice is important and because of the
relationship between ice thickness and its age, distinguishing between first year and multi-
year sea ice from radiometric measurements is used to give an estimate of ice thickness.

The radiometric contrast between sea ice of all types and open water is very clear in
winter as the emissivity of the ice is much greater than that of the open ocean. During
the summer season however, because of the surface melt this contrast between the two
sea ice types is reduced which increases the difficulty of differentiating between the two
using radiometric measurements. In Figure 2.2 the different radiometric signatures of first

year, multi-year and open ocean surfaces are shown for the frequency range between 0 and
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100 GHz. The contrast between sea ice (A,B,C) and ocean surface (D) is larger at the
lower end of the frequency range, while the contrast between first year (B) and multi-year
ice (C) is more pronounced at the higher frequencies. The effect of melt conditions on the
sea ice emissivity is also shown as a late summer sea ice (mixed first-year and multi-year)

curve (A) with higher emissivity values across the whole frequency range.
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Figure 2.2: Vertical and horizontal emissivities of different surface sea ice types and open
ocean between 0-100 GHz. From [Spreen et al.[[2008].

While penetration depth is a term more suitable for active measurements, in the context
of passive microwave radiometric observations the penetration depths refers to the thickness
of the layer whose emission contributes to the total surface signal which is transmitted at
the ice-air interface. Because of the high variation in snow cover, salinity, shape, size
and orientation of the brine inclusions, density and temperature profile of the ice layer
the microwave penetration depth in this medium is also highly variable (Fig. . The
dielectric loss factor of sea ice decreases with the sea ice temperature and increases with
salinity. Because of this in general the penetration depth in first year ice which has higher
salinity and density is lower than in multi year ice which has lower salinity and is less dense
because of the air inclusions.

Surface scattering effects occur for all ice types due to irregular features on the sea ice,
such as ridges and edges. For the case of first year ice, due to the low penetration depth
scattering occurs mainly at the surface. The snow layer can contribute to the volume
scattering effects, but in winter the snow is dry and mostly transparent to microwave

radiation. For multi-year ice, once the wavelength of the radiation is close to the size
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Figure 2.3: Penetration depth for frequencies between 0-100 GHz in first year and multi-
year ice while assuming a snow layer of 20 cm. From Mathews [2007].

of the air bubbles trapped in the ice, coupled with the larger penetration depth typical
for this ice type, volume scattering becomes significant. Besides the lower intensity of
emerging radiation because of volume scattering, the multi-year ice radiometric signature
is also more polarized than for first year ice (Fig. . When the melt seasons starts and
the snow layer on top of ice becomes wet, the signal from the underlying sea ice can be

masked by the snow layer.
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3 Data

3.1 AMSR-E data

3.1.1 The instrument

The Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E)
is a passive microwave radiometer on board NASA (National Aeronautics and Space Ad-
ministration) spacecraft AQUA. It has a conical scan geometry with an incidence angle
of around 55°. The instrument measures microwave emissions from the Earth’s surface
and atmosphere in twelve channels at six different frequencies between 6.9 and 89 GHz in
vertical and horizontal polarizations [Imaoka et al., [2002].

The technical details of the instrument are shown in table 3.1} Because the footprint of
the 89 GHz channels is so small (3.5 x 5.9 km?), in order to properly sample the Earth’s
surface there are two scan lines for these channels, Scan A and Scan B, that are interweaved

to cover the gap between the scan lines.

3.1.2 Level-2A resampled brightness temperatures

In the initial integrated retrieval paper [Melsheimer et al., 2008] it was found that using the
first ten channels of AMSR-E in their native resolutions for the retrieval caused discrep-
ancies between the observed and the forward model simulated brightness temperatures.
These discrepancies appeared in regions with strong gradients such as at the sea ice edge
or in areas with high surface roughness and they are caused by mismatches between the
different channel footprints. Because each channel “sees” a slightly different scene on the

Earth’s surface, we need to compensate for this mismatch in order to use all the channels
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Table 3.1: Technical characteristics of the AMSR-E instrument, from [Imaoka et al.,
2002|.

Polarization Horizontal and vertical

Incidence angle 55°

Swath 1445 km

Dynamic Range (K) 2.7 to 340

Precision 1K (1o)

Center Frequency | 6.925 | 10.65 | 18.7 23.8 36.5 | 89.0

(GHz)

Bandwidth (MHz) 350 100 200 400 1000 | 3000

Sensitivity (K) 0.3 0.6 1.1

Mean Spatial Resolu- | 56 38 21 24 12 5.4

tion (km)

IFOV (km) 74 x5l x |27 x |31 x|1l4x|6x4
43 30 16 18 8

Sampling Interval | 10 x 10 5x5

(km)

Integration Time | 2.6 1.3

(msec)

Beamwidth (degrees) [22 [14 [08 |09 [04 |0.18

for retrieving the geophysical parameters. This issue is alleviated by using the Level 2A
resampled brightness temperature data product [Ashcroft and Wentz, 2000].

The AMSR-E Level 2A dataset contains several spatially consistent subsets of bright-
ness temperature observations resampled to the footprint sizes of the 6.9, 10.7, 18.7, 36.5,
and 89 GHz channels. This is achieved by bringing the Level 1A antenna temperatures
to the common spatial resolution using a set of weighted coefficients. Every Level 2A
observation in a scan line is calculated using the coefficients that correspond to the rel-
ative weights of all neighboring Level 1A observations. These coefficients are unique for
every position within one scan line but they do not vary between different scan lines. The
weighting coefficients for the Level 1A observations are produced using the Backus-Gilbert
method. The different subsets are produced by resampling the higher resolution channels
to match the larger footprint size of the lower resolution channels. The available subsets
are shown in table 3.2

There are two sources of error in the resembled brightness temperature datasets. The
first one represents the mismatch between the ideal antenna pattern and the constructed
brightness temperature. The second one is the random measurement error that carries
over into the resampled values. An important consequence of the spatial averaging of
multiple small gain patterns from the high resolution channels into one large gain pattern
corresponding to the low resolution channels is the reduction in the measurement noise

for one constructed (resampled) observation. This noise reduction is influenced by the
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Table 3.2: Spatial characteristics of AMSR-E Level 2A observations. Adapted from
[Marquis et al. 2003|

Res. Footprint Mean spatial | Channel frequencies [GHz]
size resolution
89.0 | 36.5 | 23.8 | 18.7 | 10.7 | 6.9
1 74 km x 43 | 56 km ° ° ° ° ° .
km
2 51 km x 30 | 38 km ° ° ° ° °
km
3 27 km x 16 | 21 km ° ° °
km
4 14 km x 8 km | 12 km ° °
5 6 kmx4km | 54km °

number of real observations that are included in the averaging. For our application we
want to use all AMSR~E channels resampled to one common resolution. This necessarily
means that the common resolution is that of the lowest frequency channels, the 6.9 GHz
channels. Because at this resolution the gain pattern can fit the maximum number of
observations for any higher frequency channel it follows that the noise reduction will also
be the highest for this resampled set of brightness temperatures. Another consequence of
the spatial averaging is that the errors of neighboring observations will have a degree of
correlation with each other within a given channel. It is important to note that individual

channel errors are not correlated.

3.2 ECMWEF data

The ECMWF model data was used in the OEM prototype as a source for the start guess
position needed to start the iterative process. Eventually, this data became the source for
constructing pixel wise background ensembles of WSP, liquid water path, water vapor and
surface temperatures.

The European Centre for Medium-Range Weather Forecasts (ECMWTE]) provides fore-
cast and reanalysis datasets that include temperature, pressure, WSP as well as cloud
cover, cloud liquid water content and humidity from model runs. The particular ECMWF
product we used for all the results included in this work is the ERA-Interim |Dee et al.|
2011], a global atmospheric reanalysis produced by ECMWEF. The majority of observa-
tion data assimilated in ERA-Interim originates from satellites which vary according to
the period of interest. This assimilated data includes clear-sky brightness temperatures
from orbiting and geostationary sounders and imagers, atmospheric motion vectors from

geostationary satellites, scatterometer wind data and ozone retrievals. Measurements of
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atmospheric refraction from GPS radio occultation are also included for the period rel-
evant to this study. Conventional observations from radiosondes, pilot balloons, aircraft
and wind profilers as well as ground measurements of surface pressure, temperature, rela-
tive humidity and surface winds are also assimilated. Direct satellite radiances over open
water from channels 5-10 of AMSR-E and channels 3-5 from the AMSU-B sounder are also
assimilated. Because of our local storage necessities the ERA-Interim data is gridded to
a 1.5%rid with four 6 h time steps per day. For each AMSR-E swath the corresponding
ERA-Interim grid points and closest time step data is extracted from the global grid and
profiles of cloud liquid water and atmospheric water vapor are integrated as needed to

provide columnar values which are required by the forward model.

3.3 NASA Team algorithm

The other component of the background and first guess data is represented by the surface
parameters of sea ice concentration and multi-year ice fraction. These values are generated
before the first iteration by a simplified implementation of the NASA Team algorithm
[Markus and Cavalieri, [2000]. It can provide total ice concentration as well as multi-year
ice concentration from which the multi-year ice fraction is calculated. The algorithm uses
for retrieval the 18.5 GHz channel in both polarizations and the 36.5 GHz channel in the
vertical polarization. The version implemented in the OEM does not use any weather
filters in order to attempt a retrieval on every pixel without discarding any due to weather

influences.

3.4 ASR data

In order to test the influence of different changes to the OEM on the retrieval, a consistent
comparison data set was needed. The most accessible source for these parameters are
ECMWFEF model data but since the ERA-Interim is integrated as the first guess point for
the OEM a distinct data set was required. The Arctic Systems Reanalysis was selected as
a benchmark against which to check how reasonable the OEM output is. This provides
a high resolution ensemble of atmospheric and surface temperature parameters. [ASR] is
produced from runs of the Polar Weather Forecast Model using the WRF-VAR and the
High Resolution Land Data Assimilation systems. The data assimilation systems have been
optimized for the Arctic region. The resolution of the product dataset is 30 km. Similar
to the ERA-Interim, the ASR product assimilates both satellite and ground measurements
from the Arctic and the authors of this data set claim that there is a high commonality
with the ERA-Interim for the assimilation sources [Bromwich et al., 2001]. The output
parameters from the two reanalysis products are also similar but with distinctly different

distributions. The distributions of all output parameters from the two sources have been
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compared using the Kolmogorov—Smirnov test and the two data sets have proven to be
statistically different, it was therefore felt that ASR is a safe benchmark for comparing

against.

3.5 Round Robin Data Set

In order to test the sea ice concentration retrieval of our method we used the Round Robin
Data Set |Pedersen and Saldol 2012|. This data product comprises two subsets which
contains cases of validated 100% (SIC1) sea ice concentration and the other contains cases
of open water near, but at a safe distance from the ice edge (SIC0). The dataset originates
from the sea ice project of the Climate Change Initiative and it provides a source for
validating sea ice concentration retrieval |Pedersen and Saldo, |2012, [Ivanova et al., 2015]
and for testing atmospheric parameter retrieval over pure surface types. The data package
includes collocated ERA-Interim values for WSP, integrated columnar water vapor, liquid
water path, sea surface temperature, ice skin temperature and scatterometer backscatter
data from ASCAT. The temporal coverage for the RRDP version used in this work spans
from 2007 to 2011. The RRDP is not recommended for use during the Arctic summer when
the 100% SIC data points in the SIC1 data-set cannot be validated and so the analysis
performed with this data package is limited to data points from January to April and

November to December of every year.

3.6 2006 Dataset

The Arctic environment goes through many changes throughout the year. Sea ice extent,
melting conditions and snow cover all influence the surface component of the microwave
emission. In order to capture this variability and to measure its impact on the retrieval we
created a large dataset ( 20 million data points) that spans the entire year 2006. In order to
reduce the demand on computational and storage resources we sampled every tenth day of
the year and included all AMSR-E swaths of that day into our dataset. The dataset starts
on January 11*" 2006 and ends on January 6" 2007. For this dataset we collocated both
[ASR] atmospheric data fields as well as Advanced Microwave Sounding Unit B (AMSU-B])

retrieved water vapor and ASI retrieved sea ice concentration data points.

3.7 ASI SIC data

The presence of sea ice has the largest influence on the AMSR-E measured brightness
temperatures. Even low concentrations of sea ice determine a strong response in the
measurements and as such correctly identifying the SIC is very important for separating

the surface and atmospheric contributions in the measured TB signal. An accurate SIC
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retrieval is therefore crucial for the goal of retrieving the ensemble of seven parameters and
in order to test this we used an operational SIC product for comparing with the optimal
estimation retrieval. This is the ARTIST Sea Ice product [Spreen et al.l 2008] which uses
the polarization difference between the 89 GHz V and H channels from the same AMSR-
E radiometer in order to retrieve SIC at a high resolution of 6.25 km. Because of the
important atmospheric influence on the TB signal at 89 GHz the presence of high water
vapor or cloud liquid water can lower the polarization difference over open water scenes
leading to retrieval of spurious SIC values. Weather filters are used in order to reduce the
atmospheric influence over open ocean. The influence of water vapor and clouds over high
sea ice areas is less pronounced than over open ocean but it cannot be filtered resulting in

low scale variability in the final ASI product for high SIC values.

3.8 AMSU-B TWYV data

As a validation tool for atmospheric water vapor retrieval we selected the [AMSU-B] total
water vapor product [Melsheimer and Heygster] 2008].

This method uses passive microwave sounding channels which have similar surface
emissivity but different atmospheric absorption characteristics. It uses three channels
around the water absorption line at 183 GHz to detect the low water vapour values typical
for the atmosphere over sea ice in the Central Arctic. A special characteristic of this
retrieval product is that uncertainty increases with increasing water vapour values from
about 1 mm for retrieval values below 2 mm to an uncertainty around 3 mm for retrieval
values around 14 mm. For scenes with atmospheric water vapor above 15 mm the method
does not retrieve anything as all channels around the 183 GHz frequency become saturated.
Very important to the comparison effort with OEM is that the AMSU-B TWYV retrieval
was specially designed to function over sea ice which makes it ideal for testing the reliability
of OEM atmospheric retrieval in the Arctic. For the comparison only those pixels were
selected where both the optimal estimation retrieval and the AMSU-B product have valid

values which means that only TWYV values between 0 and 15 mm were included.
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4 Method

4.1 Optimal estimation method (maximum a posteriori solu-

tion)

In this chapter the basic retrieval method is described starting from the theory of opti-
mal estimation and concluding with the adaptations necessary for the specific inversion
application that is the topic of this thesis. Testing and establishing a specific set-up of the
retrieval method will be addressed in more detail in Section [l

Following the basic radiative transfer theory described in Section [2] we can approximate
the brightness temperatures measured at the top of the atmosphere by a passive microwave

radiometer as a function of a number of geophysical parameters.

Ta=F(p) (4.1)

where p is the state vector containing both surface parameters such as SST and atmospheric
profiles of temperature, humidity and liquid water, surface sea ice cover and WSP vectors.
F is the forward operator (Section that maps the functional relationship between
the state vector parameters and the observed brightness temperatures. The measured
brightness temperature contains information about all of these parameters. Retrieving
relevant data about all of them is an under-constrained problem because several of the
state vector parameters are continuous, such as temperature or pressure profiles, while the
number of brightness temperature measurements is finite |[Pedersen 1994].

In order to derive the geophysical parameters from the measurements we need a forward
model that can describe the measurements in terms of the required geophysical parameters

and then invert it. The forward model might not be easily invertible or the errors in the
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measurements together with errors in the forward model simulation can make it impossible
to find a solution.

The inverse problem consists of inverting a known equation which relates thermal radia-
tion to the state of the atmosphere and surface in order to express atmospheric parameters
in terms of the measured radiation. This sort of problem is ill-posed because there is
no mathematically unique solution for it. From this we follow with the estimation prob-
lem which means finding the appropriate criteria for choosing the solution that is most
consistent with the measurements [Rodgers, 1976].

The estimation method used here follows [Rodgers, 2000] and is called the maximum
a posteriori. Through an iterative process the prior state vector p, is nudged to a new
state pnt1 so that a cost function is minimized. This cost function balances the penalty
of departing from the background state vector (P,) with the penalty of deviating from the
observed brightness temperatures. This ensures that at each iteration step the state vector
is within a realistic distance of the background values while trying to match the measure-
ments within a reasonable precision range. This process involves two sets of constraints.
We would expect to find reasonable values for the state vectors spaced within the natural
variability constraints around the the background position. These constraints for the state
vector space are represented by a covariance matrix with the individual parameter vari-
ances on the diagonal and inter-parameter covariances in the off diagonal elements. This
is called the a priori covariance matrix because it represents the level of knowledge about
the geophysical state before the measurements are made. The background values represent
long term means from climatological or other sources which together with the individual
parameter variances in the background covariance matrix S, constrain the retrieved param-
eters to physically realistic values. The diagonal elements of the corresponding covariance
matrix should represent the natural variability of each parameter in order to allow for a
consistent retrieval, but this information is limited by the quality of the prior information
we have about the climate system. In order to speed up the iterative process for finding
the optimal solution, the method also uses a first guess point that serves as initialization
state. The first guess state can also come from a background state but that is not the only
source Rodgers| [2000]. According to Pedersen [1994] the retrieval accuracy is influenced by
the quality of the first guess data. A similar constraint is used for the observation space.
A covariance matrix contains the individual channel variances that constrain the forward
model simulated brightness temperature to a reasonable accuracy. This level of accuracy is
chosen based on the combined measurement, modelling and geophysical parameter errors
that together influence how far from the observed brightness temperatures the simulated
values are permitted to be. The shape, construction and importance of the covariance
matrices that represent the constraints for the optimal estimation are discussed in further
detail in Chapter
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4.2 Forward model (adaptations for use over sea ice)

The forward model is needed in order to translate the seven geophysical parameters into
the twelve brightness temperatures corresponding to the AMSR-E|radiometer channels. To
this end it uses separate modules to address different components of the radiative transfer
equation. The upward component uses a sea surface emissivity model that takes into ac-
count the sea surface temperature, calculates the frequency specific dielectric constant of
sea water, and uses a geometric model for the wind roughened ocean surface contribution.
For the atmospheric component the forward model uses frequency specific absorption and
scattering coefficients. In the frequency range of the [AMSR-F] channels the main atmo-
spheric absorbers are oxygen and water so that these coefficients have been calculated from
compiled radiosonde flights. The amount of atmospheric water vapour and cloud liquid
water is connected to the atmospheric emission temperatures through a list of regression
equations. An important feature of the forward model is that the radiative transfer equa-
tion uses the absorption-emission approximation which excludes scattering from large rain
drops and ice particles. This assumption is valid for clear and cloudy skies and for light
precipitation conditions for the frequency range of 6 to 37 GHz. At the 89 GHz channels
however, scattering by clouds is no longer negligible.

The original implementation of the forward model |Wentz and Meissner, 2000] was
designed to work over open ocean surfaces only. In order to use it over the ice covered
central Arctic areas the calculation of the surface emission has to be modified in order to
account for the different microwave emissivity of sea ice [Melsheimer et al., 2008|. Each
pixel is now considered as being formed of a mixture of open water, first year and multi-year
ice. The up-welling thermal contribution of the surface will then be:

Ts = CowEowTow + nyiEfyinyi + Cryi Emnyi Tinyi s
where Cyy, Cryi and Oy represent the concentration of each surface type in the current
pixel. The sum of these three factors must be 1. Corresponding to each surface type E,y,
Ety; and E,,; are the microwave channel specific emissivities for open water, first year ice
and multi-year ice respectively.

The second equation that needed to be modified is the one responsible for calculating
the reflection and scattering of the atmospheric down-welling radiation. The reflectivity of
a pixel will be calculated from individual reflectivities of each surface type.

Repp=1=FEepp =1 = (CowBow + CryiEryi + Cmyi Emy)

This then opens up the necessity of having some information about the surface emis-
sivity of sea ice. Frequency dependent emissivities are based on the empirically retrieved
values from Mathews| [2007]. These values represent monthly averages and the individual

value for each pixel is calculated by interpolating in time between these monthly values.
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4.3 Error treatment and covariance matrices

The background values represent long term means from climatological or other sources
which together with the individual parameter variances in the background covariance ma-
trix S, constrain the retrieved parameters to physically realistic values. The diagonal ele-
ments of this covariance matrix should represent the natural variability of each parameter
in order to allow for a consistent retrieval, but this information is limited by the quality of
the prior information we have about the climate system. In order to speed up the iterative
process for finding the optimal solution, the method also uses a first guess point that serves
as initialization state. The background state can be used as the first guess state. According
to Pedersen| [1994] the retrieval accuracy is influenced by the quality of the first guess data.
In order to test the sensitivity of the retrieval method to the background covariance ma-
trix and to the first guess conditions, different implementations of the optimal estimation
retrieval are compared. For each of these tests one reference version was kept the same.
It uses a diagonal background covariance matrix (see Appendix, Table obtained from
year long ECMWF ERA Interim mean variances for the atmospheric parameters and the
surface temperatures. For the sea ice concentration and multi-year fraction variances, a
locally processed dataset using the NASA Team algorithm Markus and Cavalieri [2000]
was used for the same time period. The background state vector for all versions tested
below represents the yearly mean values for each parameter (Appendix, Table , and
is calculated from the same sources as the reference background covariance matrix. For
this reference OEM version, the start guess comes from temporally and spatially collocated
ECMWEF ERA Interim data.

As discussed above, the satellite measurements are connected with a measurement error
due to instrumental noise and the nature of the measurements themselves. This measure-
ment error is considered to be normally distributed and is represented in the retrieval
through the covariance matrix S.. Each of the twelve individual channels of the radiome-
ter is represented in the error covariance matrix by the variance of its measured brightness
temperature. The error covariance matrix S, is diagonal because the measurement channels
are assumed to be independent.

The covariance matrix of the geophysical parameters represents a priori information
about these parameters together with the background values which represent a long term
mean of these parameters. In our method, the non diagonal elements of the parameter
covariance matrix are zero and the diagonal elements represent the variance of each geo-
physical parameter. These variances have been estimated from climatological archives and
model data. For the three atmospheric parameters of integrated columnar water vapour,
cloud liquid water and WSP as well as the surface temperature for both ice free ocean and
sea ice, the variance values have been derived from a full year of ERA Interim reanalysis

data. For the sea ice parameters, climatological averages were used.
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4.4. The inverse method

In an attempt to add more data to the a priori, separate covariance matrices have
been calculated for open water and sea ice covered areas. The switch between these two
covariance matrices was implemented as a SIC threshold where the open ocean covariance
matrix was used for areas with less than 75% sea ice cover. Using the specific sea ice
covariance matrix was supposed to take advantage of the natural correlations that occur
between the sea ice covered surface and atmospheric parameters such as [TWVl These
covariance matrices were calculated using three separate retrieval products that can cover
the open ocean and the sea ice-covered central Arctic respectively. For the open ocean the
RSS retrieval product [Wentz and Meissner, 2007| for the atmospheric parameters of WSP,
total water vapor, cloud liquid water and sea surface temperature was used. For the sea
ice-covered regions the ASI sea ice product |Spreen et al.l [2008] was combined with the
[AMSU-Bl total water vapor product [Melsheimer and Heygster), [2008| in order to assess the
covariance between these two parameters. The threshold switch for SIC was set because
areas with high sea ice assure a lower uncertainty for the product.

After implementing these separate covariance matrices, a test was run for the RRDP
dataset (Section in both SIC1 and SICO situations. The results were inconclusive,
the algorithm using separate covariance matrices did not show any clear advantage over
the classic algorithm using one single covariance matrix with mostly diagonal elements.
Because the latter version is technically simpler to implement, the initial single covariance
matrix system was selected for further testing and the multiple covariance matrix approach

was abandoned for the moment.

4.4 The inverse method

The iterative solution is found by inverting

Ty=F(p)+e (4.2)

where T4 is the vector of satellite measured brightness temperatures. F' is the forward
model, p is the state vector containing the seven geophysical parameters (WSP, TWV,
LWP, SST, IST, SIC, MYIF) and e is the measurement error. The solution is found by

using the Jacobian of the forward model

OF (p)
M = 4.3
o (43)
and iterating the state vector following the Gauss-Newton method
Put1 = Pn + 5, (Mg Se ™ (Ta = F(pn)) + Sa ™' (pa — Pn)) (4.4)

where M,, = M (pyn) and
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- -1
Sp=(Sa '+ M, S, M,) (4.5)
is the a posteriori covariance matrix of the state vector.

The Gauss-Newton iteration nudges the state vector to follow a quadratic approxima-
tion of the cost function. In the case that the forward model is too non-linear for the
Gauss-Newton method to work, the iteration step towards finding a solution needs to be
chosen at each iteration in order to decrease the cost function. This can be achieved
by adding an additional parameter to the iteration rule as proposed in the Levenberg-
Marquardt method |[Rodgers, [2000]:

3 —1 Tg -1 -1
Sp=((14+7)S, " + M," S, M,) (4.6)

The key difference is that ~ is chosen at each iteration step and the cost function is
evaluated. If the cost function decreases the iteration values are accepted. If the cost
function does not decrease then < is increased to force the iteration on a steeper decent
(and a smaller step size) towards the minimum and the same iteration step is repeated.

The convergence conditions suggested by [Rodgers, 2000| are implemented in order to
stop the iteration process and output the optimal solution. The method will check whether
the following is true

d* = (pn+1 - pn)ngl(pn-i-l - pn) <7 (4'7)
This represents the degrees of freedom of the system and seven was chosen as the dimen-
sionality of the state vector. An additional condition for convergence to be accepted is

whether the cost function A has been decreased following the last iteration
A =|[Ta— F(pn)ll- (4.8)

If both of these conditions are fulfilled, p, is accepted as the solution and sent to
output.
AMSR-
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5 Developing and testing the method

The OE method needs information about the prior state of the geophysical system in order
to stabilize the results. This prior information is crucial because it constrains the possible
number of solutions to the state vector that match the observations within a prescribed
uncertainty. The quality and nature of the a priori data will influence the OE retrieval
results. In order to find what is the sensitivity of the OE retrieval to changes in the a priori
constraints a number of tests have been performed. These tests touch on all forms of a
priori information used in this OE implementation and expand on the preliminary results

shown in [Scarlat et al.[2017]. The a priori elements are
(i) the background covariance matrix S, - Section
(ii) sea ice surface temperature parametrization IST - Section
(iii) the background state vector P, - Section
(iv) the first guess for the iterative process Py - Section

(v) the sea ice emissivities used to parametrize the sea ice surface contribution in the
forward model - Section [5.5]

(vi) the modelling and measurement errors included in the brightness temperature (Th)

covariance matrix S, - Section [5.6)

The sea ice parameters form an important fraction of the state vector and affect the
brightness temperature signal. Therefore the RRDP data set used for these tests is subdi-
vided into two distinct data subsets that account for the scenario of 100% sea ice cover and

for open water. This reproduces as much as possible a controlled test environment in which
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we can isolate the surface specific effects on the retrieval from the effects of the changes in
the a priori constraints. The goal of these tests is to find and justify the final set-up for
the OEM a priori constraints which will be used in the comparison tests of Chapter[6] In
all of the tests one basic OEM implementation is kept as reference. This reference version
is based on the prototype OEM and uses the diagonal covariance matrix and background
values shown in Table [A7I] All OEM version tested in this chapter use the 10 channels
between 6.9 and 37 GHz, excluding the two 89 GHz channels of AMSR-E (for more details
see Section [5.5]).

For every modified OEM version tested against the reference, the practical effects on
the retrieval are shown in tables such as standard deviation of the output or agreement
against ASR benchmark data. To completely characterise the results, we need to know
if the modifications to the OEM cause statistically significant changes in the retrieval.
The Kolmogorov-Smirnov (K-S) test is used for each retrieved parameter to determine
whether the distribution of the modified OEM output is significantly different from that
of the reference output. For most of the comparisons made the changes are found to be
significant, with the lowest confidence level corresponding to 99.999% and with typical
values higher than that. In the context where the size of the RRDP sample used in the
comparisons is on the order of 13000 data points for SICO and 17000 data points for
SIC1, we believe this confidence level is sufficient. There are however cases where the
modifications to the OEM do not result in statistically significant changes in the retrieval
parameters. In each case the K-S test result is included in the discussion along side
the practical changes in the output. The p values resulting from the K-S test give the
confidence level for rejecting the null hypothesis that the compared samples have the same
distribution. Because in most cases this p value is very small, and showing its nominal
value would not contribute to the discussion, for every comparison case the conclusion of

the K-S test is discussed but the values themselves are not shown separately.

5.1 Sensitivity to the background covariance matrix (.5,)

One of the a priori components is the background covariance matrix (S,) which constrains
the space in which we expect the geophysical parameters to be found. This matrix is ob-
tained from any prior knowledge about the climate system including climatological data,
ground measurements and other retrieval sources. The diagonal elements of the covariance
matrix represent the parameter variability while the off-diagonal elements show correla-
tions between parameters. The background covariance matrix should use the best possible
knowledge about the investigated climate system before the measurements are taken in or-
der to speed up the convergence process [Rodgers, 2000] and retrieval precision by imposing
realistic limits on the state space. At the same time this information should be unbiased

[Merchant et al., |2008] in order to lead to an unbiased optimal retrieval. The following
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5.1. Sensitivity to the background covariance matrix (S,)

tests provide insight into several aspects of selecting the background covariance matrix.
The data source used for generating the elements of this matrix should be representative
for the spatial and temporal domain of the OE retrieval (Section . The background
covariance matrix influences the retrieval by imposing different restrictions depending on
whether or not off diagonal elements are included (Section . Although the a priori
information cannot be perfect and the OE retrieval is stable for small scale variability in
the background covariance matrix elements, large scale changes in individual diagonal ele-

ments will have a direct impact on the retrieval precision of the corresponding state vector

parameter (Section [5.1.3]).

5.1.1 Data source for S,

For testing the importance of the data source of the background covariance matrix, we
compare an OEM retrieval that uses a covariance matrix based on one year of climatology
data with two different OEM implementations that use climatology derived values from
the Max Planck Institute for Meteorology (MPI-M) Climate model (F. Bunzel, personal
communication). The main difference between the ERA-Interim and the MPI-M derived
parameter variances is that the former included one year of data while the latter only data
from one winter month. This means that the two data sources represent the variability
of the geophysical parameters on different time scales. The year long data set includes
one full cycle of seasonal variability while the winter month data set only reflects typical
variations for that time window. From the two MPI-M derived matrices one is a diagonal
covariance matrix of the same shape as the reference version while the other, besides the
same diagonal elements, also includes the off-diagonal elements that represent covariances
between parameters. These three background covariance matrices are given in the Ap-
pendix in Tables [A.T] [A.3] and [A4] for the reference OEM S,, and the two MPI-M derived
matrices respectively. While for the ERA-Interim based covariance matrix data from the
NASA Team sea ice algorithm was required to fill in the variances for SIC and MYIF, the
MPI-M data source includes all parameters except SST and MYIF. For this reason the

variances for SST and MYIF are the same for all matrices.

For ease of notation in the following discussion the one year climatology based diagonal
covariance matrix and the OEM version that uses it will be referred to as C-diag, the
diagonal covariance matrix based on MPI-M climate model data from February will be
called Feb-diag OEM and the final version that uses the full covariance matrix from the
same MPI-M model data will be Feb-full.

All three versions of the OEM are run for both the RRDP SIC0 and SIC1 data sets and
the standard deviations of the output parameters are compared between OEM versions.
The same background values were used for all versions, the only difference between these
OEM implementations being the shape of the background covariance matrix. The results
are shown in Table [5.1] for the RRDP SICO and Table (.2] for SIC1.
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Table 5.1: Mean value and standard deviation of output parameters from OEM retrieval
using different background covariance matrices. Data set used is SICO.

Stat ‘ Parameter ‘ units ‘ C-diag ‘ Feb-diag ‘ Feb-full ‘

WSP [m/s] 9.76 7.75 9.49

TWV [mm]| 11.16 10.86 10.96

Mean value LWP [mm] 0.10 0.11 0.10
SST K]  278.90 278.16  278.32

SIC (%] -0.97 0.68 -0.47

WSP [m/s] 4.55 3.07 3.76

TWV [mm]| 5.44 5.18 5.30

Standard dev. LWP [mm]| 0.17 0.07 0.08
SST K] 2.85 3.27 3.52

SIC (%] 1.87 1.88 1.59

% of convergent points 99.91 97.76 99.32
Avg. no. iterations 4.10 6.07 13.66

Table 5.2: Mean value and standard deviation of output parameters from OEM retrieval
using different background covariance matrices. Data set used is SIC1.

Stat ‘ Parameter ‘ units ‘ C-diag ‘ Feb-diag ‘ Feb-full ‘

TWV [mm]| 2.07 2.53 4.70

Mean value LWP [mm]| 0.20 0.16 0.17
IST K| 26226  264.08  264.40

SIC (%] 97.66 97.53 97.33

MYIF (%] 4637 5171  54.84

TWV  [mm]  2.36 1.73 1.78

Standard dev. LWP [mm]| 0.19 0.05 0.05
IST K] 5.94 4.99 5.22

SIC [%] 2.22 2.20 2.46

MYIF (%] 30.45 32.02 31.57

% of convergent points 70.08 57.92 61.70
Avg. no. iterations 13.91 16.01  16.456
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Both the Feb-diag and the Feb-full OEM versions determine statistically distinct dis-
tributions for all retrieval parameters in both the SICO and SIC1 cases, compared to the
reference OEM version using the C-diag S,. The lowest confidence level resulting from the
K-S tests corresponds to a p value of 10712, Regarding the practical effects of implement-
ing the modified background covariance matrices, larger variances do not always result
in larger retrieval standard deviations. For the SICO comparison the largest difference
between OEM version results can be seen for WSP and especially LWP retrieval which
are parameters with a significant difference in variance between the three OEM versions.
For TWYV however there exists a big difference in the corresponding variance term in the
covariance matrices, but a very small difference in the retrieval results. A similar situation
is evident in the SIC1 comparison where again LWP and this time IST (in the absence of
WSP retrieval over 100% SIC) display the highest differences between the OEM versions
while the TWYV retrieval variability between OEM versions differs more than over SICO.

The larger values for variance and retrieval standard deviation correspond to the C-diag
covariance matrix which is based on one year of data. While the variances can be explained
through the fact that the yearly variability of these geophysical parameters is larger than
the variability within one winter month, the retrieval differences partially stem from the
reduced constraints imposed on the OEM. A larger parameter variance in the background
covariance matrix can result in higher variability in the corresponding retrieval parameter
but this is not always the case and will be investigated further in the Section [5.1.2

The largest impact of the different covariance matrices on the results can be seen in
the number of convergent cases and the average number of iterations required to reach
convergence. Ideally the off-diagonal elements of the background covariance matrix in
Feb-full should introduce more information about the state of the climate system before
the measurement are taken. However, it is difficult to evaluate whether the covariances
used are representative for the yearly time scales used in the retrieval testing. The results
of this comparison seem to indicate that these covariances impose an additional constraint
on the method which in certain cases cannot be satisfied within 50 iterations resulting in
almost 10% fewer convergent results. Similarly, the diagonal matrix based on one month of
data for Feb-diag imposes unrealistic constraints on the OEM as the variances it contains
are not representative for the parameter variability throughout the year.

It is important to note the difference between the convergence performance over SICO
and SIC1 for the reference OEM version. While much lower over SIC1 than over SICO,
it must be noted that this reference OEM is meant to be used in tests only, as it uses
arbitrary sets of parameters which are meant to be improved as a result of these tests. The

issue of the relatively low convergence rate over SIC1 will be addressed in Subsection [5.3
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5.1.2 Information content analysis for different S, versions

The section above shows the effect of different versions of the background covariance matrix
on the retrieval. The tight constraints of the Feb-full S, entail a lower convergence rate and
a higher number of iterations needed for reaching convergence (Tables . The impact
on the retrieval is however harder to interpret from looking at the parameter standard
deviations only. In the case of TWYV for example, a variance difference between S, versions
does not trigger a significant increase in output standard deviation. For a more complete
understanding of the effects of improper constraints on the OEM we studied the change
in the information content for different versions of the background covariance matrix. The
information content of a measurement as described by Rodgers|[2000] represents the change
in the logarithm of the number of distinct states of the system that is being measured. This
is based on the original definition by Shannon and Weaver|[1949|. For the sake of clarity all
references to information content used throughout this thesis are meant to be understood
in the context of the Shannon definition for information. The number of distinct states
that the measured system can take is called the system entropy. If we take the base 2
logarithm of this change in entropy then the information content can be measured in bits.

A probability distribution function P can characterise the possible states of the system,
then the information content of a measurement of this system depends on the entropy of

the system S(P). The change in entropy as a result of the measurement can be written as

H=S(F,) — S(Py), (5.1)

H is the information content of the measurement, P, is the state of the system before the
measurement is performed and P, is the state after. The decrease in entropy is equivalent
to a decrease in the uncertainty about the state of the system and it represents the new
knowledge that the measurement brings.

If we assume Gaussian distribution the entropy of the system is then

S(P) = %ln!SL (5.2)

with |S| being the determinant of the background covariance matrix which describes our
knowledge about the system before the measurements are made. The change in entropy

following the measurement or the information content of the measurement will then be

1
H= f§zn|5ps;1|, (5.3)

S, being the covariance matrix of the system after the measurement, and S, the system
covariance matrix before the measurement.
A different tool for studying the information content of a measurement is the number

of degrees of freedom of the system. One degree of freedom of the measurement represents
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one independent component which contains information on the state of the system and the
information uncertainty is smaller than the measurement error of the component [Ulaby
et al., [2014]. If the total number of degrees of freedom of a set of measurements is smaller
than the number of measurements, only a part of the measurement components will bring
in independent pieces of information that can be observed above the noise level. The

degrees of freedom for signal can be written as the trace of the matrix product

ds = tr(SpS, ). (5.4)

Following Rodgers| [2000], the retrieval system can be described as

y=Kuz, (5.5)

where y represents the observations, x the variables and K the weighting function of the
forward model that relates the variables to the observations. The purpose of the informa-
tion content analysis is to determine if the measurement error allows the retrieval of the
desired variables by comparing this error to the natural variability of the variables. Any
component for which the natural variability is higher than the measurement error can be re-
trieved. In order to calculate the information content and the degrees of freedom for signal,
the weighting function matrix K has to be scaled according to the errors contained in the
measurement error covariance matrix S. and the natural parameter variability represented

by the a priori covariance matrix S,

K =S812KS1/2, (5.6)

Rodgers| [2000| concludes that the number of independent measurements that can be
made at better than the measurement error threshold is equal to the number of singular
values of this scaled weighting function matrix which are greater than 1. These singular

values \; can be used to calculate the information content H

H= % i1+ X3 (5.7)

and the degrees of freedom for signal

A2
dy=>_ m (5.8)

i
Table [(.3] shows the difference in information content statistics between two OEM
versions with different background covariance matrix shapes. These are the two diagonal
background covariance matrices discussed in the previous section, the C-diag matrix based
on a one year climatological mean and the Feb-diag matrix using means from only one

month of data. This gives a difference in how representative each set of variances is for the
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Table 5.3: Singular values (\;), degrees of freedom (ds) and information content (H) for
the singular vectors. The different OEM configurations were run for the SIC1 dataset.

C-diag Feb-diag
Ai ds H A ds H
39.884 0.999 3.686 | 25.870 0.999 4.694
10.138 0.990 2.321 | 3.917 0.939 2.015
1.373 0.654 0.530 | 1.116 0.555 0.583
0.512 0.207 0.116 | 0.338 0.102 0.078
0.299 0.082 0.043 | 0.179 0.031 0.023
0.012 0.000 0.000 | 0.012 0.000 0.000
7 0.001 0.000 0.000 | 0.004 0.000 0.000
Total 2.933 6.696 2.626 17.394

S T W N =

natural variability of the state vector parameters. Naturally the long term based matrix
has higher values that show the parameter variability throughout the year, while the other
one has smaller values which translate into tighter constraints on the OEM retrieval. The
differences between the two OEM versions are to be seen in the number of degrees of
freedom and the total information content. While both have three significant singular
vectors with singular values above 1, the C-diag achieves a total of 3 degrees of freedom
which represent 3 independent quantities being measured. The Feb-diag OEM cumulates
around 2.6 degrees of freedom which signifies that 2 and a half quantities can be measured
independently. When looking at the total information content available from the two
retrievals, OEM C-diag achieves 6.7 bits of information while OEM Feb-diag has 7.4 bits.

This means that for C-diag there are 267

= 103.7 different geophysical states that can
be distinguished at the precision level set by the background covariance matrix. Feb-diag
OEM can distinguish 274 = 168.2 distinct states for its precision level. This is explained
by the fact that the retrieved parameters for Feb-diag achieve better precision when under
the stricter constraints of the background covariance matrix. In this case more geophysical
profiles retrieved with higher levels of precision can fit inside the constraints at the cost of
fewer independent measurements.

More detail about the differences between two OEM versions can be understood from
Figure [5.1] Even though both OEM versions have 3 significant vectors, the contributions
to the simulated Ths that these vectors represent are different. While in both cases the first
two significant vectors show the largest contribution from sea ice concentration and multi-
year ice fraction, the third significant singular vector in Figure left column (C-diag
S, matrix) shows a higher contribution from cloud liquid water while for the Feb-diag S,
version there is only little influence from the atmospheric parameters of LWP and especially
TWYV. This explains also why for TWV despite the increased constraints imposed on the
retrieval the differences in output statistics are small between the three OEM version in
Table (.2
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C-diag Feb-diag
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Figure 5.1: Singular vectors and the corresponding singular values for two OEM versions
based on different background covariance matrices. The singular vectors are arranged
from top to bottom in decreasing order of their corresponding singular values. Left column
represents the long term climatology based matrix C-diag, right column is 1 month based
matrix, Feb-diag.
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In conclusion this comparison showcases the balance that has to be achieved when
choosing the background covariance matrix. In the case of the strict constraints in the
Feb-diag version the precision seems to be improved as the variability is reduced in some of
the retrieved parameters but this is achieved because the number of independent retrieval
parameters decreases and the OEM repeats the static background values. The relaxed
constraints in the C-diag case allow for more variability in the output parameters but
also more independent parameters can be retrieved as the noise threshold is relaxed. An
adequate background covariance matrix should not impose a precision threshold that is
lower than the natural parameter variability. This can result in improved output precision

but also a bias towards the background.

5.1.3 Variations in S, elements

The C-diag and Feb-diag background covariance matrices tests presented in the previous
sections demonstrate how the OEM retrieval is affected by using a priori data that is not
representative for the entire temporal domain it covers. In order to observe more clearly
what are the effects on the retrieval output when individual elements of the S, matrix are
changed beyond the limits of climatological data sets the following test has been performed.
Starting from the C-diag background covariance matrix, the equivalent standard deviation
for the S, elements corresponding to a single parameter has been halved (1/2 o), then
doubled (2 o) and the effects on the standard deviation of the retrieval output have been
recorded. This large variation in the S, variance is an exaggerated forcing meant to
determine a clear impact on the retrieval but otherwise it is not realistic to have such
large differences between variances calculated from different data sources. This test was
performed individually for TWV as an atmospheric parameter (refered to as versions 1/2 o
TWYV, and 2 o0 TWYV respectively) that is valid over both SIC1 and SICO and then for
surface temperature of the ocean surface and of the sea ice surface (refered to as versions
1/2 ¢ SST/IST and 2 o SST/IST over SICO and SIC1, respectively).

In Table [5.4] the standard deviations of the output parameters are shown for different
OEM version where the constraints on the TWV parameter are different. As expected,
the tighter constraints in the 1/2 ¢ version determine the lowest standard deviation of
the output, while the relaxed constraints for the 2 ¢ case result in the highest standard
deviation for TWV. Over SICO the standard deviation values are overall larger than over
SIC1 but the differences between 1/2 ¢ and 2 o are much smaller. Over open ocean the
water vapour parameter is much more important for the brightness temperature calculation
and as such the constraints that force it closer to the background state are balanced by the
constraints of matching the brightness temperatures. In this case, even with more relaxed
background matrix constraints, the water vapour retrieval precision varies little between the
three o cases. This implies that the TWV impact on the simulated brightness temperatures

is important enough that even the unrealistically strict constraints of the 1/2 o case will be
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compensated by the brightness temperature cost function. Over SICO the K-S test confirms
that the 1/2 o modification to the TWV constraint determines a significant change in the
results over SICO. This is not the case however for the 2 ¢ TWV change where only the
output SST shows a distribution different from the reference with a high confidence level
(»99.999%). By relaxing the constraint on TWYV most retrieval parameters are not changed
in a statistically significant way. This supports the idea that the TWYV retrieval is more
dependent on the observed brightness temperatures than on the background. It is worth
mentioning that even though all of the parameters in the 1/2 ¢ TWV case and the SST
parameter in the 2 ¢ TWYV case show a statistical difference from the reference distribution,
the practical impact of this difference is very small as can be seen in Table where the
parameter variabilities change very little. Over SIC1 however, the brightness temperatures
are less sensitive to TWV as variations in the constraints determine significant changes in
the distribution of retrieved TWYV while the other parameters do not show differences from
the reference distribution. This means that the retrieval depends more on the background
for TWV over SIC1.

For surface temperature the difference between the minimum o case and the maximum
one triggers a large variation in retrieval standard deviation which more than doubles both
over SICO and SIC1. Of note is the influence this variability has on the TWV parameter
which varies in the opposite direction over SIC1, the TWYV standard deviation decreases
when IST o increases and vice-versa. The atmospheric water vapour contributes little
to the degrees of freedom for retrieval in the SIC1 case and as such it is more closely
connected to the background state. In this case brightness temperature variability due to
the atmosphere is then attributed to variability in IST because the latter is not properly
constrained. The reverse also happens when the surface temperature is over-constrained
and then an increase in TWYV variability compensates for the IST parameter which is
forced too close to the background value. The larger variability in the retrieved parameters
over SIC1 is mirrored in the K-S test results that indicate all parameters using modified
constraints for IST show distinct distributions from the reference.

Overall, for SICO the differences between o versions are significant but smaller in ab-
solute value than over SIC1. This indicates that the constraints to the background state
are less influential over open water where the method has enough information from the

atmospheric and surface parameters to not fall back on the background state.

5.2 Sea ice surface temperature correction

In addition to simply selecting as a priori the most representative data source for the region
of interest and allowing for a reasonable constraint for each individual retrieval parameter,
there are particular concerns relating to the physics of passive microwave measurements to

be accounted for when constructing the a priori. In this section the surface temperature
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Table 5.4: Standard deviations of the retrieved parameters after applying different con-
straints on the TWYV and separately on the surface temperature parameter. The ¢ column
represents the reference OEM version without any modifications on the constraints (con-
straint is one standard deviation). The second column (0.50) is the OEM version where
the standard deviation constraint has been halved and the third column (2¢) is the OEM
version where the constraint has been doubled.

Modified constraint for None TWV Surf. T
Scenario Parameter Unit o 0.50 20 | 0.50 20
TWV [mm)] 1.97 | 1.05 282 | 244 155
LWP [mm)] 0.15| 0.16 0.15| 0.18 0.12

SIC1 IST K] 6.87 | 6.99 681 | 502 12.44
SIC (%] 4.00 | 3.04 3.03| 3.03 3.15
MYIF [%] | 28.05 | 34.25 33.32 | 34.10 33.81

WSP  [m/s| | 420 | 434 4.15| 425 4.10
TWV  |mm]| 523| 439 551| 524 520

SICO LWP [mm| | 0.12 | 0.14 0.12| 0.12 0.12
SST [K] 1.06 | 1.22 107 | 1.06 241
SIC (%] 210 229 207 | 217 2.00

parameter is investigated in more detail as it poses a number of characteristics specific
to passive microwave remote sensing over sea ice and snow covered regions. Microwave
radiation is emitted from a layer of a certain depth in the snow and ice pack. The depth
of this layer is dependent on the observation frequency. Besides the surface emissivity,
the upwelling radiation also depends on the temperature of the material. In the case of a
snow and sea ice pack there is a temperature gradient where typically the snow is colder
than the ice below it, while the ice is in turn colder than the ocean water underneath.
This temperature gradient will influence the microwave emission. In order to calculate the
frequency dependent emission of first year and multi-year ice types, in | Mathews| [2007] the
quantity of integrated emitting layer temperature is derived to account for the temperature
gradient inside the snow and ice layers. For retrieving this quantity a set of regression co-
efficients specific for each frequency and ice type are derived from an analysis of snow and
ice temperature profiles that relate the lowest level air temperature to the emitting layer
temperature [Mathews|, [2007|. Coefficient sets have been derived for first year and multi-
year ice for all 12 AMSR-E channel frequencies. Seasonal variations in snow cover and
temperature profiles have been accounted for by grouping the months with similar charac-
teristics together. These sets of coefficients for winter conditions are given in Table in
the Appendix. The regression equation for relating the lowest level air temperature to the

emitting layer temperature is

Temitting = alyir +b (59)

where Tg;- is taken from ERA-Interim temperature data. The coefficients a and b used
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Figure 5.2: Scatterplots comparing the OEM retrieved ice surface temperature before
and after implementing the effective surface temperature correction.

for first year and multi-year ice are given in Table [A.0] in the Appendix. The coefficients
have been implemented in the OEM forward model in order to calculate an equivalent
surface temperature for each channel. These effective surface temperature values are used
as background values for IST.

In order to test the impact of using the effective surface temperatures in the retrieval, an
OEM version that uses the regression coefficients to calculate the channel specific emitting
layer temperatures as a background value is compared with the reference OEM version
which uses one single background IST value for all channels, evaluated internally using the
brightness temperature of the 6.9 V channel. The correction coefficients are applied to the
lowest level air temperature supplied from ERA-Interim data.

The scatterplot in Figure [5.2] shows the difference between the reference static OEM
version and the version which uses the effective temperature of the emitting layer as back-
ground value and first guess for the iterative process. The biggest difference is in the
distribution of the retrieved ice surface temperature. The OEM version that uses effective
temperature has a larger range of variability which matches the ASR model values better
than the reference OEM version. Especially observable at very low temperature, the mas-
sive bias of 12 K from the reference version is reduced to just 3.4 K while the correlation is
increased from 0.55 to 0.8. The difference between the IST before and after the correction
is mirrored by the results of the K-S test which confirms that the corrected retrieval output
has a significantly different distribution than the reference one. While there is a statistical
difference between output distributions, there is little change in variability for the other
retrieved parameters of the state vector. This is a situation similar to that in Section [5.1.
where statistical differences do not necessarily imply practical differences in the output.
This lack of an impact on the variability of the other output parameters and the fact that
there is little change in the average number of iterations suggests that improving IST does

not have a large impact on the brightness temperature difference between simulations and
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observations.

5.3 Sensitivity to the a priori background state (F,)

In the previous sections the impact of the constraints that limit the OEM to a space around
the a priori known background state has been shown. Now the influence of this background
state itself on the retrieval will be investigated.

The purpose of the a priori background state vector is to give the OEM the best possible
knowledge about the climate system before the measurements are taken. This information
can come from other retrieval methods, models, or climatological records. In tests it will be
shown what is the impact on the results if the background state vector is based on previous
knowledge of different quality levels similar to the different background covariance matrices
presented in Section [5.1.1] One scenario is based on having one static state vector that is
constructed from a long time average of the seven parameters from climatological records
and will be referred to as static-P,. In the other scenario a different background state
vector is constructed for each retrieval pixel with temporally and spatially collocated data
from the ERA-Interim model and will be called collocated-P,. The static background
state vector is given in the Appendix in Table Although normally the background
state (P,) and the background covariance matrix (S,) are extracted from the same data
source, in this section we want to focus on the influence of the background state vector (P,)
alone. The two compared OEM versions use the same background covariance matrix (S,)
based on a year long reanalysis dataset shown in the Appendix. The static and dynamic
background state vectors are constructed from the same dataset, with the static version
representing the mean values for each parameter.

The retrieval values are compared against a common benchmark taken from ASR model
data (Section. As it is a reanalysis product, ASR has similar data assimilation sources
to the ERA-Interim product used for the dynamic background state vector version. The
output of the two models is very similar but have distinctly different distributions according
to the Kolmogorov—Smirnov test. In the scatter plots in Figures[5.3 and [5.4], the OEM out-
put for the two versions is compared with the ASR model data for each of the atmospheric
parameters and surface temperatures for the SICO and SIC1 cases respectively. These are
the parameters that are most affected by this test because in both scenarios the SIC and
MYTF always use a collocated background value obtained from the NASA Team algorithm,
while the IST parameter is evaluated inside the forward model. In the scatterplots the main
difference between the static and collocated background vectors can be easily seen from
the shape of the data point distribution. When using the static background array, the
retrieved parameter values tend to be close to the background value which is shown as a
horizontal solid green line in the plots. The dashed green lines show the limits imposed by

the background covariance matrix constraints on the space around the background state
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vector values. The retrieval can move outside of these constraints only if there is a need
to balance the difference between the simulated and observed brightness temperatures.

Over SICO the constant background array only slightly influences the retrieval results
because the atmospheric parameters have a large impact on the simulated brightness tem-
perature so that the OEM results will move away from the background values in order to
match the measured Tbs. This is visible over all atmospheric parameters but especially
in the case of water vapour distribution, where even with a static background the OEM
retrieved values are well distributed over the entire range, matching the variability of the
ASR model. In the case of LWP, the parameter variability is so low in the ERA-I data that
using collocated model values or a static value as background does not make much of a
difference. In the case of WSP and sea surface temperature there is in addition a noticeable
improvement in reducing the spread of the retrievals. The shape of the area of maximum
density is also changed to reflect a broader distribution of values along the identity line as
would be expected from the natural variability of these parameters. The biggest impact
can be seen for SST where the static background retrieval can be found within constraints
of the a priori, with only a small positive gradient following the ASR distribution. This
can be interpreted as SST having a small impact on the simulated brightness temperatures
and thus not triggering a move away from the background. In the dynamic background
OEM retrieval, SST follows the ASR distribution much more closely with the maximum
density of data points on the identity line. For SIC, even though there was no change in
the corresponding background data between the two OEM versions, there is an improve-
ment in that the mean retrieved value is closer to 0. This is the true value for the SICO
data set. In addition to this, the standard deviation of the retrieval has been reduced by
half after implementing the collocated P,. This is explained by the fact that part of the
sea ice surface variability can be masked and incorrectly attributed to variability in the
atmospheric parameters where this can result in the same values for the simulated Thbs.
These are cases of local minima, of the cost function condition but do not represent the true
solution of the retrieval problem. By attributing more accurately the atmospheric influence
to the atmospheric parameter values through the use of the dynamic background, the SIC
retrieval variability is reduced as well.

For SIC1 (Fig. where the atmospheric parameters’ influence on the simulated
brightness temperatures is lower over sea ice, the OEM results do not move away from
the static P, as much. This results in more of the retrieved values being close to the
background. This is especially true for TWV where there is one area of high data point
density close to the static P, value of 2.86 mm and a cloud of negative values along the lower
limit of the background constraint. These negative TWV values have no physical meaning
but indicate that the OEM had to compensate for a Tb difference in the cost function
and that this was the local minima found within the constraints. After implementing the

collocated P,, the TWYV values show much lower variability around the identity line and
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they match much better with the ASR data. The variability of LWP has been decreased,
but because the model data for this parameter are not very accurate there is little agreement
between the OEM retrieval and the ASR model data. For IST the correction method
described in the previous section has been used, as it combines the collocated P, data with
the empirical emission layer coefficients in order to obtain a more physically consistent
result. The final IST retrieval is similar to that shown in Figure however they are
not identical. Because of changes in the retrieval of the other parameters, the IST output
shows slight differences versus the ASR benchmark, when compared to the one presented in
the previous section. This will be discussed in more detail below, based on the statistics in
Table Another interesting feature of the IST plots is that the intra-seasonal variability
can be seen in the two high density areas. The area of higher IST value corresponds to
the months of March and April from the SIC1 data set which are warmer than the rest.
With a static P,, the IST distribution is more flat with a lower variability than when
implementing the ERA-Interim collocated P,. Similar to the SICO test, the SIC parameter
in the SIC1 scenario has a decrease in standard deviation by around 40% after using
dynamic background points for the atmospheric parameters. For the MYIF parameter
compared to Advanced SCATterometer (ASCAT]) backscatter data included in the RRDP
(Section [3.5]), there has been no change in the P, treatment. The background value is
based on collocated NASA team data for both cases where the atmospheric parameter use
static values or collocated ERA-Interim as background. There is however a change in the
high MYIF pixels where a better differentiation can be seen between pixels with MYIF
>95% and those flagged as <85% than in the case where the atmospheric parameters use
a static P,. These flags are based on NASA Team MYIF values and ASCAT backscatter
data and have been included in the SIC1 RRDP data set (J. Lu, personal communication).

Table 5.5: Intercomparison between static background OEM, collocated background
OEM and ASR model data over SICO.

’ Statistic Method ‘ WSP [m/s] TWV [mm| LWP [mm| SST [K] ‘
Bias vs ASR C-Pa 0.22 -0.23 0.06 -2.04
ERA-I Pa 0.88 0.04 0.06 0.05
Stdev diff to ASR C-Pa 2.79 1.84 0.11 2.46
ERA-I Pa 1.74 1.37 0.11 0.80
Correlation vs ASR  C-Pa 0.75 0.94 0.36 0.59
ERA-I Pa 0.91 0.97 0.38 0.95

The SICO statistics in Table confirm the improvement in agreement between the
OEM retrieval and the ASR model data after implementing the collocated ERA-Interim as
background value. For WSP, even though the dynamic background OEM version scores a
slightly higher bias against ASR than the static background version, the standard deviation
of the difference decreases to almost half and the correlation increases from 0.73 to 0.91.

For TWV the improvement is visible in all statistics with bias and standard deviation of the
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Figure 5.3: Scatter plots comparing the OEM output parameters from a static back-
ground and a collocated background OEM version with ASR data for the SICO data set.
For WSP, TWV, LWP and SST the green continuous line represents the static background
value, while the green dotted lines represent the constraints imposed by the background
covariance matrix.

47



Chapter 5. Developing and testing the method

Total water vapor

Cloud liquid water

Ice surface temperature

Sea ice concentration

Multi-year ice fraction

Static Background

Collocated Background

OEM TWV (mm)

-5

[ 2 4 6 8 10 12
ASR TWV (mm)
06 : 06
0.4 .
.
. " 3 z
£ 02 . £
z : =
O 00+ o
o] Z
g o
-0.2
-0.4 -0.4
-0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06
ASR CLW (mm) ASR CLW (mm)
R ¥ %0 9
270 P ot i 270
260 260
g R oried g
I~ K ot
2 250 T 3 2 250
g A S =
w S . o
240 CURERS N 240
) o .
t "
230 230 P 1. H
Ay PANGER
K1 Y
230 240 250 260 270 230 240 250 260 270 8
ASR Tsk (K) ASR Tsk (K)
%
10 20 30 40 50 60 70 80
4000 4000
3001 Mean=102.4 35001 Mean=100.6
Stdev=4.6 Stdev= 2.8
3000 3000
2500 2500
g g
£ 2000 2000
s s
g g
& &
1500 1500
1000 1000
500 500
0
90 100 110 120 130 70 80 90 100 110 120 130
SIC Value (%) SIC Value (%)
100 Intermed MYIC MYI>85% 100 Intermed MYIC MYI>85% m
FYI>95% MY1>95%
o o
o85% FYI>95% MYI>95% 1 L.
o
80 80 FYI>85% :
R=0.91 R=0.91
g 60 g 60
Q Q
= =
= b3
§w § 40
20 20 H
il o,
. l . 3 !--. .
. '"lill s .,
0 e 0 il S g Ceel e
-22 -14 -12 -10 22 -20 -18 -16 -14 -12 -10

ASCAT Backscatter

ASCAT Backscatter

Figure 5.4: Scatter plots comparing the OEM output parameters from a static back-
ground and a collocated background OEM version with ASR data for the SIC1 data set.
For TWV and LWP the green continuous line represents the static background value, while
the green dotted lines represent the constraints imposed by the background covariance ma-

trix.

48



5.3. Sensitivity to the a priori background state (P,)

Table 5.6: Intercomparison between static background OEM, collocated background
OEM and ASR model data over SIC1.

| Statistic Method | TWV [mm|] LWP [mm|] IST [K] |
Bias vs ASR C-Pa -0.08 0.12 12.24
ERA-I Pa 0.11 0.06 2.16
Stdev diff to ASR C-Pa 1.62 0.13 6.06
ERA-I Pa 0.55 0.07 5.78
Correlation vs ASR  C-Pa 0.43 0.04 0.55
ERA-I Pa 0.90 0.03 0.75

difference both decreasing and correlation increasing. The LWP comparison confirms that
there is little difference between one static background value and dynamically collocated
values from ERA-Interim most of which are close to 0. The statistics change little when
compared to ASR over SIC1. Similar as over open water, LWP representation in circulation
models at the exact time and space of the satellite overflight is poor and there are few
other reliable data sources for this parameter in the Arctic. The K-S test results indicate
that WSP, SST and SIC have a statistically different distribution after implementing the
collocated P, while TWV and LWP do not. This supports the results in Section
and confirms that TWV does not depend much on the background values or constraints
over SICO. Together with TWV, LWP is shown in Figure and in Table to be
the parameters with the smallest difference to the reference which indicate that, in SICO
conditions, the background has little influence on them when compared to the influence of
the brightness temperatures.

The statistics for the comparison over SIC1 (Table confirm the better agreement of
the collocated ERA-Interim background OEM retrieval version with the ASR model. The
bias, standard deviation of the difference and correlation for both TWV and IST improve
with TWYV showing the biggest change. The difference to the reference distribution is also
significantly different across all parameters after implementing the collocated P,, according
to the K-S test. This underlines the importance of the background for the OEM retrieval
in SIC1 conditions.

Of all the tested changes to the OEM a priori, using collocated ERA-Interim values
as background state shows the biggest improvement in terms of bringing the retrieval
nearer to the benchmark model data. One parameter which is not shown in Table
is the percentage of convergent data points. This is because while the reference OEM
convergence values have already been shown in Table [5.1] for SICO and Table [5.2] for SIC1,
after implementing the collocated P,, all data points result in convergence over both SICO
and SIC1. By providing a background position that is closer to the real geophysical state
by using the ERA-Interim values, the OEM manages to always find a retrieval ensemble

that matches the Tb observations within the constraints.
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5.4 Sensitivity to the first guess value (F))

The first guess value is a technical parameter which is chosen in order to start the iteration
process. In order to study the influence of this parameter on the retrieval we performed a
test in which the standard deviations of the output parameters of two OEM versions are
compared. The reference OEM uses collocated ERA-Interim data as start guess, and the
test version uses one single set of values for all pixels for both SIC1 and SICO subsets of the
RRDP data set. The static start guess vector is identical to the background state vector.
For the test OEM version this means that every iterative process starts with a minimal
cost for the difference to the background and the changes in the state vector values are
only dictated by the cost of diverging from the observed brightness temperatures.

The differences between the best case scenario and the static first guess are minimal.
Over SIC1 the differences are observable for water vapour and liquid water path which
are highly variable parameters that also have a small impact on the simulated brightness
temperatures over sea ice covered regions. Using a single start guess position causes the
OEM to search longer for a set of parameters that satisfies the cost function and the
convergence criteria which is mirrored in the increase in the average number of iterations
needed for the test OEM version when compared to the reference case (Table [5.7). Over
SIC1, all output parameters distributions have significant differences to the reference.

For the SICO comparison the differences between the two OEM versions are minimal for
all seven parameters. The standard deviation of the output parameters is almost identical
in both cases which indicates that over open water, the OEM will find approximately
the same solutions regardless if the iteration starting point is fixed or dynamic. The
WSP, TWV, SST and SIC output distributions do not show significant differences from
the reference. While the distribution of LWP is different, the practical aspect of retrieval
variability is unchanged. The small increase in the average number of iterations is the only
significant impact of the static starting point over the OEM.

We conclude that the starting point position does not influence the OEM retrieval in
scenarios of low or no sea ice presence, while it does have some influence on the atmospheric

parameters of TWV and LWP in situations of high sea ice concentration.

5.5 Sea ice emissivity correction

Because sea ice dominates the microwave signal at the instrumental frequencies, it is impor-
tant that the forward model can simulate unbiased brightness temperatures when compared
to the measurements. Any bias in the simulations will influence the retrieved geophysi-
cal parameters because the optimal estimation method will try to compensate for the
brightness temperature difference by adjusting the predicted state vector. In order to test

whether a bias is present, we calculated the mean differences between the retrieval step
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Table 5.7: Standard deviation of output parameters from OEM retrieval using different
first guess versions. REF uses collocated ERA-I as first guess for the 3 atmospheric param-

eters plus surface temperatures. C-Sg uses one static set of 5 values for these parameters.
SIC, MYIF are given by the NT algorithm.

Parameter Unit SICO SIC1
REF C-Sg | REF C-Sg
WSP [m/s| 3.73 3.74 - -
TWV [mm| 5.38 538 1.67 2.39
LWP [mm|] 0.11 0.11 0.04 0.14
SST/IST K] 295 293 721 6.61
SIC [%] 1.69 1.71 4.45 4.67
MYIF [%] - - 38.58 38.17
No. iterations 28 353 522 6.03

simulated brightness temperatures and the AMSR-E measurements for the SIC1 data set
(T able Reference columns). The highest discrepancies occur in the two 89 GHz channels
and for now we have discontinued including these two channels in any retrieval scheme and
also in the test cases described in the previous section. Excepting the 89 GHz channels,
high biases are also present in the horizontal polarization channels while the lowest bias at
18.7V is still around 1 K. In order to compensate for these biases over sea ice, we assume
that the difference in brightness temperatures is entirely caused by the surface component
through the prescribed emissivities. Assuming the difference between simlations and mea-
surements should be zero, an offset is calculated for each channel speciffic emissivity. Using
averages of these channel wise offsets for the whole RRDP test dataset we calculate a set
of corrected emissivities that minimise the channel wise difference between the simulated
and observed brightness temperatures.

In order to minimise the influence of monthly variations throughout the winter sea-
son, the corrected emissivities are calculated as winter averages, even though a slight
improvement may be obtained by using temporally varying emissivities. The original set
of empirical emissivities as well as the corrected set are given in Table in the Appendix.

The mean differences between measured and simulated brightness temperatures after
correction are shown for each AMSR-E channel for the whole SIC1 data set in the “Cor-
rected” columns of Table [5.8] The average difference over all 10 channels and all winter
data points of SIC1 has decreased from 0.69 to 0.14 K. In order to investigate the effects
of the correction over pure ice types the data set has been separated according to the
NASA Team result for multi-year ice type fraction. For pixels with more than 90% MYIF
there is a large decrease in the average Tb difference from 2.77 to 0.57 K. For the set
with less than 10% MYTF the initial difference is lower but there is still a decrease from
0.9 to 0.44 K. The distributions of the retrieval step simulated brightness temperatures

show statistically significant differences to the reference after implementing the corrected
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Table 5.8: Mean differences (in K) between simulated and observed brightness tempera-
tures. The reference version uses the original emissivities averaged over the entire winter
data set for each ice type. The corrected OEM version uses the new set of averaged winter
emissivities.

SIC1 subset  Average all winter pixels Multi-year ice First year ice

Channel Reference ‘ Corrected | Reference ‘ Corrected | Reference ‘ Corrected
6.9V 0.36 -0.17 4.62 0.09 -0.16 -0.28
6.9H -0.12 0.2 0.6 -0.06 0.36 0.45
10.7V 1.16 -0.07 4.77 0.27 0.4 -0.29
10.7H 0.97 0.39 0.55 0.03 1.23 0.48
18.7V -0.67 -0.23 1.13 0.31 -1.58 -0.72
18.7H -1.12 0.04 -2.89 -0.56 -1.1 0.14
23.8V -0.35 -0.02 -0.58 -0.35 -0.71 -0.18
23.8H -1.08 -0.16 -3.14 -1.32 -1.36 0.25
36.5V 0.31 0.09 -4.41 -1 1.98 0.46
36.5H -0.72 0.07 -5.02 -1.66 0.17 1.11
89V -16.39 13.41 -21.11 -2.21 -11.82 19.38
89H -20.34 16.94 -21.77 -2.78 -18.39 24.15

sea ice surface emissivities. Even though the initial assumption was that the prescribed
emissivities are the only parameter that determine the discrepancy between the modeled
and the measured brightness temperatures, there are also other factors involved in the
modelling error which are not accounted for. These can be the model input parameter
uncertainties or errors in the model parameterizations and they can explain the residual
difference between simlations and measurements.

Even after the correction, the 89 GHz channels are not included in the retrieval. Even
though the difference between simulated and measured Ths at this frequency has also
decreased on average, we have decided to exclude it from the retrieval because of the
remaining forward model deficiencies in modelling scattering effects at this frequency. As
mentioned in the forward model description, the scatterers relevant at this frequency are
difficult to account for in the simulations because of their unknown profiles of distributions
in size, shape and orientation. Further testing regarding the use of the 89 GHz channels is

presented in Chapter [7]

5.6 Sensitivity to the brightness temperature covariance

matrix (S.)

The satellite measurements are connected with a measurement error due to instrumental
noise. In addition, the simulations contain modelling errors. These error sources need
to be taken into account when constructing the constraints under which the OEM has to

match the measurements. Following the testing done for the background covariance matrix
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5.6. Sensitivity to the brightness temperature covariance
matrix (Se)

and the start guess position, we compared four different brightness temperature covariance
matrices (S) in order to assess the impact on the retrieval. The reference run is based on
the pre-launch AMSR-E radiometric error values. A second S, matrix is constructed from
the variances of the differences between observed and modelled brightness temperatures.
Tb differences are expected to be highest in the SIC1 retrieval scenario because of the high
variability of the sea ice surface contribution, with any differences occurring over open
ocean conditions expected to be lower than over sea ice. Because of this the differences over
the entire RRDP SIC1 data set were used to construct this matrix. These variance values
include the modelling error as well as the errors of the forward model input parameters and
the measurement errors of the instrument. These values are obviously larger than the pre-
launch radiometric errors so that this covariance matrix is named L S, for short reference.
In order to test the sensitivity of the retrieval to changes in the brightness temperature
covariance matrix we also tested one version that uses all values in the L. S, multiplied
by two and one that uses the same elements but divided by two. The elements of these
brightness temperature covariance matrices are given in the Appendix in Table[A.2] The
results of comparing these retrieval runs against ASR are shown in Table

Table 5.9: Mean value and standard deviation of output parameters from OEM retrieval
using different brightness temperature covariance matrices. Data set used is SIC1.

’ Stat ‘ Parameter ‘ Unit ‘ Reference Se ‘ L Se ‘ 2L Se ‘ 1/2L Se ‘
TWV [mm]| 0.80 1.10 1.39 0.76

Mean value LWP [mm] 0.09 0.08 0.07 0.09
IST K] 258.84 258.05 257.17  258.66

SIC (%] 102.37  102.94 103.45 102.61

MYIF (%] 53.88  52.92  51.17 54.24

/hline TWV [mm]| 2.23 1.71 1.37 1.94
Standard dev. LWP [mm]| 0.119 0.103  0.092 0.12
IST [K] 6.70 6.39 5.96 6.77

SIC (%] 4.59 4.54 4.26 4.76

MYIF (%] 38.35 36.80  36.58 37.06

Avg. no. iterations 6.721  5.201  4.197 6.47

In general larger variances in the S, matrix mean less strict constraints on matching
the simulated to the measured Ths. These constraints on the Ths are what causes the
OEM to move away from the background state vector. Thus the tendency for the number
of iterations is expected to decrease because of the relaxed constraints. At the same
time the variability of the output is slightly reduced as more importance is given to the
constraint to conform to the background. The reduction is especially noticeable for the
atmospheric parameters over SIC1 which have the least influence on the simulated Tbs. As
such they will default more often towards the P, if the constraints on the Ths are relaxed.
The surface parameters SIC and MYIF show little influence under the changes in the S,
matrix. MYIF does however stand out in the K-S test results. Where the other output
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parameters show significant changes from the reference for every change in S., the MYIF
retrieval distribution for the 1/2 L S. OEM version does not. This implies that there is
little impact on MYIF retrieval between using the reference constraints on the S, matrix
or the 1/2 L S, constraints.

While it is necessary to account for the TB modelling error in the constraints to ensure
an unbiased retrieval, and because the background constraints have not changed, it follows
that the method output will move closer to the ERA-Interim data when relaxing the
brightness temperature constraint (Section [5.6)).

Going forward after this test, the brightness temperature covariance matrix S, used
is constructed from the variances of the retrieval step simulated brightness temperature
difference to the measured brightness temepratures as is described for the L S, matrix
version. Because these differences will change after each modification implemented in the
OEM configuration, the S, matrix has to be recalculated as a last step in these implemen-
tations. The channel wise variances of the Th difference is used on the matrix diagonal
while the non-diagonal elements are zero. Like for the background covariance matrix S,
this represents the minimum requirement for constraining the method however it avoids
possible bias problems when using the covariances that result from the forward model

simulations.

5.7 Conclusions on the testing of the OE retrieval

Based on the results of the testing presented in this chapter the OEM set-up used in the

subsequent chapters includes the following modifications over the prototype OEM version:

(i) A climatological background covariance matrix (C-diag S,) based on a long 9 years
SICO data set using ERA-Interim data for WSP, TWV, LWP and SST and on the
SIC1 ERA-Interim for IST is used. This background covariance matrix is shown in
Table [A-7] in the Appendix.

(ii) Collocated ERA-Interim data is used as background values (P,) for each pixel instead

of one static set of parameters.

(iii) The start guess position (Fp) is identical to the background state vector for all pixels

in order to speed up the convergence process, and increase convergence rate.

(iv) The effective surface temperature of the frequency dependent emitting layer correc-
tion has been included in the forward model, so that this emitting layer temperature
is calculated for each channel individually as opposed to using one surface tempera-

ture value for all channels.

(v) Sea ice surface emissivity correction has been applied to the mean seasonal emis-

sivities in order to reduce the difference between the simulated and measured Tbs.
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5.7. Conclusions on the testing of the OE retrieval

The set of emissivities for first year and multi-year ice are shown in Table in the
Appendix.

(vi) After including all of the changes above, the differences between the retrieval step
simulated Tbs and the AMSR-E measurements are calculated. The mean variances

of these differences are then used as a final brightness temperature covariance matrix

This OEM setup is based on tests run in the conditions of absolute sea ice cover from
the RRDP SIC1 and SICO data sets. This whole chapter is dedicated to presenting the
tools developed for improving the method over the preceding prototype, tools which can
also be used for adapting the method after any future change in the retrieval configuration.
Pending further testing using even larger data sets, some of the a priori parameters are
subject to change in the future such as the covariance matrices or the sea ice surface
emissivities. This concluding OEM version represents a configuration suitable for further
testing, with the expectation that the constraints and parameterizations can be tuned and
expanded. One example of this is presented in Section [6.1] where the constraint for the

SST parameter had to be relaxed after testing the method in a more realistic scenario.
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6 Comparing with state of the art

The tests presented in the previous chapter have been performed over the controlled envi-
ronment of the RRDP with known sea ice conditions in order to develop the improvements
needed to address the OE retrieval over sea ice where the surface emissivity and effective
surface temperature are key parameters for the forward model. However the two scenarios
of 0 and 100% SIC present in the RRDP are not representative for the entire spatial domain
that the OEM should cover and so we proceed with testing the retrieval over a realistic
Arctic dataset without any sea ice cover limitations. Using the final OEM configuration
described in the previous chapter, the retrieval is applied to 16 winter days in 2006 over the
entire Arctic domain north of 60 °latitude. The 16 test days are spread between January
and May, with a 10 day interval between any two days in the set in order to cover a wide
array of different winter surface conditions. This dataset only contains winter days because
the summer surface melt has a detrimental effect on all passive microwave retrieval due
to the high variability of the surface microwave emission. Because of this it is difficult to
perform any retrieval tests over sea ice in surface melt conditions.

In this chapter a series of comparisons are performed between the OE retrieval and a
number of state of the art retrieval products. While different atmospheric retrieval products
over open ocean have been developed and reached a satisfactory level of maturity, the same
cannot be said for products over sea ice so that the comparisons can primarily be performed
over ice free areas. In addition a test for TWYV retrieval over sea ice is performed against
the AMSU-B retrieval product (Section . Moreover, as SIC is the most important
geophysical parameter for passive microwave remote sensing, a comparison with the ASI
SIC retrieval product (Section is performed for the entire test dataset.

In order to avoid repetition for each comparison case, we can state from the start that
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Chapter 6. Comparing with state of the art

all of the statistical results presented in this chapter are significant for a p value lower
than 0.01. This is expected as the sample size for each test varies between hundreds of
thousands for the RSS comparison (3-700.000), around 17 million for the ASI comparison
and around 13 million for the AMSU-B TWYV comparison because of availability of valid

data points in the comparison sets.

6.1 Comparing with RSS data products

The state of the art for atmospheric passive microwave remote sensing over open ocean is
represented by the Remote Sensing Systems Ocean Product [Wentz et al| 2014].

It retrieves WSP, TWV, LWP and SST through direct inversion of the AMSR-E bright-
ness temperatures measured at the channel frequencies between 6.9 and 37 GHz. The OEM
uses both ERA-Interim data fields as a priori data and AMSR-E brightness temperature
measurements in order to retrieve the state vector. While the ERA-Interim is our best
knowledge on the geophysical state before the measurements are taken, we considered
the RSS results as the best reflection of the Thb measurements without the use optimal
estimation techniques. The purpose of the OEM is to take advantage of both sources
of information and produce a retrieval that is balanced between the result of inverting
the measurements and within the constraints given by the a priori. If the background
and brightness temperature covariance matrices are consistent the OEM values will fall
between the Tb based RSS retrieval product and the ERA-Interim model data.

Table 6.1: Intercomparison between OEM, RSS and ERA-Interim data over open water
scenes in the winter 2006 data set.

’ Stat ‘ Method ‘ WSP (m/s) TWV (mm) LWP (mm) SST (K) ‘
OEM 10.10 6.42 0.08 274.67
Mean value ERA 9.18 6.36 0.03 274.54
RSS 10.93 6.83 0.06 277.60
OEM 3.54 3.28 0.087 2.98
Std dev ERA 4.24 3.28 0.053 3.06
RSS 4.57 3.27 0.065 2.99
OEM-RSS -0.83 -0.41 0.017 -2.94
Bias OEM-ERA 0.92 0.06 0.050 0.12
ERA-RSS -1.75 -0.47 -0.032 -3.06
OEM-RSS 2.88 1.10 0.055 2.58
Std dev diff OEM-ERA 2.14 1.52 0.089 0.42
ERA-RSS 3.97 2.32 0.074 2.79
OEM-RSS 0.78 0.94 0.78 0.63
Correlation OEM-ERA 0.86 0.89 0.28 0.99
ERA-RSS 0.60 0.75 0.24 0.58

In Table the statistics for comparing the three data sets with each other are pre-
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6.1. Comparing with RSS data products

sented. The RSS data is gridded and processed as daily average of the ascending and
respectively descending swaths. These were collocated with the closest in space OEM
retrieved pixel also sorted by ascending or descending orbits. The mean value and stan-
dard deviation for each parameter and method allow estimating for how close the three
data sources are to each other. For comparing them the combinations between any two
methods are given for bias and standard deviation of the difference. These show how the
agreement between the ERA-Interim and the brightness temperature based RSS product
changes after applying the OFE retrieval.

When comparing them with each other, the three methods show different degrees of
agreement with ERA-Interim having the lowest agreement with RSS. As the optimal esti-
mation process balances the a priori against the measurements, the OEM moves closer to
the RSS values. Still the best agreement is between the OEM and the ERA-Interim that
represents its a priori. In terms of bias, the OEM has a slight negative bias towards RSS
values, and an almost equally large positive bias versus ERA-Interim WSP. This places the
OEM values in between the ERA-Interim and RSS results. The lowest variability (stan-
dard deviation) of the difference between any two methods also occurs between OEM and
the ERA-Interim, followed by a higher value for the OEM-RSS comparison. The largest
difference is registered between ERA-Interim and RSS. Overall the WSP comparison shows
that the OEM is constrained towards the model a priori values but it manages to improve
the agreement with the brightness temperature regression results of RSS.

The TWV comparison shows a different picture where all three methods are closely
matched, with the two retrievals having the best agreement. In terms of mean value and
standard deviation the three sources are almost identical within 0.4 mm of each other for
mean value and within 0.02 mm in variability. The biases are small with a low negative bias
between ERA-Interim and RSS which reduces further between OEM and RSS while the
OEM is practically unbiased towards ERA-Interim values. When looking at the variability
of the difference, the ERA-Interim and RSS have the highest disagreement which is reduced
by half between OEM and RSS. The lowest correlation is between ERA-Interim and RSS
which increases by 25% in the OEM-RSS comparison. Over all statistics the OEM water
vapor retrieval demonstrates a good match with the Tb regression results from RSS while
still showing good agreement with the model data. For bias, standard deviation of the
difference and correlation the OEM falls right between the ERA-Interim data and the RSS
retrieval.

For the LWP comparison, the two retrievals show a clear departure from the model.
While this is expected because the RSS is a validated retrieval system for this parameter
and the model data are acknowledged to be unreliable, it is encouraging to note that the
OEM can depart from the a priori when the Th measurements require it. LWP is a highly
variable parameter where the standard deviation is higher than the mean value for all

three methods. The statistics show that the pull of the measured brightness temperature
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is enough to counterbalance the constraints to the a priori. This is the desired effect of
this mechanism when the a priori has a high uncertainty as is the case with modelled LWP
data, or when an error in the Tb measurements would force the retrieval into extreme
values for the state vector.

When comparing the sea surface temperature data the OEM seems to be too tightly
constrained to the a priori by the background covariance matrix. The results show good
agreement between OEM and ERA-Interim, while both differing from the RSS values. The
mean values show this clearly where OEM and ERA-Interim have an almost equal mean
SST while both being lower than the RSS mean value. For bias the OE retrieval and ERA-
Interim show a similar negative bias against RSS while being practically unbiased towards
each other. The correlation values gives a tight match between OEM and ERA-Interim at
0.99 while ERA-Interim has only a moderate correlation with RSS at 0.58 which is slightly
improved by the OEM vs RSS to a value of 0.63. It is clear that the OEM set-up tested
here is following the a priori too closely, leading to a biased retrieval when compared to the
direct Tb regression results of RSS. This issue was addressed by modifying the background
covariance matrix to allow for a larger departure from the background. This is discussed
in more detail below.

To accompany the statistics in Table the density plots in Figure [6.1] give a graph-
ical representation of the distribution of data points from the three methods used in the
comparison. The plots on the left side show the ERA-Interim plotted against RSS data
points which represent the a priori state that constrains the OEM. The column on the
right shows the OEM retrieval results plotted against RSS.

For the WSP and water vapour plots the large scatter and lower correlation between
ERA-Interim and RSS are clearly visible in the dispersed clouds of higher point density.
These features are improved in the corresponding OEM plots where the correlation is im-
proved and the width of the data point cloud is reduced. The behaviour of the data cloud
also varies with parameter value. For both WSP and water vapour a slight overestimation
on the OEM side can be seen at low values, which is coupled with a slight underestimation
towards the higher values in the range. In the case of LWP the nature of ERA-Interim
values can be seen as most of the data points are close to 0, without any clear structure to
the cloud. The agreement with RSS values is improved in the OEM plot where the high
density cloud becomes more elongated along the identity line. The OEM overestimation
when compared to RSS is visible throughout the range of values but the correlation is
greatly improved when compared to the left side ERA-Interim data plot. From the statis-
tics, the ERA-Interim and OEM SST values are similar which is also confirmed by the
two plots. The scatter of the data and correlation with RSS is almost unchanged between
the two plots. What does change however is the distribution of the high density areas.
While the overall variability of the SST values is similar to that of ERA-Interim, the OE

retrieval points are concentrated in a few areas of higher density. The underestimation
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Figure 6.1: Density plots (2D histograms) of the four parameters retrievable from RSS.
The column on the left shows ERA-Interim data vs RSS, column on the right shows OEM
vs RSS. The black line is the identity line and the red line is the linear regression of the
data points. The colour indicates the relative density of data points. Time frame used
were the 16 winter days in the 2006 data set.
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in ERA-Interim and OEM data versus RSS is visible throughout the entire value range.
In general, when comparing the OEM vs RSS plots to the ERA-Interim vs RSS plots the
cloud of data points becomes more consistently structured along the identity line confirm-
ing the improvements in correlation shown in Table [6.I] The cloud also becomes narrower
in width which represents the decrease in the standard deviation of the difference between
OEM and RSS when compared to the ERA-Interim vs RSS comparison. The change is
most visible in the LWP comparison where OEM is much better aligned with the bright-
ness temperature retrieval of RSS and least visible in the case of SST where OEM clearly
follows the data distribution of ERA-Interim albeit with a reduction and re-positioning of
areas with high point density towards the identity line. For the retrieval over open ocean
of the atmospheric parameters of WSP, TWV, LWP and SST we can conclude that the
OEM can improve on the a priori information from ERA-Interim and move closer to the
results of a direct Tb regression represented by the RSS data.

To emphasise the parameter specific behaviour of the OEM data when compared to the
ERA-Interim and the benchmark RSS retrieval one day examples are shown for the four
atmospheric variables in Figures and An apparent time offset between
the AMSR-E measurement and the closest ERA-Interim time step provides for a good
case study to demonstrate the balance that the OEM must achieve between the satellite
measurements and the model provided background values.

As suggested by the statistics, the OEM WSP retrieval is situated in between the
ERA-Interim and the RSS retrieval values and this is visible in the example maps from
Figure[6.2] The shapes of the larger features are recognisable in all three maps, with OEM
showing the largest values overall. Out of all the state vector parameters, WSP is one
of the most variable on short time scales. The ERA-Interim data represents the closest 6
hour step from the OEM swath start time. The OEM data is processed swath wise and the
values on the map represent the latest swath superimposed on the previous ones in areas of
overlap. RSS data has two data segments one daily average of all ascending swaths and one
for the descending ones. This can cause shifts in features between the three methods if the
temporal differences are considered. After testing different constraints for this parameter
we conclude that the differences apparent in the map between OEM and the other two
methods are caused by the temporal collocation. Because of this features that match both
ERA-Interim, such as the the high WSP features south and east of Greenland, and RSS are
recognisable in the OEM map. Such issues are difficult to solve in the current setup that
uses the 6 hour step data from ERA-Interim as background but they could be mitigated
in the future by using a higher temporal resolution product as background.

In the TWV example of Figure[6.3]the effects of a balanced constraint to the background
can be seen. Because of the same temporal collocation issue, the high value region south
of Iceland seems to be offset between the ERA-Interim data and the two retrievals. Both
OEM and RSS use the same AMSR-E Tbs so are tightly collocated with each other. The
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Figure 6.2: Map showing one day of WSP retrieval data from the ERA-Interim data,
OEM retrieval and RSS retrieval respectively. The ERA-Interim data is the a priori used
for the OEM retrieval. All data sets are restricted to the common valid domain of ice free
open water ocean regions.
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Figure 6.3: Map showing one day of TWV retrieval data from the ERA-Interim data,
OEM retrieval and RSS retrieval respectively. The ERA-Interim data is the a priori used
for the OEM retrieval. All data sets are restricted to the common valid domain of ice free
open water ocean regions.
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OEM retrieval matches the shape and location of the RSS data for both this high value
region and for the lower value areas to the south west of Greenland. This shows that for
relatively large values in TWV which influence the match between the simulated and the
measured Ths, the OEM can move away from the background values and retrieve the value
that corresponds to the satellite measurements.

For the case of LWP retrieval (Figure the OEM map mirrors most of the map
features in the RSS product without showing any echoes from the maximum values present
in the ERA-Interim map.

In the example map for SST retrieval (Figure the tight constraint of the OEM
towards the background data is most evident as even the shape of the large ERA-Interim
pixels are present with some variations in the OEM SST values. While this parameter
does not vary as fast in time as WSP or water vapour, and all three data sources show
good agreement, the OEM bias towards the ERA-Interim data is clear, especially in the
northern most regions of the map where the SST values are lower and the corresponding
effect on Tb matching will also be lower.

This sort of comparative testing with a direct Tb inversion product shows that using
constraints based on ERA-Interim parameter variability within a selected data set like the
long term RRDP SICO can lead to some biased retrieval cases. This is the case of the SST
retrieval were the ERA-Interim SST variability throughout the whole SICO data set was
so low that the resulting variability constraint on the OE was just 1.4 K. After relaxing
this constraint to a variability of 5 K as given by the climatological mean, the OEM SST
retrieval can diverge more easily from the ERA-Interim background and get closer to the
RSS result. All of the comparison statistics between OEM and RSS SST have improved
after allowing for a standard deviation of 5 K from 1.4 K in the SST parameter as is shown
in Table

A visual example of how the constraints influence the retrieval can be seen in Fig-
ure [6.6] The over-constrained SST retrieval clearly shows the large pixel structures of the
ERA-Interim background, while the SST retrieval with relaxed constraints has a smother

structures and even slightly different distribution of values.

6.2 Comparing with ASI SIC

In order to evaluate the OEM SIC retrieval another suitable comparison benchmark is
needed. The ARTIST Sea Ice algorithm uses the brightness temperatures from AMSR-
E to retrieve SIC at a high spatial resolution of 6.25 km (Section . For the centre
coordinates of every OEM retrieved SIC pixel the corresponding ASI SIC pixel value is
selected. The comparison is then run for the entire 16 winter days of the 2006 data set.
The necessary OEM background value for the sea ice parameters of SIC and MYIF are
obtained by running the NT algorithm on the same AMSR-E Tb measurements. Similar
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Figure 6.4: Map showing one day of LWP retrieval data from the ERA-Interim data,
OEM retrieval and RSS retrieval respectively. The ERA-Interim data is the a priori used
for the OEM retrieval. All data sets are restricted to the common valid domain of ice free
open water ocean regions.
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Figure 6.5: Map showing one day of SST retrieval data from the ERA-Interim data,
OEM retrieval and RSS retrieval respectively. The ERA-Interim data is the a priori used
for the OEM retrieval. All data sets are restricted to the common valid domain of ice free
open water ocean regions.
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Table 6.2: Intercomparison between OEM with different background covariance matrix
constraints for the SST parameter in the winter 2006 data set.

’ Stat ‘ Method ‘ SST over-constrained (K) ‘ SST relaxed (K) ‘

OEM 274.67 275.29

Mean value ERA 274.54 274.15
RSS 277.60 277.29

OEM 2.98 2.87

Std dev ERA 3.06 2.89
RSS 2.99 2.92

OEM-RSS -2.94 -2.00

Bias OEM-ERA 0.12 1.14
ERA-RSS -3.06 -3.14

OEM-RSS 2.58 1.67

Std dev diff OEM-ERA 0.42 1.68
ERA-RSS 2.79 2.75

OEM-RSS 0.63 0.83

Correlation OEM-ERA 0.99 0.83
ERA-RSS 0.58 0.55

50°N

55°N

55°N

50°N

Figure 6.6: Map showing one day of SST retrieval data from OEM with an over-
constrained (a) and a relaxed constraint (b) on the SST parameter. The day shown is
the 21st of April, 2006.
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to the comparison in the previous section, the a priori NT data is compared to OEM SIC
and to the reference ASI SIC retrieval products in order to determine the relationships
between the three. Ideally, the OEM can improve on the a priori information and show
a better agreement to the reference ASI benchmark than the NT data. In Table the
statistics of the comparison between the NT, OEM and ASI SIC products are presented.

Table 6.3: Intercomparison between NT, OEM and ASI SIC retrievals. The comparison
is done for all winter days of the 2006 data set.

’ Stat | Method [ Value (%)
OEM 77.35

Mean value NT 76.38
ASI 77.27

OEM 38.04

Std dev NT 34.25
ASI 40.17

OEM-ASI 0.08

Bias OEM-NT 0.97
NT-ASI -0.89

OEM-ASI 7.17

Std dev diff OEM-NT 8.23
NT-ASI 11.15

OEM-ASI 0.99

Correlation OEM-NT 0.98
NT-ASI 0.97

Of the three methods only NT stands out with a mean value 1 percentage point smaller
than the other two which are almost equal at 77.3% SIC. In terms of standard deviation
NT has the lowest value and ASI the highest with OEM being in between the two. When
comparing them in pairs, the biases between all three methods are small with values within
+-1%. The NT has the largest discrepancy from ASI which decreases by more than a third
between OEM and ASI. The correlations show good agreement between all methods. The
three methods all agree well with each other and, though small, an improvement over the
a priori NT is brought on by the OEM when compared to the operational ASI SIC data.

In order to gain more insight over how the three methods compare with each other,
the histograms of SIC values from each data source are presented in Figure [6.7 Although
the statistics do not indicate large differences, the histograms show that the distribution of
SIC values differs between the three retrieval methods. The NT algorithm retrieves more
intermediary value SIC data points with the largest number situated between 0 and 30%
SIC at the lower end and between 70 and 100% at the higher end of the SIC range. The
OEM SIC shows a value distribution more concentrated between the extreme points with
the low SIC values distributed mainly between 0 and 10% while the high SIC values are
spread between 80 and 100%. The ASI SIC retrieval shows an even peaked distribution
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with the majority of data points clustered around the 0% value and between 90 and 100%
at the high end. From this comparison the OEM SIC retrieval is situated between the
NT distribution with many intermediary values and the ASI distribution with two sharp
peaks at 0 and 100% and few values in between. This behaviour can be explained by the
difference in resolution between the three methods as well as the different weather filters
included. While the NT set-up used as a source for background values does not use any
weather filters for the sake of simplicity this means that spurious ice over open ocean as
well as weather induced variability over the ice pack will appear in the histogram as a
wider distribution of values between 0 and 100% SIC. The OEM retrieves the weather
influence separately as state vector parameters and so the retrieved SIC parameter has a
clearer distribution with two peaks at the extreme values of the SIC range. The difference
between OEM and ASI SIC is then given by the resolution of the two products. Each
large OEM pixel (75x43 km) is associated with a single ASI pixel with the same centre
coordinates. This selection of ASI pixels biases the SIC values towards an even sharper
distribution between the 0 and 100% peaks. An OEM pixel of intermediary SIC value is
associated with a smaller ASI pixel which due to its smaller size can completely cover only
an open ocean or a pack ice area inside the large OEM pixel. This is not the ideal way
to perform such a comparison but the purpose was not to validate the OEM SIC retrieval
but to test how reasonable the results are and use a simple approach where both methods
have a common number of comparison pixels instead of asigning an average of ASI pixels
for each large OEM one.

In Figure three example daily maps of SIC data are shown from the three data
sources. The data point distribution seen in the histograms from Figure [6.7] is confirmed
by the details in the SIC maps. The NT implementation provides a background value for
the OEM retrieval and does not benefit from any weather filters. As such, there are large
areas of spurious ice caused by weather contamination just south of Iceland in the example
maps. The values around the sea ice edge display intermediary SIC values so that there
is a more gradual decrease from the 100% SIC in the centre of the ice pack towards the
areas of open oceans. In the middle of the ice pack there are also weather contaminated
areas with lower than 100% SIC which contribute to the number of intermediary SIC value
pixels. The spurious sea ice over open ocean and the weather contaminated ice pack regions
are almost completely eliminated in the OEM SIC retrieval. A feature of the OEM SIC
however is the presence of intermediary SIC values at the edge of the ice pack similar to the
NT results. This feature is absent in the ASI SIC map where there is a sharp drop from the
100% areas to the 0% open ocean. This is evident all along the marginal ice zone and in the
south west of Novaya Zemlya island. In this area especially the ASI retrieval resolves three
clear sea ice floes with open water between them, while the OEM SIC registers a more
homogeneous zone with SIC values between 50% in the spaces between the floes and 90%

values coinciding with the position of the floes in the ASI map. Here the big difference
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Figure 6.8
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in resolution between the methods plays a role. While the OEM retrieval is limited to
the spatial resolution of its lowest frequency channel at 56 km, the ASI retrieval benefits
from using the highest frequency AMSR-E channels at 89 GHz and has a resulting spatial
resolution of 6.25 km in the gridded daily product shown here. A downside of using the
89 GHz channels is that the SIC retrieval is more susceptible to weather influences which
albeit reduced by weather filters and less pronounced than in the simple NT retrieval are
still present in the final ASI SIC map over the ice pack. To conclude, the OEM does
improve on the simple NT retrieval used as background and achieves a result close to the
high resolution ASI SIC product. Moreover through its nature of simultaneously retrieving

the relevant atmospheric parameters, the OEM SIC retrieval is weather filtered by default.

6.3 Comparing with AMSU-B TWV

The most challenging task for proving the reliability of the OE retrieval as an Arctic wide
retrieval is testing the results for the atmospheric parameters over sea ice. The RSS product
used in the previous section only works over ocean as the surface emissivity there can be
parametrized as a function of SST and WSP while over sea ice the surface emissivity is
much higher and highly variable and dependent on a larger number of parameters which
are difficult to assess. One atmospheric retrieval method that can work around the problem
of sea ice surface emissivity is the AMSU-B total water vapour product (Section . The
retrieval range of the AMSU-B method is limited to values below 15 mm as the 183.3 GHz
sounding channels become saturated. This means that the spatial domain over which a
comparison with OEM can be done is restricted to mostly sea ice regions which are typically
less moist, although in the winter season such low TWYV values can also be encountered
over open water at high latitudes. The OEM comparison with the AMSU-B TWYV retrieval
is seen as complementary to the RSS comparison done over open water because it focuses
on atmospheric retrieval in areas where sea ice is present. The AMSR-E instrument used
by the OEM has two channels around the weak water absorption line at 22 GHz, so that
the information content available to the two methods is different, with higher sensitivity
to water vapour available to the AMSU-B method which uses channels around the strong
water absorption line at 183.3 GHz. This comparison is important however because the
AMSU-B method is to date the most reliable retrieval that can daily cover the sea ice
regions of the Arctic.

There are two main features that can be observed in the scatter plots. In Figure [6.9)(a)
there is a number of data points with TWYV values covering the entire retrieval range of
AMSU-B which are seen as 0 in the ERA-Interim data. Presumably this is a weakness of
the ERA-Interim data because it shows a gap in the TWV data point distribution between
0 and 2 mm, which otherwise would be difficult to explain. Some of these 0 value pixels are

still present in the OEM retrieved data but their number is greatly reduced with the high
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Figure 6.9: Scatter plots showing the distribution of AMSU-B retrieved TWV data versus
collocated ERA-Interim data (a) and OEM retrieval TWV (b) respectively. The green lines
represent the 14 mm limit above which AMSU-B retrieval channels starts to saturate. The
red lines show the regression between the data sets. Data is based on the 16 winter days
in the 2006 data set.

pixel density regions being confined only to the 0-6 mm interval region. Another difference
for the ERA-Interim comparison with AMSU-B is the high scatter of data points. The
largest density of points is registered at TWYV values between 1 and 7 mm with the scatter
increasing for values higher than 7 mm. In the OEM TWYV retrieval the maximum data
density is kept in the same value range but with far less points scattered at higher values.
From the scatter plots we can conclude that the OEM retrieval moves away from the a
priori when ERA-Interim data gives values of 0 mm TWYV and retrieves values that are in
better agreement with the AMSU-B product. For values above 7 mm the spread of the
data scatter is reduced even though the negative bias versus AMSU-B data is present in
both the comparison with ERA-Interim and OEM data.

The scatter plots in Figure are complemented by the comparison statistics over
the winter days of the 2006 data set in Table While the three data sources show
similar mean TWYV values, there are differences in the standard deviations of each method.
When comparing the three sources, the OEM retrieval agrees best with the ERA-Interim
data.

priori background from which the OEM will move away only if the brightness temperature

This is to be expected as the collocated ERA-Interim values are used as the a

difference is large enough. For every statistic, the OEM is behind ERA-Interim for testing
agreement with the AMSU-B retrieval. The standard deviation of the difference and bias
value are higher and the correlation lower between OEM and AMSU-B when compared to
the ERA-Interim comparison with the AMSU-B retrieval.

In the one day example maps from Figure [6.10] the three data sources show similar
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Figure 6.10: Map showing one day of TWV data from the ERA-Interim data, OEM
retrieval and AMSU-B retrieval respectively. The ERA-Interim data is the a priori used
for the OEM retrieval and they are both restricted to the sea ice covered and open water
ocean regions while the AMSU-B retrieval coverage is only restricted by the TWV value.
The day shown here is the 21st of April, 2006.
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Table 6.4: Comparison statistics between OEM TWYV retrieval, ERA-Interim data used
as a priori and AMSU-B TWYV retrieval.

’ Stat ‘ Method ‘ Value (mm)
AMSU-B 3.58

Mean value OEM 3.72
ERA-Interim 3.69

AMSU-B 1.93

Std dev OEM 2.68
ERA-Interim 2.62

Bias OEM-AMSU-B -0.81
OEM-ERA-I 0.03

ERA-Interim - AMSU-B -0.78

Std dev diff OEM-AMSU-B 1.46
OEM-ERA-Interim 1.05

ERA-I- AMSU-B 1.33

Correlation OEM-AMSU-B 0.67
OEM-ERA-I 0.92

ERA-Interim - AMSU-B 0.73

TWYV values over the common spatial domain. Big features are easily recognisable such as
the low TWYV region north of the Chukchi Sea and the one west of the Greenland coast.
While the shapes are similar, the values are lower in the ERA-Interim and the OEM
retrieval maps. This confirms the negative bias of these two data sources versus AMSU-B
TWYV data shown in Table The three methods agree better in regions with higher
TWYV loads like in the north of Hudson Bay, and on the eastern coast of Greenland. It is
important to note that there are significant differences between the three data sources. The
AMSU-B TWYV data represents a daily average map the same as the AMSR-E based OEM
retrieval while the ERA-Interim data is the closest model step to the collocated AMSR-E
measurement. As TWYV is a parameter with high temporal variability, the time difference
between the three sources can explain shifts that appear in the map features. An important
difference between the two retrieval methods is that the AMSU-B methods benefits from
using the high water absorption line at 183 GHz while the OEM implementation based on
the lowest 10 frequency channels of AMSR-E depends only on the weak water absorption
line around 22 GHz. This means that the AMSU-B TWYV retrieval is more reliable for low
values as it has a higher sensitivity. The forward model used by the OEM to translate
the state vector to simulated AMSR-E brightness temperatures uses parametrizations that
were derived from radiosonde measurements taken in more southerly latitudes where TWV
values are higher. The resolution is also an important factor. The ERA-Interim data is
gridded on a 1.5 °grid, the OEM retrieval is limited to the resolution of its lowest frequency
channel at 56 km spatial resolution and the AMSU-B daily retrieval is gridded to a 50 km
spatial resolution. Despite the higher resolution of the AMSR-E sensor, the OEM retrieval
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reproduces the large pixel structures found in the ERA-Interim data. This is because the
TWYV values are small, and their influence on the simulated brightness temperatures is
lower than the surface sea ice parameters that the OEM does not move away from the

background data source.
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7 Different channel combinations

In order to determine the best set-up for the OEM, the constraints, a priori information
and forward model have been tested in the previous chapters. The tests run on the OE in
Chapter 5 and the comparisons made in Chapter 6 have used the ten AMSR-E channels
between 6.9 and 37 GHz as input for the retrieval. As stated in Chapter 5, this was done
because the forward model has a known limitation regarding the interaction with Mie
scatterers at frequencies above 37 GHz and this will result in a higher uncertainty for the
simulated Tbs at the 89 GHz channels. On the other hand, these channels are also known
to be the most sensitive ones out of the set of 12 for TWV and LWP and including them
in the OEM can potentially improve the retrieval of these atmospheric parameters. In
order to test this approach, an OEM version that uses all 12 AMSR-E channels has been
developed. This OEM set-up has been tested over the whole RRDP set and the results
have been explored through information content analysis and compared to the reference
10 channel version. This analysis is similar to that presented in Section and it shows
if and by how much the knowledge on the state vector parameters can be improved by
adding the 89 GHz channels while taking into account the increased uncertainty of the
simulated Tbs.

A different point of interest for the development of the OEM is the potential for im-
proving the horizontal resolution of the output. By using the AMSR-E Level 2a resampled
Tb data product the retrieval is limited to the spatial resolution of the lowest frequency
channel. This means that the only retrieval resolution supported by the current implemen-
tation of the OEM is the 56 km spatial resolution of the 6.9 GHz channels. One approach
for increasing the retrieval resolution of the OEM is to discard the 6.9 GHz channels from

the input and use the Level 2a product resampled at the 38 km spatial resolution of the
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10.65 GHz channels. Similarly to the analysis for including the 89 GHz channels, an in-
formation content analysis was done for an OEM version that uses only the ten highest
frequency channels of AMSR-E. This shows the impact on the retrieved knowledge of
discarding the 6.9 GHz channels.

7.1 The forward model Jacobian

One way to predict the potential impact of each individual AMSR-E channel on individual
parameter retrieval is to check the forward model Jacobian matrix. It indicates the change
in the individual channel Tb for a small perturbation in an individual state vector param-
eter. In order to compare the relative influence of the state vector parameters with each
other and across different channels the elements of the Jacobian have been normalised by
the a priori parameter uncertainty (standard deviation) derived from the S, matrix vari-
ances. The full set-up for the a priori parameters is discussed in more detail below. For
a better insight into how these parameter sensitivities vary depending on the surface con-
ditions, the Jacobian results are averaged separately for all RRDP SIC1 and SICO scenes
respectively.

For both SIC1 and SICO cases all 12 channels have been used in the retrieval. In
order to extend all of the findings of Chapter 5 to all 12 channels, the effective sea ice
surface temperature correction coefficients and surface emissivity corrections include the
89 GHz channels. The corresponding brightness temperature covariance matrix S, has
been calculated to account for the increased uncertainty of the 89 GHz channels. As the
sea ice surface emissivity correction is calculated for the retrieval step modeled brigthness
temepratures and the cost function accounts for the brightness temperature differences
across all channels, the retrieval will have some differences from the OEM version which
excludes the high frequency channels. By including the higher uncertainty 89 GHz channels
the retrieval is influenced and indirectly the emissivity correction corresponding to this
OEM configuration has change so that the resulting variances across some of the channels
have also increased. This means that the S, elements for the 12 channel OEM version
will be larger than the elements for the 10 channel OEM which excludes the 89 GHz
channels. In order to observe only the effects of using different channel combinations on
the information content separate from any effects that the different S. matrix would have,
the same brightness temperature matrix is used for both SICO and SIC1 tests and across
all OEM versions tested in this chapter. The equivalent standard deviation values for each
channel are shown in the Appendix in Table side by side with the equivalent values
for the 10 channel OEM without the 89 GHz channels in order to showcase the impact on
all Tb uncertainties of including the high frequency channels. On average the standard
deviation of the difference between simulated and observed Ths has increased from 1.64 K

to 2.77 K after including the 89 GHz channels. The attempt to use separate S, matrices for
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SIC1 and SICO cases respectively, showed in Chapter 6 that the resulting variances from a
long term SICO data set can lead to overconstraining some of the retrieval parameters to the
background. A second attempt to create a SICO specific S, matrix was made using ERA-
Interim parameters from the 16 winter days of the 2006 data set for SIC values below 5%.
The results were very close to the climatology based S, matrix described in Section [5.1.1
In order to avoid confusion, the same climatology based diagonal background covariance
matrix described in Table in the Appendix is used for both the SIC1 and SICO tests.

In Figure [7.1] let side the Jacobian for the SICI tests is shown. Out of the seven state
vector parameters some are not represented over SIC1 such as SST and WSP as they do not
impact the surface emitted brightness temperatures. Out of the remaining five parameters
that can influence the simulations, SIC shows the strongest sensitivity. It determines large
Tb responses across all channels with the relative sensitivity decreasing with frequency.
The other parameter that triggers a response in all channels is the MYIF where the Tb
change increases with frequency up to 37 GHz. The 6.9 GHz channels show the highest
sensitivity to SIC changes in both polarizations but are closely followed by the 10.65 GHz
channels. This means that removing the 6.9 GHz channels would decrease the sensitivity
to SIC but this could potentially be supplemented by the other channels. This aspect will
be further investigated in Section [7.2]

For the atmospheric parameters, the 89 GHz channels stand out as the most sensitive
ones to both LWP and TWYV. This is particularly important as these atmospheric param-
eters determine very low responses in the lower frequency channels. For the case of SIC1
including the 89 GHz channels can add greatly increased atmospheric sensitivity to the
OEM with the downside of the increased uncertainty for the simulated Ths.

On the right side of Figure the corresponding Jacobian values are plotted for the
SICO test scenario. The SIC is again the most influential parameter followed by LWP,
TWYV and WSP with SST being the least important for the forward model calculations.
Over SICO the atmospheric parameters determine Tb responses over all channels. This is
important because it means that the retrieval sensitivity is not affected too much by the
channel combination if all channels can provide some measure of sensitivity to all significant
parameters. The 89 GHz channels provide the best sensitivity for LWP while the 6.9 GHz
channels are most sensitive to SIC but in both cases there are adjacent frequency channels
which provide similar sensitivities. Based only on the Jacobian we can say that changing
the channel combination will have a lower impact on the OEM over SICO regions than
over SIC1 over open water there is more redundancy for atmospheric parameter sensitivity
while over sea ice the signal is dominated by SIC and MYIF with only the 89 and to a
lesser extent 37 and 22 GHz channels still offer some sensitivity to LWP and TWYV. This
is however without taking into account the different channel accuracies which is what the

information content analysis can provide as is described in the introduction of Section[5.1.
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7.2. Testing over RRDP SIC1

7.2 Testing over RRDP SIC1

In order to determine how suitable for retrieval different channel combinations are an
information content analysis of the retrieval is performed for three different version of the
OEM. The reference version is the OEM set-up used throughout Chapter 6. It uses the
AMSR-E channels between 6.9 and 37 GHz including all of the improvements listed in
Section and the relaxation of the SST S, matrix constraint described at the end of
Section For ease of notation throughout this section, this OEM version will be called
10c-low as it uses the ten lowest frequency channels of AMSR-E. Another version, called
12¢, uses all 12 AMSR-E channels with corresponding adaptations for emissivities and sea
ice surface temperature. A third version, called 10c-high, uses the channels between 10.65
and 89 GHz thus discarding the 6.9 GHz channels. Besides the input channel combination

all three versions are identical, using the same a background data and constraints.

Table 7.1: Singular values (;), degrees of freedom (ds) and information content (H) in
bits for the singular vectors of the three OEM versions. Test was done over RRDP SIC1.

] 10c-low 10c-high 12¢ ‘
i Ai ds H i ds H Ai ds H
1 43.17 0.999 3.77 | 36.74 0.999 3.6 | 42.75 0.999 3.76
2 14.1 0.995 2.65 | 12.11 0.993 2.5 | 14.16 0.995 2.65
3 1.23 0.602 0.46 | 293 0.896 1.13 | 8.64 0.987 2.16
4 0.6 0266 0.16 | 064 029 0.17| 0.62 0.278 0.16
5 0.36 0.113 0.06 | 0.29 0.077 0.04 0.5 0.199 0.11
6 0 0 0] 0.01 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0
Total 2975 17.09 3.255 7.44 3.459 8.85

For SIC1 Table gives the results of the information content analysis. It shows the
individual contribution of each singular vector as well as the total information content for
each of the three channel combinations. The total information content gives the number
of bits of independent information with which the retrieval improves on the a priori knowl-
edge. The information content associated with each singular vector gives a measure of
the retrieval sensitivity to the parameters represented by that particular singular vector.
The degrees of freedom are also shown for each OEM version and they give the number of
independent measurements that can be made at higher precision than the noise threshold.
For understanding the differences in information content between the different OEM ver-
sions the value in the table need to be viewed alongside the singular vector plots shown
in Figure [7.2] where the singular vectors are shown in decreasing order of their singular
values. The singular vectors can be seen as reflections of how the forward model calculates
the parameter contributions to the simulated brightness temperatures and the higher the

information content for a singular vector, the larger the OEM retrieval sensitivity to the
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Figure 7.2: Singular vectors for the three OEM versions based on different input channel
combinations tested over the SIC1 data set. The left most column represents the 10c-low
version, the middle column is the 10c-high version, while the right most column represents
the 12c¢ version.
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parameters that contribute to that particular singular vector.

The 12¢ channel combination has the highest information content. This is to be ex-
pected as it includes the maximum number of input information from Tb measurements.
It is interesting to watch how the information content varies when the 6.9 GHz or the
89 GHz channels are not included in order to gauge the impact these channels have on the
retrieval. The influence of the 6.9GHz channels can be seen in the first two singular vectors
which represent the combined contributions from SIC and MYIF (Fig. top two rows).
As the 6.9 GHz channels have the highest sensitivity to SIC (Fig. it makes sense that
the OEM versions which include these channels (10c-low and 12c¢) will have the highest
information content in the singular vectors that depend on this parameter. When 6.9 GHz
channels are discarded, the higher frequency channels can contribute enough information
to achieve one degree of freedom for each of these singular vectors, however the information
content for the first two singular vectors is reduced (Table 10c-high column, top two
rows) when compared to the other two OEM versions.

The third singular vector has the strongest influence from the LWP and TWV contri-
butions (Fig. [7.2] top two rows) and its information content is increased (Table 12¢
column, third row) by almost a factor of 5 in the 12¢ version compared to the 10c-low
version, from 0.46 to 2.16 bits as the 89 GHz channels offer higher sensitivity to these
parameters (Fig. [7.1). This shows that the main benefit of the the 89 GHz channels is in
improving the OEM information content for LWP and TWYV while the increased noise they
introduce determines has very little effect on the surface parameter information content
compared to the 10c-low OEM version (Table 10c-low column and 12c¢ column, top
two rows).

The inclusion of the 6.9 GHz channels ensures the highest information content among
the three versions for the retrieval of SIC. The total information content of the retrieval
decreases by 16% (or 1.41 bits) between the 12¢ and the 10c-high versions as a consequence
of discarding the 6.9 GHz channels. However given the precision levels for SIC set by the
background covariance matrix, the remaining mid-frequency channels provide enough sen-
sitivity to ensure the retrieval of one degree of freedom for each of the first and second
singular vectors. This means that the OEM can retrieve SIC as an independent parameter
with a precision level above the noise threshold even without the 6.9 GHz channels if the
OEM application requirements ask for a higher resolution. The reverse is that for appli-
cations that require the most accurate OEM SIC retrieval, with the highest information
content for this parameter, and without concern for the resolution difference, the 6.9 GHz
channels must be included.

At the opposite end of the channel frequency range, excluding the 89 GHz channels
(10c-low) has a more dramatic effect on atmospheric parameter retrieval as the sensitivity
they provide is unique among the AMSR-E channels. The total information content of
the 12¢ version is greater by 25% (or 1.76 bits) than that of the 10c-low version. The
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OEM versions that included the 89 GHz channels, 10c-high and 12¢, achieved almost one
degree of freedom for the third singular vector which means that if retrieving independent
information about the atmospheric parameters of LWP and TWYV over sea ice is a priority,
the 89 GHz channels have to be included in order to beat the precision levels set by the

background covariance matrix.

7.3 Testing over RRDP SICO0

Just as over SIC1, the first singular vector for all versions over SICO (Fig. is dominated
by the contribution from SIC. The second and third singular vectors however give mixed
contributions from an ensemble of surface and atmospheric parameters. TWV and LWP
are the most important parameters for these singular vectors but to a lesser degree also
WSP, SST and SIC contribute to the information content. This is important because the
6.9 GHz channels are the most sensitive channels for SIC, WSP and SST (Fig. . The
information content is reduced (Table by 28% (2.2 bits) between the 12c and the
10c-high version.

For the 12c¢ version, when compared to the 10c-low version, the contribution the 89 GHz
channels bring for the atmospheric parameters of LWP and TWYV is reflected in the increase
in information content for the second and third singular vectors (Table 12¢ column,
second and third top rows). The inclusion of the 89 GHz channels improves the knowledge
on the atmospheric parameters LWP and TWYV, however the additional information is
quantified to just 10% (0.7 bits) more than the 10c-low OEM (Table [7.2). The number
of degrees of freedom is increased only slightly. In practice both versions should achieve a
retrieval of between 3 and 4 independent parameters over SICO while the 10c-high version
can achieve less than 3 independent parameters.

Overall the impact of removing the 6.9 GHz channels is more important over SICO
scenes because the surface parameters WSP and SST influence all significant singular
vectors. The impact of including these channels is less dramatic as over SIC1 because
over ice free regions there are other channels with relatively large sensitivities to LWP and
TWYV. Over SIC1 only the 37, 23 and to a small extent, 18 GHz offer some sensitivity to
LWP and TWYV but significantly lower than the 89 GHz channels (left side Fig. . Over
SICO all channels offer sensitivity for LWP and all except 6.9 GHz for TWV. While the
89 GHz channels are still the most sensitive for LWP, and second most sensitive for TWV,
the differences to the other channels are not as dramatic as over SIC1 (Fig. |7.1)).

For the forward model calculations, over open water the parameter contributions are
interconnected more than over sea ice and as such the WSP and SST parameters influence
all of the singular vectors. Removing the 6.9 GHz channels reduces the method sensitivity
to these parameters and in turn this reduces the information content of the retrieval overall.

Over SIC1, the loss of the 6.9 GHz channels is compensated for by the adjacent frequency
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channels, with a small decrease in the information content and almost no change in the
number of degrees of freedom for the first two significant singular vectors. As predicted by
the parameter sensitivities shown in the forward model Jacobian (Fig. , the inclusion
of the 89 GHz channels contributes more information about the atmospheric parameters
of LWP and TWYV. It is important to note once again that the downside of including these
channels in the OEM is represented by increased uncertainty in the simulated brightness
temperatures. Even though the uncertainty of the 89 GHz channels is about double that of
the lower frequency channels as shown in Table a gain in knowledge is still achieved.
The impact of the high frequency channels is larger over SIC1 as the retrieval sensitivity
for the atmospheric parameters is greatly improved despite the added noise from the larger
Tb uncertainty. Over SICO the contribution of the 89 GHz channels is also present but
its impact is reduced as the other channels also offer reasonable sensitivity for the two

atmospheric parameters.

Table 7.2: Singular values (\;), degrees of freedom (ds) and information content (H) in
bits for the singular vectors of the three OEM versions. Test was done over RRDP SICO.

| 10c-low 10c-high 12¢ \
\i ds H \i ds H \i ds H
3911 0.999 3.67 | 32.53 0.999 3.48 [ 39.05 0.999 3.67
6.52 0.977 1.89 | 4.62 0955 1.55| 9.91 0.990 2.30
277 0.885 1.08 | 1.12 0.557 041 | 311 0906 1.18
1.02 0511 036 | 0.61 0.269 0.16 | 1.33 0.640 0.51
0.66 0.305 0.18 | 0.33 0.099 0.05| 0.73 0.348 0.21
0.00 0.000 0.00 | 0.01 0.000 0.00 | 0.01 0.000 0.00
7 | 0.00 0.000 0.00 | 0.00 0.000 0.00 | 0.00 0.000 0.00
Total 3.677 717 2.879  5.65 3.883 7.87

ST W N -
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Figure 7.3: Singular vectors for the three OEM versions based on different input channel
combinations tested over the SICO data set. The left most column represents the 10c-low
version, the middle column is the 10c-high version, while the right most column represents
the 12c¢ version.
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8

8.1

Conclusions

Sensitivity tests and improvements

The aim of this study was to explore and further develop the performance of the OEM

prototype |[Melsheimer et al., 2008| for an integrated retrieval of seven atmospheric and

surface parameters in the Arctic described in Chapter @ The method sensitivity to the a

priori parameters has been tested in Chapter 5| The main findings are:

(i)

(i)

(iii)

The OEM is resilient to small scale changes in the background covariance matrix
elements. When these elements are changed to unrealistic levels there is a resulting
bias in the retrieval. This means that the OEM is reliable as long as the a priori is

based on reasonable data which allows for natural parameter variability.

The representability of the a priori data is important. A priori constraints based on
short term data sets can be too strict if the retrieval is run for longer time series.
A background covariance matrix based on model data from a single winter month
proved to be too restrictive for a retrieval data set that covered the winter season

across five years.

The previous point about the representability of the constraints is further supported
by an analysis of the retrieval information content. By looking at the degrees of
freedom of the retrieval, the OEM version using the one month based constraints has
been shown to retrieve fewer independent parameters than the one using the long

term background covariance matrix.

The presence of non-diagonal elements in the background covariance matrix (Sg)

has an important effect on the retrieval. It is shown that for the OEM version that
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uses an S, based on a short term data set which includes non-diagonal elements, the
number of iterations has increased dramatically. This means that the off-diagonal
elements impose additional constraints that require more iterations to be satisfied.
An additional challenge is that the covariances between parameters are difficult to
extract from climatological data, and these relationships can vary in time and space
[Pedersen, 1994]|. The potential for bias is strong, resulting from overconstraining
the retrieval in conditions where the covariances do not hold true, for example any
covariances relating to the atmospheric parameters over sea ice. It was decided that a
simplified implementation where no covariances are used is preferable. By discarding
the off-diagonal elements altogether, the resulting diagonal background covariance
matrix is the minimum required according to Rodgers| [2000|, but sufficient for the

OEM to function and the potential bias issues are avoided.

A dynamically collocated set of background parameters for each retrieval pixel en-
sures a faster convergence rate, full convergence for all tested datapoints, and a better
agreement with the ASR model data. ERA-Interim data is used for the parameters
WSP, TWV, LWP and SST. Both over open water and over 100% SIC the use of collo-
cated ERA-Interim as background causes an improvement in the retrieval agreement
with the benchmark data for all parameters except for LWP. It is a known feature of
reanalysis data that LWP fields from model data do not exactly represent the cloud
situation at the place and time of the satellite overflight. When using one static set
of background parameters the retrieval is constrained to this single position resulting
in an unrealistic distribution of the output data points clustered around the static
background position. By using collocated background data the data distribution of
the retrieval is normalised. It is an interesting consequence that by improving the
atmospheric parameter retrieval and thus correctly attributing their contributions to
the simulated Tb signal, a better result for the SIC parameter is achieved (Fig ,
. The SIC retrieval using collocated reanalysis data for the atmospheric parame-
ters has a lower standard deviation and a narrower distribution around the extreme
values of 100 and 0% for the SIC1 and SICO data sets respectively. By correctly
attributing the contributions by the atmospheric parameters to the simulated Th,
the retrieved SIC standard deviation is decreased from 2.1% to 1.2% for SICO and
from 4.6% to 2.8% over SIC1.

Related to the collocated ERA-Interim background data is the treatment of the ef-
fective ice surface temperature. Because each of the AMSR-E channels used in the
OEM has a different frequency dependent penetration depth inside the snow and
ice pack, the surface temperature parameter needed in the forward model should be
different for each channel. To address this issue, channel wise regression coefficients

determined by [Mathews| 2007] were used in order to relate the ERA-Interim 2 meter
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Sensitivity tests and improvements

(vii)

(viii)

(ix)

air temperature to individual channel effective surface temperatures. An OEM ver-
sion that includes the sea ice surface effective temperature correction and a reference
OEM are compared against ASR skin surface temperatures for the RRDP SIC1 set.
The OEM that includes the correction has shown a massive improvement in terms
of IST bias reduction from 12 K to 3.4 K, as well as an increase in correlation with
the model data from 0.55 to 0.8.

Another parameter to which the OEM sensitivity was tested is the start guess value.
Initially, collocated ERA-Interim data was used for this first guess, in order to place
the OEM as close to the solution as possible. Alternatively, an OEM implementations
was tested which used a static start guess array for all RRDP pixels. Comparing the
two versions showed that the start guess value has some influence on the atmospheric
retrieval over SIC1 areas and almost none at all on retrieval over SIC0O. The largest
influence of the start guess is in the number of iterations required by the OEM to
reach convergence. In both SIC1 and SICO scenarios the static start guess OEM
version needed on average 0.8 more iterations per pixel than the dynamic start guess
version. This means that the start guess is not that important and the OEM is

resilient against the position of the initialization point.

One important aspect of forward model calculations in the Arctic is the contribution
of the sea ice covered surface. Empirical sea ice surface emissivities calculated by
[Mathews, 2007| are used in the OEM prototype. Individual channel biases were
found in the simulated brightness temperatures calculated over SIC1 scenes when
compared to the AMSR-E measurements using this set-up. To reduce the biases
a correction was applied to the empirical emissivities. Under the assumption that
the differences between the simulated and the measured brightness temperatures are
caused by the sea ice surface component of the forward model, a set of corrected
emissivities has been calculated that minimises these differences (Table . While
before the correction the emissivities had monthly values and each pixel wise set
of emissivities was interpolated in time depending on the date of the retrieval, the
corrected emissivities are averaged for the winter season in order to reduce the influ-
ence of monthly variations. For testing the effect of the correction on the OEM, two
versions of the retrieval have been compared. The differences between simulated and
measured Ths for the corrected OEM version are decreased over all channels. The
largest impact of the emissivity corrections is over high MYIF regions where the Th
difference is decreased from 2.8 K to 0.6 K on average. Over FYI the final result is

less drastic with a decrease in the average Tb difference from 0.9 K to 0.4 K.

The sensitivity to the brightness temperature covariance matrix S, has been in-
vestigated. This matrix describes the uncertainties that can cause the simulated

brightness temperatures to deviate from the measured brightness temperatures as-
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suming the state vector parameters are correct. This matrix restricts the space in
which the simulated brightness temperatures can be found within acceptable limits
of the measurements. Four different S, versions have been tested based (i) only on
radiometric noise values of 1 K for each AMSR-E channel which would ignore any
modelling errors in the simulated Tbs, (ii) on the variances of the differences between
the simulated and the measured Ths after one OE retrieval run using only the first
Se version. This version also includes the modelling errors of the forward model. In
order to test the sensitivity of the retrieval results to variations in S., two other ver-
sion are developed from the second by (iii) halving and respectively by (iv) doubling

the value of each element.

Larger S, values relax the pull towards the measurements and shift the retrieval
towards the background values as seen for the version using the doubled values.
If the S, values are too low, like in the version using halved values, they over-
constrain the simulations to match the measurements up to an unrealistic precision
level which results in a biased retrieval as the OE compensates for errors in the
simulation with changes in the state vector parameters. For all subsequent OEM
versions, the second version of the brightness temperature covariance matrix was
used from the four described above. As good practice for future development, every
change introduced to the method should be reflected in the brightness temperature
covariance matrix by using the same procedure. First a test run of the modified OEM
is performed with a generic Se with large enough values to avoid overconstraining the
method. Then the variances of the differences between the retrieval step simulated
Tbs and the measurements are taken as the components of the new S, matrix. In this
way the brightness temperature covariance matrix includes the measurement error,
the channel wise combined modelling error and the forward model parameter error
after implementing the modifications in order to allow for a good balance between

the background state vector values and the measured Tbs.

8.2 Comparison with state of the art

The RRDP test data set represents isolated scenes with extreme SIC values, 100% or
0%. In order to test how the method behaves after implementing the changes detailed
above, a more realistic data set of AMSR-E measurements in the Arctic is used which
covers the whole polar region north of 60 °N and 16 individual winter days spaced every
10 days in 2006. The purpose of this second data set is to include more variety in the
surface conditions than the RRDP set provides. In addition, the OEM retrieval results are
compared with state of the art retrieval products. While not a true validation effort, this
comparison shows how reasonable the OE output is in a realistic retrieval environment.

The results of these comparison tests are:
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(i)

(if)

(iif)

The first comparison product used was the RSS Ocean Data product which is a
state of the art retrieval method that uses a direct Tbh inversion to retrieve WSP,
TWV, LWP and SST over open ocean. The OEM retrieval result was positioned in
the parameter space between the background data of the ERA-Interim and the RSS
retrieval. For WSP, TWV and LWP, the OEM retrieval improves on the previous
knowledge represented by the ERA-Interim data and achieves a better agreement
with the RSS benchmark (Table . The SST retrieval is shown to have been over
constrained to the background using a SICO derived covariance matrix. After the
constraint on SST is relaxed back to climatological values the OEM moves away

from the background towards the RSS values.

The SIC is the most important parameter because it dominates the microwave signal
over all AMSR-E channels (Fig. [7.1)). As a benchmark for SIC state of the art
retrieval the ASI SIC product was used for the comparison with OEM retrieved
SIC. The OEM results improved on the NASA Team background data and moved
closer to the ASI benchmark both in the distribution shape of the retrieved data
and standard deviation of the difference between results. Despite that the NASA
Team SIC data used as background by the OEM is not weather filtered, the OEM
SIC output does not contain the spurious ice over open water or cloud patterns
above pack ice that appear in the a priori (Fig. . In this sense, by correctly
attributing the individual contributions to the simulated Th from each state vector
parameter, the OEM achieves automatically a weather corrected SIC retrieval where
the weather influences are retrieved as separate parameters, making the statistically

based weather filters obsolete.

Testing the atmospheric retrieval over sea ice is difficult because there are few compa-
rable retrieval products over sea ice. The state of the art for TWYV retrieval over sea
ice is represented by the AMSU-B TWYV product |[Melsheimer and Heygster] [2008],
and it has been used as a benchmark in this case. The comparison shows that the
OEM TWYV output is reasonable, with a correlation of 0.7. The daily average map
examples indicate that the differences can be caused by the temporal collocation.
The TWYV fields are clearly shifted in position between the OEM output and the
AMSU-B TWYV retrieval, although similar in shape (Fig.[6.10)). Also of note is that
the impact of very low TWYV values on the Ths at channels between 6.9 and 37 GHz
can be so small that the OEM will just repeat the background as the Tb difference
is not big enough to determine a change in this parameter (Fig. left side). The
OEM sensitivity to TWV over sea ice can be improved by including the 89 GHz
channels. This is further discussed in Section
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8.3

Testing different input channel combinations

The testing summarized above was based on the OEM implementation using the AMSR-E

channels between 6.9 and 37 GHz. In addition to this version, different channel combina-

tions have been explored through information content analysis in order to provide avenues

for further development of the method. The main improvements of the OEM that can be

addressed by changing the combination of input channels are the resolution of the output

and the sensitivity to atmospheric parameters over sea ice.

(i)

(i)

The resolution of the OEM retrieval is limited to that of the lowest involved frequency
channels so that the resolution can only be improved if the 6.9 GHz channels are
discarded from the retrieval. Depending on the surface conditions some limitations
to the retrieval performance are observed (Fig[7.1). The performance reduction is
highest over the open ocean as the sensitivities to WSP, SIC and SST are reduced
by discarding 6.9 GHZ channels. Over sea ice covered regions the drop in sensitivity
is less noticeable as the signal information content is dominated by contributions
from SIC, the ice type and LWP. While most of the remaining channels provide good
sensitivity for SIC and MYIF, the inclusion of the 89 GHz channels ensures good
sensitivity for LWP. Depending on the application, this version of the OEM can be
used if the higher resolution is required and the retrieval spatial domain consists of

sea ice covered regions.

The 89 GHz channels provide the best sensitivity to the atmospheric parameters
TWYV and LWP which are lacking in current retrieval products over sea ice. At the
same time, limitations in the forward model regarding scattering calculations at fre-
quencies above 37 GHz argue against including the 89 GHz channels. OEM versions
that include the 89 GHz channels either in a set of 10 channels after discarding the
6.9 GHz channels or as a full set of all 12 AMSR-E channels have been tested in
Chapter 7. The increased sensitivity to LWP and TWYV is evident both over open
ocean and sea ice covered regions. Over SIC1 cases the impact of the additional
sensitivity is more important than over SIC0 as in the latter other channels (37, 23,
18 GHz) that provide sensitivity. In both SIC1 and SICO cases however the OEM
version using the full set of 12 channels has the highest information content even
while taking into account the increased uncertainty of the simulated Ths. For appli-
cations where the surface parameter retrieval requires the most information content,
the 89 GHz channels can be excluded as they increase the uncertainty of the simu-
lated brightness temperatures. However if the priority is on retrieving atmospheric
parameters, especially over sea ice, and the increased noise level in the simulations

is acceptable, the 89 GHz channels have to be included.
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8.4 Outlook

Of immediate concern for the development of the method is a thorough validation of as
many state vector parameters as possible. Parameters over open water are easier to ap-
proach than over sea ice. Depending on the length of the validation time series such data
can be used to update the background covariance matrix which is crucial to the retrieval
performance as has been shown in Chapters 5 and 6. Further testing of the OEM using
all 12 AMSR-E channels could yield better performance for the retrieval of atmospheric
parameters over sea ice as indicated by the information content analysis (Tables .
As a direct consequence of using the 12c OEM version, the treatment of the 89 GHz chan-
nels can be improved by a newer implementation of the radiative transfer model (currently
Wentz and Meissner [2000] with the adaptations for sea ice described in Section with
updated atmospheric coefficients for the high frequency channels or by switching to a dif-
ferent forward model like RTTOV (Radiative Transfer for TOVS) [Saunders et al.,|2017] or
the CRTM (Community Radiative Transfer Model) (|Weng et al., 2005]). These models in-
clude Mie scattering calculations that become relevant at these frequencies. The additional

challenge will then be in providing input parameters about the drop size distribution.

8.5 Summary

The OEM takes advantage of the sensitivities of multi-channel microwave radiometers to
retrieve an ensemble of geophysical parameters which are currently unavailable or obtained
from single parameter retrievals. A number of improvements have been implemented over
the OEM prototype including (i) a sea ice surface temperature treatment that accounts
for the channel specific penetration depth, (ii) surface sea ice emissivities that minimise
the differences between simulations and observations, (iii) using collocated reanalysis data
as background to improve the convergence rate and (iv) tools for testing and tuning the
a priori constraints to minimise the biases in the retrieval. The OEM depends on many
variables and can be run in a multitude of configurations. The most important ones
have been explored and a retrieval scheme is suggested that can match the performance
of existing multi-parameter retrievals over open ocean with the added benefit of reliable
surface parameter and reasonable atmospheric parameter retrieval over sea ice. Based on
these results and the tools identified in this work the method can be developed in a variety
of channel combinations depending on the intended use. For applications that require the
best information about surface parameters the 6.9 GHz channels need to be includedq. If
a spatial resolution higher than 56 km is required, the 6.9 GHz channels can be excluded
with a small loss in retrieval performance over sea ice but higher degradation over open
water. For applications that prioritise the retrieval of atmospheric parameters, especially

over sea ice, the 89 GHz channels have to be included.
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A Appendix

Below are the detailed parameters of different OEM implementations used throughout this
thesis. The reference OEM used for the tests presented in chapter [5] uses the background
covariance matrix and the static background state vector shown in Table The sea
ice surface emissivities used are seasonal averages (only winter used here) of the original
empirical values from [Mathews, [2007] shown in Table [A.5| The reference brightness tem-
perature covariance matrix used for constraining the difference between the simulations
and the measurements is given in Table This reference S, uses only the radiometric

error of 1 K for each channel.

Table A.1: Elements of the background covariance matrix and static elements of the
background state vector of the reference OEM version. The values shown here represent
the standard deviations of the state vector parameters. For IST, SIC and MYIF the
background values are not fixed but evaluated once for every data point.

| Parameter | WSP TWV LWP  SST IST SIC MYIF |
Units [m/s]  [mm]| [mm] K] K] 7] 2]
S, equivalent o 3.51 3.32  0.14 4.89 4.89 32 54
P, elements 4.11 2.86  0.17 274.50 evaluated evaluated evaluated

As a conclusion to Chapter 5, an improved OEM version is constructed for use in further
testing in subsequent chapters. The background covariance matrix is constructed from a
large RRDP set of 9 years of data for the SICO scenario where ERA-Interim data was used
for calculating the variances of wind speed, TWV, LWP and SST. The ERA-Interim skin
temperature from the entire SIC1 data set was used for IST variance and NASA Team
data for the same set was used for the SIC and MYIF variances. The diagonal elements of
the final S, matrix are shown in Table [A.7]
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Table A.2: Diagonal elements of the brightness temperature covariance matrix - S, for
different versions of the OEM. Shown here are the standard deviations (K).The column
labeled "Final" represents the S, matrix calculated in the same manner as the LS. but
after implementing all of the improvements described in Chapter 5.

’ Channel ‘ Ref.S, ‘ 1/2LS, ‘ LS, ‘ 2L.S, ‘ Final S, ‘
6.9V 1 1.46 2.92 5.85 1.54

6.9H 1 1.21 242 484 2.20
10.7V 1 0.93 1.86 3.71 1.27
10.7H 1 0.64 1.28 2.56 2.34
18.7V 1 0.61 1.21 242 0.99
18.7H 1 1.01 2.02 4.04 2.22
23.8V 1 0.28 0.56 1.17 1.02
23.8H 1 0.92 1.83 3.66 1.63
36.5V 1 2.19 4.37 8.75 1.59
36.0H 1 1.84 3.67 7.34 1.63

Table A.3: Background covariance matrix of the Feb-diag OEM version. The diagonal
elements are variances of each parameter, and the values are based on MPI model output
from the month of February in the Arctic.

| Parameter | WSP. TWV  LWP  SST IST SIC MYIF |
Units — [m/s") [mm?] fmm?] K7 K7 (%1077 [(%-107)]
WSP 8.66 0 0 0 0 0 0
TWV 0 1.6 0 0 0 0 0
LWP 0 0 0.0003 0 0 0 0
SST 0 0 0 23.95 0 0 0
IST 0 0 0 0 46.8 0 0
SIC 0 0 0 0 0 0.0007 0
MYIF 0 0 0 0 0 0 0.30

Table A.4: Background covariance matrix of the Feb-full OEM version. The diagonal
elements are variances of each parameter, while the off-diagonal elements are covariances
between parameters and the values are based on MPI model output from the month of
February in the Arctic.

| Parameter | WSP. TWV ~ LWP  SST IST SIC MYIF |
Units m/s?] [mm?  [mm? (K% [K?] (%1027 [(%-107%))
WSP 8.66 0.81 -0.005 0 6.22 -0.008 0
TWV 0.81 1.6 0.003 0 7.02 -0.003 0
LWP -0.005 0.003 0.0003 0 0.033 -0.00005 0
SST 0 0 0 23.95 0 0 0
IST 6.22 7.02 0.033 0 46.8 -0.05 0
SIC -0.008 -0.003 -0.00005 0 -0.05 0.0007 0
MYIF 0 0 0 0 0 0 0.30
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Table A.5: Empirical sea ice surface emissivities differentiated by ice type. The original
values represent the averages of the winter season values given in Mathews [2007]. The
corrected values are obtained from the original set (Section [5.5]).

Channel | Multi-year ice pixels | First year ice pixels

Original Corrected | Original Corrected
6.7V 0.954 0.958 0.955 0.972
6.7H 0.854 0.868 0.861 0.866
10.7V 0.953 0.960 0.930 0.948
10.7H 0.860 0.879 0.840 0.845
18.7V 0.964 0.965 0.884 0.885
18.7H 0.875 0.887 0.808 0.799
23.8V 0.960 0.960 0.848 0.839
23.8H 0.875 0.882 0.775 0.763
36.5V 0.936 0.946 0.761 0.731
36.5H 0.851 0.864 0.699 0.675

Table A.6: Emitting layer temperature regression coefficients, as taken from [Mathews

[2007].
Frequency [GHz| | First year ice winter pixels | Multi-year ice winter pixels
a b a b
6.9 0.23 -5.5 0.27 -11.5
10.7 0.26 -5.2 0.34 -10.5
18.7 0.29 -5 0.42 -9.5
23.8 0.29 -4.9 0.43 -9.2
36.5 0.3 -4.9 0.45 -8.9
89 0.37 -4.2 0.49 -8.4

Table A.7: Equivalent standard deviations for background covariance matrix elements

based on ERA-Interim and NASA Team data from the extended 9 years SICO dataset.

| WSP [m/s] | TWV [mm] | LWP [mm| | SST [K] [ IST [K] | SIC [%] | MYTF [%] |

2.39

1.17

0.3

1.42

5.02

20

32

99



The brightness temperature covariance matrices used for the 12 channel and the 10
channel OEM versions are discussed in Section [7.1] as needed for testing the impact of
including the 89 GHz channels in the retrieval. These channels have a higher uncertainty
because of the deficiencies of the forward model at these frequencies. By including these

channels with higher uncertainty in the OEM, all values of the S, matrix will increase.

Table A.8: Equivalent standard deviations (o) of the diagonal elements of the brightness
temperature covariance matrix S, for the 12 channel (o19.,) and the 10 channel (o19cp)
OEM version respectively. The 10 channel version is shown here for comparison only.

’ Channel ‘ 012¢ch [K] ‘ J10ch [K] ‘

6.9V 2.25 1.53
6.9H 2.78 2.20
10.65V 2.22 1.27
10.65H 2.86 2.34
18.7V 2.05 0.99
18.7H 2.73 2.22
23.8V 1.99 1.02
23.8H 2.33 1.63
36.5V 2.20 1.59
36.5H 2.76 1.63

89V 4.99

89H 4.03
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List

AMSU-B
AMSR2
AMSR-E
ASCAT
ASR
ECMWF
EM

EOS

IUP

IST

LWP
MYIF
OE

SIC
SSMi

SST

of acronyms

Advanced Microwave Sounding Unit B

Advanced Microwave Scanning Radiometer 2
Advanced Microwave Scanning Radiometer -
Advanced SCATterometer

Arctic System Reanalysis

European Centre for Medium-Range Weather Forecasts
electromagnetic

Earth Observing System

Institute fiir Umweltphysik

ice surface temperature

liquid water path

multi-year ice fraction

optimal estimation

sea ice concentration

Special Sensor Microwave Imager

sea surface temperature
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TWV total water vapor

WSP wind speed
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